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ON A NUMERICAL SOLUTION OF TWO-DIMENSIONAL
NONLINEAR MITCHISON MODEL



Abstract. In the paper, for the construction of a numerical solution of two-dimensional Mitchi-
son nonlinear partial differential system, the variable directions difference scheme and the difference
scheme corresponding to the average method are used. Practical realization of those algorithms and
comparative analysis of the obtained results are carried out. Numerical experiments are in accordance
with theoretical findings. On the basis of experiments the corresponding tables of data are given.
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ÒÄÆÉÖÌÄ. ÍÀÛÒÏÌÛÉ ÌÉÜÉÓÏÍÉÓ ÏÒÂÀÍÆÏÌÉËÄÁÉÀÍ ÀÒÀßÒ×ÉÅ ÊÄÒÞÏßÀÒÌÏÄÁÖËÄÁÉÀÍ ÃÉ×Ä-
ÒÄÍÝÉÀËÖÒ ÂÀÍÔÏËÄÁÀÈÀ ÓÉÓÔÄÌÉÓ ÒÉÝáÅÉÈÉ ÀÌÏÍÀáÓÍÉÓ ÀÓÀÂÄÁÀÃ ÂÀÌÏÚÄÍÄÁÖËÉÀ ÝÅÀËÄ-
ÁÀÃÉ ÌÉÌÀÒÈÖËÄÁÉÓÀ ÃÀ ÂÀÓÀÛÖÀËÄÁÖËÉ ÌÄÈÏÃÉÓ ÛÄÓÀÁÀÌÉÓÉ ÓáÅÀÏÁÉÀÍÉ ÓØÄÌÄÁÉ. ÂÀÍáÏÒ-
ÝÉÄËÄÁÖËÉÀ ÀÌ ÀËÂÏÒÉÈÌÄÁÉÓ ÐÒÀØÔÉÊÖËÉ ÒÄÀËÉÆÀÝÉÀ ÃÀ ÜÀÔÀÒÄÁÖËÉÀ ÌÉÙÄÁÖËÉ ÛÄÃÄ-
ÂÄÁÉÓ ÛÄÃÀÒÄÁÉÈÉ ÀÍÀËÉÆÉ. ÒÉÝáÅÉÈÉ ÄØÓÐÄÒÉÌÄÍÔÄÁÉÓ ÛÄÃÄÂÄÁÉ ÛÄÓÀÁÀÌÉÓÏÁÀÛÉÀ ÈÄÏÒÉ-
ÖË ÊÅËÄÅÄÁÈÀÍ. ÄØÓÐÄÒÉÌÄÍÔÄÁÆÄ ÃÀÚÒÃÍÏÁÉÈ ÌÏÝÄÌÖËÉÀ ÛÄÓÀÁÀÌÉÓÉ ÌÏÍÀÝÄÌÄÁÉÓ ÝáÒÉ-
ËÄÁÉ.
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1 Introduction
Using the nonlinear partial differential equations, a lot of natural processes are described. Among
them there is one of the important mathematical model that describes vein formation in the leaves of
higher plants. This model was proposed by J. Michison [15].

The model proposed by Michison has the form:
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(1.1)

where S(t, x1, x2) is concentration of signal, D1 and D2 are diffusion coefficients to the Ox1- and
Ox2-axis, respectively.

Some qualitative and structural properties of solutions of system (1.1) are established in [15].
Investigations for one-dimensional analogue of system (1.1) with two unknown functions S and D1 are
carried out in [2]. In [2,15] and [16], the authors pointed out on theoretical and practical importance
of the investigation and construction of approximate solutions of the initial boundary value problems
for systems (1.1). In biological modeling there are many other works where this and many models
of similar processes are also presented and discussed (see, e.g., [3, 6, 7, 16, 19, 20] and the references
therein).

The complexity of model (1.1), besides of the nonlinearity, is caused by its two-dimensionality. In
general, a numerical solution of multi-dimensional problems is often carried out by applying decom-
position methods.

Investigations for one-dimensional analogue of system (1.1) were carried out in [2].
Starting from the basic works [4, 18], the methods of constructing the effective algorithms for the

numerical solution of the multi-dimensional problems of mathematical physics and the class of prob-
lems solvable with the help of those algorithms were essentially extended [8,14,21]. Those algorithms
belong mainly to the methods of splitting-up or sum approximation. Some schemes of the variable
directions are constructed and studied in [1], too.

Some questions of construction and investigation of the schemes of variable directions and the
average model of sum approximation as well as the difference schemes for one-dimensional case for
the system of type (1.1) are discussed in [5, 9–13,17].

The paper is organized as follows. In Section 2, the statement of the problem is given. In Section 3,
two economic difference schemes are constructed and the theorem of stability and convergence for the
variable direction scheme is stated. Section 4 contains some results of numerical experiments. The
brief conclusion in Section 5 ends the paper.

2 Statement of the problem
In the domain Q = Ω× [0, T ], where Ω = (0, 1)× (0, 1), let us consider the certain function f and pose
the following initial boundary value problem for the special case of two-dimensional system (1.1):
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with initial
U(x, y, 0) = U0(x, y), (x, y) ∈ Ω,

V1(x, y, 0) = V10(x, y), (x, y) ∈ Ω,

V2(x, y, 0) = V20(x, y), (x, y) ∈ Ω,

(2.2)
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and boundary conditions
U(x, y, t) = 0, (x, y, t) ∈ ∂Ω× [0, T ]. (2.3)

Here gα, U0, Vα0, α = 1, 2, are the given sufficiently smooth functions such that

Vα0 ≥ δ0, δ0 = const > 0, (x, y) ∈ Ω,

g0 ≤ gα(ξα) ≤ G0, |g′α(ξα)| ≤ G1, ξα ∈ R,
(2.4)

where δ0, g0, G0, G1 are some positive constants.

3 Economic schemes
In the sequel, for the construction of the grid on the domain Q we follow the known notation:

ωh =
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, i, j = 0, . . . ,M, Mh = 1,

ωh = Ω ∩ ωh, γh =
ωh

ωh
, ωh = ωh ∪ γh,

ωτ =
{
tk = kτ, k = 0, . . . , N, Nτ = T

}
.

(3.1)

Following the known notation [21], let us correspond to problem (2.1)–(2.3) the following difference
scheme of variable directions:

u1t − (v̂1û1x)x − (v2u2y)y = 0, u2t − (v̂1û1x)x − (v̂2û2y)y = 0,

v1t + v̂1 − g1(v1u1x) = 0, v2t + v̂2 − g2(v2u2y) = 0,

u1(x, y, 0) = U0(x, y), (x, y) ∈ ωh,

u2(x, y, 0) = U0(x, y), (x, y) ∈ ωh,

v1(x, y, 0) = V10, (x, y) ∈ ω1h,

v2(x, y, 0) = V20, (x, y) ∈ ω2h,

u1(x, y, t) = u2(x, y, t) = 0,

(x, y, t) ∈ γh × ωτ .

(3.2)

Using the continuous variant of the averaged model of sum approximation [5], we correspond to
problem (2.1)–(2.3) the following decomposition finite difference scheme:

u1t − (v̂1û1x)x = 0, u2t − (v̂2û2y)y = 0,

v1t + v̂1 − g1(v1u1x) = 0, v2t + v̂2 − g2(v2u2y) = 0,

u1(x, y, 0) = U0(x, y), (x, y) ∈ ωh,

u2(x, y, 0) = U0(x, y), (x, y) ∈ ωh,

v1(x, y, 0) = V10, (x, y) ∈ ω1h,

v2(x, y, 0) = V20, (x, y) ∈ ω2h,

u1(x, y, t) = u2(x, y, t) = 0,

(x, y, t) ∈ γh × ωτ ,

u = η1u1 + η2u2, η1 > 0, η2 > 0, η1 + η2 = 1.

(3.3)

Let us introduce the following notation for the errors: Z1 = u1 − U , Z2 = u2 − U , S1 = v1 − V1,
S2 = v2 − V2.
Theorem. If problem (2.1)–(2.3) has a sufficiently smooth solution, then the finite difference scheme
(3.2) is stable, its solution converges to the exact solution of problem (2.1)–(2.3) as τ → 0, h → 0,
and the inequality

∥Z1∥ωh
+ ∥Z2∥ωh

+ ∥S1∥ω1h
+ ∥S2∥ω

2h
≤ C(τ + h2)

holds.
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Table 1. CPU time and error for solution u, v1, v2 applying scheme of variable directions (3.2).
t CPU time Error u Error v1 Error v2

0.2 0.074 0.00013912790131447 0.00000712766408961 0.00002916084998672
0.4 0.148 0.00022425859907783 0.00001730244454379 0.00009005618525060
0.6 0.224 0.00031286373416026 0.00004804529821700 0.00017715471240609
0.8 0.301 0.00040788793632886 0.00009668298990784 0.00028758192640277
1.0 0.378 0.00051151056363487 0.00016425091499817 0.00041715052893787

Table 2. CPU time and error for solution u, v1, v2 applying difference scheme (3.3) corresponding to
averaged method.

t CPU time Error u Error v1 Error v2
0.2 0.072 0.00006973950435170 0.00001634140038553 0.00001662571352523
0.4 0.146 0.00007422011594080 0.00003786305693865 0.00003781271060488
0.6 0.221 0.00007890208614024 0.00006202878270467 0.00005790906416947
0.8 0.295 0.00008480943243865 0.00008875495749039 0.00007978157763566
1.0 0.369 0.00009205402490850 0.00011818090303972 0.00010625023389577

Here C is a positive constant independent of τ and h, the norms are discrete analogous of the
norm of space L2.

4 Numerical experiments
Using the algorithms proposed in (3.2) and (3.3), let us carry out comparative analysis of the numerical
results for the above schemes.

Let us take
g1(ξ) = g2(ξ) =

1

1 + (1 + ξ)2

and choose the right-hand sides of the corresponding nonhomogeneous system (2.1) so that the solution
of problem (2.1)–(2.3) is:

U = xy(1− x)(1− y)(1 + t),

V1 = 1 + xy(1− x)(1− y)(1 + t+ t2),

V2 = 1 + xy(1− x)(1− y)(1 + t+ t3).

CPU time and errors for the variable directions difference scheme (3.2) are given in Table 1 and
the CPU time and errors for scheme (3.3) are given in Table 2.

The approximation error for the variable direction difference scheme (3.2) is smaller compared
with the scheme (3.3). However, CPU time is better for scheme (3.3) than for scheme (3.2).

Table 3. Absolute value of maximum errors and rate of convergence with respect to τ and h for the
function u.

τ h Error Rate of τ Rate of h
0.00125 0.05 0.00024074087939129 0.99175505389520200 1.98351010779040000
0.0008 0.04 0.00015728407178949 0.98629676971885200 1.97259353943770000

0.0003125 0.025 0.00006418736860213 0.99204420486615900 1.98408840973232000
0.0002 0.02 0.00004172715815061 0.99421791633935300 1.98843583267871000
0.00005 0.01 0.00001084525005050
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Table 4. Absolute value of maximum errors and rate of convergence with respect to τ and h for the
function v1.

τ h Error Rate of τ Rate of h
0.00125 0.05 0.00015579938599405 0.99768312053704900 1.99536624107410000
0.0008 0.04 0.00009981476150336 0.99879576821464700 1.99759153642929000

0.0003125 0.025 0.00003903430252067 0.99941764475219500 1.99883528950439000
0.0002 0.02 0.00002498844720772 0.99974995294653000 1.99949990589306000
0.00005 0.01 0.00002498844720772

Table 5. Absolute value of maximum errors and rate of convergence with respect to τ and h for the
function v2.

τ h Error Rate of τ Rate of h
0.00125 0.05 0.00015579938599405 0.99732714185756800 1.99465428371514000
0.0008 0.04 0.00009981476150336 0.99873489122313100 1.99746978244626000

0.0003125 0.025 0.00003903430252067 0.99935953799193100 1.99871907598386000
0.0002 0.02 0.00002498844720772 0.99972504350513300 1.99945008701027000
0.00005 0.01 0.00002498844720772

In Tables 3–5 we also computed errors for different values of time and space steps applying scheme
(3.2) for T = 1 and obtained the rates of convergence confirming the theoretical result in theorem
from the previous section.

5 Conclusion
Numerous numerical experiments are performed for problem (2.1)–(2.3) by using schemes (3.2) and
(3.3). The approximation errors for the variable direction difference scheme (3.2) are smaller compared
with scheme (3.3), but CPU time is better for scheme (3.3) than for scheme (3.2). We have carried
out various numerical experiments and calculated the absolute value of maximum errors for different
time and space steps and obtained the rate of convergence of scheme (3.2). In all cases, the numerical
results fully agree with the theoretical ones.
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