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Abstract. The existence of solutions with a given number of zeros to higher-order regular-nonlinear
Emden–Fowler type equations is proven.1
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ÒÄÆÉÖÌÄ. ÌÀÙÀËÉ ÒÉÂÉÓ ÄÌÃÄÍ-×ÀÖËÄÒÉÓ ÔÉÐÉÓ ÀÒÀßÒ×ÉÅÉ, ÒÄÂÖËÀÒÖËÉ ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ
ÂÀÍÔÏËÄÁÄÁÉÓÈÅÉÓ ÌÔÊÉÝÃÄÁÀ ÉÓÄÈÉ ÀÌÏÍÀáÓÍÄÁÉÓ ÀÒÓÄÁÏÁÀ, ÒÏÌËÉÓ ÍÖËÄÁÉÓ ÒÀÏÃÄÍÏÁÀ
ÌÏÝÄÌÖË ÓÀÓÒÖË ÛÖÀËÄÃÛÉ ßÉÍÀÓßÀÒ ÃÀÓÀáÄËÄÁÖËÉ ÒÉÝáÅÉÓ ÔÏËÉÀ.

1Reported on Conference “Differential Equation and Applications”, September 4–7, 2017, Brno
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1 Introduction
Consider the equation

y(n) + p(t, y, y′, . . . , y(n−1))|y|k sgn y = 0, (1.1)

where n ≥ 2, k ∈ (1,+∞), the function p(t, y1, y2, y3, . . . , yn) ∈ C(Rn+1) is Lipschitz continuous in
(y1, y2, y3, . . . , yn) and for some m, M > 0 satisfies the inequalities

0 < m ≤ p(t, y1, y2, . . . , yn) ≤ M < +∞.

The problem of the existence of solutions to (1.1) with the given number of zeros on the prescribed
domain is investigated.

Asymptotic classification of solutions to (1.1) with n = 3, 4, k ∈ (1,+∞), p(t, y, y′, . . . , y(n−1)) ≡
const and with n = 3, k ∈ (0, 1), p(t, y, y′, . . . , y(n−1)) ≡ const is provided in [1, 3] by I. Astashova.
Later, the existence of quasiperiodic solutions to the regular (k ∈ (1,+∞)) higher-order Emden–Fowler
type equations has been proved in [2].

Using [1], the existence of solutions with the given number of zeros was proved for the case of third-
and fourth-order equations with the constant coefficient p and with k ∈ (0, 1) ∪ (1,+∞) (see [4]).
Later, the case of the higher-order differential equation (1.1) with the constant potential and regular
nonlinearity (k > 1) was considered in [5]. In [6], the existence of solutions with the given number of
zeros was proved for (1.1) with n = 3, k ∈ (1,+∞). In [7], the existence of such solutions was proved
for the equation with k ∈ (0, 1).

Now we generalize these results to the case of equation (1.1).

2 Main result
Theorem 2.1. For any real a and b satisfying −∞ < a < b < +∞ and any integer S ≥ 2, equation
(1.1) has a solution defined on the segment [a, b], vanishing at its end points a, b and having exactly
S zeros on [a, b].

3 Preliminary results
The following statements are used to prove the main theorem.

Lemma 3.1 (Generalization of 7.1 from [1]). Let y(t) be a solution to (1.1). If for some t0 the
inequalities

y(t0) ≥ 0, y′(t0) > 0, y′′(t0) ≥ 0, . . . , y(n−1)(t0) ≥ 0

hold, then there is a local supremum of y at some point t′0 > t0 satisfying the inequalities

t′0 − t0 ≤ (µy′(t0))
− k−1

k+n−1 ,

y(t′0) > (µy′(t0))
n

k+n−1 ,

where µ > 0 is a constant depending only on n, k, m, M .

Lemma 3.2 (Generalization of 7.2 from [1]). Let y(t) be a solution to (1.1). If for some t′0 the
inequalities

y(t′0) > 0, y′(t′0) ≤ 0, . . . , y(n−1)(t′0) ≤ 0

hold, then y is equal to zero at some point t0 > t′0 satisfying the inequalities

t0 − t′0 ≤ (µy(t′0))
− k−1

n ,

y′(t0) < −(µy(t′0))
k+n−1

n ,

where µ > 0 is a constant depending only on n, k, m, M .
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Lemma 3.3 (Generalization of 7.3 from [1]). Under the conditions of Lemmas 3.1, 3.2, for any t1 > t0
such that y(t0) = 0, y(t1) = 0, the inequality

|y′(t1)| > Q|y′(t0)|

holds, where Q > 1 is a constant depending only on k, m, M .

Lemma 3.4. Let D be a subset of Rn and D̃ be a subset of Rn+1. Suppose that for any c ∈ D
there exists xc > 0 such that {c} × [0, xc] ⊂ D̃. Consider a continuous function f(c, x) : D̃ → R and
introduce the following conditions:

• f(c, 0) = 0 for any c ∈ D,
• for every c ∈ D, there exists a point x1(c) ∈ (0, xc) such that f(c, x1(c)) = 0 and f(c, x) ̸= 0

whenever x ∈ (0, x1(c)),
• f(c, x) is differentiable in x, and df

dx (c, x1(c)) ̸= 0 for all c ∈ D.

If these conditions hold, then x1(c) : D → R is a continuous function.

Proof. By definition, x1(c) describes the distance from 0 to the first zero of the function f(c, · ). The
existence of such a zero is stated in the second condition of the lemma. Therefore x1(c) is actually a
function (its value is defined for every c ∈ D), but, perhaps, discontinuous. We intend to prove that
x1(c) is a continuous function.

At every point (c, x1(c)) ∈ D̃, the function f(c, x) fulfills the conditions of the Implicit Function
Theorem. Therefore for any c̃ ∈ D there exist rectangular neighborhoods U ⊂ D of c̃, V ⊂ R of x1(c̃),
and a continuous function gc̃(c) : U → V such that for all (c, x) ∈ U × V the conditions f(c, x) = 0
and x = gc̃(c) are equivalent.

It is clear that x1(c̃) = gc̃(c̃), but we have to prove that x1(c) ≡ gc̃(c) in some neighborhood of c̃.
(We know that f(c, gc̃(c)) = 0, but the zeros of f(c, · ) provided by gc̃(c) may not be the zeros closest
to the point x = 0.)

We will prove this by contradiction. Suppose that in any punctured neighborhood of some point
c∗ ∈ D there exists a point c such that gc∗(c) ̸= x1(c). Then we have an infinite set {cα} such that for
every cα the inequality gc∗(cα) ̸= x1(cα) holds. We can extract from {cα} a sequence {cn} tending to
the point c∗. The implicit function theorem for f(c, x) takes place in a neighborhood U × V of the
point (c∗, x1(c

∗)).
Now we look closely at the set {(cn, x1(cn))}. It is a sequence in D̃, which cannot enter U × V ,

because otherwise the condition f(cn, x1(cn)) = 0 inside U×V contradicts the very definition of {cn}.
At the same time, the points (cn, x1(cn)) cannot be above the graph of gc∗(c) and above U × V by
the definition of the function x1(c).

So, the sequence {x1(cn)} is bounded by zero from below and by infV < x1(c
∗) from above.

Hence {x1(cn)} has a limit inferior x∗ < x1(c
∗). We extract a subsequence {x1(cni

)} tending to
the above limit and then consider a sequence {(cni

, x1(cni
))}. The function f(c, x) is continuous,

f(cni
, x1(cni

)) = 0, and (cni
, x1(cni

)) → (c∗, x∗) as i → ∞. Therefore, f(c∗, x∗) = 0. But at the same
time we have x∗ < x1(c

∗), and this contradicts the conditions of the lemma. Therefore, the point c∗,
in fact, does not exist.

This means that for every point c̃ ∈ D the equality x1(c) ≡ gc̃(c) is true in some neighborhood of c̃.
Every function gc̃(c) is continuous near c̃. Therefore, x1(c) is continuous at every point c ∈ D.

3.1 Proof of the main result
Proof of Theorem 2.1. Consider a maximally extended solution y(t) to (1.1) with initial data y(i)(a) =
yi, i ∈ 0, n− 1.

It follows from Lemmas 3.1–3.3 that if the inequalities

y(t0) ≥ 0, y′(t0) > 0, y′′(t0) ≥ 0, . . . , y(n−1)(t0) ≥ 0

hold at some point t0, then there exists a point t1 > t0 such that

y(t1) = 0, y′(t1) < 0, y′′(t1) ≤ 0, . . . , y(n−1)(t1) ≤ 0
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and
t1 − t0 ≤ (µ′y′(t0))

− k−1
k+2 ,

where µ′ > 0 and Q > 1 are constants depending only on k, m, and M .
The analogous statement takes place if

y(t0) ≤ 0, y′(t0) < 0, y′′(t0) ≤ 0, . . . , y(n−1)(t0) ≤ 0.

Hence, if y0 = 0 and yi > 0 for i ∈ 1, n− 1, then y(t) is an oscillating solution, i.e., it has an
infinite sequence of zeros {a, t1, t2, . . .}. In the sequel, y0 = 0 and yi > 0 for i ∈ 1, n− 1.

We denote the distance between zeros by Li = ti − ti−1. The distance from a to the (S− 1)st zero
is a function

L(y1, y2, . . . , yn−1) =

S−1∑
j=1

Lj(y1, y2, . . . , yn−1),

and its value depends on the initial data of the solution y(t).
If L(y1, y2, . . . , yn−1) = b − a, then the solution y(t) has exactly S zeros on [a, b]. To prove the

theorem we have to prove that for any b and a the last equation has at least one solution.
First, notice that L is a continuous function. If we rewrite (1.1) as a system of first-order ODEs,

that system will satisfy the conditions of the continuous dependence on initial data theorem [8, § 7,
Theorem 6]. By Y (t, a, y0, y1, y2, . . . , yn−1) we denote a maximally extended solution to (1.1) with
initial data y(i)(a) = yi, i ∈ 0, n− 1. Therefore, Y (t, a, y0, y1, y2, . . . , yn−1) and n of its derivatives in
t are continuous functions on their domains.

Are the conditions of Lemma 3.4 fulfilled? Put

D =
{
(y1, y2, . . . , yn−1) | yi > 0

}
⊂ Rn−1.

For every such (y1, y2, . . . , yn−1) we have already proved the existence of the first zero t1, which
satisfies y′(t1) ̸= 0. Further, there exists the second zero t2, and for D̃ ⊂ Rn we take the area above
D × {0} and under the graph of t2(y1, y2, . . . , yn−1). Obviously, Y (a, a, y0, y1, y2, . . . , yn−1) = 0, and
Y (t, a, y0, y1, y2, . . . , yn−1) is defined on D̃. (Here a is fixed and y0 is equal to zero.)

The conditions of Lemma 3.4 are fulfilled, hence t1(y1, y2, . . . , yn−1), or L1 is a continuous function
on D. It is possible to prove by using Lemma 3.4 that all Li, and therefore L are continuous. For L2,
for example, notice that y(t1(y1, y2, . . . , yn−1)), y

′(t1(y1, y2, . . . , yn−1)), . . . , y
(n−1)(t1(y1, y2, . . . , yn−1))

are also continuous, because they are compositions of continuous functions Y (i)(·, a, y0, y1, y2, . . . , yn−1)
and t1(y1, . . . , yn−1).

Now we are to find an upper estimate of L. It is already proved that

L1 ≤ (µ′y1)
− k−1

k+n−1 .

It follows from Lemma 3.3 that
|y′(ti)| ≥ Qi|y′(a)|.

Consider Li. Since − k−1
k+n−1 < 0, we have

Li ≤ (µ′Qi−1y1)
− k−1

k+n−1 = (Q− k−1
k+n−1 )i−1(µ′y1)

− k−1
k+n−1 .

Put Q̃ = Q− k−1
k+n−1 . Since Q > 1, − k−1

k+n−1 < 0, and therefore 0 < Q̃ < 1, the upper estimates of Li

form a decreasing geometric progression. Therefore,

L = L1 + L2 + · · ·+ LS−1 ≤ 1− Q̃S

1− Q̃
(µ′y′(a))−

k−1
k+n−1 = c1y

′(a)−
k−1

k+n−1 ,

L < c1y
′(a)−

k−1
k+n−1 , (3.1)

where c1 is a constant depending on n, k, m, M , and S.
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To get a lower estimate of L it is sufficient to make a lower estimation of L1. Consider a point
t′0 ∈ [a, t1] such that y′(t′0) = 0. On the segment [t′0, t1], the derivatives y′, y′′ are non-positive.
Therefore,

Qy′(a) < |y′(t1)| = |y′(t1)| − |y′(t′0)| =
t1∫

t′0

|y′′(ξ)| dξ < |t1 − t′0| max
[t′0,t1]

|y′′|.

We must get an upper estimate of max
[t′0,t1]

|y′′|. Notice the behaviour of the derivatives of y(t) as t

goes from a to t1. On the segment [a, t1], the inequality y(t) > 0 holds. First, near a, every derivative,
except y(n), is positive. It follows that y(n−1) is decreasing and after some point the inequality
y(n−1) < 0 holds, when y(n) is still negative. Hence, now y(n−2) starts to decrease, and we can repeat
the same steps, until the solution y intersects the 0 − t-axis, i.e., when we move t from a to t1, the
derivatives change their signs in order and higher-order derivatives change sign before low-order ones.
Therefore, on [t′0, t1], the second derivative of the solution y is negative, because on the segment [t′0, t1]
the first derivative y′(t) < 0.

Denote |y|k sgn y by |y|k±. All initial data are positive, hence

0 > y′′(t) = y2 + y3(t− a) + y4
(t− a)2

2!
+ · · ·+ yn−1

(t− a)n−3

(n− 3)!

−
t∫

a

· · ·
t∫

a

p(t, y, . . . , y(n−1))|y|k±(d t)n−2

> −
t∫

a

· · ·
t∫

a

p(t, y, . . . , y(n−1))|y|k±(d t)n−2 > −M |t− a|n−2 max
[a,t1]

|y|k,

whence
max
[t′0,t1]

|y′′| < M |t1 − a|n−2 max
[a,t1]

|y|k.

Now we get an upper estimation of max
[a,t1]

|y|k. The inequality y(t) > 0 holds on [a, t1], whence

y(t) = y1(t− a) + y2
(t− a)2

2!
+ · · ·+ yn−1

(t− a)n−1

(n− 1)!
−

t∫
a

· · ·
t∫

a

p(ξ, y, . . . , y(n−1))|y|k± (dξ)n

< y1(t− a) + y2
(t− a)2

2!
+ · · ·+ yn−1

(t− a)n−1

(n− 1)!
.

Therefore,

max
[a,t1]

|y(t)|k <
(
y1(t1 − a) + · · ·+ yn−1

(t1 − a)n−1

(n− 1)!

)k

.

Combining both estimates, we get

Qy1 < M |t1 − t′0||t1 − a|n−2
(
y1(t1 − a) + · · ·+ yn−1

(t1 − a)n−1

(n− 1)!

)k

.

By definition, t1 − a = L1 and |t1 − t′0| < L1, hence

Qy1 < MLn−1
1

(
y1L1 + · · ·+ yn−1

Ln−1
1

(n− 1)!

)k

.

Suppose y1 = y2 = · · · = yn−1 and y1 is a variable. In this case,

MLn−1
1

(
L1 + · · ·+ Ln−1

1

(n− 1)!

)k

> Qy1−k
1 .
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In the left-hand side of the inequality we have the function of L1 which is defined for every L1 > 0,
is equal to zero when L1 = 0, and is monotonically increasing. The value of the right-hand side may be
arbitrarily large as y1 is arbitrarily small. Hence, for any λ > 0, we can choose initial data providing
L > λ.

But, due to (3.1), for any λ > 0 we can choose initial data providing 0 < L < λ. There-
fore, the value of L(y1, y2, . . . , yn−1) may be arbitrarily large, arbitrarily small, and, at the same
time, L(y1, y2, . . . , yn−1) is proven to be continuous. Thus, we conclude that the range of values of
L(y1, y2, . . . , yn−1) is (0,+∞). Therefore, the equation

L(y1, y2, . . . , yn−1) = b− a

can be resolved for any b > a. This proves the theorem.
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