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Abstract. In this paper, we prove the controllability for a class of impulsive fractional evolution
equations with state-dependent delay in a Banach space. Our study is based on the Sadovskii’s fixed
point theorem. For the illustration of the main result, an example is given.
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ÒÄÆÉÖÌÄ. ÍÀÛÒÏÌÛÉ ÌÃÂÏÌÀÒÄÏÁÄÁÆÄ ÃÀÌÏÊÉÃÄÁÖËÉ ÃÀÂÅÉÀÍÄÁÉÈ ÉÌÐÖËÓÖÒ ×ÒÀØÝÉÏÍÀËÖÒ
ÄÅÏËÖÝÉÖÒÉ ÂÀÍÔÏËÄÁÄÁÉÓ ÄÒÈÉ ÊËÀÓÉÓÈÅÉÓ ÁÀÍÀáÉÓ ÓÉÅÒÝÄÛÉ ÃÀÌÔÊÉÝÄÁÖËÉÀ ÌÀÒÈÅÀ-
ÃÏÁÀ. ÓÀÊÉÈáÉÓ ÛÄÓßÀÅËÀ Ä×ÖÞÍÄÁÀ ÓÀÃÏÅÓÊÉÓ ÖÞÒÀÅÉ ßÄÒÔÉËÉÓ ÈÄÏÒÄÌÀÓ. ÞÉÒÉÈÀÃÉ
ÛÄÃÄÂÉÓ ÓÀÉËÖÓÔÒÀÝÉÏÃ ÌÏÚÅÀÍÉËÉÀ ÌÀÂÀËÉÈÉ.
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1 Introduction
Fractional order differential equations are generalizations of classical integer order differential equa-
tions. These are increasingly used to model problems in fluid flow, mechanics, viscoelasticity, biology,
physics, engineering and other applications. In recent years, there has been a significant development
in ordinary and partial fractional differential equations; see the monographs by Abbas et al. [1, 2],
Baleanu et al. [9], Diethelm [14], Hilfer [22], Kilbas et al. [25], Miller and Ross [28], Podlubny [30],
Samko et al. [33], Tarasov [38], and Zhou [41,42] and the references therein.

Functional differential equations with state-dependent delay appear frequently in applications as a
model of equations and for this reason the study of this type of equations has received great attention
in the last years (see [3, 4, 6, 11,17–21,24,27,35,39,40]).

The problem of controllability of linear and nonlinear systems represented by ordinary differential
equations in finite dimensional space has been extensively studied. Several authors have extended the
controllability concept to infinite dimensional systems in Banach space. Mophou et al. [29] studied
the controllability of semilinear neutral fractional functional evolution equations with infinite delay,
whereas Tai and Wang [37] discussed the controllability of fractional-order impulsive neutral functional
infinite delay integrodifferential systems. Controllability of impulsive fractional differential equations
with infinite delay is studied by Aissani and Benchohra [5].

Motivated by the previous literature, the purpose of this work is to establish the controllability
for a class of impulsive fractional equations with state-dependent delay described by

Dα
t x(t) = Ax(t) +Bu(t) + f(t, xρ(t,xt), x(t)), t ∈ Jk = (tk, tk+1], k = 0, 1, . . . ,m,

∆x(tk) = Ik(x(t
−
k )), k = 1, 2, . . . ,m,

x(t) = ϕ(t), t ∈ (−∞, 0],

(1.1)

where Dα
t is the Caputo fractional derivative of order α, 0 < α < 1, A : D(A) ⊂ E → E is the

infinitesimal generator of an α-resolvent family (Sα(t))t≥0, f : J × B × E → E is a given function,
J = [0, T ], T > 0, and ρ : J × B → (−∞, T ] is an appropriate function, B is a bounded linear
operator from E into E, the control u ∈ L2(J ;E), the Banach space of admissible controls. Here,
0 = t0 < t1 < · · · < tm < tm+1 = T , Ik : E → E, k = 1, 2, . . . ,m, are the given functions, (E, ∥ · ∥) is
a complex Banach space, ∆x(tk) = x(t+k ) − x(t−k ), x(t

+
k ) = lim

h→0
x(tk + h) and x(t−k ) = lim

h→0
x(tk − h)

denotes the right and the left limit of x(t) at t = tk, respectively. We denote by xt the element of B
defined by xt(θ) = x(t+ θ), θ ∈ (−∞, 0]. Here xt represents the history of the state up to the present
time t. We assume that the histories xt belong to some abstract phase space B, to be specified later,
and ϕ ∈ B.

2 Preliminaries
In what follows, we recall some notations, definitions, and results that we will need in the sequel.

Let C = C(J,E) be the Banach space of continuous functions from J into E with the norm

∥y∥C = sup
{
∥y(t)∥ : t ∈ J

}
.

L(E) is the Banach space of all linear and bounded operators on E.
A measurable function y : J → E is Bochner integrable if and only if ∥y∥ is Lebesgue integrable.
L1(J,E) is the Banach space of measurable functions y : J → E that are Bochner integrable, with

the norm

∥y∥L1 =

T∫
0

∥y(t)∥ dt for all y ∈ L1(J,E).

Br(x,E) represents the closed ball in E with the center at x and of radius r.
We need some basic definitions and properties of the fractional calculus theory which will be used

further in this paper.
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Definition 2.1. Let α > 0 and f : R+ → E be in L1(R+, E). Then the Riemann–Liouville integral
is given by

Iαt f(t) =
1

Γ(α)

t∫
0

f(s)

(t− s)1−α
ds.

For more details on the Riemann–Liouville fractional derivative, we refer the reader to [13].

Definition 2.2 ([30]). The Caputo derivative of order α for a function f : [0,+∞) → E can be
written as

Dα
t f(t) =

1

Γ(n− α)

t∫
0

f (n)(s)

(t− s)α+1−n
ds = In−αf (n)(t), t > 0, n− 1 ≤ α < n.

If 0 ≤ α < 1, then

Dα
t f(t) =

1

Γ(1− α)

t∫
0

f ′(s)

(t− s)α
ds.

Obviously, the Caputo derivative of a constant is equal to zero.

In order to define a mild solution of problem (1.1), we recall the following

Definition 2.3. A closed linear operator A is said to be sectorial if there are constants ω ∈ R,
θ ∈ [π2 , π], M > 0, such that the following two conditions are satisfied:

1.
∑

(θ,ω)

:= {λ ∈ C : λ ̸= ω, |arg(λ− ω)| < θ} ⊂ ρ(A) (ρ(A) being the resolvent set of A).

2. ∥R(λ,A)∥L(E) ≤ M
|λ−ω| , λ ∈

∑
(θ,ω)

.

Sectorial operators are well studied in the literature. For details see [15].

Definition 2.4 ([8]). Let A be a closed linear operator with domain D(A) defined on a Banach space
E and α > 0. We say that A is the generator of an α-resolvent family if there exist ω ≥ 0 and a
strongly continuous function Sα : R+ →L(E) such that {λα : Re(λ) > ω} ⊂ ρ(A) and

(λαI −A)−1x =

∞∫
0

e−λtSα(t)x dt, Reλ > ω, x ∈ E.

In this case, Sα(t) is called the α-resolvent family generated by A.

Definition 2.5 (see Definition 2.1 in [7]). Let A be a closed linear operator with domain D(A) defined
on a Banach space E and α > 0. We say that A is the generator of a solution operator if there exist
ω ≥ 0 and a strongly continuous function Sα : R+ →L(E) such that {λα : Re(λ) > ω} ⊂ ρ(A) and

λα−1(λαI −A)−1x =

∞∫
0

e−λtSα(t)x dt, Reλ > ω, x ∈ E.

In this case, Sα(t) is called the solution operator generated by A. For more details see [26,31].

In this paper, we will employ an axiomatic definition for the phase space B which is similar to
those introduced by Hale and Kato [16]. Specifically, B will be a linear space of functions mapping
(−∞, 0] into E endowed with a seminorm ∥ · ∥B, and satisfying the following axioms:

(A1) If x : (−∞, T ] → E is such that x0 ∈ B, then for every t ∈ J , xt ∈ B and

∥x(t)∥ ≤ C∥xt∥B,

where C > 0 is a constant.
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(A2) There exist a continuous function C1(t) > 0 and a locally bounded function C2(t) ≥ 0 in t ≥ 0
such that

∥xt∥B ≤ C1(t) sup
s∈[0,t]

∥x(s)∥+ C2(t)∥x0∥B,

for t ∈ J and x as in (A1).

(A3) The space B is complete.

Example 2.6. The phase space Cr × Lp(g,X).
Let r ≥ 0, 1 ≤ p < ∞, and let g : (−∞,−r) → R be a nonnegative measurable function

which satisfies the conditions (g − 5), (g − 6) in the terminology of [23]. Briefly, this means that g
is locally integrable and there exists a nonnegative locally bounded function Λ on (−∞, 0] such that
g(ξ+θ) ≤ Λ(ξ)g(θ) for all ξ ≤ 0 and θ ∈ (−∞,−r)\Nξ, where Nξ ⊂ (−∞,−r) is a set with Lebesgue
measure zero.

The space Cr × Lp(g,X) consists of all classes of functions φ : (−∞, 0] → X such that φ is
continuous on [−r, 0], Lebesgue-measurable, and g∥φ∥p on (−∞,−r). The seminorm in ∥ · ∥B is
defined by

∥φ∥B = sup
θ∈[−r,0]

∥φ(θ)∥+
( −r∫
−∞

g(θ)∥φ(θ)∥p dθ
) 1

p

.

The space B = Cr × Lp(g,X) satisfies axioms (A1), (A2), (A3). Moreover, for r = 0 and p = 2, this
space coincides with

C0 × L2(g,X), H = 1, M(t) = Λ(−t) 1
2 , K(t) = 1 +

( 0∫
−r

g(τ) dτ

) 1
2

.

For more details see [23, Theorem 1.3.8].

Definition 2.7. A function f : J × B × E → E is said to be a Carathéodory function if it satisfies:

(i) for each t ∈ J, the function f(t, · , · ) : B × E → E is continuous;

(ii) for each (v, w) ∈ B × E, the function f( · , v, w) : J → E is measurable.

Definition 2.8. Problem (1.1) is said to be controllable on the interval J if for every initial function
ϕ ∈ B and x1 ∈ E there exists a control u ∈ L2(J,E) such that the mild solution x( · ) of (1.1) satisfies
x(T ) = x1.

Next, we give the concept of a measure of noncompactness [10].

Definition 2.9. Let B be a bounded subset of a seminormed linear space Y . The Kuratowski’s
measure of noncompactness of B is defined as

α(B) = inf
{
d > 0 : B has a finite cover by sets of diameter ≤ d

}
.

We need to use the following basic properties of α measure and Sadovskii’s fixed point theorem
(see [34]).

Lemma 2.10. Let A and B be two bounded sets of the Banach space E. Then:

1. If A ⊆ B, then α(A) ≤ α(B);

2. α(A) = 0 ⇐⇒ A is compact (A is relatively compact);

3. α(A+B) ≤ α(A) + α(B).

Theorem 2.11 (Sadovskii’s fixed point Theorem). Let N be a condensing operator on the Banach
space X, i.e., N is continuous and takes bounded sets into bounded sets, and α(N (D)) < α(D) for
every bounded set D of E with α(D) > 0. If N (S) ⊂ S for a convex, closed and bounded set S of X,
then N has a fixed point in S.
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3 Controllability results
Before going further, we need the following lemma [36].

Lemma 3.1. Consider the Cauchy problem

Dα
t x(t) = Ax(t) +Bu(t) + f(t), 0 < α < 1,

x(0) = x0,
(3.1)

if f satisfies the uniform Hölder condition with exponent β ∈ (0, 1] and A is a sectorial operator, then
the unique solution of the Cauchy problem (3.1) is given by

x(t) = Tα(t)x0 +

t∫
0

Sα(t− s)Bu(s) ds+

t∫
0

Sα(t− s)f(s) ds,

where
Tα(t) =

1

2πi

∫
B̂r

eλt
λα−1

λα −A
dλ, Sα(t) =

1

2πi

∫
B̂r

eλt
1

λα −A
dλ,

B̂r denotes the Bromwich path, Sα(t) is called the α-resolvent family and Tα(t) is the solution operator
generated by A.

Theorem 3.2 ( [12,36]). If α ∈ (0, 1) and A ∈ Aα(θ0, ω0), then for any x ∈ E and t > 0, we have

∥Tα(t)∥L(E) ≤Meωt and ∥Sα(t)∥L(E) ≤ Ceωt(1 + tα−1), t > 0, ω > ω0.

Let
M̃T = sup

0≤t≤T
∥Tα(t)∥L(E), M̃s = sup

0≤t≤T
Ceωt(1 + tα−1),

hence we have
∥Tα(t)∥L(E) ≤ M̃T , ∥Sα(t)∥L(E) ≤ tα−1M̃s.

Let us consider the set of functions

B1 =
{
x : (−∞, T ] → E such that x

∣∣
Jk

∈ C(Jk, E) and there exist

x(t+k ) and x(t−k ) with x(tk) = x(t−k ), x0 = ϕ, k = 1, 2, . . . ,m
}
.

Endowed with the seminorm,

∥x∥B1
= sup

{
∥x(s)∥ : s ∈ [0, T ]

}
+ ∥ϕ∥B, x ∈ B1,

where x|Jk
is the restriction of x to Jk = (tk, tk+1], k = 1, 2, . . . ,m.

From Lemma 3.1 we can define a mild solution of system (1.1) as follows.

Definition 3.3. A function x ∈ B1 is called a mild solution of (1.1) if it satisfies the following integral
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equation:

x(t) =



ϕ(t), t ∈ (−∞, 0],

t∫
0

Sα(t− s)Bu(s) ds+

t∫
0

Sα(t− s)f
(
s, xρ(s,xs), x(s)

)
ds, t ∈ [0, t1],

Tα(t− t1)
(
x(t−1 ) + I1(x(t

−
1 ))

)
+

t∫
t1

Sα(t− s)Bu(s) ds

+

t∫
t1

Sα(t− s)f
(
s, xρ(s,xs), x(s)

)
ds, t ∈ (t1, t2],

...

Tα(t− tm)
(
x(t−m) + Im(x(t−m))

)
+

t∫
tm

Sα(t− s)Bu(s) ds

+

t∫
tm

Sα(t− s)f
(
s, xρ(s,xs), x(s)

)
ds, t ∈ (tm, T ].

(3.2)

Set
R(ρ−) =

{
ρ(s, φ) : (s, φ) ∈ J × B, ρ(s, φ) ≤ 0

}
.

We always assume that ρ : J × B → (−∞, T ] is continuous. Additionally, we introduce the following
hypothesis:

(Hφ) The function t→ φt is continuous from R(ρ−) into B and there exists a continuous and bounded
function Lϕ : R(ρ−) → (0,∞) such that

∥ϕt∥B ≤ Lϕ(t)∥ϕ∥B for every t ∈ R(ρ−).

Remark 3.4. Condition (Hφ) is frequently verified by the continuous and bounded functions. For
more details see, e.g., [23].

Remark 3.5. In the rest of this section, C∗
1 and C∗

2 are the constants

C∗
1 = sup

s∈J
C1(s) and C∗

2 = sup
s∈J

C2(s).

Lemma 3.6 ([21]). If x : (−∞, T ] → X is a function such that x0 = ϕ, then

∥xs∥B ≤ (C∗
2 + Lϕ)∥ϕ∥B + C∗

1 sup
{
∥y(θ)∥ : θ ∈ [0,max{0, s}]

}
, s ∈ R(ρ−) ∪ J,

where Lϕ = sup
t∈R(ρ−)

Lϕ(t).

Let us introduce the following hypotheses:

(H1) The semigroup S(t) is compact for t > 0.

(H2) f : J × B × E → E satisfies the Carathéodory conditions.

(H3) There exist a continuous function µ ∈ L1(J,R+) and a continuous nondecreasing function ψ :
R+ → (0,+∞) such that

∥f(t, x, y)∥ ≤ µ(t)ψ
(
∥x∥B + ∥y∥

)
, (t, x, y) ∈ J × B × E.
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(H4) The function Ik : E → E is continuous, and there exists Ω > 0 such that

Ω = max
1≤k≤m

{
∥Ik(x)∥ : x ∈ Br

}
.

(H5) The linear operator W : L2(J,E) → E defined by

Wu =

T∫
0

Sα(T − s)Bu(s) ds,

has an inverse operator W̃−1, which takes values in L2(J,E)/ kerW and there exist two positive
constants M1 and M2 such that

∥B∥L(E) ≤M1, ∥W̃−1∥L(E) ≤M2.

Remark 3.7. The construction of the operator W̃−1 and its properties are discussed in [32].

Theorem 3.8. Assume that Hypotheses (Hφ), (H1)–(H5) are satisfied with M̃T < 1, then the IVP
(1.1) is controllable on (−∞, T ].

Proof. We transform problem (1.1) into a fixed-point problem. Consider the operator N : B1 → B1

defined by:

Nx(t) =



ϕ(t), t ∈ (−∞, 0],

t∫
0

Sα(t− s)Bu(s) ds+

t∫
0

Sα(t− s)f
(
s, xρ(s,xs), x(s)

)
ds, t ∈ [0, t1],

Tα(t− t1)(x(t
−
1 ) + I1(x(t

−
1 ))) +

t∫
t1

Sα(t− s)Bu(s)

+

t∫
t1

Sα(t− s)f
(
s, xρ(s,xs), x(s)

)
ds, t ∈ (t1, t2],

...

Tα(t− tm)
(
x(t−m) + Im(x(t−m))

)
+

t∫
tm

Sα(t− s)Bu(s) ds

+

t∫
tm

Sα(t− s)f
(
s, xρ(s,xs), x(s)

)
ds, t ∈ (tm, T ].
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Using hypothesis (H5), for an arbitrary function x( · ), we define the control

u(t) =



W̃−1

[
x1 −

T∫
0

Sα(t− s)f
(
s, xρ(s,xs), x(s)

)
ds

]
(t), t ∈ [0, t1],

W̃−1

[
x1 − Tα(T − t1)

(
x(t−1 ) + I1(x(t

−
1 ))

)
−

T∫
t1

Sα(t− s)f
(
s, xρ(s,xs), x(s)

)
ds

]
(t), t ∈ (t1, t2],

...

W̃−1

[
x1 − Tα(T − tm)

(
x(t−m) + Im(x(t−m))

)
−

T∫
tm

Sα(t− s)f
(
s, xρ(s,xs), x(s)

)
ds

]
(t), t ∈ (tm, T ].

(3.3)

Clearly, fixed points of the operator N are mild solutions of problem (1.1).
Let us define y( · ) : (−∞, T ] → E as

y(t) =

{
ϕ(t), t ∈ (−∞, 0],

0, t ∈ J.

Then y0 = ϕ. For each z ∈ C(J,E) with z(0) = 0, we denote by z the function defined by

z(t) =

{
0, t ∈ (−∞, 0],

z(t), t ∈ J.

If x( · ) satisfies (3.2), we can decompose it as x(t) = y(t) + z(t) for t ∈ J , which implies xt = yt + zt
for every t ∈ J , the expression of the control given by (3.3) becomes

u(t) =



W̃−1

[
x1 −

T∫
0

Sα(t− s)f
(
s, yρ(s,ys+z(s)) + zρ(s,ys+z(s)), y(s) + z(s)

)
ds

]
(t), t ∈ [0, t1],

W̃−1

[
x1 − Tα(T − t1)

[
y(t−1 ) + z(t−1 ) + I1(y(t

−
1 ) + z(t−1 ))

]
−

T∫
t1

Sα(t− s)f
(
s, yρ(s,ys+z(s)) + zρ(s,ys+z(s)), y(s) + z(s)

)
ds

]
(t), t ∈ (t1, t2],

...

W̃−1

[
x1 − Tα(T − tm)

[
y(t−m) + z(t−m) + Im(y(t−m) + z(t−m))

]
−

T∫
tm

Sα(t− s)f
(
s, yρ(s,ys+z(s)) + zρ(s,ys+z(s)), y(s) + z(s)

)
ds

]
(t), t ∈ (tm, T ],
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and

z(t) =



t∫
0

Sα(t− s)Bu(s) ds

+

t∫
0

Sα(t− s)f
(
s, yρ(s,ys+z(s)) + zρ(s,ys+z(s)), y(s) + z(s)

)
ds, t ∈ [0, t1],

Tα(t− t1)
[
y(t−1 ) + z(t−1 ) + I1(y(t

−
1 ) + z(t−1 ))

]
+

t∫
t1

Sα(t− s)Bu(s) ds

+

t∫
t1

Sα(t− s)f
(
s, yρ(s,ys+z(s)) + zρ(s,ys+z(s)), y(s) + z(s)

)
ds, t ∈ (t1, t2],

...

Tα(t− tm)
[
y(t−m) + z(t−m) + Im(y(t−m) + z(t−m))

]
+

t∫
tm

Sα(t− s)Bu(s) ds

+

t∫
tm

Sα(t− s)f
(
s, yρ(s,ys+z(s)) + zρ(s,ys+z(s)), y(s) + z(s)

)
ds, t ∈ (tm, T ].

Moreover, z0 = 0.
Let

B2 =
{
z ∈ B1 : z0 = 0

}
.

For any z ∈ B2, we have
∥z∥B2

= sup
t∈J

∥z(t)∥+ ∥z0∥B = sup
t∈J

∥z(t)∥.

Thus (B2, ∥ · ∥B2) is a Banach space. We define the operator P : B2 → B2 by

P (z)(t) =



t∫
0

Sα(t− s)Bu(s) ds

+

t∫
0

Sα(t− s)f
(
s, yρ(s,ys+z(s)) + zρ(s,ys+z(s)), y(s) + z(s)

)
ds, t ∈ [0, t1],

Tα(t− t1)
[
y(t−1 ) + z(t−1 ) + I1(y(t

−
1 ) + z(t−1 ))

]
+

t∫
t1

Sα(t− s)Bu(s) ds

+

t∫
t1

Sα(t− s)f
(
s, yρ(s,ys+z(s)) + zρ(s,ys+z(s)), y(s) + z(s)

)
ds, t ∈ (t1, t2],

...

Tα(t− tm)
[
y(t−m) + z(t−m) + Im(y(t−m) + z(t−m))

]
+

t∫
tm

Sα(t− s)Bu(s) ds

+

t∫
tm

Sα(t− s)f
(
s, yρ(s,ys+z(s)) + zρ(s,ys+z(s)), y(s) + z(s)

)
ds, t ∈ (tm, T ].

Obviously, the operator N has a fixed point is equivalent to P to have a fixed point, so it remains to
prove that P has a fixed point. Let

Br =
{
z ∈ B2 : ∥z∥B2 ≤ r

}
,
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where r is any fixed finite real number which satisfies the inequality

r ≥ M̃TΩ

1− M̃T

+
M̃S

1− M̃T

ψ
(
(C∗

2 + Lϕ)∥ϕ∥B + (C∗
1 + 1)r

)
∥µ∥L1 .

Clearly, the subset Br is a closed, bounded and convex set of B2. We need the following

Lemma 3.9. If x ∈ Br, then we have

∥yρ(s,ys+z(s)) + zρ(s,ys+z(s))∥B ≤ (C∗
2 + Lϕ)∥ϕ∥B + C∗

1r,

and

∥u(s)∥ ≤



M2

[
∥x1∥+ M̃S

T∫
0

(t− τ)α−1µ(τ)

×ψ
(∥∥yρ(τ,yτ+z(τ)) + zρ(τ,yτ+z(τ))

∥∥
B + ∥y(τ) + z(τ)∥

)
dτ

]
, t ∈ [0, t1],

M2

[
∥x1∥+ M̃T (r +Ω) + M̃S

T∫
0

(t− τ)α−1µ(τ)

×ψ
(∥∥yρ(τ,yτ+z(τ)) + zρ(τ,yτ+z(τ))

∥∥
B + ∥y(τ) + z(τ)∥

)
dτ

]
, t ∈ (t1, t2],

...

M2

[
∥x1∥+ M̃T (r +Ω) + M̃S

T∫
0

(t− τ)α−1µ(τ)

×ψ
(∥∥yρ(τ,yτ+z(τ)) + zρ(τ,yτ+z(τ))

∥∥
B + ∥y(τ) + z(τ)∥E

)
dτ

]
, t ∈ (tm, T ].

(3.4)

Proof. Using Lemma 3.6, (H3) and (H5), we obtain∥∥yρ(s,ys+z(s)) + zρ(s,ys+z(s))

∥∥
B

≤ (C∗
2 + Lϕ)∥ϕ∥B + C∗

1 sup
{
|y(θ)| : θ ∈ [0,max{0, t}]

}
≤ (C∗

2 + Lϕ)∥ϕ∥B + C∗
1r.
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Also, we get

∥u(s)∥ ≤



∥W̃−1∥
[
∥x1∥+ M̃S

T∫
0

(t− τ)α−1

×
∥∥∥f(τ, yρ(τ,yτ+z(τ)) + zρ(τ,yτ+z(τ)), y(τ) + z(τ)

)∥∥∥ dτ], t ∈ [0, t1],

∥W̃−1∥
[
∥x1∥+ M̃T (r +Ω) + M̃S

T∫
0

(t− τ)α−1

×
∥∥∥f(τ, yρ(τ,yτ+z(τ)) + zρ(τ,yτ+z(τ)), y(τ) + z(τ)

)∥∥∥ dτ], t ∈ (t1, t2],

...

∥W̃−1∥
[
∥x1∥+ M̃T (r +Ω) + M̃S

T∫
0

(t− τ)α−1

×
∥∥∥f(τ, yρ(τ,yτ+z(τ)) + zρ(τ,yτ+z(τ)), y(τ) + z(τ)

)∥∥∥ dτ], t ∈ (tm, T ]

≤



M2

[
∥x1∥+ M̃S

T∫
0

(t− τ)α−1µ(τ)

×ψ
(∥∥yρ(τ,yτ+z(τ)) + zρ(τ,yτ+z(τ))

∥∥
B + ∥y(τ) + z(τ)

∥∥
E

)
dτ

]
, t ∈ [0, t1],

M2

[
∥x1∥+ M̃T (r +Ω) + M̃S

T∫
0

(t− τ)α−1µ(τ)

×ψ
(∥∥yρ(τ,yτ+z(τ)) + zρ(τ,yτ+z(τ))∥B + ∥y(τ) + z(τ)

∥∥) dτ], t ∈ (t1, t2],

...

M2

[
∥x1∥+ M̃T (r +Ω) + M̃S

T∫
0

(t− τ)α−1µ(τ)

×ψ
(∥∥yρ(τ,yτ+z(τ)) + zρ(τ,yτ+z(τ))∥B + ∥y(τ) + z(τ)

∥∥
E

)
dτ

]
, t ∈ (tm, T ].

Thus the lemma is proved.
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Now, we define two operators P1 and P2 on Br as

P1(z)(t) =



t∫
0

Sα(t− s)f
(
s, yρ(s,ys+z(s)) + zρ(s,ys+z(s)), y(s) + z(s)

)
ds, t ∈ [0, t1],

Tα(t− t1)
[
y(t−1 ) + z(t−1 ) + I1

(
y(t−1 ) + z(t−1 )

)]

+

t∫
t1

Sα(t− s)f
(
s, yρ(s,ys+z(s)) + zρ(s,ys+z(s)), y(s) + z(s)

)
ds, t ∈ (t1, t2],

...
Tα(t− tm)

[
y(t−m) + z(t−m) + Im(y(t−m) + z(t−m))

]
+

t∫
tm

Sα(t− s)f
(
s, yρ(s,ys+z(s)) + zρ(s,ys+z(s)), y(s) + z(s)

)
ds, t ∈ (tm, T ],

P2(z)(t) =



t∫
0

Sα(t− s)Bu(s) ds, t ∈ [0, t1],

t∫
t1

Sα(t− s)Bu(s) ds, t ∈ (t1, t2],

...
t∫

tm

Sα(t− s)Bu(s) ds, t ∈ (tm, T ].

Firstly, we show that the operator P1 maps Br into itself, next, we prove that P2 is completely
continuous.
Step 1: Let z ∈ Br, then show that P1z ∈ Br. For t ∈ [0, t1], we have

∥P1(z)(t)∥ ≤
t∫

0

∥Sα(t− s)∥L(E)

∥∥∥f(s, yρ(s,ys+z(s)) + zρ(s,ys+z(s)), y(s) + z(s)
)∥∥∥ ds

≤ M̃S

t∫
0

(t− s)α−1µ(s)ψ
(∥∥yρ(s,ys+z(s)) + zρ(s,ys+z(s))∥B + ∥y(s) + z(s)

∥∥) ds
≤ M̃S

t∫
0

(t− s)α−1µ(s)ψ
(
(C∗

2 + Lϕ)∥ϕ∥B + C∗
1r + r

)
ds

≤ M̃Sψ
(
(C∗

2 + Lϕ)∥ϕ∥B + (C∗
1 + 1)r

) t∫
0

µ(s) ds

≤ M̃Sψ
(
(C∗

2 + Lϕ)∥ϕ∥B + (C∗
1 + 1)r

)
∥µ∥L1

≤ r.
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Moreover, when t ∈ (ti, ti+1], i = 1, . . . ,m, we have the estimate

∥P1(z)(t)∥ ≤ Tα(t− ti)
[
z(t−i ) + Ii(z(t

−
i ))

]
+

t∫
0

∥Sα(t− s)∥L(E)

∥∥∥f(s, yρ(s,ys+z(s)) + zρ(s,ys+z(s)), y(s) + z(s)
)∥∥∥ ds

≤ M̃T (r +Ω) + M̃Sψ
(
(C∗

2 + Lϕ)∥ϕ∥B + (C∗
1 + 1)r

)
∥µ∥L1

≤ r.

Step 2: P2 is completely continuous. This will be given in several claims.
Claim 1: P2 is continuous.

Let {zn}n∈N be a sequence such that zn → z in B2 as n→ ∞. Since f satisfies (H2), we get

f
(
τ, yτ + znτ , y(τ) + zn(τ)

)
−→ f

(
τ, yτ + zτ , y(τ) + z(τ)

)
as n→ ∞.

Now for all t ∈ [0, t1], we have

∥∥P2(z
n)(t)− P2(z)(t)

∥∥ ≤
t∫

0

∥∥Sα(t− s)B(un(s)− u(s))
∥∥
L(E)

ds

≤
t∫

0

∥Sα(t− s)∥L(E)∥B∥L(E)∥un(s)− u(s)∥ ds ≤M1M̃S

t∫
0

(t− s)α−1∥(un(s)− u(s))∥ ds

≤M1M2M̃
2
S

t∫
0

(t− s)α−1

T∫
0

(T − τ)α−1
∥∥∥f(τ, yρ(τ,yτ+zn(τ)) + znρ(τ,yτ+zn(τ)), y(τ) + zn(τ)

)
− f

(
τ, yρ(τ,yτ+z(τ)) + zρ(τ,yτ+z(τ)), y(τ) + z(τ)

)∥∥∥ dτ ds ≤M1M2M̃
2
S

T 2α

α2
ε,

where ε > 0, ε→ 0 as n→ ∞. Moreover,

∥∥P2(z
n)(t)− P2(z)(t)

∥∥ ≤M1M2M̃S

t∫
ti

(t− s)α−1

[
M̃T

∥∥zn(t−i )− z(t−i )
∥∥+

∥∥Ii(zn(t−i ))− Ii(z(t
−
i ))

∥∥
+ M̃S

T∫
ti

(T − τ)α−1
∥∥∥f(τ, yρ(τ,yτ+zn(τ)) + znρ(τ,yτ+zn(τ)), y(τ) + zn(τ)

)
− f

(
τ, yρ(τ,yτ+z(τ)) + zρ(τ,yτ+z(s)), y(s) + z(s)

)∥∥∥ dτ] ds
≤M1M2M̃SM̃T

Tα

α

[∥∥zn(t−i )− z(t−i )
∥∥+

∥∥Ii(zn(t−i ))− Ii(z(t
−
i ))

∥∥]+M1M2M̃
2
S

T 2α

α2
ε,

where ε > 0, ε → 0 as n → ∞, for all t ∈ (ti, ti+1], i = 1, . . . ,m,. The impulsive functions Ik,
k = 1, . . . ,m, are continuous, and we get

lim
n→∞

∥P2z
n − P2z∥B2

= 0.

This means that P2 is continuous.
Claim 2: P2 maps bounded sets of B2 into bounded sets in B2. So, let us prove that for any r > 0,
there exists ξ > 0 such that for each z ∈ Br = {z ∈ B2 : ∥z∥B2

≤ r}, ∥P2z∥B2
≤ ξ. Indeed, for any
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z ∈ Br, t ∈ [0, t1], we have

∥P2(z)(t)∥ ≤
t∫

0

∥Sα(t− s)∥L(E)∥B∥L(E)∥u(s)∥ ds

≤M1M2M̃S

t∫
0

(t− s)α−1

[
∥x1∥+ M̃S

T∫
0

(T − τ)α−1µ(τ)

× ψ
(∥∥yρ(τ,yτ+z(τ)) + zρ(s,yτ+z(τ))∥B + ∥y(τ) + z(τ)

∥∥) dτ] ds
≤M1M2M̃S

t∫
0

(t− s)α−1

[
∥x1∥+ M̃S

T∫
0

(T − τ)α−1µ(τ)

× ψ
(
(C∗

2 + Lϕ)∥ϕ∥B + C∗
1r + r

)
dτ

]
ds

≤M1M2M̃S
Tα

α
∥x1∥+M1M2M̃

2
S

T 2α

α2
ψ
(
(C∗

2 + Lϕ)∥ϕ∥B + (C∗
1 + 1)r

) t∫
0

µ(s) ds

≤M1M2M̃S
Tα

α
∥x1∥+M1M2M̃

2
S

T 2α

α2
ψ
(
(C∗

2 + Lϕ)∥ϕ∥B + (C∗
1 + 1)r

)
∥µ∥L1 .

Moreover, when t ∈ (ti, ti+1], i = 1, . . . ,m, we have the estimate

∥P2(z)(t)∥ ≤M1M2M̃S
Tα

α
∥x1∥+M1M2M̃SM̃T (r +Ω)

Tα

α

+M1M2M̃
2
S

T 2α

α2
ψ
(
(C∗

2 + Lϕ)∥ϕ∥B + (C∗
1 + 1)r

)
∥µ∥L1 .

This implies that

∥P2z∥B2 ≤M1M2M̃S
Tα

α
∥x1∥+M1M2M̃SM̃T (r +Ω)

Tα

α

+M1M2M̃
2
S

T 2α

α2
ψ
(
(C∗

2 + Lϕ)∥ϕ∥B + (C∗
1 + 1)r

)
∥µ∥L1 .

Claim 3: P2(Br) is bounded and equicontinuous. Letting u, v ∈ [0, T ], with u < v, we have

∥P2(z)(v)− P2(z)(u)∥ ≤ Q1 +Q2,

Q1 =

v∫
u

∥Sα(v − s)∥L(E)∥B∥L(E)∥u(s)∥ ds,

Q2 =

u∫
0

∥Sα(v − s)− Sα(u− s)∥L(E)∥B∥L(E)∥u(s)∥ ds.
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In view of (3.4), for t ∈ [0, t1], we have

Q1 =

v∫
u

∥Sα(v − s)∥L(E)∥B∥L(E)∥u(s)∥ ds

≤M1M2M̃S

v∫
u

(v − s)α−1

×
[
∥x1∥+ M̃S

T∫
0

(T − τ)α−1f
(
τ, yρ(τ,yτ+z(τ)) + zρ(τ,yτ+z(τ)), y(τ) + z(τ)

)
dτ

]
ds

≤M1M2M̃S
(v − u)α

α

[
∥x1∥+ M̃S

Tα

α
ψ
(
(C∗

2 + Lϕ)∥ϕ∥B + (C∗
1 + 1)r

)
∥µ∥L1

]
.

Hence, lim
u→v

Q1 = 0. Similarly, for u, v ∈ (ti, ti+1], with u < v, i = 1, . . . ,m, we get

Q1 =

v∫
u

∥Sα(v − s)∥L(E)∥B∥L(E)∥u(s)∥ ds

≤M1M2M̃S

v∫
u

(v − s)α−1

[
∥x1∥+ M̃T (r +Ω)

+ M̃S

T∫
0

(T − τ)α−1f
(
τ, yρ(τ,yτ+z(τ)) + zρ(τ,yτ+z(τ)), y(τ) + z(τ)) dτ

]
ds

≤M1M2M̃S
(v − u)α

α

[
∥x1∥+ M̃T (r +Ω) + M̃S

Tα

α
ψ
(
(C∗

2 + Lϕ)∥ϕ∥B + (C∗
1 + 1)r

)
∥µ∥L1

]
.

Hence, we deduce that lim
u→v

Q1 = 0.
Using (3.4), for all t ∈ [0, t1] we get

Q2 =

u∫
0

∥∥Sα(v − s)− Sα(u− s)
∥∥
L(E)

∥B∥L(E)∥u(s)∥ ds

≤M1M2

[
∥x1∥+ M̃S

Tα

α
ψ
(
(C∗

2 + Lϕ)∥ϕ∥B + (C∗
1 + 1)r

)
∥µ∥L1

]
×

u∫
0

∥∥Sα(v − s)− Sα(u− s)
∥∥
L(E)

ds.

Similarly, when u, v ∈ (ti, ti+1], i = 1, . . . ,m, we have the estimate

Q2 =

u∫
0

∥∥Sα(v − s)− Sα(u− s)
∥∥
L(E)

∥B∥L(E)∥u(s)∥ ds

≤M1M2

[
∥x1∥+ M̃T (r +Ω) + M̃S

Tα

α
ψ
(
(C∗

2 + Lϕ)∥ϕ∥B + (C∗
1 + 1)r

)
∥µ∥L1

]
×

u∫
0

∥∥Sα(v − s)− Sα(u− s)
∥∥
L(E)

ds.

Since ∥∥Sα(v − s)− Sα(u− s)
∥∥
L(E)

≤ 2M̃s(ti − s)α−1,
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which belongs to L1(J,R+) and Sα(v− s)− Sα(u− s) → 0 as u→ v, Sα is strongly continuous. This
implies that lim

u→v
Q2 = 0. Thus, from the above inequalities, we have

lim
u→v

∥P (z)(v)− P (z)(u)∥ = 0.

So, P2(Br) is equicontinuous.
Finally, combining Claims 1 and 3 together with the Arzelà–Ascoli’s theorem, we conclude that

the operator P2 is compact. In fact, by Step 1–Step 2 and Lemma 2.10, one can conclude that
P = P1+P2 is continuous and takes bounded sets into bounded sets. Meanwhile, it is easy to see that
α(P2(Br)) = 0, since P2(Br) is relatively compact. It comes from P1(Br) ⊆ Br and α(P2(Br)) = 0
that

α(P (Br)) ≤ α(P1(Br)) + α(P2(Br)) ≤ α(Br)

for every bounded set Br of B2 with α(Br) > 0.
Since P (Br) ⊂ Br for a convex, closed and bounded set Br of B2, using Theorem 2.11, P has a

fixed point z in Br ⊂ B2. It is easy to see that x is a fixed point of the operator N which is a mild
solution of (1.1) satisfying x(T ) = x1. Thus, system (1.1) is controllable on (−∞, T ].

4 An example
To apply our abstract results, we consider the impulsive fractional integro-differential system:

∂qt
∂tq

v(t, ζ) =
∂2

∂ζ2
v(t, ζ) + ωµ(t, ζ)

+

t∫
−∞

a1(s− t)v
(
s− ρ1(t)ρ2(|v(t)|), ξ

)
ds+ t2 cos |v(t, ζ)|, t ∈ [0, T ], ζ ∈ [0, π],

v(t, 0) = v(t, π) = 0, t ∈ [0, T ],

v(t, ζ) = v0(θ, ζ), θ ∈ (−∞, 0], ζ ∈ [0, π],

∆v(tk)(ζ) =

tk∫
−∞

pk(tk − y) dy cos(v(tk)(ζ)), k = 1, 2, . . . ,m,

(4.1)

where 0 < q < 1, ω > 0, µ : [0, T ]× [0, π] → [0, π], pk : R → R, k = 1, 2, . . . ,m, and a1 : (−∞, 0] → R,
ρi : [0,+∞) → [0,+∞), i = 1, 2, v0 : (−∞, 0]× [0, π] → R are continuous functions.

Set E = L2([0, π]) and let D(A) ⊂ E → E be the operator Aω = ω′′ with the domain

D(A) =
{
ω ∈ E : ω, ω′ are absolutely continuous, ω′′ ∈ E, ω(0) = ω(π) = 0

}
,

then
Aω =

∞∑
n=1

n2(ω, ωn)ωn, ω ∈ D(A),

where ωn(x) =
√

2
π sin(nx), n ∈ N, is the orthogonal set of eigenvectors of A. It is well known that

A is the infinitesimal generator of an analytic semigroup {T (t)}t≥0 in E and is given by

T (t)ω =

∞∑
n=1

e−n2t(ω, ωn)ωn for all ω ∈ E and all t > 0.

From these expressions it follows that {T (t)}t≥0 is a uniformly bounded compact semigroup such that
R(λ,A) = (λ−A)−1 is a compact operator for all λ ∈ ρ(A), that is, A ∈ Aα(θ0, ω0).

For the phase space, we choose B = C0 × L2(g,X) (for details, see Example 2.6).
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Set

x(t)(ζ) = v(t, ζ), t ∈ [0, T ], ζ ∈ [0, π];

ϕ(θ)(ζ) = v0(θ, ζ), θ ∈ (−∞, 0], ζ ∈ [0, π];

f(t, φ, x(t))(ζ) =

0∫
−∞

a1(s)φ(s, ξ) ds+ t2 cos |x(t)(ζ)|, t ∈ [0, T ], ζ ∈ [0, π];

ρ(s, φ) = s− ρ1(s)ρ2(|φ(0)|);

Ik(x(t
−
k ))(ζ) =

0∫
−∞

pk(tk − y) dy cos(x(tk)(ζ)), k = 1, 2, . . . ,m;

Bu(t)(ζ) = ωµ(t, ζ).

Under the above conditions, we can represent system (4.1) in the abstract form (1.1). Assume that
the operator W : L2(J,E) → X defined by

Wu( · ) =
T∫

0

Sα(T − s)ωµ(s, · ) ds

has a bounded invertible operator W̃−1 in L2(J,E)/ kerW .
The following result is a direct consequence of Theorem 3.8.

Proposition 4.1. Let φ ∈ B be such that (Hφ) holds, and assume that the above conditions are
fulfilled, then system (4.1) is controllable on (−∞, T ].
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