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Abstract. In this paper we investigate the existence and uniqueness of solutions on a compact
interval for non-linear fractional integro-differential equations with state-dependent delay and non-
instantaneous impulses. Our results are based on the Banach contraction principle and the Kras-
noselkii fixed point theorem. For the illustration of the results, an example is also discussed.
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ÒÄÆÉÖÌÄ. ÓÔÀÔÉÀÛÉ ÜÅÄÍ ÛÄÅÉÓßÀÅËÉÈ ÊÏÌÐÀØÔÖÒ ÉÍÔÄÒÅÀËÆÄ ÂÀÍÓÀÆÙÅÒÖË ÀÌÏÍÀáÓÍÈÀ
ÀÒÓÄÁÏÁÀÓÀ ÃÀ ÄÒÈÀÃÄÒÈÏÁÀÓ ÀÒÀßÒ×ÉÅÉ ×ÒÀØÝÉÖËÉ ÉÍÔÄÂÒÏÃÉ×ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏËÄ-
ÁÄÁÉÓÀÈÅÉÓ ÛÉÍÀÂÀÍ ÌÃÂÏÌÀÒÄÏÁÀÆÄ ÃÀÌÏÊÉÃÄÁÖËÉ ÃÀÂÅÉÀÍÄÁÉÈÀ ÃÀ ÀÒÀÌÚÉÓÉÄÒÉ ÉÌÐÖË-
ÓÄÁÉÈ. ÜÅÄÍÉ ÛÄÃÄÂÄÁÉ Ä×ÖÞÍÄÁÀ ÁÀÍÀáÉÓ ÊÖÌÛÅÉÓ ÐÒÉÍÝÉÐÓ ÃÀ ÊÒÀÓÍÏÓÄËÓÊÉÓ ÖÞÒÀÅÉ
ßÄÒÔÉËÉÓ ÈÄÏÒÄÌÀÓ. ÛÄÃÄÂÄÁÉÓ ÉËÖÓÔÒÀÝÉÉÓÈÅÉÓ ÂÀÍáÉËÖËÉÀ ÛÄÓÀÁÀÌÉÓÉ ÌÀÂÀËÉÈÉ.
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1 Introduction
This paper is concerned with the existence of solutions defined on a compact real interval for semilinear
integro-differential equations of fractional order for which impulses are not instantaneous of the form

y′(t)−
t∫

0

(t− s)α−2

Γ(α− 1)
Ay(s) ds = f(t, yρ(t,yt)), a.e. t ∈ (si, ti+1] ⊂ J, i = 0, . . . , N, (1.1)

y(t) = gi(t, yρ(t,yt)), t ∈ (ti, si], i = 1, . . . , N, (1.2)
y0 = ϕ ∈ B, (1.3)

where 1 < α < 2, J = [0, b], b > 0, A : D(A) ⊂ E → E is a closed linear operator of sectorial
type on a complex Banach space (E, ∥ · ∥E), the convolution integral in the equation is known as the
Riemann–Liouville fractional integral, f : J ×B → E and ρ : J ×B → (−∞, b] are suitable functions.
For any function y defined on (−∞, b] and any t ≥ 0, we denote by yt the element of B defined by
yt(θ) = y(t + θ) for θ ∈ (−∞, 0]. Here, yt( · ) represents the history of the state from each time
θ ∈ (−∞, 0] up to the present time t. We assume that the histories yt belong to some abstract phase
space B, to be specified later, let 0 = t0 = s0 < t1 ≤ s1 ≤ t2 < · · · < tN−1 ≤ sN ≤ tN ≤ tN+1 = b be
pre-fixed numbers, and gi ∈ C((ti, si]×B, E), for all i = 1, 2, . . . , N , stand for the impulsive conditions.

Fractional differential equations have been of great interest recently, in both the intensive devel-
opment of the theory of fractional calculus itself and the applications of such constructions in various
sciences such as physics, mechanics, chemistry, engineering, economy and so on (see [20, 21, 23]). In
particular, the question on the existence of solutions of the Cauchy problem for fractional integro-
differential equations was studied in numerous works; we refer the reader to the books by Abbas et
al. [1, 2], Kilbas et al. [16], Lakshmikantham et al. [18], and the papers by Anguraj et al. [3], Bal-
achandran et al. [5]. Cuevas et al. [6, 8, 9], studying S-asymptotically w-periodic solutions of some
classes of semilinear differential and integro-differential equations. Recently, Wang and Chen [24]
considered a class of retarded integro-differential equations with nonlocal initial conditions where the
existence results of solutions are given over the half-line [0,∞). In [11], Gautam and Dabas studied
the existence of local and global mild solution for an impulsive fractional integro-differential equation
with state dependent delay.

Recently, Hernández and O’Regan [13] initiated the study on the Cauchy problems for a new
type of first order evolution equations with non instantaneous impulses. In the model analyzed
in [13], the impulses start abruptly at the points ti and their action continue on a finite time interval
[ti, si]. This type of problem motivates to study certain dynamical changes of evolution processes
in pharmacotherapy. For example, as in [13], we note the following simplified situation concerning
the hemodynamical equilibrium of a person. In the case of decompensation (for example, high or
low levels of glucose) one can prescribe some intravenous drugs (insulin). Since the introduction of
the drugs in the bloodstream and the consequent absorbtion for the body are gradual and continuous
processes, we can interpret this situation as an impulsive action which starts abruptly and stays active
on a finite time interval.

In this paper, we provide sufficient conditions for the existence of solutions for problem (1.1)–
(1.3). Our approach is based on the Banach contraction principle and on the Krasnoselskii fixed point
theorem.

2 Preliminaries
We introduce notations, definitions and theorems which are used throughout this paper.

Let C(J,E) be the Banach space of continuous functions from J into E with the norm

∥y∥∞ = sup
{
∥y(t)∥E : t ∈ J

}
.

Let B(E) denote the Banach space of bounded linear operators from E into E.
A measurable function y : J → E is Bochner integrable if and only if ∥y∥E is Lebesgue integrable.
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Let L1(J,E) denote the Banach space of measurable functions y : J → E which are Bochner
integrable normed by

∥y∥L1 =

b∫
0

∥y(t)∥E dt.

We define

PC(J,E) =
{
y : J → E; y ∈ C((tk, tk+1], E), k = 0, 1, . . . , N

and y(t+k ), y(t
−
k ) exist with, y(t−k ) = y(tk), k = 1, . . . , N

}
.

Obviously, PC(J,E) is a Banach space with the norm

∥y∥PC = sup
t∈J

∥y(t)∥E .

In this paper, we will employ an axiomatic definition of the phase space B introduced by Hale and
Kato in [12] and follow the terminology used in [15]. Thus, (B, ∥ · ∥B) will be a seminormed linear
space of functions mapping (−∞, 0] into E, and satisfying the following axioms:
(A1) If y : (−∞, b) → E, b > 0, is continuous on J and y0 ∈ B, then for every t ∈ J we have the

following conditions:

(i) yt ∈ B;
(ii) there exists a positive constant H such that ∥y(t)∥E ≤ H∥yt∥B;
(iii) there exist two functions K( · ),M( · ) : R+ → R+ independent of y with K continuous and

M locally bounded such that

∥yt∥B ≤ K(t) sup
{
∥y(s)∥E : 0 ≤ s ≤ t

}
+M(t)∥y0∥B.

(A2) For the function y in (A1), yt is a B−valued continuous function on J .

(A3) The space B is complete.
Denote

Kb = sup
{
K(t) : t ∈ J

}
and Mb = sup

{
M(t) : t ∈ J

}
.

Remark 2.1.
1. (A1)(ii) is equivalent to ∥ϕ(0)∥ ≤ H∥ϕ∥B for every ϕ ∈ B.

2. Since ∥ · ∥B is a seminorm, two elements ϕ, ψ ∈ B can verify ∥ϕ− ψ∥B = 0 without necessarily
ϕ(θ) = ψ(θ) for all θ ≤ 0.

3. From the equivalence in the first remark, we can see that for all ϕ, ψ ∈ B such that ∥ϕ−ψ∥B = 0,
we necessarily have ϕ(0) = ψ(0).

Definition 2.2. A function f : J × B → E is said to be a Carathéodory function if
(i) for each t ∈ J , the function f(t, · ) : B → E is continuous;

(ii) for each y ∈ B, the function f( · , y) : J → E is measurable.
Definition 2.3. Let A be a closed and linear operator with domain D(A) defined on a Banach
space E. We recall that A is the generator of a solution operator if there exists µ ∈ R and a strongly
continuous function S : R+ → B(E) such that{

λα : Re(λ) > µ
}
⊂ ρ(A)

and

λα−1(λα −A)−1x =

∞∫
0

e−λtS(t)x dt, Reλ > µ, x ∈ E.

In this case, Sα(t) is called the solution operator generated by A.
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Remark 2.4. The concept of a solution operator, as defined above, is closely related to the concept of
a resolvent family (see Prüss [22]). Because of the uniqueness of the Laplace transform, in the border
case α = 1, the family S(t) corresponds to a C0 semigroup (see [10]), whereas in the case α = 2,
a solution operator corresponds to the concept of a cosine family (see [4]). We note that solution
operators, as well as resolvent families, are a particular case of (a, k)-regularized families introduced
in [19]. According to [19], a solution operator Sα(t) corresponds to a (1, t

α−1

Γ(α) )-regularized family. The
following result is a direct consequence of [19, Proposition 3.1 and Lemma 2.2].
Proposition 2.5. Let Sα(t) be a solution operator on E with generator A. Then the following
conditions are satisfied:

(a) Sα(t)D(A) ⊂ D(A) and ASα(t)x = Sα(t)Ax for all x ∈ D(A), t ≥ 0.

(b) Let x ∈ D(A) and t ≥ 0,

Sα(t)x = x+

t∫
0

(t− s)α−1

Γ(α)
ASα(s) ds.

(c) Let x ∈ E. Then
t∫
0

(t−s)α−1

Γ(α) Sα(s)x ds ∈ D(A) and

Sα(t)x = x+A

t∫
0

(t− s)α−1

Γ(α)
Sα(s) ds.

Definition 2.6. Let A : D(A) ⊂ E → E be a closed linear operator. A is said to be sectorial of the
type (M, θ, µ) if there exist µ ∈ R, θ ∈ (0, π2 ) and M > 0 such that the resolvent of A exists outside
the sector and following two conditions are satisfied:

(1) µ+ Sθ = {µ+ s : λ ∈ C, | arg(−λ)| < θ};

(2) ∥(λ−A)−1∥ ≤ M
|λ−µ| , λ ̸∈ µ+ Sθ.

In this paper, we assume that in problem (1.1)–(1.3) the operator A is sectorial of type µ with
0 ≤ θ < π( 1−α

2 ). Then A is the generator of a solution operator given by

Sα(t) =
1

2πi

∫
γ

expλt λα−1(λα −A)−1 dλ,

where γ is a suitable path lying outside the sector µ+ Sθ.
Cuesta [7] has proved that if A is a sectorial operator of type µ, for some M > 0 and 0 < θ <

π(1− α
2 ), there is C > 0 such that

∥Sα(t)∥B(E) ≤
CM

1 + |µ|tα
if µ < 0

and

∥Sα(t)∥B(E) ≤ CM(1 + µtα)eµ
1
α t if µ ≥ 0.

Note that Sα(t) is, in fact, integrable on [0, b].
Theorem 2.7 (Krasnoselkii’s fixed point theorem [17]). Let B be a closed convex and nonempty
subset of a Banach space X. Let P and Q be two operators such that

(i) Px+Qy ∈ B, whenever x, y ∈ B;

(ii) P is compact and continuous;

(iii) Q is a contraction mapping.
Then there exists z ∈ B such that z = Pz +Qz.
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3 Main results
Motivated by [9], we give the following definition of a mild solution of (1.1)–(1.3).

Definition 3.1. We say that the function y : (−∞, b] → E is a mild solution of (1.1)–(1.3) if
y0 = ϕ ∈ B on (−∞, b], y|[0,b] ∈ PC([0, b], E) and

y(t) =



Sα(t)ϕ(0) +

t∫
0

Sα(t− s)f(s, yρ(s,ys)) ds, t ∈ [0, t1],

gi(t, yρ(t,yt)), t ∈ (ti, si], i = 1, 2, . . . , N,

Sα(t− si)gi(si, yρ(si,ysi
)) +

t∫
si

Sα(t− s)f(s, yρ(s,ys)) ds, t ∈ (si, ti+1].

Set
R(ρ−) =

{
ρ(s, φ) : (s, φ) ∈ J × B, ρ(s, φ) ≤ 0

}
.

We always assume that ρ : J × B → (−∞, b] is continuous. Additionally, we introduce the following
hypothesis:

(Hφ) The function t→ φt is continuous from R(ρ−) into B and there exists a continuous and bounded
function Lϕ : R(ρ−) → (0,∞) such that

∥ϕt∥B ≤ Lϕ(t)∥ϕ∥B for every t ∈ R(ρ−).

Remark 3.2. The condition (Hφ) is frequently verified by the functions, continuous and bounded.
For more details, see, e.g., [15].

Lemma 3.3 ([14, Lemma 2.4]). If y : (−∞, b] → E is a function such that y0 = ϕ, then

∥ys∥B ≤ (Mb + Lϕ)∥ϕ∥B +Kb sup
{
|y(θ)| : θ ∈ [0,max{0, s}]

}
, s ∈ R(ρ−) ∪ J,

where Lϕ = sup
t∈R(ρ−)

Lϕ(t).

Proposition 3.4. From (Hφ), (A1) and Lemma 3.3, for all t ∈ [0, b] we have

∥yρ(t,yt)∥B ≤ (Mb + Lϕ)∥ϕ∥B +Kb∥y(t)∥.

Our first result is based on the Banach contraction principle.

Theorem 3.5. Assume:

(H1) The solution operator Sα(t) is compact for t > 0, and there exists M > 0 such that ∥Sα(t)∥ ≤M
for every t ∈ J .

(H2) There exists l > 0 such that

∥f(t, u)− f(t, v)∥E ≤ lf∥u− v∥B for all u, v ∈ B.

(H3) The functions gi : (ti, si] × B → E, i = 1, . . . , N , are continuous and there exist the constants
hi > 0, i = 1, . . . , N such that

∥gi(t, u)− gi(t, v)∥E ≤ l′g∥u− v∥B for all u, v ∈ B.

If
C =MKb(l

′
g + lfb) < 1,

then there exists a unique solution of problem (1.1)–(1.3).
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Proof. Let Y = {u ∈ PC(E) : u(0) = ϕ(0) = 0} be endowed with the uniform convergence topology
and P : Y → Y be the operator defined by

(Py)(t) =



Sα(t)ϕ(0) +

t∫
0

Sα(t− s)f(s, yρ(s,ys)
) ds, t ∈ [0, t1], i = 0,

gi(t, yρ(t,yt)
), t ∈ (ti, si], i ≥ 1,

Sα(t− si)gi(si, yρ(si,ysi
)) +

t∫
si

Sα(t− s)f(s, yρ(s,ys)
) ds, t ∈ (si, ti+1], i ≥ 1,

where y : (−∞, b] → E is such that y0 = ϕ and y = y on J . Let ϕ : (−∞, b] → E be the extension
of ϕ to (−∞, b] such that ϕ(θ) = ϕ(0) = 0 on J . It is clear that P is a well-defined operator from Y
into Y . We show that P has a fixed point which is, in turn, a mild solution of problem (1.1)–(1.3).

For any t ∈ [0, t1] and y, y∗ ∈ Y , from (H1)–(H2) we have

∥(Py)(t)− (Py∗)(t)∥E ≤
t∫

0

∥Sα(t− s)∥B(E)

∥∥f(s, yρ(s,ys)
)− f(s, y ∗

ρ(s,y ∗
s ))

∥∥
E
ds

≤
t∫

0

Mlf
∥∥yρ(s,ys)

− y ∗
ρ(s,y ∗

s )

∥∥
B ds.

Using Proposition 3.4, we get

∥(Py)(t)− (Py∗)(t)∥E ≤
t∫

0

MlfKb

∥∥y(s)− y ∗(s)
∥∥
E
ds ≤MlfKb

t∫
0

∥∥y(s)− y ∗(s)
∥∥
E
ds

=MlfKb

t∫
0

∥y(s)− y∗(s)∥E ds (since y = y on [0, b])

≤MlfKbb∥y − y∗∥PC.

For any t ∈ (ti, si], i = 1, . . . , N , we have

∥(Py)(t)− (Py∗)(t)∥E =
∥∥gi(t, yρ(t,yt)

)− gi(t, y
∗
ρ(t,y ∗

t ))
∥∥
E
≤ l′gKb∥y − y∗∥PC.

Similarly, for any t ∈ (si, ti+1], i = 1, . . . , N , we have

∥(Py)(t)− (Py∗)(t)∥E ≤
∥∥∥Sα(t− si)

[
gi(si, yρ(si,ysi

))− gi(si, y
∗
ρ(si,y ∗

si
))
]∥∥∥

E

+

t∫
si

∥Sα(t− s)∥B(E)

∥∥f(s, yρ(s,ys)
)− f(s, y ∗

ρ(s,y ∗
s ))

∥∥
E
ds

≤Ml′gKb∥y − y∗∥PC +MlfKbb∥y − y∗∥PC ≤ (Ml′gKb +MlfKbb)∥y − y∗∥PC.

Thus, for all t ∈ [0, b], we obtain ∥(Py)− (Py∗)∥PC ≤ C∥y − y∗∥PC. Hence, P is a contraction on Y
and has a unique fixed point y ∈ P , which is, obviously, a unique mild solution of problem (1.1)–(1.3)
on [0, b].

To obtain an existence result via Krasnoselskii’s fixed point theorem, we need the following as-
sumptions.

(H4) The function f : J × B → E is Carathéodory one.
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(H5) There exist a function p ∈ L1(J ;R+) and a continuous nondecreasing function ψ : R+ → (0,∞)
such that

∥f(t, u)∥E ≤ p(t)ψ(∥u∥B) for a.e. t ∈ J and each u ∈ B.

(H6) The functions t→ gi(t, 0) are bounded with

G∗ = max
i=1,...,N

∥gi(t, 0)∥E .

Theorem 3.6. Assume that (H1), (H3)–(H6) and (Hφ) hold. Then problem (1.1)–(1.3) has a mild
solution.

Proof. Let P be the operator introduced in the proof of Theorem 3.5. We introduce the decomposition
Py(t) = P 1y(t) + P 2y(t), where

(P 1y)(t) =



Sα(t− si)gi(si, yρ(si,ysi
)) +

t∫
si

Sα(t− s)f(s, yρ(s,ys)
) ds, if t ∈ (si, ti+1], i ≥ 1,

Sα(t)ϕ(0) +

t∫
0

Sα(t− s)f(s, yρ(s,ys)
) ds, if t ∈ [0, t1],

0, if t ∈ (ti, si], i ≥ 1,

and

(P 2y)(t) =


gi(t, yρ(t,yt)

), if t ∈ (ti, si], i ≥ 1,

0, if t ∈ (si, ti+1], i ≥ 1,

0, if t ∈ [0, t1].

Let Br = {y ∈ Y : ∥y∥PC ≤ r}. The proof of the theorem will be given in a couple of steps.
Step 1: For any y ∈ Br, we have P 1y + P 2y ∈ Br.
Case 1. For each t ∈ [0, t1], we obtain

∥(P 1y + P 2y)(t)∥E ≤ ∥Sα(t)∥B(E)∥ϕ(0)∥B +

t∫
0

∥Sα(t− s)f(s, yρ(s,ys)
)∥E ds

≤M∥ϕ∥B +M

t∫
0

∥f(s, yρ(s,ys)
∥E ds ≤M∥ϕ∥B +M

t∫
0

p(s)ψ
(
∥yρ(s,ys)

∥B
)
ds.

Set
d = (Mb + Lϕ)∥ϕ∥B +Kbr.

Then we have

∥(P 1y + P 2y)(t)∥E ≤M∥ϕ∥B +Mψ(d)

t∫
0

p(s) ds.

Thus,
∥P 1(y) + P 2(y)∥ ≤M∥ϕ∥B +Mψ(d)∥p∥L1[0,t1] ≤ r.

Case 2. For each t ∈ [ti, si), i = 1, 2, . . . , N , we have

∥(P 1y + P 2y)(t)∥E ≤ ∥gi(t, yρ(t,yt)
)∥E

≤
∥∥gi(t, yρ(t,yt)

)− gi(t, 0)
∥∥
E
+ ∥gi(t, 0)∥E ≤ l′g∥yρ(t,yt)

∥B +G∗ ≤ l′gd+G∗.

Then
∥P 1y + P 2y∥ ≤ l′gd+G∗ ≤ r.
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Case 3. For each t ∈ (si, ti+1), i = 1, 2, . . . , N , we obtain

∥(P 1y + P 2y)(t)∥E ≤
∥∥Sα(t− si)gi(si, yρ(si,ysi

))
∥∥
E

+

t∫
si

∥∥Sα(t− s)f(s, yρ(s,ys)
)
∥∥
E
ds ≤M(l′gd+G∗) +Mψ(d)

t∫
si

p(s) ds.

Then

∥P 1y + P 2y∥ ≤M

(
l′gd+G∗ + ψ(d)

t∫
si

p(s) ds

)
≤ r.

Thus, we obtain P 1y + P 2y ∈ Br for any y ∈ Br.
Step 2: We show that P 2 is a contraction on Br.
Case 1. For y1, y2 ∈ Br and for t ∈ [0, t1], we have∥∥(P 2y1)(t)− (P 2y2)(t)

∥∥
E
= 0.

Case 2. For y1, y2 ∈ Br and for t ∈ [ti, si), i = 1, 2, . . . , N , we have∥∥(P 2y1)(t)− (P 2y2)(t)
∥∥
E
≤ l′gd.

Case 3. For y1, y2 ∈ Br and for t ∈ (si, ti+1], i = 1, 2, . . . , N , we obtain∥∥(P 2y1)(t)− (P 2y2)(t)
∥∥
E
= 0.

Thus, we obtain
∥P 2y1 − P 2y2∥PC ≤ l′gd = L,

which implies that P 2 is a contraction due to L < 1.
Step 3: P 1 is continuous.

Let yn be a sequence such that yn → y in Br.
Case 1. For each t ∈ [0, t1], we have

∥∥P 1(yn)(t)− P 1(y)(t)
∥∥
E
=

∥∥∥∥Sα(t)ϕ(0) +

t∫
0

Sα(t− s)
[
f(s, y n

ρ(s,y n
s ))− f(s, yρ(s,ys)

)
]
ds

∥∥∥∥
E

≤M

t∫
0

∥∥f(s, y n
ρ(s,y n

s ))− f(s, yρ(s,ys)
)
∥∥
E
ds.

Case 2. For each t ∈ [ti, si), i = 1, 2, . . . , N , we have∥∥P 1(yn)(t)− P 1(y)(t)
∥∥
E
= 0.

Case 3. For each t ∈ (si, ti+1], i = 1, 2, . . . , N , we obtain

∥∥P 1(yn)(t)− P 1(y)(t)
∥∥
E
=

∥∥∥∥Sα(t)ϕ(0) +

t∫
0

Sα(t− s)
[
f(s, y n

ρ(s,y n
s ))− f(s, yρ(s,ys)

)
]
ds

∥∥∥∥
E

≤M

t∫
0

∥∥f(s, y n
ρ(s,y n

s ))− f(s, yρ(s,ys)
)
∥∥
E
ds.

Then by (H4), by the Lebesgue dominated convergence theorem, we have

∥P 1yn − P 1y∥PC → 0 as n→ +∞.

Step 4: P 1 is compact.
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I. P 1(Br) ⊂ Br because ∥P 1y∥ ≤ r.

II. We show that P 1 maps a bounded set into a equicontinuous set of Br.

Case 1. For the interval t ∈ [0, t1], 0 ≤ τ1 ≤ τ2 ≤ t1, any y ∈ Br, one has∥∥(P 1y)(τ2)− (P 1y)(τ1)
∥∥
E
≤ ∥Sα(τ2)− Sα(τ1)∥B(E)∥ϕ∥B

+

τ1∫
0

∥S(τ2 − s)− S(τ1 − s)∥B(E)∥f(s, yρ(s,ys)
)∥E ds+

τ2∫
τ1

∥Sα(τ2 − s)f(s, yρ(s,ys)
)|∥E ds

≤ ∥Sα(τ2)−Sα(τ1)∥B(E)∥ϕ∥B+ψ(d)
τ1∫
0

∥∥Sα(τ2−s)−Sα(τ1−s)
∥∥
B(E)

p(s) ds+Mψ(d)

τ2∫
τ1

p(s) ds.

Case 2. For the interval t ∈ [ti, si), i = 1, 2, . . . , N , ti ≤ τ1 ≤ τ2 ≤ si, any y ∈ Br, one has∥∥(P 1y)(τ2)− (P 1y)(τ1)
∥∥
E
= 0.

Case 3. For the interval t ∈ (si, ti+1], i = 1, 2, . . . , N , si ≤ τ1 ≤ τ2 ≤ ti + 1, any y ∈ Br, one has∥∥(P 1y)(τ2)− (P 1y)(τ1)
∥∥
E
≤

∥∥Sα(τ2 − si)− Sα(τ1 − si)
∥∥
B(E)

∥gi(si, yρ(si,ysi
))∥E

+

τ1∫
0

∥∥Sα(τ2 − si)− Sα(τ1 − si)
∥∥
B(E)

∥f(s, yρ(s,ys)
)∥E ds+

τ2∫
τ1

∥∥Sα(τ2 − si)f(s, yρ(s,ys)
)
∥∥
E
ds

≤
∥∥Sα(τ2 − si)− Sα(τ1 − si)

∥∥
B(E)

(l′gd+G∗)

+ ψ(d)

τ1∫
0

∥∥Sα(τ2 − si)− Sα(τ1 − si)
∥∥
B(E)

p(s) ds+Mψ(d)

τ2∫
τ1

p(s) ds.

From the aforementioned equation, we find that ∥(P 1y)(τ2) − (P 1y)(τ1)∥ → 0 as τ2 → τ1, since
Sα(t) is continuous in the uniform operator topology. So, P 1 is equicontinuous. As a consequence of
Steps 3–4, together with the Arzelà–Ascoli theorem, we can conclude that P 1 : Br → Br is continuous
and completely continuous. By using Krasnoselskii’s fixed point theorem, the operator P = P 1 + P 2

has a fixed point, which is a solution of problem (1.1)–(1.3).

4 An example
We consider the fractional differential equation with a state-dependent delay of the form

∂u

∂t
(t, x)− 1

Γ(α− 1)

t∫
−∞

(t− s)α−2Lxu(s, x) ds

=
e−γt+t|u(t− σ(u(t, 0)), x)|

3(e−t + et)(1 + |u(t− σ(u(t, 0), x))|)
, (t, x) ∈

N∪
i=1

[si, ti+1]× [0, π],

u(t, 0) = u(t, π) = 0, t ∈ [0, b],

u(τ, x) = u0(τ, x), θ ∈ (−∞, 0], x ∈ [0, π],

u(t, x) = Gi

(
t, u

(
t− σ(u(t, 0)), x

))
, (t, x) ∈ (ti, si]× [0, π], i = 1, 2, . . . , N,

(4.1)

where 1 < α < 2, 0 = t0 = s0 < t1 < t2 < · · · < tN − 1 ≤ sN ≤ tN ≤ tN + 1 = b are pre-
fixed real numbers, σ ∈ C(R, [0,∞)), γ > 0, Lx stands for the operator with respect to the spatial
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variable x which is given by Lx = ∂2

∂x2 − r, with r > 0. Take E = L2([0, π],R) and the operator
A := Lx : D(A) ⊂ E → E with domain D(A) := {u ∈ E : u′′ ∈ E, u(0) = u(π) = 0}. Clearly, A
is densely defined in E and is sectorial. Hence A is a generator of a solution operator on E. For the
phase space, we choose B = Bγ defined by

Bγ =
{
ϕ ∈ C((−∞, 0],R) : lim

θ→−∞
eγθϕ(θ) exists

}
with the norm

∥ϕ∥γ = sup
θ∈(−∞,0]

eγθ|ϕ(θ)|.

Notice that the phase space Bγ satisfies axioms (A1), (A2) and (A3) (see [15] for more details). Set

y(t)(x) = u(t, x),

ϕ(θ)(x) = u0(θ, x),

f(t, ϕ)(x) =
e−γt+t|ϕ(0, x)|

3(e−t + et)(1 + |ϕ(0, x)|)
,

gi(t, ϕ)(x) = Gi

(
t, u

(
t− σ(u(t, 0)), x

))
,

ρ(t, ϕ) = t− σ(ϕ(0, 0)).

Let ϕ ∈ Bγ be such that (Hϕ) holds, and let t → ϕt be continuous on R(ρ−). Then by Theorem 3.5,
there exists at least one mild solution of (4.1).
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