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SOME PROPERTIES OF A SOLUTION AND
FINITE DIFFERENCE SCHEME FOR ONE
NONLINEAR PARTIAL DIFFERENTIAL MODEL
BASED ON THE MAXWELL SYSTEM



Abstract. Linear stability and Hoph bifurcation of a solution of the initial-boundary value problem
as well as the finite difference scheme for one system of nonlinear partial differential equations are
investigated. The blow up case is fixed. The mentioned system is based on the Maxwell equations
which describe the process of electromagnetic field penetration into a substance. Numerous computer
experiments are carried out and relying on the obtained results, some graphical illustrations are
presented.
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ÒÄÆÉÖÌÄ. ÄÒÈÉ ÀÒÀßÒ×ÉÅÉ ÊÄÒÞÏßÀÒÌÏÄÁÖËÄÁÉÀÍ ÃÉ×ÄÒÄÍÝÉÀËÖÒ ÂÀÍÔÏËÄÁÀÈÀ ÓÉÓÔÄ-
ÌÉÓÈÅÉÓ ÂÀÌÏÊÅËÄÖËÉÀ ÓÀßÚÉÓ-ÓÀÓÀÆÙÅÒÏ ÀÌÏÝÀÍÉÓ ÀÌÏÍÀáÓÍÉÓ ßÒ×ÉÅÉ ÌÃÂÒÀÃÏÁÀ ÃÀ
äÏ×ÉÓ ÁÉ×ÖÒÊÀÝÉÀ. ÃÀ×ÉØÓÉÒÄÁÖËÉÀ ×ÄÈØÄÁÀÃÉ ÀÌÏÍÀáÓÍÉÓ ÛÄÌÈáÅÄÅÀ. ÀÙÍÉÛÍÖËÉ ÓÉÓÔÄÌÀ
ÃÀ×ÖÞÍÄÁÖËÉÀ ÌÀØÓÅÄËÉÓ ÂÀÍÔÏËÄÁÄÁÆÄ, ÒÏÌÄËÉÝ ÀÙßÄÒÓ ÄËÄØÔÒÏÌÀÂÍÉÔÖÒÉ ÅÄËÉÓ ÂÀ-
ÒÄÌÏÛÉ ÂÀÅÒÝÄËÄÁÉÓ ÐÒÏÝÄÓÓ. ÜÀÔÀÒÄÁÖËÉÀ ÌÒÀÅÀËÉ ÒÉÝáÅÉÈÉ ÄØÓÐÄÒÉÌÄÍÔÉ ÃÀ ÌÉÙÄÁÖË
ÛÄÃÄÂÄÁÆÄ ÃÀÚÒÃÍÏÁÉÈ ßÀÒÌÏÃÂÄÍÉËÉÀ ÂÒÀ×ÉÊÖËÉ ÉËÖÓÔÒÀÝÉÄÁÉ.
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1 Introduction
The aim of the present paper is to study the linear stability and Hoph bifurcation of a solution of the
initial-boundary value problem and finite difference scheme for one diffusion system of nonlinear partial
differential equations. Such systems arise in mathematical modeling of the process of penetration of
an electromagnetic field into a substance. Upon penetrating through a material, the variable magnetic
field induces in it a variable electronic field, which causes the appearance of currents. The currents
lead to the heating of the material and arise its temperature that affects the diffusion process. For
large oscillations of temperature, the dependence on it should be taken into consideration. In a
quasistationary case, the corresponding system of Maxwell equations has the form [10]:

∂H

∂t
= − rot(νm rotH), (1.1)

cν
∂θ

∂t
= νm(rotH)2, (1.2)

where H = (H1,H2,H3) is the vector of a magnetic field, θ is temperature, cν and νm characterize
the thermal heat capacity and electroconductivity of the substance. System (1.1) defines the process
of diffusion of the magnetic field and equation (1.2) describes the change of temperature. As a rule,
the coefficients cν and νm depend on temperature θ, cν = cν(θ), νm = νm(θ).

Many authors are studying models (1.1), (1.2) and their different variations and generalizations
(see, e.g., [1–3,8,14,16,17] and the references therein). In [7], the reduction to the integro-differential
model of system (1.1), (1.2) was proposed and investigated. As for the investigation and approximation
solution of various versions of Maxwell system and the corresponding to it integro-differential models,
one can find, for example, in [8] (see also the references therein). The existence of the corresponding
initial-boundary value problems for such kind of integro-differential models can be proved by using
Galerkin’s modified method and compactness arguments as in [11,15] for nonlinear parabolic equations
and, as it is carried out in [5–7], for the case of one-component magnetic field.

The rest of the present paper is organized as follows. In Section 2, the problem is stated and the
linear stability of a solution of the initial-boundary value problem with nonhomogeneous boundary
conditions on the right side of the lateral boundary is studied. The possibility of appearance of Hoph
bifurcation and the blow up case are fixed, as well. In Section 3, the finite difference scheme for the
problem considered in Section 2 is constructed and its convergence is investigated. At the end of this
section, some graphical illustrations, confirming theoretical findings are given. The final Section 4
contains brief conclusion.

2 Linear stability and Hoph bifurcation
The model of Maxwell equations (1.1), (1.2) is complex enough for theoretical investigations and
practical applications.

In some physical assumptions, if the vector of a magnetic field has the form H = (0, U, V ), where
U = U(x, t) and V = V (x, t), then in the cylinder [0, 1]× [0,∞) we consider the initial-boundary value
problem

∂U

∂t
=

∂

∂x

(
Sα ∂U

∂x

)
,

∂V

∂t
=

∂

∂x

(
Sα ∂V

∂x

)
,

∂S

∂t
= −aSβ + bSγ

[(∂U
∂x

)2

+
(∂V
∂x

)2]
,

U(0, t) = V (0, t) = 0, U(1, t) = ψ1, V (1, t) = ψ2,

U(x, 0) = U0(x), V (x, 0) = V0(x),

S(x, 0) = S0(x) > s0 = const > 0,

(2.1)

where a, b, ψ1, ψ2 are positive constants and α, β, γ are real numbers which will be specified later;
U0(x), V0(x), S0(x) are the known functions of their arguments.

Stabilization of the stationary solution and the finite difference scheme for the special cases of the
above model were investigated in [4, 6, 9].
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It is not difficult to show that if β ̸= γ, then the stationary solution of problem (2.1) has the form

Us = ψ1x, Vs = ψ2x, Ss =
( (ψ2

1 + ψ2
2)b

a

) 1
β−γ

.

The following statement holds.

Theorem 2.1. Let 2α + β − γ > 0, β ̸= γ, then the stationary solution (Us, VsSs) of problem (2.1)
is linearly stable if and only if the inequality

a(γ − β)
[ b
a
(ψ2

1 + ψ2
2)
] β−α−1

β−γ

< π2

is fulfilled.

Proof. Assume that a solution of problem (2.1) has the form

U(x, t) = Us + u(x, t), V (x, t) = Vs + v(x, t), S(x, t) = Ss + s(x, t), (2.2)

where u(x, t), v(x, t), s(x, t) are small perturbations.
Introducing the notations

αs = αψ1

( (ψ2
1 + ψ2

2)b

a

)−α−1
β−γ

, βs =
( (ψ2

1 + ψ2
2)b

a

) α
β−γ

,

γs = αψ2

( (ψ2
1 + ψ2

2)b

a

)α−1
β−γ

, νs = (γ − β)
b

β−1
β−γ

a
γ−1
β−γ

(ψ2
1 + ψ2

2)
β−1
β−γ ,

ηs = 2ψ1b
[ b
a
(ψ2

1 + ψ2
2)
] γ

β−γ

, µs = 2ψ2b
[ b
a
(ψ2

1 + ψ2
2)
] γ

β−γ

,

after linearization of the system of problem (2.1) we get the following system of partial differential
equations:

∂u

∂t
= αs

∂s

∂x
+ βs

∂2u

∂x2
,

∂v

∂t
= γs

∂s

∂x
+ βs

∂2v

∂x2
,

∂s

∂t
= νss+ ηs

∂u

∂x
+ µ

s

∂v

∂x
.

(2.3)

We seek for a solution of system (2.3) in the form

u(x, t) = u(x)eωt, v(x, t) = v(x)eωt, s(x, t) = s(x)eωt, (2.4)

and get the problem on eigenvalues for the following system of ordinary differential equations:

ωu = αs
ds

dx
+ βs

d2u

dx2
, ωv = γs

ds

dx
+ βs

d2v

dx2
,

ωs = νss+ ηs
du

dx
+ µs

dv

dx
.

(2.5)

Assume now that a solution of system (2.5) is of the form

u(x) = u0e
ikx, v(x) = v0e

ikx, s(x) = s0e
ikx.

Substituting these functions in (2.5), we get

ωu0e
ikx = αsike

ikxs0 − βse
ikxk2u0, ωv0e

ikx = γsike
ikxs0 − βse

ikxk2v0,

ωs0e
ikx = νss0e

ikx + ηsiku0e
ikx + µsikv0e

ikx
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from which we obtain

u0(ω + βsk
2)− αsiks0 = 0, v0(ω + βsk

2)− γsiks0 = 0,

u0ikηs + v0µsik + s0(νs − ω) = 0.

It is clear that this system has a nontrivial solution if and only if the condition

∆(ω, k) =

∣∣∣∣∣∣
ω + βsk

2 0 −ikαs

0 ω + βsk
2 −ikγs

ikηs ikµs νs − ω

∣∣∣∣∣∣
= (ω + βsk

2)2(νs − ω)− (ω + βsk
2)k2αsηs − (ω + βsk

2)µsγsk
2 = 0,

or
(ω + βsk

2)[(ω + βsk
2)(νs − ω)− k2αsηs − k2µsγs] = 0

is fulfilled. This implies that

k2(βsνs − βsω − αsηs − µsγs)− ω2 + ωνs = 0. (2.6)

Since the case ω + βsk
2 = 0 is trivial, the latest equality gives two values of the parameter k such

as k1 = −k2.
It is easy to show that the solution of system (2.5) has the form

u(x) =
ik1αs

ω + βsk21
(S1e

ik1x − S2e
−ik1x), v(x) =

ik1γs
ω + βsk21

(S1e
ik1x − S2e

−ik1x),

s(x) = S1e
ik1x + S2e

−ik1x,

(2.7)

where S1 and S2 are the constants.
Taking into account the boundary conditions (2.1), from (2.2) and (2.4) we get

u(0) = u(1) = 0.

From this, taking into account (2.7), we get the following system:

S1 − S2 = 0,

S1e
ik1 − S2e

−ik1 = 0,

which above has a nontrivial solution when

∆ =

∣∣∣∣ 1 −1
eik1 −e−ik1

∣∣∣∣ = eik1 − e−ik1 = 2i sin k1 = 0,

or
k1n = πn, n ∈ Z.

Let us rewrite equation (2.6) in the form

ω2
n + Pn(βs, kn, νs)ωn + Ln(βs, kn, νs, ηs, µs, γs) = 0,

where

Pn(βs, kn, νs) = βsk
2
n − νs,

Ln(βs, kn, νs, ηs, µs, γs) = −βsνsk2n + αsηsk
2
n + µsγsk

2
n.

It should be noted that the solution of problem (2.1) is linearly stable if and only if for all n the
inequality Re(ωn) < 0 holds. It is easy to show that if 2α+β−γ > 0, then Ln(βs, kn, νs, ηs, µs, γs) > 0.

Therefore, for the solution to be linearly stable, it is necessary and sufficient that the inequality

Pn = βsk
2
n − νs =

( (ψ2
1 + ψ2

2)b

a

) α
β−γ

π2n2 − (γ − β)
b

β−1
β−γ

a
γ−1
β−γ

(ψ2
1 + ψ2

2)
β−1
β−γ > 0,

or
a(γ − β)

[ b
a
(ψ2

1 + ψ2
2)
] β−α−1

β−γ

< π2 (n = 1)

holds. Thus, the proof of Theorem 2.1 is complete.
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Remark. As we can see from the above inequality, when γ < β, the solution of problem (2.1) is
always linearly stable.

Assume that γ > β, β − α− 1 ̸= 0 and consider the value

ψs =
[ π2

γ − β
a

γ−α−1
β−γ b

α−β+1
β−γ

] β−γ
β−α−1

,

for which
P1(ψs, α, β, γ) = 0, Pn(ψs, α, β, γ) > 0, n = 2, 3, . . . .

In addition, if we assume that β − α − 1 < 0, then for ψ ∈ (0, ψs), ψ = ψ2
1 + ψ2

2 , we have
Pn(ψ, α, β, γ) > 0, n ∈ Z0.

Therefore, if ψ ∈ (0, ψs), then the solution of problem (2.1) is linearly stable, and if ψ > ψs, then
it is unstable. For ψ = ψs, we have Re(ω1) = 0 and Im(ω1) ̸= 0, i.e., there appears the possibility
of Hoph bifurcation. The small perturbations may cause transformation of a solution into a periodic
oscillations [12].

Consider the problem
∂U

∂t
=

∂

∂x

(
Sα ∂U

∂x

)
,

∂V

∂t
=

∂

∂x

(
Sα ∂V

∂x

)
,

∂S

∂t
= Sα

[(∂U
∂x

)2

+
(∂V
∂x

)2]
,

U(0, t) = V (0, t) = 0, U(1, t) = ψ1, V (1, t) = ψ2,

U(x, 0) = U0(x), V (x, 0) = V0(x), S(x, 0) = S0(x) ≥ s0 = const > 0.

(2.8)

It is not difficult to verify that if α ̸= 1 and S0(x) = s0, then the functions

U(x, t) = ψ1x, V (x, t) = ψ2x,

S(x, t) =
[
s1−α
0

+ (1− α)(ψ2
1 + ψ2

2)t
] 1

1−α

are the solutions of problem (2.8). But if α > 1 at a finite time t0 = s1−α
0 /[(ψ2

1 + ψ2
2)(α − 1)], the

function S(x, t) becomes infinity. This example shows that the solution of problem (2.8) with smooth
initial and boundary conditions can be blown up at a finite time.

3 Convergence of finite difference scheme
In the rectangle [0, 1]× [0, T ], where T is a positive number, let us consider the initial-boundary value
problem (2.1).

Now, we study a numerical approximation of problem (2.1). If we introduce the notationW = S1/2,
then problem (2.1) takes the form

∂U

∂t
− ∂

∂x

(
W 2α ∂U

∂x

)
= 0,

∂V

∂t
− ∂

∂x

(
W 2α ∂V

∂x

)
= 0,

∂W

∂t
= −a

2
W 2β−1 +

b

2
W 2γ−1

[(∂U
∂x

)2

+
(∂V
∂x

)2]
,

U(0, t) = V (0, t) = 0, U(1, t) = ψ1, V (1, t) = ψ2,

U(x, 0) = U0(x), V (x, 0) = V0(x), W (x, 0) = [S0(x)]
1/2.

(3.1)

Let us discretize the domain [0, 1]× [0, T ] and apply the following known notations [13]

h =
1

M
, τ =

T

N
, xi = ih, tj = jτ, r(xi, tj) = rji ,

ωh =
{
xi, i = 0, 1, . . . ,M

}
, ω∗

h =
{
xi =

(
i− 1

2

)
h, i = 1, 2, . . . ,M

}
,

ωτ =
{
tj = jτ, j = 0, 1, . . . , N

}
, ωhτ = ωh × ωτ , ω∗

hτ = ω∗
h × ωτ ,

rjx,i =
rji+1 − rji

h
, rjx,i =

rji − rji−1

h
, rjt,i =

rj+1
i − rji
τ
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and the corresponding inner products and norms

(rj , gj) = h

M−1∑
i=1

rji g
j
i , (rj , gj ] = h

M∑
i=1

rji g
j
i ,

∥rj∥ = (rj , rj)1/2, ∥rj ]| = (rj , rj ]1/2.

For problem (3.1), consider the following finite difference scheme:

ujt = (w2αux)x, vjt = (w2αvx)x,

wj
t = −a

2
w2β−1 +

b

2
w2γ−1(u2x + v2x),

uj0 = vj0 = 0, ujM = ψ1, vjM = ψ2, j = 0, 1, . . . , N,

u0i = U0(xi), v0i = V0(xi), w0
i =

[
S0(xi+1/2)

]1/2
, i = 0, 1, . . . ,M − 1,

(3.2)

where the grid functions u and v are defined on ωhτ , while the grid function w is defined on ω∗
hτ . Note

that here and below, if the grid functions are taken without indices of time level, it assumed that they
are considered at tj+1.

It is not difficult to show that an approximation error of scheme (3.2) on smooth solutions of
problem (3.1) is O(τ + h2).

The following statement holds.

Theorem 3.1. An approximation error of scheme (3.2) on smooth solutions of problem (3.1) is
O(τ + h2) and if β ≥ 1/2, α = γ, |α| ≤ 1/2, then a solution of scheme (3.2) converges to the solution
of problem (3.1) in discrete analogues of the norms of the space L2(0, 1) and the rate of convergence
is the same as an approximation error.

Proof. For the errors X = u− U , Y = v − V and Z = w −W , we have

Xj
t = (w2αux −W 2αUx)x + φ1, (3.3)

Y j
t = (w2αvx −W 2αVx)x + φ2, (3.4)

Zj
t = −a

2
(w2β−1 −W 2β−1) +

b

2
(w2γ−1u2x −W 2γ−1U2

x + w2γ−1v2x −W 2γ−1V 2
x ) + φ3, (3.5)

where φk = O(τ + h2), k = 1, 2, 3.
Assume α = γ and |α| ≤ 1

2 . Let us multiply scalarly equations (3.3)–(3.5) by 2τX, 2τY and 2
b τZ,

respectively. Using the discrete analogue of integration by parts and the identities [13]

2τ(Xt, X) = ∥X∥2 − ∥Xj∥2 + τ2∥Xt∥2, 2τ(Yt, Y ) = ∥Y ∥2 − ∥Y j∥2 + τ2∥Yt∥2,
2τ(Zt, Z] = ||Z]|2 − ||Zj ]|2 + τ2||Zt]|2,

we get

∥X∥2 − ∥Xj∥2 + τ2∥Xt∥2 =− 2τ
[
(wδ, u2x]− (wδ +W δ, uxUx] + (W δ, U2

x ]− (φ1, X)
]
,

∥Y ∥2 − ∥Y j∥2 + τ2∥Yt∥2 =− 2τ [(wδ, v2x]− (wδ +W δ, vxVx] + (W δ, V 2
x ]− (φ2, Y )],

1

b

(
||Z]|2 − ||Zj ]|2 + τ2||Zt]|2

)
=− a

b
τ(w2β−1 −W 2β−1)(w −W )

+ τ
(
(wδ − wδ−1W,u2x]− (W δ−1w −W δ, U2

x ]

+ (wδ − wδ−1W, v2x]− (W δ−1w −W δ, V 2
x ]
)
+

2τ

b
(φ3, Z].

Here we introduced the notation 2α = δ.
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Adding the above equalities and assuming β ≥ 1/2, we get

∥X∥2 − ∥Xj∥2 + ∥Y ∥2 − ∥Y j∥2 + τ

b

(
||Z]|2 − ||Zj ]|2

)
≤ −2τ

[(wδ + wδ−1W

2
u2x +

W δ +W δ−1w

2
U2
x , 1

]
− (wδ +W δ, uxUx]

+
(wδ + wδ−1W

2
v2x +

W δ +W δ−1w

2
V 2
x , 1

]
− (wδ +W δ, vxVx]−(φ1, X)− (φ2, Y )− 1

b
(φ3, Z]

]
≤ −2τ

{([
(wδ + wδ−1W )(W δ +W δ−1w)

] 1
2 − wδ −W δ, |ux| |Ux|

]
+
([

(wδ + wδ−1W )(W δ +W δ−1w)
] 1

2 − wδ −W δ, |vx| |Vx|
]
− (φ1, X)− (φ2, Y )− 1

b
(φ3, Z]

}
. (3.6)

Note that

(wδ − wδ−1W )(W δ −W δ−1w)− (wδ +W δ)2

= 2wδW δ + wδ+1W δ−1 + wδ−1W δ+1 − w2δ − 2wδW δ −W 2δ

= (wδ+1 −W δ+1)(W δ−1 − wδ−1). (3.7)

Since |δ| ≤ 1, we have
(wδ+1 −W δ+1)(W δ−1 − wδ−1) ≥ 0.

Using relations (3.6) and (3.7) and taking into account the last inequality, we arrive at

∥X∥2 + ∥Y ∥2 + 1

b
||Z]|2 ≤ ∥Xj∥2 + ∥Y j∥2 + 1

b
∥Zj ]|2 + 2τ

(
(φ1, X) + (φ2, Y ) +

1

b
(φ3, Z]

)
,

which yields
∥X∥+ ∥Y ∥+ ||Z]| = O(τ + h2).

Thus, the proof of Theorem 3.1 is complete.

Using the approach on proving Theorem 3.1, it is not difficult to prove the stability of scheme
(3.2).

Applying scheme (3.2) given in this section and the Newton iterative method, various numerical
experiments have been carried out which fully agree with theoretical findings. Using the results
obtained in Section 2, we get graphical illustrations for the stability of solution (see Fig. 1) and fix
the bifurcation phenomena (see Fig. 2).

Figure 1. Stabilization of solution.
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Figure 2. Hoph bifurcation.

4 Conclusion
For the system of nonlinear partial differential equations, which is based on the Maxwell equations
describing the process of penetration of an electromagnetic field into a substance, the linear stability
of a solution, as well as the possibility of Hoph bifurcation are studied. The blow up case is fixed,
too. The corresponding finite difference scheme is constructed and its convergence is proved. The
carried out various numerical experiments show the linear stability of a solution of the corresponding
initial-boundary value problem and also Hopf type bifurcation for certain boundary data.
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