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APPROXIMATING SOLUTION OF DISTRIBUTED DELAY
DIFFERENTIAL EQUATION USING GAMMA SERIES
OF DELAY DENSITY FUNCTION



Abstract. The linear chain trick can be used to solve differential equations with distributed delays
of gamma type. In this paper we show that other densities of delay can be expressed as a sum of
gamma densities, which can then be used to find approximate solution of differential equation with
distributed delay.1
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ÒÄÆÉÖÌÄ. ÍÀÛÒÏÌÛÉ ãÀàÅÖÒÉ ÊÀÍÏÍÉÓ ÂÀÌÏÚÄÍÄÁÉÈ ÀÌÏáÓÍÉËÉÀ γ-ÔÉÐÉÓ ÃÀÂÅÉÀÍÄÁÖË ÀÒ-
ÂÖÌÄÍÔÉÀÍÉ ÂÀÍÔÏËÄÁÀ. ÍÀÜÅÄÍÄÁÉÀ, ÒÏÌ ÃÀÂÅÉÀÍÄÁÉÓ ÓÉÌÊÅÒÉÅÄ ÛÄÉÞËÄÁÀ ÂÀÌÏÉÓÀáÏÓ
ÒÏÂÏÒÝ γ-ÔÉÐÉÓ ÓÉÌÊÅÒÉÅÄÈÀ ãÀÌÉ. ÀÙÍÉÛÍÖËÉ ÂÀÌÏÓÀáÅÀ ÛÄÉÞËÄÁÀ ÂÀÌÏÚÄÍÄÁÖË ÉØÍÀÓ
ÃÀÂÅÉÀÍÄÁÖË ÀÒÂÖÌÄÍÔÉÀÍÉ ÂÀÍÔÏËÄÁÉÓ ÌÉÀáËÏÄÁÉÈÉ ÀÌÏÍÀáÓÍÉÓ ÌÏÓÀÞÄÁÍÀÃ.

1Reported on Conference “Differential Equation and Applications”, September 4–7, 2017, Brno
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1 Introduction
In this paper we are looking for an approximate solution of a differential equation with distributed
delay, i.e.,

ẋ(t) = f

(
t, x(t),

∞∫
0

x(t− s)g(s)ds
)
,

x(t) = ϕ(t), t ≤ t0,

(1.1)

where f : R3 → R is a Lipschitz function (to ensure the existence and uniqueness of the solution), ϕ is
an initial function (we usually need it to be continuous and bounded on its domain) and g : [0,∞) →
[0,∞) is a weight function which describes how past states of x are affecting present rate of change.
We can presume that g is normed, that is,

∞∫
0

g(s)ds = 1. This means that g is a density of some

nonnegative random variable which we interpret as a delay.
Problem (1.1) is a generalization of a differential equation with a constant delay, i.e.,

ẋ(t) = f
(
t, x(t), x(t− τ)

)
,

x(t) = ϕ(t), t ∈ [t0 − τ, t0],
(1.2)

where f , ϕ are the same as in (1.2) and τ > 0 is a constant delay. We can find a solution of
(1.2) by the method of steps. However, the method of steps can be used to transform (1.1) to an
ordinary differential equation only if 0 ̸∈ supp(g). This restriction may be quite problematic, not
often describing the modelled phenomena well.

Another possible way to solve (1.1) is the use of the Laplace transform. This is not a versatile
method, since it entails several nontrivial steps, such as finding the Laplace transform of g, solving
an algebraic equation and, finally, applying an inverse Laplace transform on a possibly complicated
function.

In a special case, where g is a density of gamma distribution, that is,

gpa(t) =


aptp−1e−at

Γ(p)
, t ≥ 0,

0, otherwise,
(1.3)

where a > 0, p ∈ N and Γ(t) denotes the gamma function at t, we can transform (1.1) to a system of
ordinary differential equations. This process is called the linear chain trick and is in detail explained
in [3]. We will briefly describe it for the case of a scalar equation with one distributed delay of gamma
type, but it can be easily generalized to the case of a vector equation or multiple distributed delays
of gamma type.

Consider (1.1) with g = gpa. We can introduce new variables y1, y2, . . . , yp,

yk =

∞∫
0

x(t− s)gka(s)ds, k = 1, 2, . . . , p. (1.4)

Since
ġpa = a(gp−1

a − gpa), p > 1,

ġ1a = −ag1a,
(1.5)

new variables yk satisfy the system of ordinary differential equations

ẏp(t) = a
(
yp−1(t)− yp(t)

)
ẏp−1(t) = a

(
yp−2(t)− yp−1(t)

)
...

ẏ2(t) = a
(
y1(t)− y2(t)

)
ẏ1(t) = a

(
x(t)− y1(t)

)
.

(1.6)
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Together with the original equation

ẋ(t) = f
(
t, x(t), yp(t)

)
, (1.7)

we obtain a system of p+ 1 ordinary differential equations. The initial values are given by

x(t0) = ϕ(t0),

yk(t0) =

∞∫
0

ϕ(t0 − s)gka(s)ds, k = 1, 2, . . . , p.
(1.8)

System (1.6) is in itself an autonomous linear system with constant coefficients, therefore if (1.1) is
autonomous or linear (with constant coefficients), the same is true for the new system.

2 The main result
The linear chain trick can only be used for gamma densities. However, if we could express other
densities of nonnegative random variables as a sum of gamma densities, we could apply linear chain
trick on each element of the sum. In other words, we are interested in describing the linear span of
{gpa, a > 0, p ∈ N}.

The method of expanding density of a nonnegative random variable into a sum of gamma densities
is described in [1]. We perform similar construction for a = 1. The choice of the value of parameter
a is not important at the moment, so the optimal value is to be discussed.

Consider the space L2
γ(R

+
0 ), i.e., the linear space of real functions f : [0,∞) → R satisfying

∞∫
0

e−xf2(x)dx < ∞. (2.1)

This is a Hilbert space with the inner product ⟨f, g⟩γ given by

⟨f, g⟩γ =

∞∫
0

e−xf(x)g(x)dx. (2.2)

Lemma 2.1. The set of Laguerre polynomials

{
Ln(x) =

ex
n!

dn

dxn
(xne−x), n ∈ N

}
=

{
Ln(x) =

n∑
j=0

(
n

j

)
(−1)j

j!
xj , n ∈ N

}
(2.3)

is a complete orthonormal set in L2
γ(R

+
0 ).

Proof. See [2].

Let f be a density of a nonnegative random variable. We want to express it as a series

f(x) = e−x
∞∑
k=0

akLk(x). (2.4)

For n ∈ N (using orthonormality of Laguerre polynomials),

∞∫
0

f(x)Ln(x)dx =

∞∫
0

Ln(x)e−x
∞∑
k=0

akLk(x)dx = an (2.5)
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holds. This is well-defined if the first n raw moments of the density function f are finite. Series (2.4)
is, in fact, a sum of gamma densities, since

e−x
∞∑
k=0

akLk(x) =

∞∑
k=0

(
e−xak

k∑
j=0

(
k

j

)
(−1)j

j!
xj
)

=

∞∑
k=0

(
e−xak

k∑
j=0

(
k

j

)
(−1)jgj+1

1 (x)
)
=

∞∑
k=0

αkg
k+1
1 (x), (2.6)

where αk contains all coefficients at the corresponding gamma density gk+1
1 . We call series (2.4) the

gamma series of the function f .
We have assumed that (2.4) held. Regarding that, there arises the important question for what

densities f the corresponding gamma series converges to the original function f .

Theorem 2.1. Let f be a density of a nonnegative random variable with all of the raw moments
finite and let there exist x0 > 0 and constants c > 0, δ > 0 such that for all x ≥ x0, the inequality
f(x) ≤ ce−x 1+δ

2 is satisfied. Then the gamma series of f converges to f in the sense of

lim
n→∞

∞∫
0

ex
(
f(x)− e−x

n∑
k=0

akLk(x)
)2

dx = 0. (2.7)

Proof. Denote h(x) = exf(x). The gamma series of h is
∞∑
k=0

akLk(x). The Laguerre polynomials are

a complete orthonormal set in L2
γ(R

+
0 ), therefore h ∈ L2

γ(R
+
0 ) must hold. To prove this, we calculate

its norm in L2
γ(R

+
0 ), i.e.,

∞∫
0

e−xh2(x)d(x) =
∞∫
0

exf2(x)dx =

x0∫
0

exf2(x)dx

︸ ︷︷ ︸
I1

+

∞∫
x0

exf2(x)dx

︸ ︷︷ ︸
I2

. (2.8)

The first term I1 is an integral of a bounded function over a finite interval, so I1 < ∞. Using the
theorem’s assumptions, we can show I2 < ∞ as well, since

I2 ≤ c2
∞∫

x0

ex−x(1+δ) dx =
c2

δ
ex0 < ∞. (2.9)

This means that h ∈ L2
γ(R

+
0 ) and the rest of the theorem is a consequence of the Fourier series theory,

specifically the Riesz–Fischer theorem.

Corollary 2.1. Any density of a nonnegative random variable with a compact support can be expressed
as a gamma series.

This result can be used to find an approximate solution of equation (1.1):

• Find the first n terms of gamma series of g.

• Apply the linear chain trick to each term.

• Solve (analyze) the resulting system of ordinary differential equations.

Remark 2.1. To find the first n terms in the gamma series of a function we need only the first n
raw moments. This is useful in the case where delays are measured experimentally and we need to
estimate the probability density function, since we can use sample raw moments instead of theoretical
ones and thus obtain an estimation in the form of a gamma series.
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Table 1. The first n coefficients of gamma series (2.6) of hat distribution (3.2).

n = 1 n = 3 n = 5 n = 10 n = 20
α0 1 0.083308 −0.591735 −0.154871 0.152195
α1 0 2.333400 5.291708 1.046663 −0.978461
α2 −1.916725 −7.011521 11.170907 6.456673
α3 0.500017 4.766992 −40.563154 71.573716
α4 −1.719577 71.475719 −598.149055
α5 0.261133 −80.029644 2354.843929
α6 60.821780 −6267.150889
α7 −31.534065 12544.162081
α8 10.745646 −19803.452473
α9 −2.178752 25272.614335
α10 0.1997700 −26411.951554
α11 22735.938215
α12 −16129.161624
α13 9390.531536
α14 −4446.376297
α15 1686.572512
α16 −500.587669
α17 112.058428
α18 −17.798574
α19 1.788478
α20 −0.085504
Σ 1 1 1 1 1

3 Example
Consider the initial value problem

ẋ(t) = −2

∞∫
0

x(t− s)gh(s)ds,

x(t) = 1, t ≤ 0,

(3.1)

where gh is the probability density function of the hat distribution, to be specific,

gh(t) =


t, t ∈ [0, 1],

2− t, t ∈ [1, 2],

0, otherwise.
(3.2)

We will compare an approximate solution x̂n obtained by expanding gh into the gamma series with
the first n terms and another approximate solution xh, where xh is obtained by a discretization

xh(t+ h) = x(t)− 2h

200∑
k=0

x(t− hk)gh(hk) (3.3)

with step size h = 0.01.
To illustrate the method, we compute the approximate solution of problem (3.1) for different values

of n, in particular, for n = 1, 3, 5, 10, 20.
First, we compute the first n coefficients of gamma series of the hat distribution by numerically

integrating (2.5) and then sum the results according to (2.6). Numerical values of coefficients αk,
k = 0, 1, . . . , n, are given in Table 1. Notice that the sum of coefficients for each n is 1.
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Instead of the initial value problem (3.1), we can solve the problem

˙̂x(t) = −2

∞∫
0

(
x̂(t− s)

n∑
k=0

gk+1
1 (s)

)
ds = −2

n∑
k=0

αk

∞∫
0

x̂(t− s)gk+1
1 (s)ds,

x(t) = 1, t ≤ 0.

(3.4)

Using the linear chain trick, we obtain a system of n+1 ordinary differential equations with constant
coefficients 

˙̂x(t)
ẏ1(t)
ẏ2(t)

...
ẏn(t)

 =


0 −2α0 −2α1 · · · −2αn

1 −1 0 · · · 0
0 1 −1 · · · 0
...

...
... . . . ...

0 0 0 · · · −1




x̂(t)
y1(t)
y2(t)

...
yn(t)

 . (3.5)

Initial values are x̂(0) = y1(0) = · · · = yn(0) = 1.

Figure 1. Approximation of the hat probability density function gh by the first n terms of its gamma
series.

Figure 2. Approximate solutions x̂n of (3.1) obtained by approximating gh by the first n terms of its
gamma series and approximate solution xh computed by discretization.
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We denote by x̂n the solution of (3.4) obtained by using the gamma series of order n. Solutions
xh and x̂n are computed by using R. Approximation of the hat density is given in Figure 1 and
the corresponding solutions are given in Figure 2. Since we do not know the exact solution, we do
not know how precise our solutions are. To our knowledge, there is no distributed delay differential
equation (except for a delay of gamma type) with a known exact solution that could by used as a test
case.
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