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ON ONE UPPER ESTIMATE FOR THE FIRST
EIGENVALUE OF A STURM-LIOUVILLE PROBLEM
WITH DIRICHLET BOUNDARY CONDITIONS

AND A WEIGHTED INTEGRAL CONDITION



Abstract. We consider a Sturm-Liouville problem on the interval (0,1) with Dirichlet boundary
conditions and a weighted integral condition on the potential which may have singularities of different
orders at the end-points of the interval (0,1). One upper estimate for the first eigenvalue for some
values of parameters in the integral condition is obtained.

2010 Mathematics Subject Classification. 34L15.

Key words and phrases. Sturm—Liouville problem, first eigenvalue, Dirichlet boundary conditions,
weighted integral condition, minimization of the functional, variational principle, boundary-value
problem.

@gbogdg.  (0,1) FgomgeBo obbogmygmos IHy@d-gmoggomol sdmEsbs @o@Mobmgl Lolsb@gHm
300m3go00ms s> 3mEgboomby owgdgmo Fmbosbo 0b@ga®smygmo Vgbmygpgom; sdobmsb o=
5339005, ®m3 3mEgbosml asohbgl Lobygmsmmdgdo (0,1) Fgsmgmol dmmm Fgm@omgddo.
0bBgaMoy® gbmywgsTo dmbsfomyg 3o®sdg@@ms bmyogdmo 360Ygbgmmdolmgol oy gbogos
3omggmo Laggmmogo 360Ygbgenmdols bgdmesb dggsligds.

1Reported on Conference “Differential Equation and Applications”, September 4-7, 2017, Brno



On One Upper Estimate for the First Eigenvalue of a Sturm—-Liouville Problem. .. 57

1 Introduction

We consider a problem whose origin was the Lagrange problem of finding the form of the firmest
column of the given volume. The Lagrange problem was the source for different extremal eigenvalue
problems for second-order differential equations with integral conditions on the potential.

We develop the methods used in Yu. V. Egorov and V. A. Kondratiev’s works (see, e.g., [1]) devoted
to estimation of eigenvalues for Sturm—Liouville problems. The Sturm-Liouville problem for the
equation y” + AQ(z)y = 0 with Dirichlet boundary conditions and a non-negative summable on [0, 1]

function @ satisfying the condition f Q" (z)dx =1as vy €R, v #0, was considered by Yu. V. Egorov

and V. A. Kondratiev in [1]. The Sturm Liouville problem for the equation " — Q(z)y + Ay = 0
with Dirichlet boundary conditions and a real Lebesgue integrable on (0, 1) function @ satisfying the

condition f Q7(z)dx =1 as v > 1, was considered by V. A. Vinokurov, V. A. Sadovnichii in [2]. In

the prebent article we consider a problem of that kind in case the integral condition contains a weight
function. Some results devoted to the Sturm-Liouville problems with weighted integral conditions
can be found in [6]- [9].

Consider the Sturm—Liouville problem

y'/JrQ(:E)er)\y:O, T e (Oal)v (11)
y(0) =y(1) =0, (1.2)

where ) belongs to the set T, g of all real-valued measurable on (0, 1) functions with non-negative
values such that the following integral condition holds:

1
[ 0=/ Q@ds =1, apryeR 220, (1.3)
0

A function y is a solution to problem (1.1), (1.2) if it is absolutely continuous on the segment [0, 1],
satisfies (1.2), its derivative y’ is absolutely continuous on any segment [p, 1 — p], where 0 < p < %
and equality (1.1) holds almost everywhere in the interval (0, 1).

We give estimates for

Moy = sup Mi(Q).
Q€eTy 8,

For any function Q € T, g, by Hg we denote the closure of the set C§°(0,1) with respect to the

norm
1 1 N
ny%z(/ww%/mem)
0 0

For any function @ € T, g.~, We can prove (see, e.g., [3,6]) that

. @ - Qa)y?) da
/\1(Q) N yEBITg{{O} R[Q’ y]7 Where R[Q7 y] B fol y2 dl‘ .

2 One upper estimate for the first eigenvalue for v < 0

Theorem 2.1. If v < 0 and o, > 3y — 1, then My, < 7. Ifv < -1, a,8 > —1, then
there exist a function Q. € Ta g~ and a positive on the interval (0,1) function u € Hg, such that
M, g~ = R[Q.,u], moreover, u satisfies the equation

B 41

u +mu=—x77 (1 —2) T ur—1

and the integral condition
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Proof. Suppose that v < 0. For any Q € T, 3, and y € Hg, by the Hélder inequality we have

1 1 L
(1 - )T 1y 2 da < _
O/JC (1 —ax)™7|y| d;z:<<0/m (1—2)°Q"(x) > </Q yda:)

Then
1 1 Y

/Q Y2 dx > (/xllelvyh 1alx>w (2.1)

0 0
and

sy QU< ol ol
where , s
Gl = 1 v de — (fol xﬁl(l - x)%mr—n dz) 7 ’
Jo y*dx
Consider the function
0, 0<x<e,
us(r) =<1, e<z<l—g¢

0, 1l—e<x<1,

where 0 < € < % . By the average processing for p = 5 we obtain the function

+o00 +o0 P
e, (2) = / wp(& — y)ue(y) dy = / wply — Ty (y) dy = / wp(2)us(z + 7) dz.

For the function y.(x) = u.,(z) - sinma of C§°(0,1) it is true that for any @ € T, g the function
Y- belongs to Hg and
|y (2) — sinm@| 0,1y — 0 as € = 0.

For v < 0, , 8 > 3y — 1, the integral facl (1 —ax)T- = 7 (sin 7T{E)"f T dz converges. Then for any

Q €T, 3, we have

inf  R[Q,y] < inf G[y] < lim G[y.] = G[si < 7?
yeHo\ (0} @] yeHR\ (0} ) < Jimy Glye] = Gleinma] <=

and M, g < 72
Let us show the method of finding sharp estimates for M, g for v < -1, a, 8 > —1. For any

1
function y € H}(0,1), the inequalities y*> < Cz and y?> < C(1 — z) hold, where C = [y?dz. If
0

the integral f Q(z)z(1l — z) dx converges, then f Q(x)y? dz also converges. Consequently, for v < 0,

a, B> 2y — 17 the sets of functions of Hg and H0 (0, 1) coincide.
Let us prove that for v < 0, o, 8 > 27 — 1 the functional G is bounded from below in Hg(0,1). By
the Holder inequality, for = € (0, %) we have

1
T T

y*(x) = </y’(t) dt)2 < :c/y'Q(t) dt < x/zy/Q(t)dt
0 0 0

and for z € (1,1) we have
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Then

1 3 3
a— 31
/51”l—w”wy?wm</51?a—xﬁ“(/@%wﬁ> e
0 0 0

where

N[

2

converge. Then for any y € HE(0, 1), we have

Glyl > 7*(1 - (C1+Ca) 7).
Thus, the functional G is bounded from below in H}(0,1) and

m = inf Glyl. 2.2
yEH(0,1)\{0} ] 22)

For any function @ € T, g,

MO)=  inf R[Qyl< inf Gyl=  inf Gy =m.
1(@) veHo\ (0} @yl yeHo\ (0} by yeH(0,1\ {0} ) =m

Then

Mapy= sup A(Q)< inf  Glyf=m
T ety = yeH 0,0\ (0)
Consequently, M, g~ < m.
Let us prove that for v < —1, o, 3 > —1 there exist a function Q. € T, g, and a positive on the
interval (0, 1) function u € Hg, such that M, g, = R[Q,u] = m.

Put

1

F*z{y€H§(07l)| /y2dm:1}
0

and
1 1 -1
/2 v
:/y dx — (/xlvl—xlv|y|v 1dx)
0 0

Lemma 2.1. There exists a function u, € I'x such that I[u.] = m, where m is defined by (2.2).

Proof. Let {y;} be a minimizing sequence of the functional G' in H{(0,1). Then y;, = %, where

[

Cr, = [ yi dz, is a minimizing sequence of the functional I in I',, i.e., I[yx] — m as k — oo. Then

(=)

- inf Gyl = inf I
A NP, ly] = nf [y].
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Let us show that for o, 8 > —1, the sequence {y;} is bounded in H}(0,1). Since m = 1an Iy],
ye
for all sufficiently large values of k we have

1 ~y—1

1
ﬂ%%ﬁ/%%m—</x$%1—@£ﬂmﬁlmgW <m+1.
0

0

For «, 8 > 0, by the Holder inequality, we have

1 1 1
B o T 2 ot
/xlvl—xlv\ykh Tdr < /x (1—2) y;de < /ykdx =1
0 0 0

1 1 fo1

o 2y v
/yﬁdwz[[yk]—l- (/xlv(l—x)lﬁv|yk|“le dx) <m+ 2.

0 0

and

For «, 8 < 0, by the Holder inequality, we have

1 1 1
1—v
/xlvl—xlﬂykh Tdr < (/ Py 'Vda?)
0 0

~

1 1
—a poa=l _B p-2=L 2 T 2 r
X v (1—2) 7 (1—2)P7 5 ypde <M- yi dx =M,
0

0

1 1
where M = ( [(#7P(1—z)7?)'~7 dz) =" and p is a number such that —%—l—pﬂTfl >0, —g—l-pﬂTfl >0,
0

—p(1 — ) > —1. Consequently, p satisfies the inequalities

1 B 1
<p< <p< ,
1—x

a
v-1 l—y" y-1
which hold for «, 8 > —1. The proofs for the cases a« > 0> > —1and 8 > 0> a > —1 are similar.
Since for o, 3 > —1 the sequence {yx} is bounded in H}(0,1), it contains a subsequence {zj}
which converges weakly in H}(0,1) to some function u., moreover,

||U*H§—15(071) < max {m+3)m+2+MVT71}.

Since the space H}(0,1) is compactly embedded in the space C]0,1], there exists a subsequence
{sk} of {2z} which converges in C[0,1]. Since the space C[0,1] is embedded in L5(0,1), the sequence
{s} converges in L5(0,1) to the function u,. Consequently, for the functional G we have

1

1
/sidx%/ufd:r as k — oo
0 0

and
1
/ui dr = 1. (2.3)
0

Since for a,3 > —1 the sequence {s;} is bounded in Hg(0,1), by the definition of the norm
skl m2(0,1) the sequence {s} is bounded in Ly(0,1). Then there exists a subsequence {wx} of {sx}
such that the sequence {w).} converges weakly to the function u/ in Ly(0,1). Then ( [10, p. 217])

||u*||L2 0,1) S hm HwkHL2(O 1) = A.
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Thus, we have
luilZ, 0,1y < A- (2.4)
Let {vi} be a subsequence of {wy} such that

k—o0

1 1
1 72 _ . 72 _
im v, dr = lim wy,” dr = A.
k—o0
0 0

Since m is a limit of the sequence {I[vg]}, m — A is a limit of the sequence

1 2-1
{ (/ 1—x1~|vk|v 1dw) }
0

Then, for any € > 0, there exists a number K such that for any & > K the inequality

1 vt
(/xl T(1—x)T 7|vk|v 1dx> ’ <m-—A+e
0
holds. Then
1 y-1
</z1 (1 —2)T v|vk|w 1d:17> DS A-m-e
0
and

’Y

xlvl—xlﬂvkh Tdr > (A—m—e)7 (2.5)

O\H

Let us use the Lebesgue theorem. For the sequence {zT-7 (1 — x)% |rk|%}, we have
_a B 2y _a B 2y
=7 (1 — )T |rg|7=1T — 277 (1 — 2)T-7 |us|7~T as k — oo almost everywhere on [0, 1].

We have proved the existence of a constant V' = max{1, M} such that for any sufficiently large
value of k we have

1
/:171 7(1—a)T7 7|7’k\w T de < V.
0

Then ) )
277 (1 — 2) T |u,|5-1 € L;(0,1)
and
1 1
o 8 2y o 8 2+
/xﬁ(l — )T |rg| 7T de — /xﬁ(l — )T |uy| 71 dx as k — oc.
0
If for any k£ > K inequality (2.5) holds and

o—__

_a _B_ 2 _a _B_ 27
2= (1 —2)T7|rg|7Tde — [ 277 (1 — )77 |u.|7-T dz as k — oo,

then we have

1
/xl (1 —x)T- ~|u*\~ Tdr > (A—m—e)71
0
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Since € may be sufficiently small, we obtain

1 PR S
</ 1xlvu*|~21dx) >A-—m
0

and
1
(/x171x17|u|71d1) <m—A. (2.6)
0

By virtue of (2.4) and (2.6), we obtain
I[u,] < m. (2.7)

Since m = ian Ify], we have I[u.] = m. By (2.3), we obtain u, € I'.. O
yel's

Let us consider the set

1
= {yeHOOI /x1W1—m1Wy|W1dx—1}
0

The function u = Cu,, where

11—y

1
2y
/mlvl—xlﬂu*h T dx )
0

is non-negative on [0, 1] and belongs to I'. Then Gu] = Glu.] = Iu.] = m.

Let us fix the argument u of the functional G' and fix some variation z € Hg (0, 1) of the argument
u and let us consider a set of functions w + tz, where ¢ is an arbitrary parameter. On the functions
u + tz the functional G turns to the function of ¢t € R:

fo x) 4+t (x ))de—(fozl T(1—2)T7
fo x) +tz(z))2 dz

g(t) = 7 |u(@) + tz(x)|77T dar)

Since the functional G reaches an extremum at y = u and for v < —1 the function g¢(t) is differentiable
at zero, we have ¢’(0) = 0. Since u € T and G[u] = m, we obtain

1
/ /xl (1 —2)T v|u|v 1sgnuzdx—m/uzd:c (2.8)
0

For v < —1, a, B > —1, equality (2.8) holds for any function z € H}(0, 1), because by virtue of
the Holder inequality, we have

1
/xl 7(1—x)T- W|u|v 1\z|da:
0
’v+1

1 _
_a _B_ 27 VT"’l
< T3 (1 — )T |u|7=1 dz /x (1—a)T W|z|7 T dx
0

If z € C§°(0,1), then ' has a generalized derivative equal to

o—__

u = —;1;1:7!7(1 — x)%m\%} sgnu — mau.



On One Upper Estimate for the First Eigenvalue of a Sturm—-Liouville Problem. .. 63

Since G[y] = G]|y|], we can assume that the sequence {yx} is non-negative and v > 0. Similarly,
to the case @ = 8 = 0 we can prove (see, e.g., [3]) that the function u is convex upward. Thus on the
interval (0, 1) we have u(z) > 0.

Since u € ACI0,1], for v < —1 the function xﬁ(l - :U)%|u|%ri sgnw is continuous on the
segment [p,1 — p], where 0 < p < 3, and v” € Ly(p,1 — p). Let v be a generalized derivative of u of
second order. The Corollary 2.6.1 of Theorem 2.6.1 (see [12, p. 41]) implies that if u,v € L,(p, 1 —p),
p = 1, then the function w is continuously differentiable on [p, 1 — p] and almost everywhere on it has
the classical derivative of the second order u” = v. Thus,

u”—i—xﬁ(l—x)%hd%u—&—muzo for z € [p,1—p). (2.9)

Since the number p may be sufficiently small and the function u is continuous and positive on
(0,1), the function «” is also continuous on (0,1) and equality (2.9) holds everywhere on (0,1).
On (0, 1), let us consider the function

2

Qu(z) = 25 (1 — 2) T 7w,
Since Q. (x) satisfies the integral condition (1.3):

1

1
/x (1—2)’QY(x :/mlvl—xlfvu%dle,
0

0

the function u belongs to Hy, .

Since u satisfies equation (2.9) and conditions (1.2), for Q@ = Q. it satisfies equation (1.1) and
conditions (1.2). Therefore, since u is continuous on [0, 1] and its derivative u’ is continuous on (0, 1),
the function w is the first eigenfunction of problem (1.1)—(1.3) with @ = Q. and the first eigenvalue

Then
Y = RlQy,u]l = Gul=m
it RQu] = Q. u] = Glu
and
M, = sup A > M (Qy) = Y] = R[Qy,u] = Glu] =m.
B = S 1(Q) 2 M(Qx) yEHQ*\{O} R[Q.,y] = R[Q+,u] = G[y]

Consequently, we obtain M, g, = m. O
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