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Abstract. Recently, some extensions of results of M. A. Krasnosel’skii and Gustafson–Schmitt for
systems of the type x′ = f(t, x) with periodic boundary conditions x(0) = x(1) have been obtained for

nonlocal boundary conditions of the type x(1) =
1∫
0

dh(s)x(s) or x(0) =
1∫
0

dh(s)x(s), where h is a real

non-decreasing function satisfying some conditions, and containing the periodic boundary conditions as
special cases. The situations with periodic and nonlocal boundary conditions are compared through
the use of counterexamples, exhibiting the special character of the periodic case. Similar counter-
examples also show, in the case of second order systems with some nonlocal boundary conditions,
that the sense of some inequalities in the assumptions cannot be reversed.∗
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ÒÄÆÉÖÌÄ. ÐÄÒÉÏÃÖËÉ ÀÌÏÝÀÍÉÓ x′ = f(t, x), x(0) = x(1) ÀÌÏáÓÍÀÃÏÁÉÓ ÊÀÒÂÀÃ ÝÍÏÁÉËÉ

ÊÒÀÓÍÏÓÄËÓÊÉÓ ÃÀ ÂÖÓÔÀÅÓÏÍ-ÛÌÉÔÉÓ ÛÄÃÄÂÄÁÉ ÂÀÍÆÏÂÀÃÄÁÖËÉ ÉØÍÀ x(1) =
1∫
0

dh(s)x(s) ÃÀ

x(0) =
1∫
0

dh(s)x(s) ÓÀáÉÓ ÀÒÀËÏÊÀËÖÒÉ ÓÀÓÀÆÙÅÒÏ ÐÉÒÏÁÄÁÉÓ ÛÄÌÈáÅÄÅÀÛÉ (h ÍÀÌÃÅÉËÉ

ÀÒÀÊËÄÁÀÃÉ ×ÖÍØÝÉÀÀ), ÒÏÌËÄÁÉÝ ÌÏÉÝÀÅÄÍ ÐÄÒÉÏÃÖË ÓÀÓÀÆÙÅÒÏ ÐÉÒÏÁÄÁÓ, ÒÏÂÏÒÝ
ÊÄÒÞÏ ÛÄÌÈáÅÄÅÄÁÓ. ÊÏÍÔÒÌÀÂÀËÉÈÄÁÉÓ ÓÀÛÖÀËÄÁÉÈ ÛÄÃÀÒÄÁÖËÉÀ ÐÄÒÉÏÃÖËÉ ÃÀ ÀÒÀ-
ËÏÊÀËÖÒÉ ÓÀÓÀÆÙÅÒÏ ÐÉÒÏÁÄÁÉÓ ÛÄÌÈáÅÄÅÄÁÉ, ÒÏÌËÄÁÉÝ ÀÅËÄÍÄÍ ÐÄÒÉÏÃÖËÉ ÛÄÌÈáÅÄÅÉÓ
ÓÐÄÝÉÀËÖÒ áÀÓÉÀÈÓ. ÀÍÀËÏÂÉÖÒÉ ÊÏÍÔÒÌÀÂÀËÉÈÄÁÉ ÀÂÒÄÈÅÄ ÂÅÉÜÅÄÍÄÁÄÍ, ÒÏÌ ÌÄÏÒÄ
ÒÉÂÉÓ ÓÉÓÔÄÌÄÁÉÓ ÛÄÌÈáÅÄÅÀÛÉ ÂÀÒÊÅÄÖËÉ ÀÒÀËÏÊÀËÖÒÉ ÓÀÓÀÆÙÅÒÏ ÐÉÒÏÁÄÁÉÈ ÆÏÂÉÄÒÈÉ
ÖÔÏËÏÁÉÓ ÍÉÛÍÉÓ ÛÄÁÒÖÍÄÁÀ ÀÒ ÛÄÉÞËÄÁÀ.

∗Reported on Conference “Differential Equation and Applications”, September 4-7, 2017, Brno
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1 Introduction
Let ⟨ · | · ⟩ denote the usual inner product in Rn, | · | the corresponding Euclidian norm, and BR ⊂ Rn

the open ball of center 0 and radius R. Throughout the paper, let f : [0, 1]×Rn → Rn be continuous.
Let us first consider the periodic boundary value problem

x′ = f(t, x), x(0) = x(1). (1.1)

A classical existence theorem for problem (1.1), more than fifty years old, is the following one.
Existence theorem. If there exists R > 0 such that either

⟨u | f(t, u)⟩ ≥ 0 ∀ (t, u) ∈ [0, 1]× ∂BR,

or
⟨u | f(t, u)⟩ ≤ 0 ∀ (t, u) ∈ [0, 1]× ∂BR,

then problem (1.1) has at least one solution such that x([0, 1]) ⊂ BR.

The two results are indeed equivalent, the second one being deduced from the first one through
the change of variable τ = 1− t. They are a nonlinear counterpart to the elementary result that, for
each e ∈ C([0, 1],Rn) and each λ ∈ R \ {0}, the problem

x′ = λx+ e(t), x(0) = x(1)

has a solution, a consequence of the fact that 0 is the unique real eigenvalue of the operator d
dt with

periodic boundary conditions.
Although the existence theorem above is a special case of a result given by M. A. Krasnosel’skii in

1966 ([6, Theorem 3.2]), and was surely known to him, its explicit statement is not contained in [6],
and we did not find an earlier reference. One can just mention that in 1965, F. E. Browder [1] proved
the existence of a solution of (1.1) with Rn replaced by an arbitrary real Hilbert space with inner
product ⟨ · | · ⟩ when f : [0, 1] ×H → H is continuous, −f(t, · ) is monotone for each t ∈ [0, 1] and
there exists R > 0 such that ⟨u | f(t, u)⟩ < 0 for (t, u) ∈ [0, 1]× ∂BR.
Krasnosel’skii’s theorem. If there exists a bounded open convex set C ⊂ Rn, and functions Φi ∈
C1(Rn,R) (i = 1, . . . , r) such that C = {u ∈ Rn : Φi(u) ≤ 0 (i = 1, . . . , r)}, ∇Φi(u) ̸= 0 when
Φi(u) = 0 for some u ∈ ∂C, and either⟨

∇Φi(u) | f(t, u)
⟩
≥ 0 ∀ (t, u) ∈ [0, 1]× ∂C and ∀ i ∈ α(u),

or ⟨
∇Φi(u) | f(t, u)

⟩
≤ 0 ∀ (t, u) ∈ [0, 1]× ∂C and ∀ i ∈ α(u),

where α(u) := {i ∈ {1, . . . , r} : Φi(u) = 0}, then problem (1.1) has at least one solution such that
x([0, 1]) ⊂ C.

The existence theorem above corresponds to the choice of C = BR, r = 1 and Φ1(u) =
1
2 (|u|

2−R2).
A more direct proof of Krasnosel’skii’s theorem based upon coincidence degree arguments has been
given in 1974 in [7, Corollary 3.2].

Now, if C ⊂ Rn is an open convex neighborhood of 0 ∈ Rn, then, for each u ∈ ∂C, there exists
some ν(u) ∈ Rn \ {0} such that ⟨ν(u) | u⟩ > 0 and C ⊂ {v ∈ Rn : ⟨ν(u) | v − u⟩ < 0}. ν(u) is called
an outer normal to ∂C at u, and ν : ∂C → Rn \ {0} an outer normal field on ∂C. Notice that ν needs
not to be continuous. The second condition means that ν(u) is orthogonal to a supporting hyperplane
of C at u [2,5]. In 1974, using arguments similar to those of [7], Gustafson and Schmitt [4] introduced
the following elegant existence condition.
Gustafson–Schmitt’s theorem. If there exists a bounded convex open neighborhood C of 0 in Rn, and
an outer normal field ν on ∂C such that either⟨

ν(u) | f(t, u)
⟩
> 0 ∀ (t, u) ∈ [0, 1]× ∂C, (1.2)
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or ⟨
ν(u) | f(t, u)

⟩
< 0 ∀ (t, u) ∈ [0, 1]× ∂C, (1.3)

then problem (1.1) has at least one solution such that x([0, 1]) ∈ C.

Notice that the monograph [6] is not quoted in [4], and that the special case where C = BR is
explicitly stated there. The relation between [6] and [4] was explicited in [7, 8], where it was also
shown that inequalities need not to be strict in Gustafson–Schmitt’s assumptions (1.2), (1.3) if one
replaces C by C in the conclusion. See also [3] for further generalizations. Krasnosel’skii’s theorem
follows from extended Gustafson–Schmitt’s condition because if, without loss of generality, we assume
that 0 ∈ C in Krasnosel’skii’s statement, then, for u ∈ ∂C and i ∈ α(u), ∇Φi(u) is an outer normal
to ∂C at u.

In [10], the following generalizations of problem (1.1)

x′ = f(t, x), x(1) =

1∫
0

dh(s)x(s), (1.4)

and

x′ = f(t, x), x(0) =

1∫
0

dh(s)x(s) (1.5)

(sometimes called nonlocal terminal value problem, and nonlocal initial value problem, respectively),
have been considered, where

h : [0, 1] → R is non-decreasing and
1∫

0

dh(s) = 1.

Both boundary conditions in (1.4) and (1.5) can be seen as generalizations of the periodic boundary
conditions x(0) = x(1), where either x(0) or x(1) is replaced by some average of x over the interval
[0, 1].

The following theorems are special cases of the results proved in [10] by reduction to a fixed point
problem and the use of some version of Leray–Schauder continuation theorem.

Theorem 1.1. If h(0) < h(α) for some α ∈ (0, 1) and if there exists an open, bounded, convex
neighborhood C of 0 in Rn and an outer normal field ν on ∂C such that⟨

ν(u) | f(t, u)
⟩
≥ 0 ∀ (t, u) ∈ [0, 1]× ∂C, (1.6)

then problem (1.4) has at least one solution x such that x([0, 1]) ∈ C.

Theorem 1.2. If h(α) < h(1) for some α ∈ (0, 1) and if there exists an open, bounded, convex
neighborhood C of 0 in Rn and an outer normal field ν on ∂C such that⟨

ν(u) | f(t, u)
⟩
≤ 0 ∀ (t, u) ∈ [0, 1]× ∂C, (1.7)

then problem (1.5) has at least one solution x such that x([0, 1]) ⊂ C.

The following consequences of Theorems 1.1 and 1.2, corresponding to C = BR, are also given
in [10].

Corollary 1.1. If h(0) < h(α) for some α ∈ (0, 1) and if there exists R > 0 such that

⟨u | f(t, u)⟩ ≥ 0 ∀ (t, u) ∈ [0, 1]× ∂BR, (1.8)

Then problem (1.4) has at least one solution x such that x([0, 1]) ∈ BR.
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Corollary 1.2. If h(α) < h(1) for some α ∈ (0, 1) and if there exists R > 0 such that

⟨u | f(t, u)⟩ ≤ 0 ∀ (t, u) ∈ [0, 1]× ∂BR, (1.9)

then problem (1.5) has at least one solution x such that x([0, 1]) ∈ BR.

Comparing those statements with our first existence theorem for the periodic problem, we see that
the sense of the inequality in conditions (1.6) or (1.8) and (1.7) or (1.9) depends upon the boundary
condition. On the other hand, as it is easily verified by direct computation, the system

x′ = λx+ e(t),

with each of the three-point boundary conditions

x(1) =
1

2

[
x
(1
2

)
+ x(0)

]
, x′(0) =

1

2

[
x
(1
2

)
+ x(1)

]
,

has a solution for each e ∈ C([0, 1],Rn) and each λ ∈ R \ {0}. This is again a consequence of the
fact that the only real eigenvalue of d

dt with each boundary condition is 0. Hence a natural question
is to know if the conclusion of the above corollaries still holds when the sense of the corresponding
inequality upon f is reversed.

The aim of this paper is to show by some counterexamples that the answer is negative in general,
which of course implies that the same negative answer holds for Theorems 1.1 and 1.2. In this sense,
the existence conditions given in [10] are sharp.

The construction of our counterexamples in Section 4 depends upon the study of the associated
complex eigenvalue problem in Section 2 and of the corresponding Fredholm alternative in Section 3
for some special three-point boundary conditions.

In Section 4, we exhibit a (complex) eigenvalue λ and show the existence of a function e ∈
C([0, 1],C) such that the equation

z′ = λz + e(t),

with the corresponding multipoint boundary conditions, has no solution z : [0, 1] → C and such that,
for the equivalent 2-dimensional system obtained by letting

x1 = ℜz, x2 = ℑz, f1(t, x) = ℜ(λz + e(t)), f2(t, x) = ℑ(λz + e(t)),

⟨u | f(t, u)⟩ has the opposite sign to the one in the corresponding corollary, for all t ∈ [0, 1] and all
sufficiently large |u|. We complete this 2-dimensional counterexample by a 3-dimensional one, from
which counterexamples can easily be obtained in all dimensions n ≥ 2.

In Section 4, we also give an example of periodic problem (1.1) having no solution and such that
⟨x, f(t, x)⟩ changes sign when |x| = R and R > 0 is sufficiently large. Hence, the assumptions of the
existence theorem for periodic problems are sharp as well.

Finally, in Section 5, we construct in a similar way a counterexample related to the following
nonlocal boundary value problem for a second order system considered in [9]

x′′ = g(t, x, x′), x(0) = 0, x′(1) =

1∫
0

dh(s)x′(s), (1.10)

where g : [0, 1] × Rn × Rn → Rn is continuous and h : [0, 1] → R is non-decreasing and
1∫
0

dh(s) = 1.

The following existence result is proved in [9].

Theorem 1.3. If h(0) < h(α) for some α ∈ (0, 1) and if there exists an open, bounded, convex
neighborhood C of 0 in Rn and an outer normal field ν on ∂C such that⟨

ν(v) | g(t, u, v)
⟩
≥ 0 ∀ (t, u, v) ∈ [0, 1]× C × ∂C,

then problem (1.10) has at least one solution x such that x([0, 1]) ⊂ C and x′([0, 1]) ⊂ C.
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Its special case where C = BR goes as follows.

Corollary 1.3. If h(0) < h(α) for some α ∈ (0, 1) and if there exists R > 0 such that

⟨v | g(t, u, v)⟩ ≥ 0 ∀ (t, u, v) ∈ [0, 1]×BR × ∂BR, (1.11)

then problem (1.10) has at least one solution x such that x([0, 1]) ⊂ BR and x′([0, 1]) ⊂ BR.

In Section 5, we exhibit a counterexample showing that a statement like Corollary 1.3 does not
hold if the sense of inequality (1.11) is reversed.

Notice that one could consider as well the problem

x′′ = g(t, x, x′), x(0) = 0, x′(0) =

1∫
0

dh(s)x′(s), (1.12)

when h(α) < h(1) for some α ∈ (0, 1) and the assumptions on g, and prove, mimicking the approach
of [9], the following existence result.

Theorem 1.4. If h(α) < h(1) for some α ∈ (0, 1) and if there exists an open, bounded, convex
neighborhood C of 0 in Rn and an outer normal field ν on ∂C such that⟨

ν(v) | g(t, u, v)
⟩
≤ 0 ∀ (t, u, v) ∈ [0, 1]× C × ∂C,

then problem (1.12) has at least one solution x such that x([0, 1]) ⊂ C and x′([0, 1]) ⊂ C.

We leave to the reader the task of stating the corresponding corollary analog to Corollary 1.3 and
of constructing a counterexample to an existence statement with reversed inequalities.

In analogy with the periodic case for first order differential systems, the two-point boundary value
problem

x′′ = g(t, x, x′), x(0) = 0, x′(0) = x′(1) (1.13)

is a special case of both problems (1.10) and (1.12). Hence, the existence of a solution to problem
(1.13) is insured if there exists R > 0 such that either

⟨v | g(t, u, v)⟩ ≥ 0 ∀ (t, u, v) ∈ [0, 1]×BR × ∂BR,

or
⟨v | g(t, u, v)⟩ ≤ 0 ∀ (t, u, v) ∈ [0, 1]×BR × ∂BR.

2 First order eigenvalue problems
We consider the eigenvalue problem

z′(t) = λz(t), z(1) =
1

2

[
z(0) + z

(1
2

)]
, (2.1)

where λ ∈ C, z : [0, 1] → C. Its three-point boundary condition is a special case of the one in
Corollary 1.1 with

h(s) =


0 if s = 0,

1/2 if s ∈ (0, 1/2]

1 if s ∈ (1/2, 1].

Proposition 2.1. The eigenvalues of problem (2.1) are λtc,1,k = 2k(2πi) and λtc,2,k = − log 4+(2k+
1)(2πi) (k ∈ Z). They are located in the left part of the complex plane.
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Proof. The eigenvalue problem (2.1) has a nontrivial solution if and only if λ ∈ C is such that

eλ =
1

2
+

1

2
eλ/2. (2.2)

Set µ := eλ/2, so that equation (2.2) becomes the equation in µ

µ2 − 1

2
µ− 1

2
= 0,

whose solutions are µtc,1 = 1, µtc,2 = − 1
2 . The equation eλ/2 = µtc,1 = 1 is satisfied for λ

2 = 2kπi
(k ∈ Z) which gives the eigenvalues

λtc,1,k = 2k(2πi) (k ∈ Z).

The equation eλ/2 = µtc,2 = − 1
2 is satisfied for λ

2 = − log 2+πi+2kπi = − log 2+ (2k+1)πi (k ∈ Z),
which gives the eigenvalues

λtc,2,k = − log 4 + (2k + 1)(2πi) (k ∈ Z).

Similarly, we consider the eigenvalue problem

z′(t) = λz(t), z(0) =
1

2

[
z
(1
2

)
+ z(1)

]
, (2.3)

where λ ∈ C, z : [0, 1] → C. Its multi-point boundary condition is a special case of the one in
Corollary 1.2 with

h(s) =


0 if s ∈ [0, 1/2),

1/2 if s ∈ [1/2, 1),

1 if s = 1.

Proposition 2.2. The eigenvalues of problem (2.3) are λic,1,k = 2k(2πi) and λic,2,k = log 4 + (2k +
1)(2πi) (k ∈ Z). They are located in the left right part of the complex plane.

Proof. The eigenvalue problem (2.3) has a nontrivial solution if and only if λ ∈ C is such that

1 =
1

2
eλ/2 +

1

2
eλ. (2.4)

Set µ := eλ/2, so that equation (2.4) becomes the equation in µ

1

2
µ2 +

1

2
µ− 1 = 0

whose solutions are µic,1 = 1 and µic,2 = −2. Consequently, we obtain, as above,

λic,1,k = 2k(2πi) (k ∈ Z)

and
λic,2,k = log 4 + (2k + 1)(2πi) (k ∈ Z).

Remark 2.1. The situation can be compared with the spectrum for the periodic boundary conditions

z′ = λz, z(0) = z(1)

which, as easily seen, is made of the eigenvalues λp,k = k(2πi) (k ∈ Z). One can see that, in the case
of (2.1), half of the eigenvalues of the periodic problem move to the line ℜz = − log 4, and, in the
case of (2.3), the same half moves to the line ℜz = log 4. The spectra have lost their symmetry with
respect to the imaginary axis.
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3 Fredholm alternative
The construction of our counterexamples requires the use of the Fredholm alternative for the corre-
sponding forced boundary value problems.
Proposition 3.1. λ is an eigenvalue of (2.1) (resp. (2.3)) if and only if there exists a continuous
function e such that the nonhomogeneous problem (3.1) (resp. (3.2)) has no solution.
Proof. It is shown in [10] (or by direct verification) that the non-homogeneous problems

Lz := z′ − z = e(t), z(0) =
1

2
z
(1
2

)
+

1

2
z(1)

and
Mz := z′ + z = e(t), z(0) =

1

2
z
(1
2

)
+

1

2
z(1)

have a unique solution z = L−1e and z = M−1e for every e ∈ C([0, 1],C), and that the linear mappings
L−1 and M−1 are compact in the space C([0, 1],C). As a consequence, each problem

z′ − λz = e(t), z(1) =
1

2
z(0) +

1

2
z
(1
2

)
(3.1)

and
z′ + λz = e(t), z(0) =

1

2
z
(1
2

)
+

1

2
z(1) (3.2)

can be written equivalently

z = (λ− 1)L−1z + L−1e, z = (λ+ 1)M−1z +M−1e,

so that the Fredholm alternative follows from Riesz theory of linear compact operators.

4 Counterexamples to Corollaries 1.1 and 1.2 with
opposite vector fields sign conditions

We now finalize the construction of our counterexamples.
We first consider the case of a three-point boundary condition of terminal type, and apply Propo-

sition 3.1 to the case of the eigenvalue λtc,2,0 = − log 4 + (4k + 2)πi of (2.1). Let e : [0, 1] → C be a
continuous function such that the problem

z′(t) = (− log 4 + 2πi)z(t) + e(t), z(1) =
1

2
z(0) +

1

2
z
(1
2

)
(4.1)

has no solution. Setting z(t) = x1(t) + ix2(t), e(t) = e1(t) + ie2(t), problem (4.1) is equivalent to the
planar real system 

x′
1(t) = −(log 4)x1(t)− 2πx2(t) + e1(t),

x′
2(t) = 2πx1(t)− (log 4)x2(t) + e2(t),

x1(1) =
1

2
x1(0) +

1

2
x1

(1
2

)
,

x2(1) =
1

2
x2(0) +

1

2
x2

(1
2

)
.

(4.2)

Let
f(t, u) :=

(
− (log 4)u1 − 2πu2 + e1(t), 2πu1 − (log 4)u2 + e2(t)

)
.

For (4.2), we have

⟨u | f(t, u)⟩ = u1

[
− (log 4)u1 − 2πu2 + e1(t)

]
+ u2

[
2πu1 − (log 4)u2 + e2(t)

]
= −(log 4)(u2

1 + u2
2) + u1e1(t) + u2e2(t)

≤ −(log 4)|u|2 + |e(t)| |u| < 0, (4.3)
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when |u| ≥ R for some sufficiently large R.
Conclusion. For problem (1.4) with the conditions of Corollary 1.1 on f and the existence of some
R > 0 such that

⟨u | f(t, u)⟩ ≤ 0 ∀ (t, u) ∈ [0, 1]× ∂BR,

there is no existence theorem similar to Corollary 1.1.

In the case of the three-point conditions of initial type, we similarly apply Proposition 3.1 to the
case of the eigenvalue λic,2,0 = log 4 + 2πi of (2.3). Let e : [0, 1] → C be a continuous function such
that the problem

z′(t) = (log 4 + 2πi)z(t) + e(t), z(1) =
1

2
z(0) +

1

2
z
(1
2

)
(4.4)

has no solution. Setting z(t) = x1(t) + ix2(t), e(t) = e1(t) + ie2(t), problem (4.4) is equivalent to the
planar real system 

x′
1(t) = (log 4)x1(t)− 2πx2(t) + e1(t),

x′
2(t) = 2πx1(t) + (log 4)x2(t) + e2(t),

x1(0) =
1

2
x1

(1
2

)
+

1

2
x1(1),

x2(0) =
1

2
x2

(1
2

)
+

1

2
x2(1).

(4.5)

Let
f(t, u) :=

(
(log 4)u1 − 2πu2 + e1(t), 2πu1 + (log 4)u2 + e2(t)

)
.

For (4.5), we have

⟨u | f(t, u)⟩ = u1[(log 4)u1 − 2πu2 + e1(t)] + u2

[
2πu1 + (log 4)u2 + e2(t)

]
= (log 4)(u2

1 + u2
2) + u1e1(t) + u2e2(t)

≥ (log 4)|u|2 − |e(t)| |u| > 0,

when |u| ≥ R for some sufficiently large R.
Conclusion. For problem (1.5) with the conditions of Corollary 1.2 on f and the existence of some
R > 0 such that

⟨u | f(t, u)⟩ ≥ 0 ∀ (t, u) ∈ [0, 1]× ∂BR,

there is no existence theorem similar to Corollary 1.2.

Remark 4.1. The symmetry-breaking for the spectra of the three-point boundary value problems of
terminal or initial type explains the difference in the existence conditions for the nonlinear problems
with the three-point boundary conditions and with the periodic conditions. The presence of the
complex spectrum in the left or the right half-plane influences like a ghost the existence of solutions
of the real nonlinear systems. Maybe extra conditions upon f could provide existence results with the
sign conditions of the counterexamples.

Remark 4.2. Strictly speaking, our counterexamples do not cover the case of n = 1 or of n odd. For
n = 3, if one adds the equations

x′
3 = −(log 4)x3 +

log 4
4

(x1 + x2), x3(1) =
1

2

[
x3(0) + x3

(1
2

)]
or

x′
3 = (log 4)x3 +

log 4
4

(x1 + x2), x3(0) =
1

2

[
x3

(1
2

)
+ x3(1)

]
to (4.2) or to (4.5), respectively, the corresponding boundary value problems have no solutions and
the nonlinear parts verify the opposite sign conditions to Corollaries 1.1 and 1.2, respectively. Of
course, the counterexamples for n = 2 and n = 3 easily provide counterexamples in any dimension
n ≥ 2. The case n = 1 remains open.
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Remark 4.3. The periodic problem

z′ = 2πiz + e2πit, z(0) = z(1) (4.6)

has no solution. Indeed, if z is a possible solution, then

(e−2πitz)′ = 1,

which gives a contradiction, by integration over [0, 1] and use of the boundary conditions.
Letting z = x1 + ix2, the following problem

x′
1 = −2πx2 + cos(2πt), x′

2 = 2πx1 + sin(2πt), x1(0) = x1(1), x2(0) = x2(1),

equivalent to (4.6), has no solution. On the other hand, letting

f1(t, x1, x2) = −2πx2 + cos(2πt), f2(t, x1, x2) = 2πx1 + sin(2πt),
x = (x1, x2), f(t, x) =

(
f1(t, x1, x2), f2(t, x1, x2)

)
,

we have

⟨x, f(t, x)⟩ = −2πx2x1 + cos(2πt)x1 + 2πx1x2 + sin(2πt)x2

= cos(2πt)x1 + sin(2πt)x2.

For x = R[cos(2πθ), sin(2πθ)] ∈ ∂BR (θ ∈ [0, 1]), we have

⟨x, f(t, x)⟩ = R
[

cos(2πt) cos(2πθ) + sin(2πt) sin(2πθ)
]

= R cos[2π(t− θ)] (t, θ ∈ [0, 1]),

which implies that, for each t ∈ [0, 1], ⟨x, f(t, x)⟩ takes both positive and negative values on ∂BR, and
shows that, for n even, the assumptions of the existence theorems for periodic problems given at the
beginning of the Introduction are sharp.

5 Second order differential systems
As in Section 2, we start with the following “eigenvalue problem”

z′′(t) = λz′(t), z(0) = 0, z′(1) =
1

2
z′(0) +

1

2
z′
(1
2

)
, (5.1)

where λ ∈ C, x : [0, 1] → C. Notice that it is not the classical eigenvalue associated to z′′ in which
λz′ must be replaced by λz.

Proposition 5.1. All the “eigenvalues” λbc,j,k (j = 1, 2; k ∈ Z) of the multipoint boundary value
problem (5.1) have real part equal to 0 or − log 4, and hence are located in the left part of the complex
plane.

Proof. Setting w(t) = z′(t), so that, using z(0) = 0, z(t) =
t∫
0

w(s) ds, problem (5.1) is equivalent to

the eigenvalue problem
w′(t) = λw(t), w(1) =

1

2
w(0) +

1

2
w
(1
2

)
,

i.e., to the eigenvalue problem (2.3). Hence the result follows from Proposition 2.1.

We now deduce, from the first order case, the Fredholm alternative.

Proposition 5.2. λ is an “eigenvalue” of (5.1) if and only if there exists a continuous function e
such that the nonhomogeneous problem (5.2) has no solution.
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Proof. In a similar way as in Proposition 5.1, the non-homogeneous problem

z′′ − λz′ = e(t), z(0) = 0, z′(1) =
1

2
z′(0) +

1

2
z′
(1
2

)
(5.2)

is equivalent, with w = z′, to the non-homogeneous problem

w′ − λw = e(t), w(1) =
1

2

[
w(0) + w

(1
2

)]
,

and then the conclusion follows from Proposition 3.1.

To construct the counterexample, we apply Proposition 5.2 to the case of the “eigenvalue” λbc,2,0 =
− log 4 + 2πi of (5.1). Let e : [0, 1] → C be a continuous function such that the problem

z′′(t) = (− log 4 + 2πi)z′(t) + e(t), z(0) = 0, z′(1) =
1

2
z′(0) +

1

2
z′
(1
2

)
(5.3)

has no solution. Setting z(t) = x1(t) + ix2(t), e(t) = e1(t) + ie2(t), problem (5.3) is equivalent to the
planar real system 

x′′
1(t) = −(log 4)x′

1(t)− 2πx′
2(t) + e1(t),

x′′
2(t) = 2πx′

1(t)− (log 4)x′
2(t) + e2(t),

x1(0) = 0, x′
1(1) =

1

2
x′
1(0) +

1

2
x′
1

(1
2

)
,

x2(0) = 0, x′
2(1) =

1

2
x′
2(0) +

1

2
x′
2

(1
2

)
.

Let
g(t, v) :=

(
− (log 4)v1(t)− 2πv2(t) + e1(t), 2πv1(t)− (log 4)v2(t) + e2(t)

)
.

By (4.3), we obtain ⟨v, g(t, v)⟩ < 0, when |v| ≥ R for some sufficiently large R.
Conclusion. For problem (1.10) with the conditions of Corollary 1.3 on g and the existence of some
R > 0 such that

⟨v, g(t, u, v)⟩ ≤ 0 ∀ (t, u, v) ∈ [0, 1]×BR × ∂BR,

there is no existence theorem similar to Corollary 1.3.

Similar conclusions hold for problem (1.12).
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