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Abstract. The boundary value problem

Dαu(t) + µa(t)f(t, u(t))− q(t) = 0,

u(0) = u′(0) = · · · = u(n−2)(0) = 0, u(1) = λ

1∫
0

u(s) ds

is studied, where µ is a positive parameter, f : [0, 1] × [0;+∞) → [0;+∞) and a : (0, 1) → [0,+∞)
are continuous functions, while q : (0, 1) → [0,+∞) is a measurable function. The case, where the
function a has singularities at the points t = 0 and t = 1, is admissible.

Conditions are found guaranteeing, respectively, the existence of at least one and at least two
positive solutions. Examples are gives.1
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ÒÄÆÉÖÌÄ. ÛÄÓßÀÅËÉËÉÀ ÃÀÃÄÁÉÈ µ ÐÀÒÀÌÄÔÒÆÄ ÃÀÌÏÊÉÃÄÁÖËÉ ÓÀÓÀÆÙÅÒÏ ÀÌÏÝÀÍÀ

Dαu(t) + µa(t)f(t, u(t))− q(t) = 0,

u(0) = u′(0) = · · · = u(n−2)(0) = 0, u(1) = λ

1∫
0

u(s) ds

ÓÀÃÀÝ n ∈ N, n ≥ 3, n−1 < α ≤ n, 0 < λ < α, Dα ÀÒÉÓ α ÒÉÂÉÓ ÒÉÌÀÍ-ËÉÖÅÉËÉÓ ßÀÒÌÏÄÁÖËÉ,
f : [0, 1]× [0;+∞) → [0;+∞) ÃÀ a : (0, 1) → [0,+∞) ÖßÚÅÄÔÉ, áÏËÏ q : (0, 1) → [0,+∞) ÆÏÌÀÃÉ
×ÖÍØÝÉÄÁÉÀ. ÃÀÓÀÛÅÄÁÉÀ ÛÄÌÈáÅÄÅÀ, ÒÏÝÀ a ×ÖÍØÝÉÀÓ ÂÀÀÜÍÉÀ ÓÉÍÂÖËÀÒÏÁÄÁÉ t = 0 ÃÀ t = 1
ßÄÒÔÉËÄÁÛÉ.

ÍÀÐÏÅÍÉÀ ÐÉÒÏÁÄÁÉ, ÒÏÌËÄÁÉÝ ÓÀÈÀÍÀÃÏÃ ÖÆÒÖÍÅÄËÚÏ×ÄÍ ÄÒÈÉ ÌÀÉÍÝ ÃÀ ÏÒÉ ÌÀÉÍÝ
ÃÀÃÄÁÉÈÉ ÀÌÏÍÀáÓÍÉÓ ÀÒÓÄÁÏÁÀÓ. ÌÏÚÅÀÍÉËÉÀ ÌÀÂÀËÉÈÄÁÉ.

1Reported on Conference “Differential Equation and Applications”, September 4–7, 2017, Brno
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1 Introduction
Fractional differential equations have applications in various fields of science and engineering and
have been a focus of research for decades (see [6,9,10,12] and the references therein). There is a large
number of important subjects in various fields of fractional calculus and related applications such as
the solvability, existence and multiplicity of positive solutions for the given boundary value problems
of fractional differential equations. For more details see [1, 3, 4, 11].

Namely, A. Cabada and Z. Hamdi [3] presented the existence results for the following boundary
value problem 

Dαu(t) + µg(t)f(u(t)) = 0 in [0, 1],

u(0) = u′(0) = 0, u(1) = λ

1∫
0

u(s) ds,

where µ is a positive parameter, 2 < α ≤ 3, 0 < λ < α and f , g are continuous functions. Under the

conditions g ∈ L1([0, 1]) and
1∫

1/2

g(t) dt > 0, they derived various existence and multiplicity results of

positive solutions depending on the parameter µ > 0.
However, all of the above mentioned works are based on a key assumption, that is, the nonlinear

term is required to be nonnegative. When nonlinear fractional differential equations involve a sign-
changing term, J. Henderson and R. Luca [5] investigated the existence of a positive solution for the
nonlinear fractional problem, and then under the similar conditions X. Zhang, L. Liu and Y. Wu [13]
studied the existence of positive solutions of the boundary value problem for a singular fractional
differential equation with a negatively perturbed term. More precisely, the authors considered the
following problem {

−Dαu(t) = p(t)f(t, u(t))− q(t) in (0, 1),

u(0) = u′(0) = u(1) = 0,

where 2 < α ≤ 3. The function p is continuous nonnegative on (0, 1) and f is in C([0, 1] ×
[0,+∞), [0,+∞)). The perturbed term q : (0, 1) → [0,+∞) is Lebesgue integrable and may be
singular at some zero measure sets of [0, 1].

Under other boundary conditions, X. Zhou, J.-G. Peng and Y.-D. Chu [14] studied the following
problem {

Dαu(t) = p(t)f(t, u(t))− q(t) in (0, 1),

u(0) = u(1) = u′(1) = 0,

where 2 < α ≤ 3. The functions p and q are Lebesgue integrable on (0, 1) and f is in C([0, 1] ×
[0,+∞), [0,+∞)).

The existence of positive solutions of a fractional differential equation with a perturbed term,
integral boundary and parametric dependence, however, has not been studied previously. In this
paper, motivated by [2, 3, 13, 14], we give sufficient conditions for the existence and multiplicity of
positive solutions for problem

Dαu(t) + µa(t)f(t, u(t))− q(t) = 0 in (0, 1),

u(0) = u′(0) = · · · = u(n−2)(0) = 0, u(1) = λ

1∫
0

u(s) ds.
(1.1)

The results derived depend on the positive parameter µ.
The outline of this paper is as follows. In Section 2, we present some preliminaries and lemmas

that will be used for the proofs of our main results. The main theorems are presented in Section 3.
The final section of the paper contains examples to illustrate our results.
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2 Preliminaries and lemmas
In this section, we introduce definitions and preliminary facts that will be used throughout this paper.
We refer the reader to [2, 6, 8] for more details.

Definition 2.1. The Riemann–Liouville fractional integral of order α > 0 for a measurable function
f : (0,+∞) → R is defined as

Iαf(t) =
1

Γ(α)

t∫
0

(t− s)α−1f(s) ds, t > 0,

where Γ is the Euler Gamma function, provided that the right-hand side is pointwise defined on
(0,+∞).

Definition 2.2. The Riemann–Liouville fractional derivative of order α > 0 for a measurable function
f : (0,+∞) → R is defined as

Dαf(t) =
1

Γ(n− α)

( d

dt

)n
t∫

0

(t− s)n−α−1f(s) ds =
( d

dt

)n

In−αf(t),

provided that the right-hand side is pointwise defined on (0,+∞). Here n = [α] + 1, [α] denotes the
integer part of the real number α.

Lemma 2.3. Let α > 0. Let u ∈ C(0, 1) ∩ L1(0, 1). Then

(i) DαIαu = u.

(ii) For δ > α− 1, Dαtδ = Γ(δ+1)
Γ(δ−α+1) t

δ−α. Moreover, we have Dαtα−i = 0, i = 1, 2, . . . , n.

(iii) Dαu(t) = 0 if and only if u(t) = c1t
α−1 + c2t

α−2 + · · ·+ cnt
α−n, ci ∈ R, i = 1, 2, . . . , n.

(iv) Assume that Dαu ∈ C(0, 1) ∩ L1(0, 1), then we have

IαDαu(t) = u(t) + c1t
α−1 + c2t

α−2 + · · ·+ cnt
α−n, ci ∈ R, i = 1, 2, . . . , n.

Now, we give the explicit expression of the Green function for the linear fractional differential
equation associated to the problem (1.1).

Lemma 2.4 ([2]). Let n ≥ 3, n − 1 < α ≤ n and λ ∈ (0, α). Let y ∈ C([0, 1]). Then the unique
solution of the linear fractional differential problem

Dαu(t) + y(t) = 0 in (0, 1),

u(0) = u′(0) = · · · = u(n−2)(0) = 0, u(1) = λ

1∫
0

u(s) ds,
(2.1)

is given by

u(t) =

1∫
0

G(t, s)y(s) ds,

where for all t, s ∈ [0, 1],

G(t, s) =
tα−1(1− s)α−1(α− λ+ λs)− (α− λ)((t− s)∗)α−1

(α− λ)Γ(α)
, (2.2)

G(t, s) is called the Green function of the boundary value problem (2.1). Here, for x ∈ R, x∗ =
max(x, 0).
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Now we recall some properties of the Green function.

Proposition 2.5. Let n ∈ N, n ≥ 3, n− 1 < α ≤ n, and λ ∈ [0, α). Then the function G defined by
(2.2) satisfies the following properties:

(i) G is a nonnegative continuous function on [0, 1]× [0, 1] and G(t, s) > 0 for all t, s ∈ (0, 1).

(ii) G(t, s) ≤ ηK(s) for all t, s ∈ [0, 1], where K(s) = s(1−s)α−1

Γ(α) and η = α
α−λ .

(iii) G(t, s) ≤ ηtα−1K1(s) for all t, s ∈ [0, 1], where K1(s) =
(1−s)α−1

Γ(α) .

(iv) G(t, s) ≥ ηλ∗tα−1K(s) ∀ t, s ∈ [0, 1], where λ∗ =
λ

α
.

(v) If θ ∈ (0, 1
2 ), s ∈ [0, 1], then min

t∈[θ,1−θ]
G(t, s) ≥ γK(s), where γ = ( θ

α−1 + λ
α−λ )θ

α−1.

Proof. The proofs of (i), (ii) and (v) are given in [2]. To prove (iii), we use Lemmas 2.5 and 2.6 in [2].
Assertion (iv) follows immediately from Proposition 2.7 in [2].

Using assertion (ii) of Proposition 2.5, we have the following

Proposition 2.6. Let q be a nonnegative measurable function on (0, 1). Then w(t) =
1∫
0

G(t, s)q(s) ds

is continuous on [0, 1] if and only if
1∫
0

(1− t)α−1q(t) dt converges.

Now we state the following key lemma.

Lemma 2.7. Let n ≥ 3, n−1 < α ≤ n and 0 < λ < α. Assume that (1− t)α−1q(t) ∈ C(0, 1)∩L(0, 1).
Then the boundary value problem

Dαw(t) + q(t) = 0 in (0, 1),

w(0) = w′(0) = · · · = w(n−2)(0) = 0, w(1) = λ

1∫
0

w(s) ds,
(2.3)

has a unique nonnegative solution w(t) =
1∫
0

G(t, s)q(s) ds ∈ C([0, 1]) satisfying

w(t) ≤ η
tα−1

Γ(α)

1∫
0

(1− s)α−1|q(s)| ds

on [0, 1].

Proof. First, we will prove that Dαw(t) + q(t) = 0 on (0, 1). By Proposition 2.6, we have that w
is continuous on [0, 1] and so In−α|w| is bounded on [0, 1]. Thus, using Fubini’s theorem, for each
t ∈ (0, 1) we obtain

In−αw(t) =
1

Γ(n− α)

1∫
0

t∫
0

(t− s)n−α−1G(s, ξ)q(ξ) ds dξ =

1∫
0

H(t, ξ)q(ξ) dξ, (2.4)

where

H(t, ξ) =
1

Γ(n− α)

t∫
0

(t− s)n−α−1G(s, ξ) ds.
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Now, let us find an explicit form of H(t, ξ). Let t, ξ ∈ (0, 1) and c = (α− λ)Γ(α)Γ(n− α), then

cH(t, ξ) =



(α− λ+ λξ)(1− ξ)α−1

t∫
0

(t− s)n−α−1sα−1 ds, 0 < t ≤ ξ < 1,

(α− λ+ λξ)(1− ξ)α−1

t∫
0

(t− s)n−α−1sα−1 ds

−(α− λ)

t∫
ξ

(t− s)n−α−1(s− ξ)α−1 ds, 0 < ξ ≤ t < 1.

Using the fact that for each a, b ≥ 0 and p, q > 0,

b∫
a

(b− θ)p(θ − a)q dθ =
Γ(p+ 1)Γ(q + 1)

Γ(p+ q + 2)
(b− a)p+q+1,

we get

H(t, ξ) =
1

(α− λ)(n− 1)!

{
(α− λ+ λξ)(1− ξ)α−1tn−1, 0 < t ≤ ξ < 1,

(α− λ+ λξ)(1− ξ)α−1tn−1 − (α− λ)(t− ξ)n−1, 0 < ξ ≤ t < 1.
(2.5)

Thus, by (2.4) and (2.5), we obtain

(α− λ)(n− 1)!In−αw(t) =

t∫
0

(
(1− ξ)α−1(α− λ+ λξ)tn−1 − (α− λ)(t− ξ)n−1

)
q(ξ) dξ

+

1∫
t

(1− ξ)α−1(α− λ+ λξ)tn−1q(ξ) dξ

:= I1(t) + I2(t).

From the hypothesis, we deduce that the function ξ → q(ξ) is continuous and integrable near 0 and
the function ξ → (1− ξ)α−1q(ξ) is continuous and integrable near 1. Hence, I1 and I2 are integrable
on (0, 1). So we get, I1 and I2 are differentiable on (0, 1) and for each t ∈ (0, 1) we have

d

dt
((n− 1)!(α− λ)In−αw(t))

= (n− 1)

t∫
0

(
(1− ξ)α−1(α− λ+ λξ)tn−2 − (α− λ)(t− ξ)n−2

)
q(ξ) dξ

+ (n− 1)

1∫
t

(1− ξ)α−1(α− λ+ λξ)tn−2q(ξ) dξ.

Analogously, using the same arguments as above, we prove that In−αw(t) is differentiable on (0, 1)
and for each t ∈ (0, 1) we have( d

dt

)n(
(n− 1)!(α− λ)In−αw(t)

)
= −(n− 1)!(α− λ)q(t).

Thus ( d

dt

)n

In−αw(t) = −q(t).



Existence Results of a Singular Fractional Differential Equation with a Perturbed Term 35

So, Dαw(t) + q(t) = 0 for all t ∈ (0, 1).
Next, let us verify the boundary conditions. Using Proposition 2.5(iii), for each t ∈ [0, 1], we have

|w(t)| ≤ ηtα−1

1∫
0

K1(s)|q(s)| ds

which implies that w(0) = 0.
On the other hand, for each t ∈ (0, 1), we have

(α− λ)Γ(α)w(t) =

t∫
0

(
(α− λ+ λs)(1− s)α−1tα−1 − (α− λ)(t− s)α−1

)
q(s) ds

+

1∫
t

(α− λ+ λs)tα−1(1− s)α−1q(s) ds

:= J1(t) + J2(t). (2.6)

It is clear that lim
t→0

|J1(t)|
t = 0 and lim

t→0

|J2(t)|
t = 0. Thus lim

t→0

w(t)
t = 0 and hence w′(0) = 0. Now, using

the fact that J1 is continuous and integrable near 0 and J2 is continuous and integrable near 1, we
deduce that J1 and J2 are differentiable on (0, 1) and thus we can take derivatives from both sides of
(2.6). So for each t ∈ (0, 1), we have

(α− λ)Γ(α)w′(t) = (α− 1)

t∫
0

(
(α− λ+ λs)(1− s)α−1tα−2 − (α− λ)(t− s)α−2

)
q(s) ds

+ (α− 1)

1∫
t

(α− λ+ λs)tα−2(1− s)α−1q(s) ds

= L1(t) + L2(t).

Since lim
t→0

|L1(t)|
t = 0 and lim

t→0

|L2(t)|
t = 0, we deduce that lim

t→0

w′(t)
t = 0 and then w′′(0) = 0.

In a similar way as above, we prove that w(3)(0) = · · · = w(n−2)(0) = 0.
Now, using Fubini’s theorem, a simple calculus yields

(α− λ)Γ(α)

1∫
0

w(t) dt =

1∫
0

(
(α− λ+ λs)(1− s)α−1

s∫
0

tα−1 dt

+

1∫
s

(
(α− λ+ λs)(1− s)α−1tα−1 − (α− λ)(t− s)α−1

)
dt

)
q(s) ds

=

1∫
0

s(1− s)α−1q(s) ds =
(α− λ)Γ(α)

λ

1∫
0

G(1, s)q(s) ds,

which implies that w(1) = λ
1∫
0

w(t) dt.

Finally, let us prove the uniqueness of the solution. Suppose w1 and w2 are two continuous solutions
on [0, 1] of the boundary value problem (2.3). Then we have Dα(w2(t)− w1(t)) = 0 on (0, 1). Thus,
by Lemma 2.3(iii), there exist c1, . . . , cn ∈ R such that

w2(t)− w1(t) = c1t
α−1 + c2t

α−2 + · · ·+ cnt
α−n.
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Using the boundary conditions, we find cn = · · · = c2 = 0. So we get

w2(t)− w1(t) = c1t
α−1. (2.7)

On the other hand, using (2.7), we get

w2(1)− w1(1) = λ

1∫
0

w2(t)− w1(t) dt =
λ

α
c1.

This implies that c1 = 0. Then w1 = w2.

In the proofs of our main results we shall use the Guo–Krasnosel’skii fixed point theorem presented
below.

Lemma 2.8 ([7]). Let P be the cone of a real Banach space E and let Ω1, Ω2 be two bounded open
balls of E centered at the origin with Ω1 ⊂ Ω2. Suppose that T : P ∩ (Ω2 \ Ω1) → P is a completely
continuous operator such that either

(i) ∥Tx∥ ≥ ∥x∥, x ∈ P ∩ ∂Ω1, and ∥Tx∥ ≤ ∥x∥, x ∈ P ∩ ∂Ω2,

or

(ii) ∥Tx∥ ≤ ∥x∥, x ∈ P ∩ ∂Ω1, and ∥Tx∥ ≥ ∥x∥, x ∈ P ∩ ∂Ω2,

hold. Then the operator T has at least one fixed point in P ∩ (Ω2 \ Ω1).

Let E = C([0, 1]), the Banach space endowed with the supremum norm ∥u∥ = sup
t∈[0,1]

|u(t)|. Let

θ ∈ [0, 1
2 ), and set Jθ = [θ, 1− θ]. For a function b : (0, 1) → (0,+∞), we denote

σθ
b =

1−θ∫
θ

b(t)K(t) dt.

Next, define the cone

Ω =
{
u ∈ E : u(t) ≥ 0 on [0, 1], u(t) ≥ λ∗tα−1∥u∥

}
,

and for r > 0, let
Ωr =

{
u ∈ Ω : ∥x∥ < r

}
.

In the rest of the paper, we suppose that the following assumptions hold:

(H1) q : (0, 1) → [0,+∞) and 0 < σ < ∞, where σ =
1∫
0

q(t)K1(t) dt.

(H2) a ∈ C((0, 1), [0 +∞)) and 0 < σ0
a < ∞.

(H3) f ∈ C([0, 1]× [0,+∞), [0,+∞)).

(H4) There exists t0 ∈ (0, 1) such that f(t0, u) > 0 for each u ∈ (0,+∞).

Remark. We note that (H1) implies 0 < σ0
q < ∞.

In this work we are concerned with a positive solution of problem (1.1). By a positive solution
we mean a function u ∈ C([0, 1]) satisfying (1.1) with u(t) ≥ 0 for all t ∈ [0, 1] and u(t) > 0 for all
t ∈ (0, 1].
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Now, we introduce the following intermediary boundary value problem
Dαx(t) + µa(t)f

(
t, [x(t)− w(t)]∗

)
+ q(t) = 0 in (0, 1),

x(0) = x′(0) = · · · = x(n−2)(0) = 0, x(1) = λ

1∫
0

x(s) ds,
(2.8)


Dαw(t) + 2q(t) = 0 in (0, 1),

w(0) = w′(0) = · · · = w(n−2)(0) = 0, w(1) = λ

1∫
0

w(s) ds,
(2.9)

where [x(t)−w(t)]∗ = max{x(t)−w(t), 0} for each t ∈ [0, 1] and w is the unique solution of problem

(2.9) given by w(t) = 2
1∫
0

G(t, s)q(s) ds.

By Lemma 2.7, the solution w of problem (2.9) satisfies

w(t) ≤ 2ησtα−1 ∀ t ∈ [0, 1]. (2.10)

We shall prove that there exists a solution x(t) for the boundary value problem (2.8) with x(t) ≥
w(t) for any t ∈ [0, 1] and x(t) > w(t) for any t ∈ (0, 1). In this case, x(t)−w(t) represents a positive
solution of the boundary value problem (1.1).

Next, we define the operator T : E → E as follows:

Tx(t) =

1∫
0

G(t, s)
(
µa(s)f

(
s, [x(s)− w(s)]∗

)
+ q(s)

)
ds ∀ t ∈ [0, 1]. (2.11)

Lemma 2.9. Suppose that (H1)–(H4) hold. Then x ∈ C([0, 1]) is a solution of the boundary value
problem (2.8) if and only if x ∈ C([0, 1]) is a solution of the integral equation

x(t) =

1∫
0

G(t, s)
(
µa(s)f(s, [x(s)− w(s)]∗

)
+ q(s)

)
ds.

That is, x is a fixed point of the operator T defined by (2.11).

Proof. The proof is immediate from Lemma 2.4, so we omit it here.

Lemma 2.10. Suppose that (H1)–(H4) hold. Then T : Ω → Ω is completely continuous.

Proof. Since G, f are nonnegative continuous functions, using (H1), (H2) we conclude that T : Ω → E
is continuous. Let x ∈ Ω, then by Proposition 2.5(iv), for all t ∈ [0, 1], it follows that

Tx(t) ≥ ηλ∗tα−1

1∫
0

K(s)
(
µa(s)f

(
s, [x(s)− w(s)]∗

)
+ q(s)

)
ds

≥ λ∗tα−1

1∫
0

G(τ, s)
(
µa(s)f

(
s, [x(s)− w(s)]∗

)
+ q(s)

)
ds ∀ τ ∈ [0, 1].

So, for each t ∈ [0, 1], we have

Tx(t) ≥ λ∗tα−1 max
τ∈[0,1]

{ 1∫
0

G(τ, s)
(
µa(s)f

(
s, [x(s)− w(s)]∗

)
+ q(s)

)
ds

}
= λ∗tα−1∥Tx∥.
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Then T (Ω) ⊂ Ω. Now, let S be a bounded set of Ω, then there exists a positive constant M > 0 such
that ∥x∥ ≤ M for all x ∈ S. Therefore, [x(s)− w(s)]∗ ≤ ∥x∥ ≤ M .

Let M1 := max
{
1, max

t∈[0,1], x∈[0,M ]
f(t, x)

}
.

From hypotheses (H1), (H2) and Proposition 2.5(ii), for all t ∈ [0, 1] and for all x ∈ S, we have

Tx(t) ≤ η

1∫
0

K(s)
(
µa(s)f

(
s, [x(s)− w(s)]∗

)
+ q(s)

)
ds ≤ M1η(µσ

0
a + σ0

q ).

So we obtain ∥Tx∥ ≤ M1η(µσ
0
a + σ0

q ). Hence, T (S) is uniformly bounded.
Now, let us prove that T (S) is equicontinuous on [0, 1].
Using Proposition 2.5, we obtain that G is uniformly continuous on [0, 1]× [0, 1]. Then for t1, t2 ∈

[0, 1] and for all s ∈ [0, 1], we get

|G(t2, s)−G(t1, s)| → 0 as t2 → t1

and
|G(t2, s)−G(t1, s)| ≤ 2ηM1(a(s)K(s) + q(s)K(s)).

By (H1) and (H2), 2ηM1(a(s)K(s) + q(s)K(s)) is a nonnegative integrable function on (0, 1). Thus
by the Lebesgue control convergence theorem, we obtain

|Tx(t2)− Tx(t1)| → 0 as |t2 − t2| → 0,

and so T (S) is equicontinuous. Consequently, by Ascoli’s theorem, we conclude that T (S) is relatively
compact in E. Hence, T : Ω → Ω is completely continuous. This completes the proof.

3 Main results
We shall give the existence results of positive solutions for the nonlinear boundary value problem
(1.1).

Theorem 3.1. Suppose that conditions (H1)–(H4) hold. In addition, suppose that there exists θ ∈
(0, 1

2 ) such that

f∞ := lim
x→∞

{
min
t∈Jθ

f(t, x)

x

}
= ∞.

Then there exists µ∗ > 0 such that for every 0 < µ < µ∗, problem (1.1) has at least one positive
solution.

Proof. Choose
r >

2ησ

λ∗ .

Define µ∗ =
r−2ησ0

q

Mησ0
a

, where M = max
t∈[0,1], x∈[0,r]

f(t, x), and let 0 < µ < µ∗.

Then for each x ∈ ∂Ωr and s ∈ [0, 1], we have

[x(s)− w(s)]∗ ≤ x(s) ≤ ∥x∥ = r.

Therefore, by Proposition 2.5(ii), for any x ∈ ∂Ωr, we have

T (x)(t) ≤ ηµ

1∫
0

K(s)a(s)f
(
s, [x(s)− w(s)]∗

)
ds+ 2ησ0

q ≤ µηMσ0
a + 2ησ0

q ≤ µ∗ηMσ0
a + 2ησ0

q = r.

So we get
∥Tx∥ ≤ ∥x∥ for x ∈ ∂Ωr. (3.1)
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Now, if the condition f∞ = ∞ holds, then for A = 2
µγλ∗σθ

aθ
α−1 , there exists B > 0 such that

f(t, x) ≥ Ax ∀ t ∈ Jθ, ∀x ≥ B.
Define R = max{2r, 2B

λ∗θα−1 }. Then, using (2.10), for any x ∈ ∂ΩR and t ∈ [0, 1], we obtain

x(t)− w(t) ≥ x(t)− 2ησtα−1 ≥ x(t)− 2ησ
x(t)

∥x∥
≥ x(t)

(
1− 2ησ

λ∗R

)
≥ 1

2
x(t) ≥ 0.

Therefore, we conclude that for all t ∈ Jθ,

[x(t)− w(t)]∗ ≥ λ∗

2
Rtα−1 ≥ λ∗

2
Rθα−1 ≥ B,

and so for any x ∈ ∂ΩR and t ∈ Jθ, we have

f
(
t, [x(t)− w(t)]∗

)
≥ A[x(t)− w(t)]∗ ≥ A

2
x(t). (3.2)

By (3.2) and Proposition 2.5(v), it follows that for any x ∈ ∂ΩR and t ∈ Jθ,

Tx(t) ≥ µγ

1−θ∫
θ

K(s)a(s)f
(
s, [x(s)− w(s)]∗

)
ds ≥ µγλ∗

2
σθ
aθ

α−1AR = R.

Then we have
∥Tx∥ ≥ ∥x∥ ∀x ∈ ∂ΩR. (3.3)

Thus, using (3.1) and (3.3), we deduce by Lemma 2.8 that the operator T has a fixed point in ΩR \Ωr.
Therefore, by Lemma 2.9, x is a nonnegative continuous solution of problem (2.8) satisfying

r < ∥x∥ ≤ R. (3.4)

So we deduce that x− w is a nonnegative continuous solution of problem (1.1).
Now, let us prove that x−w is a positive solution of (1.1), that is, x(t)−w(t) > 0 for all t ∈ (0, 1].

Since x satisfies (3.4), using (2.10) we obtain

x(t)− w(t) ≥ tα−1(λ∗r − 2ησ) > 0 ∀ t ∈ (0, 1].

Hence, x− w is a positive solution of problem (1.1). This completes the proof.

Theorem 3.2. Suppose that conditions (H1)–(H4) hold. In addition, assume that the following
assertions hold:

(A1) there exits θ ∈ (0, 1
2 ) such that f∗

∞ := lim
x→∞

{
min
t∈Jθ

f(t, x)
}
= ∞;

(A2) f∞ := lim
x→∞

{
max
t∈[0,1]

f(t,x)
x

}
= 0.

Then there exists µ∗ > 0 such that problem (1.1) has at least one positive solution for every µ > µ∗.

Proof. First, suppose that (A1) holds, then there exists R0 > 0 such that

f(t, x) ≥ f∗
∞
2

∀ t ∈ Jθ, ∀x ≥ R0.

Now, fix R1 > max
{

2R0

λ∗θα−1 ,
4ησ
λ∗

}
. Define µ∗ = 2R1

γσθ
af

∗
∞

> 0 and let µ > µ∗. Then, for each x ∈ ∂ΩR1

and t ∈ [0, 1], we have

x(t)− w(t) ≥ x(t)− 2ησtα−1 ≥ x(t)− 2η

λ∗ σ
x(t)

∥x∥
≥ x(t)

(
1− 2ησ

λ∗R1

)
≥ 1

2
x(t) ≥ 0.
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So, for x ∈ ∂ΩR1 and t ∈ Jθ, we get

[x(t)− w(t)]∗ ≥ 1

2
x(t) ≥ 1

2
λ∗θα−1R1 > R0.

Then for any x ∈ ∂ΩR1
and t ∈ Jθ, we obtain

f
(
t, [x(t)− w(t)]∗

)
≥ f∗

∞
2

.

It follows that for any x ∈ ∂ΩR1
and t ∈ Jθ,

Tx(t) ≥ µγ

1−θ∫
θ

K(s)a(s)f
(
s, [x(s)− w(s)]∗

)
ds ≥ µγ

f∗
∞
2

1−θ∫
θ

K(s)a(s) ds ≥ µ∗γ
f∗
∞
2

σθ
a = R1.

Thus
∥Tx∥ ≥ ∥x∥ ∀x ∈ ∂ΩR1 .

On the other hand, since f∞ = 0, for ε = 1
µησ0

a
> 0, there exists B > 0 such that for each t ∈ [0, 1],

x ≥ B, we have f(t, x) ≤ εx. Therefore, we obtain

f(t, x) ≤ M + εx ∀ t ∈ [0, 1], ∀x ≥ 0,

where M = max
t∈[0,1], x∈[0,B]

f(t, x). Let M1 = max{1,M} and choose

R2 > max
{
2R1, µησ

0
aM1

(1
2
− µσ0

aηε
)−1

, 2ηM1σ
0
q

}
.

It follows that for any x ∈ ∂ΩR2
and t ∈ [0, 1],

Tx(t) ≤ µη

1∫
0

K(s)a(s)f
(
s, [x(s)− w(s)]∗

)
ds+ ησ0

q

≤ µηMσ0
a + µηε

1∫
0

K(s)a(s)[x(s)− x(s)]∗ ds+ ησ0
q ≤ µηM1σ

0
a + µησ0

aεR2 + ηM1σ
0
q

≤ R2

(1
2
− µσ0

aηε
)
+ µησ0

aεR2 + ηM1σ
0
q = ∥x∥.

So, we get
∥Tx∥ ≤ ∥x∥ ∀x ∈ ∂ΩR2

.

Thus, by Lemma 2.8, we deduce that the operator T has a fixed point in ΩR2
\ ΩR1

. Therefore, by
Lemma 2.9, x is a solution of problem (2.8). Thus, we deduce that x−w is a nonnegative solution of
problem (1.1).

The positivity of the solution is shown as in the proof of the previous theorem.

Now we state the multiple existence result.

Theorem 3.3. Assume that µ = 1 and (H1)–(H4) hold. In addition, suppose that the following
conditions are satisfied:

(A1) there exists R1 > 4ησ
λ∗ such that f(t, x) ≤ R1−ησ0

q

ησ0
a

∀ t ∈ [0, 1], x ∈ [0, R1];

(A2) there exists θ ∈ (0, 1
2 ) such that the following assertion holds: ∃R2 > 2R1 : γσθ

af(t, x) ≥ R2

∀ t ∈ Jθ, ∀x ∈ [ 34λ
∗θα−1R2, R2];

(A3) f∞ = lim
x→∞

{
max
t∈[0,1]

f(t,x)
x

}
= 0.
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Then problem (1.1) has two positive solutions.

Proof. First, suppose that condition (A1) holds, then for each x ∈ ∂ΩR1 and t ∈ [0, 1], we have

[x(s)− w(s)]∗ ≤ x(s) ≤ R1 and [x(s)− w(s)]∗ ≥ 1

2
x(s) ≥ 0.

So, for each x ∈ ∂ΩR1
and t ∈ [0, 1],

f
(
t, [x(t)− w(t)]∗

)
≤

R1 − ησ0
q

ησ0
a

.

Therefore, for any x ∈ ∂ΩR1 and t ∈ [0, 1], we get

Tx(t) ≤ η

1∫
0

K(s)a(s)f
(
s, [x(s)− w(s)]∗

)
ds+ ησ0

q ≤ ησ0
a

(R1 − ησ0
q

ησ0
a

)
+ ησ0

q = ∥x∥.

Thus, we have
∥Tx∥ ≤ ∥x∥ ∀x ∈ ∂ΩR1

. (3.5)
On the other hand, if (A2) holds, it follows that for R2 > 2R1 and x ∈ ∂ΩR2 , t ∈ [0, 1],

x(t)− w(t) ≥ λ∗tα−1R2 − 2ησtα−1 ≥ λ∗tα−1R2 −
1

2
λ∗tα−1R1 ≥ 3λ∗

4
tα−1R2.

Thus, for all x ∈ ∂ΩR2 and t ∈ Jθ, we have

x(t)− w(t) ≥ 3

4
λ∗θα−1R2.

Therefore, for all x ∈ ∂ΩR2
and t ∈ Jθ, we get

γσθ
af

(
s, [x(s)− w(s)]

)
≥ R2.

So, for any x ∈ ∂ΩR2 and t ∈ Jθ, we obtain

Tx(t) ≥ γ

1−θ∫
θ

K(s)a(s)f
(
s, [x(s)− w(s)]∗

)
ds ≥ γσθ

a

R2

γσθ
a

= R2.

Thus,
∥Tx∥ ≥ ∥x∥ ∀x ∈ ∂ΩR2 . (3.6)

Now, hypothesis (A3) implies that for ε = 1
ησ0

a
, there exists B > 0 such that f(t, x) ≤ εx ∀x ≥ B.

Therefore, we obtain
f(t, x) ≤ M + εx ∀ t ∈ [0, 1], x ≥ 0,

where M = max
t∈[0,1], x∈[0,B]

f(t, x). Put M1 = max{1,M} and choose

R3 > max
{
2R2, ησ

0
aM1

(1
2
− σ0

aηε
)−1

, 2ηM1σ
0
q

}
.

Then for any x ∈ ∂ΩR3
and t ∈ [0, 1], we have

Tx(t) ≤ η

1∫
0

K(s)a(s)f
(
s, [x(s)− w(s)]∗

)
ds+ ησ0

q

≤ ηMσ0
a + µηε

1∫
0

K(s)a(s)[x(s)− x(s)]∗ ds+ ησ0
q ≤ ηM1σ

0
a + ησ0

aεR3 + ηM1σ
0
q

≤ R3

(1
2
− σ0

aηε
)
+ ησ0

aεR3 + ηM1σ
0
q = ∥x∥.
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So, we get
∥Tx∥ ≤ ∥x∥ ∀x ∈ ∂ΩR3

. (3.7)
Therefore, due to Lemma 2.8 and using (3.5), (3.6) and (3.7), we deduce that the operator T has

two fixed points x1 and x2, respectively, in ΩR2
\ ΩR1

and ΩR3
\ ΩR2

. Therefore, by Lemma 2.9,
problem (2.8) admits two nonnegative solutions R1 < ∥x1∥ < R2 < ∥x2∥ < R3. Thus, problem (1.1)
has two nonnegative solutions. The positivity of the solutions is shown in the same manner as in
proving Theorem 3.1.

4 Examples
In this section, we present some examples illustrating our results. We remark that by the following
examples it can immediately be verified that conditions (H1)–(H4) hold.

Example 4.1. We consider the following nonlinear fractional differential equations
D

5
2u(t) + µ

1

t
(u(t))2 − 1

1− t
= 0 in (0, 1),

u(0) = u′(0) = 0, u(1) =

1∫
0

u(s) ds.
(4.1)

Let f(t, u) = u2, a(t) = 1
t , λ = 1 and q(t) = 1

1−t . By a direct calculation, we obtain f∞ = ∞ for
any θ ∈ (0, 1

2 ). We also get σ0
a ≈ 0.3009, σ0

q ≈ 0.2006 and σ = 0.5015. Choose r = 5, then by a
simple calculation we get µ∗ = 0.34547. Then by Theorem 3.1, problem (4.1) has at least one positive
solution for every 0 < µ < 0.34547.

Example 4.2. Consider the following boundary value problem
D

7
3u(t) + µ

1

t

(
100 +

1

1 +
√
u

)
− 1

1− t
= 0 in (0, 1),

u(0) = u′(0) = 0, u(1) =

1∫
0

u(s) ds,

(4.2)

Let f(t, u) = 100+ 1√
u+1

, a(t) = 1
t and q(t) = 1

1−t . By a direct calculation, we obtain f∞ = 0 and for
θ = 1

4 we have f∗
∞ = 100. We also obtain σ0

a ≈ 0.35995, σ0
q ≈ 0.26996, σ ≈ 0.62991 and σθ

a ≈ 0.16979.
Choose R1 = 50 and R2 = 102. A simple calculation yields µ∗ = 39.889. So Theorem 3.2 ensures the
existence of a solution of problem (4.2) such that 50 < ∥u+ w∥ < 102 for every µ > 39.889.

Example 4.3. Consider the following boundary value problem:
D

7
3u(t) + µ

1

t
f(t, u)− 1

1− t
= 0 in (0, 1),

u(0) = u′(0) = 0, u(1) =

1∫
0

u(s) ds,

(4.3)

where

f(t, u) =


1

3
u, 0 ≤ u ≤ 12,

10000u− 119996, 12 < u ≤ 13.78,

u+ 17790.3, 13.78 < u ≤ 50,

2523u
1
2 , u > 50.

Then problem (4.3) admits two positive solutions. In fact, let a(t) = 1
t and q(t) = 1

1−t . By a direct
calculation, we get σ0

a ≈ 0.35995, σ0
q ≈ 0.26996 and σ ≈ 0.62991. Choose R1 = 12 > 4ησ

λ∗ , then for



Existence Results of a Singular Fractional Differential Equation with a Perturbed Term 43

any t ∈ [0, 1], u ∈ [0, 12], f(t, u) ≤ R1−ησ0
q

ησ0
a

≈ 18.3. Thus condition (A1) is satisfied. On the other
hand, for θ = 1

4 , we have σθ
a ≈ 0.16979. Take R2 = 50, then R2 > 2R1 and for any t ∈ Jθ and for all

u ∈ [ 34 λ
∗θα−1R2, R2], we have f(t, u) ≥ R2

γσθ
a
≈ 1994.5 which implies that condition (A2) is satisfied.

Finally, since f∞ = 0, the assertion (A3) is satisfied. Consequently, by Theorem 3.3, problem (4.3)
admits two positive solutions u1 and u2 satisfying

R1 ≤ ∥u1 + w∥ ≤ R2 ≤ ∥u2 + w∥ ≤ R3.
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