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Abstract. In the paper, we prove the existence of a global attractor for an impulsive dynamical
system, which is generated by a weakly nonlinear parabolic system, when its trajectories have jumps
at moments of intersection with certain surface of the phase space.
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ÒÄÆÉÖÌÄ. ÍÀÛÒÏÌÛÉ ÃÀÌÔÊÉÝÄÁÖËÉÀ ÉÌÐÖËÓÖÒÉ ÃÉÍÀÌÉÊÖÒÉ ÓÉÓÔÄÌÉÓ ÂËÏÁÀËÖÒÉ ÀÔÒÀØÔÏ-
ÒÉÓ ÀÒÓÄÁÏÁÀ, ÒÏÌÄËÉÝ ßÀÒÌÏØÌÍÉËÉÀ ÓÖÓÔÀÃ ÀÒÀßÒ×ÉÅÉ ÐÀÒÀÁÏËÖÒÉ ÓÉÓÔÄÌÉÈ, ÒÏÃÄÓÀÝ
ÌÉÓ ÔÒÀÄØÔÏÒÉÄÁÓ ÂÀÀÜÍÉÀÈ ÍÀáÔÏÌÄÁÉ ×ÀÆÖÒÉ ÓÉÅÒÝÉÓ ÂÀÒÊÅÄÖË ÆÄÃÀÐÉÒÈÀÍ ÂÀÃÀÊÅÄÈÉÓ
ÌÏÌÄÍÔÄÁÛÉ.
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1 Introduction
One of the possible ways to describe the qualitative behaviour of evolutionary processes with instant
impulsive perturbations is the theory of impulsive differential equations [14, 20, 21]. Autonomous
equations, which trajectories have impulsive perturbations at moments of intersection with certain
subset of the phase space, form an important subclass of impulsive differential equations and called
impulsive (or discontinuous) dynamical systems (DS). Some aspects of the long-time behavior of
such finite-dimensional systems have been studied in [1, 6, 13, 14, 17, 19–21]. For infinite-dimensional
dissipative systems one of the important qualitative characteristics of their behavior is the concept of
a global attractor [23]. In [8,11,18,22,24], the theory of global attractors has been investigated in the
case, where the moments of impulsive perturbations are fixed.

First results of applying this theory to impulsive DS with a finite number of discontinuities along
the trajectories arose in [4]. In further works [2, 3], using a priori estimates on the behavior of
the trajectories in the neighborhood of impulsive set, the authors managed to transfer the basic
constructions of the classical DS theory to an impulsive case and obtain abstract theorems on the
existence and properties of the global attractor. However, the question of verifying the imposed
conditions on the impulsive DS for special infinite-dimensional nonlinear evolution problems remains
open. In [12], the authors offered another approach, based on the concept of a uniform attractor and
applied it to scalar impulsive parabolic equations with a small nonlinearity. In [7], this approach was
generalized to the multi-valued impulsive DS, generated by the solutions of evolution inclusions.

In this paper, using the methods of [12], we investigate the existence of a global attractor of
impulsive DS generated by the two-dimensional parabolic system with a small nonlinearity, which
solutions have impulsive perturbation at moments of intersection with a certain subset of the phase
space. Moreover, the conditions on the parameters of the problem do not guarantee the uniqueness
of the solution of the Cauchy problem, which requires to use the theory of global attractors of multi-
valued DS [10,15,16].

2 Formulation of the problem
Let Ω ⊂ Rn, n ≥ 1, be a bounded domain. For the unknown functions u(t, x), v(t, x) in (0,+∞)×Ω,
we consider the following problem:

∂u

∂t
= a∆u+ εf1(u, v),

∂v

∂t
= a∆v + 2b∆u+ εf2(u, v),

u
∣∣
∂Ω

= v
∣∣
∂Ω

= 0,

(2.1)

where ε > 0 is a small parameter,
a > 0, |b| < a, (2.2)

continuous linear functions fi : R2 7−→ R, i = 1, 2, satisfy the following condition:

∃C > 0 ∀u, v ∈ R |f1(u, v)|+ |f2(u, v)| ≤ C. (2.3)

The space H = L2(Ω) × L2(Ω) with the norm ∥z∥H =
√

∥u∥2 + ∥v∥2 is the phase space of problem
(2.1). Here and in the sequel, ∥ · ∥ and ( · , · ) are the norm and the scalar product in L2(Ω), respectively,
{λi}∞i=1 ⊂ (0,+∞), {ψi}∞i=1 ⊂ H1

0 (Ω) are solutions of the spectral problem ∆ψ = −λψ, ψ ∈ H1
0 (Ω).

Under conditions (2.2), (2.3), for every ε > 0, z0 ∈ H, there exists at least one solution z =
(
u
v

)
∈

C([0,+∞);H) of problem (2.1), where z(0) = z0 [5].
For the fixed α > 0, β > 0, γ > 0, µ > 0, we consider the following impulsive problem:
When the phase point z(t) meets the impulsive set

M =
{
z =

(
u
v

)
∈ H | |(u, ψ1)| ≤ γ, α(u, ψ1) + β(v, ψ1) = 1

}
, (2.4)
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then the impulsive map I :M 7−→M ′ maps it into a new position Iz ∈M ′, where

M ′ =

{
z =

(
u
v

)
∈ H | |(u, ψ1)| ≤ γ, α(u, ψ1) + β(v, ψ1) = 1 + µ

}
. (2.5)

We choose the set M due to the results from [12], where for a scalar parabolic equation, the
impulsive set M = {u ∈ L2(Ω) | (u, ψ1) = 1}.

The main purpose of this work is to establish the existence and investigate the properties of the
global attractor of impulsive DS, generated by the solution of problem (2.1)–(2.5), for some class of
compact-valued impulsive maps I, which have the following form:

for z =

∞∑
i=1

(
ci
di

)
ψi ∈M

Iz ⊆ I0z =

{(
c′1
d′1

)
ψ1 +

∞∑
i=2

(
ci
di

)
ψi | |c′1| ≤ γ, αc′1 + βd′1 = 1 + µ

}
. (2.6)

In a particular case, the single-valued map I :M 7−→M ′

I

( ∞∑
i=1

(
ci
di

)
ψi

)
=

(
c1

d1 +
µ

β

)
ψ1 +

∞∑
i=2

(
ci
di

)
ψi,

and the compact-valued map I ≡ I0 are the partial cases of formula (2.6).
The main result of the work is to prove the fact that for an arbitrary compact-valued map I, which

satisfies (2.6), and for a sufficiently small ε > 0, in the phase space H the impulsive problem (2.1),
(2.4), (2.6) generates impulsive (multi-valued) DS G̃ε, which has the global attractor Θε and

dist(Θε,Θ) −→ 0, ε→ 0, (2.7)

where

Θ =
∪

t∈[0,τ ], |c1|≤γ

{(
c1

1+µ−αc1
β − 2bc1t

)
e−aλ1tψ1 | (1 + µ− 2bβc1τ)e

−aλ1τ = 1

}
∪
(
0
0

)
.

3 Construction of impulsive MDS
Let P (H) (β(H)) be a set of all non-empty (non-empty bounded) subsets of H.

Definition 3.1 ( [15]). A multi-valued map G : R+ ×H → P (H) is called a multi-valued dynamical
system (MDS), if the following conditions are satisfied:

∀x ∈ H G(0, x) = x and ∀ t, s ≥ 0 G(t+ s, x) ⊆ G(t, G(s, x)).

MDS G is called strict if ∀x ∈ H ∀ t, s ≥ 0 G(t+ s, x) = G(t, G(s, x)).

Remark 3.1. If G is a single-valued map, then we obtain the definition of a semigroup. However,
we do not impose any continuity conditions on it, which is important when we consider impulsive
systems.

Definition 3.2 ([18]). A subset Θ ⊂ H is called a global attractor of MDS G, if

(1) Θ is a compact set;

(2) Θ is a uniformly attracting set, i.e.,

∀B ∈ β(H) dist(G(t, B),Θ) −→ 0, t→ ∞;
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(3) Θ is minimal among all closed uniformly attracting sets.

The next result follows from [18] and provides a criterion of the existence of a global attractor for
dissipative MDS.

Lemma 3.1. Assume that MDS G satisfies the dissipativity condition

∃B0 ∈ β(H) ∀B ∈ β(H) ∃T = T (B) > 0 ∀ t ≥ T G(t, B) ⊂ B0.

Then the following conditions are equivalent:

(1) MDS G has global attractor Θ;

(2) MDS G is asymtotically compact, i.e., ∀ tn ↗ ∞ ∀B ∈ β(H)

∀ ξn ∈ G(tn, B) the sequence {ξn} is precompact in H.

Moreover,
Θ = ω(B0) :=

∩
τ>0

∪
t≥τ

G(t, B0).

Now let us consider a special subclass of MDS called impulsive MDS. Impulsive MDS G̃ consists
of non-empty closed set M ⊂ H (impulsive set), compact-valued map I :M → P (H) (impulsive map)
and some set K of continuous maps φ : [0,+∞) → H, which satisfy the following assumptions:

(K1) ∀x ∈ H ∃φ ∈ K: φ(0) = x;

(K2) ∀φ ∈ K ∀ s ≥ 0 φ( · + s) ∈ K.

We denote Kx = {φ ∈ K | φ(0) = x}.

Remark 3.2. If in assumption (K1), for every x ∈ H, there exists a unique φ ∈ K such that φ(0) = x,
then Kx consists of a single trajectory φ, and the equality V (t, x) = φ(t) defines a classical semigroup
V : R+ ×H 7−→ H.

A phase point of impulsive MDS moves along the trajectories of K, and at the moment of meeting
the set M , it immediately jumps onto a new position from the set IM . For the “well-posedness” of
the impulsive problem we assume the following conditions [4]:

M ∩ IM = ∅, (3.1)
∀x ∈M ∀φ ∈ Kx ∃ τ = τ(φ) > 0 ∀ t ∈ (0, τ) φ(t) ̸∈M. (3.2)

We denote
∀φ ∈ K M+(φ) =

( ∪
t>0

φ(t)
)
∩M.

If M+(x) ̸= ∅, then there exists a moment of time s := s(φ) > 0 such that ∀ t ∈ (0, s) φ(t) ̸∈ M ,
φ(s) ∈M . Therefore, we can define the following function s : K → (0,+∞]:

s(φ) =

{
s if M+(φ) ̸= ∅,
+∞ if M+(φ) = ∅.

Let us construct impulsive trajectory φ̃, which starts from the point x0 ∈ H. Let φ0 ∈ Kx0 .
If M+(φ0) = ∅, then define φ̃ on [0,+∞) as

φ̃(t) = φ0(t) ∀ t ≥ 0.

If M+(φ0) ̸= ∅, then for s0 = s(φ0) > 0, x1 = φ0(s0) ∈M and x+1 ∈ Ix1 define φ̃ on [0, s0] as

φ̃(t) =

{
φ0(t), t ∈ [0, s0),

x+1 , t = s0.
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Let φ1 ∈ Kx+
1

. If M+(φ1) = ∅, then define φ̃ on [0,+∞) as

φ̃(t) = φ1(t− s0) ∀ t ≥ s0.

If M+(φ1) ̸= ∅, then for s1 = s(φ1) > 0, x2 = φ1(s1) ∈M and x+2 ∈ Ix2, we define φ̃ on [s0, s0+s1] as

φ̃(t) =

{
φ1(t− s0), t ∈ [s0, s0 + s1),

x+2 , t = s0 + s1.

Continuing this procedure, we obtain the impulsive trajectory φ̃ with a finite or infinite number of
impulsive points {x+n }n≥1 ⊂ IM , corresponding moments of time {sn}n≥0 ⊂ (0,∞) and the functions
{φn}n≥0 ⊂ K.

Let

t0 = 0, tn+1 :=

n∑
k=0

sk.

If φ̃ has an infinite number of jumps, then it is defined by the formula

∀n ≥ 0 ∀ t ≥ 0 φ̃(t) =

{
φn(t− tn), t ∈ [tn, tn+1),

x+n+1, t = tn+1.
(3.3)

By K̃x we denote the set of all impulsive trajectories, which start from the point x.
Let us assume that

∀x ∈ H every φ̃ ∈ K̃x is defined on [0,+∞). (3.4)

Remark 3.3. Due to the construction, every impulsive trajectory is right continuous. Moreover,
from (3.1) and (3.3) we obtain: ∀x ∈ H ∀ φ̃ ∈ K̃x, ∀ t > 0 φ̃(t) ̸∈M .

Lemma 3.2 ( [7]). Assume that the conditions (K1), (K2), (3.1), (3.2), (3.4) are satisfied. Then the
formula G̃(t, x) = {φ̃(t) | φ̃ ∈ K̃x} defines MDS G̃ : R+ ×H → P (H), which we call impulsive MDS.

4 Existence of global attractor of impulsive MDS,
generated by problem (2.1), (2.4), (2.6)

Problem (2.1) generates a family of continuous maps:

Kε =
{
z : [0,+∞) → H | z is a solution of (2.1)

}
,

which due to the autonomy of the problem (2.1) satisfies the conditions (K1), (K2).

Lemma 4.1. Under conditions (2.2), (2.3) and the inequality

2βγ ≤ 1 (4.1)

for a sufficiently small ε, problem (2.1), (2.4), (2.6) generates impulsive MDS, and every impulsive
trajectory, which starts from the set M ′, has an infinite number of impulsive perturbations.

Remark 4.1. Here and in the sequel, under the expression for a sufficiently small ε we mean that
some property holds for all ε ∈ (0, ε0), where ε0 depends only of the parameters of problem (2.1).

Proof of Lemma 4.1. Let us verify conditions (3.1), (3.2) and (3.4). Condition (3.1) follows from the
definition of the sets M and M ′. Due to conditions (2.2), (2.3) and Poincaré inequality, there exists
δ > 0 such that for every solution z of the problem (2.1) and for almost all t > 0 we get the inequality

1

2

d

dt
∥z(t)∥2H + δ∥z(t)∥2H ≤ ε

√
2C∥z(t)∥H . (4.2)
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Then, for a sufficiently small ε, we obtain

∀ z ∈ Kε ∀ t ≥ 0 ∥z(t)∥2H ≤ ∥z(0)∥2He−δt + 1. (4.3)

Moreover, for every z =
(
u
v

)
∈ Kε and for every i ≥ 1 we get the following equalities:

(u(t), ψi) = (u(0), ψi)e
−aλit + ε

t∫
0

e−aλi(t−s)(f1(u(s), v(s)), ψi) ds, (4.4)

(v(t), ψi) =
(
(v(0), ψi)− 2bλi(u(0), ψi)t

)
e−aλit + ε

t∫
0

e−aλi(t−s)(f2(u(s), v(s)), ψi) ds

− ε2bλi

t∫
0

(t− s)e−aλi(t−s)(f1(u(s), v(s)), ψi) ds. (4.5)

Further, for the sake of simplicity, we denote ψ := ψ1, λ := λ1 and for z ∈ Kε consider the function

gε(t) = α(u(t), ψ) + β(v(t), ψ).

From (4.4), (4.5), for z(0) ∈M , we deduce

gε(t) = e−aλt(1− 2βbλt(u(0), ψ)) + εFε(t),

where the function Fε ∈ C1([0,∞)), Fε(0) = 0, depends on z ∈ Kε, however

∃C1 > 0 ∀ ε ∈ (0, 1) sup
t≥0

(
|Fε(t)|+ |F ′

ε(t)|
)
≤ C1. (4.6)

From (2.2) and (2.3) we get

g′ε(0) = −aλ− 2βbλ(u(0), ψ) + εF ′
ε(0).

Since |(u(0), ψ)| ≤ γ, from (4.1) and (4.6) for a sufficiently small ε there exists τ = τ(z(0), ε) > 0 such
that ∀ t ∈ (0, τ) gε(t) < 1. Thus we get property (3.2).

Let us prove (3.4). Due to estimation (4.3), condition (3.4) is satisfied if z do not intersect the set
M . Thus, let us take arbitrarily z ∈ Kε from z(0) = z0 ∈ M ′ and consider the function gε(t), which
has the form

gε(t) = e−aλt(1 + µ− 2βbλt(u0, ψ)) + εFε(t).

Since gε(0) = 1 + µ, lim sup
t→∞

gε(t) ≤ εC1, for a sufficient small ε > 0, there exists sε > 0 such that

∀ t ∈ (0, sε) gε(t) > 1, gε(sε) = 1. (4.7)

Let us show that for a sufficiently small ε > 0 the inequality

|(u(sε), ψ)| ≤ γ (4.8)

is fulfilled, i.e., z(sε) ∈M . Indeed, for a sufficiently small ε, from (4.7) we have the next inequality(
1 +

µ

2

)
eaλsε ≥ 1 + µ− 2βbλsε(u0, ψ). (4.9)

As |(u0, ψ)| ≤ γ, from (4.9) we obtain
sε ≥ s̃, (4.10)

where s̃ > 0 does not depend on ε, z0 and is the root of the equation(
1 +

µ

2

)
eaλs̃ = 1 + µ− 2β|b|λs̃γ.
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Then from (4.4) we deduce the estimation

|(u(sε), ψ)| ≤ γe−aλs̃ + εC1,

from which for a sufficiently small ε > 0 we obtain (4.8). Thus, every impulsive trajectory, which
starts from the set M ′, has an infinite number of impulsive points and, due to estimation (4.10), we
have (3.4).

Therefore, for a sufficiently small ε, the impulsive multi-valued dynamical system G̃ε : R+ ×H →
P (H),

∀ t ≥ 0 ∀ z0 ∈ H G̃ε(t, z0) =
{
z(t) | z( · ) ∈ K̃ε

z0

}
, (4.11)

is correctly defined, where K̃ε
z0 is the set of all impulsive trajectories of problem (2.1), (2.4), (2.6),

which start from the point z0.
The main result of this paper is the following

Theorem. For a sufficiently small ε > 0, under conditions (2.2), (2.3), (4.1), the impulsive MDS
(4.11) has a global attractor Θε. Moreover, the limit equality (2.7) is fulfilled.

Proof. Let us verify the dissipativity property. If for ∥z0∥ ≤ R the impulsive trajectory z ∈ K̃ε
z0 does

not have impulsive points, then from (4.3) it follows that

∥z(t)∥ ≤
√
2 ∀ t ≥ T =

1

δ
lnR2.

Otherwise, for a sufficiently small ε, using the function gε, for the moment sε = s(z) > 0, we
obtain the inequality

e−aλsε
(
α(u0, ψ) + β(v0, ψ)− 2βbλsε(u0, ψ)

)
≥ 1

2
,

thus, we deduce sε ≤ s(R), where s(R) > 0 is a solution of the equation

1

2
eaλsε =

√
α2 + β2R+ 2β|b|λsεR.

After this, the phase point jumps into the point z+1 = z(sε) ∈ I(z(sε − 0)). Due to the form of the
impulsive map (2.6), we deduce the estimation

∀ z ∈ H ∀ z+ ∈ I(z) ∥z+∥2H ≤ κ2 + ∥z∥2H , (4.12)

where κ2 := γ2 + ( 1+µ+αγ
β )2. In particular,

∥z(sε)∥2H ≤ κ2 +R2 + 1.

Therefore, it suffices to prove the dissipativity condition only for those impulsive trajectories, which
start from the set IM , i.e., for a sufficiently small ε, it suffices to prove that

∃R0 > 0 ∀R > 0 ∃T = T (R) > 0 ∀ z0 ∈ IM, ∥z0∥H ≤ R,

∀ z ∈ K̃ε
z0 ∀ t ≥ T ∥z(t)∥H ≤ R0. (4.13)

But if {siε}∞i=0 are the moments of the impulsive perturbation for z ∈ K̃ε
z0 , then from (4.3), (4.12) and

inequality (4.10) we find that for k ≥ 0,

∥∥∥z( k∑
i=0

siε

)∥∥∥2
H

≤ e−δ(k+1)sR2 +
κ2

1− e−δs
. (4.14)

Thus, from the last inequality and formula (4.3) follows (4.13), where R0 = 2 + κ2

1−e−δs .
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Let us prove that G̃ε is asymptotically compact. Towards this end, we fix an arbitrary solution
z =

(
u
v

)
of problem (2.1). Considering every equation in (2.1) as a linear equation with right-hand

side h1(t) = εf1(u(t), v(t)), h2(t) = 2b∆u(t)+εf2(u(t), v(t)), from the regularity lemma [23] we deduce
that there exists a constant C2 > 0, which depends only on the parameters of problem (2.1) and does
not depend on ε, such that for almost all t > 0,

d

dt
∥u(t)∥2H1

0
+ a∥∆u(t)∥2 ≤ C2, (4.15)

d

dt
∥u(t)∥2 + a∥u(t)∥2H1

0
≤ C2, (4.16)

d

dt
∥v(t)∥2H1

0
+ a∥∆v(t)∥2 ≤ 4b2

a
∥∆u(t)∥2 + C2, (4.17)

d

dt
∥v(t)∥2 + a∥v(t)∥2H1

0
≤ 4b2

a
∥u(t)∥2H1

0
+ C2. (4.18)

From (4.15), (4.16) and the Uniform Gronwall Lemma [23] we obtain

∀ t > 0 ∥u(t)∥2H1
0
≤ C2t+

∥u(0)∥2

at
+

2C2

a
. (4.19)

Then from (4.17)–(4.19) and the Uniform Gronwall Lemma we have

∀ t > 0 ∀ r ∈ (0, t) ∥v(t)∥2H1
0
≤
(4b2
a2

+1
)(∥u(0)∥2 + ∥v(0)∥2

ar
+
2C2

a

)
+
C2r + ∥u(t− r)∥2

H1
0

a
. (4.20)

Assume that r = t
2 and from (4.19), (4.20) we get the following estimation:

∀ t > 0 ∥v(t)∥2H1
0
≤
(4b2
a2

+ 1
)(2(∥u(0)∥2 + ∥v(0)∥2)

at
+

2C2

a

)
+
C2t

2a

(
1 +

1

2a

)
+

2∥u(0)∥2

ta2
+

2C2

a2
. (4.21)

Now, let z(n)0 =
∞∑
i=1

(
c
(n)
i

d
(n)
i

)
· ψi, ∥z(n)0 ∥H ≤ R, be an arbitrary bounded sequence of initial data,

ξn ∈ G̃ε(tn, z
(n)
0 ), tn ↗ +∞. Then ξn = zn(tn), where zn ∈ K̃ε

z
(n)
0

. If zn does not have impulsive
points, then for the function yn(t) = zn(t+ tn − 1), t ≥ 0 we obtain

yn ∈ K̃ε
zn(tn−1), ξn = zn(tn) = yn(1).

From (4.3) we find that ∥zn(tn − 1)∥ ≤
√
2 ∀n ≥ N(R). Therefore, from estimates (4.19), (4.21), the

sequence {yn(1) = ξn} is bounded in H1
0 (Ω)×H1

0 (Ω) and, hence, is precompact in H.
Otherwise, without loss of generality, from the previous arguments we can assume that z(n)0 ∈ IM ,

∥z(n)0 ∥H ≤ R. Let {T (n)
i+1 =

i∑
k=0

s
(n)
k }∞i=0 be the moments of impulsive perturbation for zn( · ) =(

un( · )
vn( · )

)
, {η(n)+i = zn(T

(n)
i )}∞i=1 ⊂ IM be the corresponding impulsive points. Let us prove the

precompactness of the sequence {η(n)+i }. From the dissipativity condition (4.13), the estimation

s ≤ s
(n)
k ≤ ŝ, (4.22)

and the estimates (4.19), (4.21), we get the existence of the constant C(R), independent of ε, such
that

∀ i ≥ 1 ∀n ≥ 1
∥∥un(T (n)

i − 0)
∥∥2
H1

0
+
∥∥vn(T (n)

i − 0)
∥∥2
H1

0
≤ C(R). (4.23)
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Then from (2.6) and (4.23) for all i ≥ 1, n ≥ 1 we deduce the estimation∥∥un(T (n)
i )

∥∥2
H1

0
+
∥∥vn(T (n)

i )
∥∥2
H1

0
≤ C(R) + 2λγ2. (4.24)

Therefore, due to (4.24) and the compactness of the embedding H1
0 (Ω) ⊂ L2(Ω), there follows the

required precompactness of the set {η(n)+i | i ≥ 1, n ≥ 1} in H. Then for the sequence ξn ∈
G̃ε(tn, z

(n)
0 ), for every n ≥ 1, there exists a number i = i(n), i(n) → ∞, n → ∞, such that tn ∈

[T
(n)
i(n), T

(n)
i(n)+1). Thus, from the inclusion

ξn = zn(tn) ∈ G̃ε

(
tn − T

(n)
i(n), η

(n)+
i(n)

)
(4.25)

it follows that ξn = yn(τn), where τn := tn − T
(n)
i(n), yn ∈ Kε is a sequence of solutions of the

(non-perturbed) problem (2.1), where yn(0) = η
(n)+
i(n) . Since from the previous arguments on some

subsequence we have η(n)+i(n) → η in H, and from the inclusion τn ∈ [0, ŝ] on some subsequence we have
τn → τ ∈ [0, ŝ], from the regularity results [9] of the solutions of the problem (2.1) we deduce the
following result:

yn(τn) −→ y(τ) in H, where y ∈ Kε, y(0) = η. (4.26)
Thus, the sequence {ξn} is precompact in H, and from Lemma 3.1 we deduce the existence of the

global attractor
Θε =

∩
s>0

∪
t≥s

G̃ε(t, B0), (4.27)

where the dissipative set B0 is defined from (4.14) and does not depend on ε.
Let us prove convergence (2.7). It suffices to show that for εk → 0, ξ(k) ∈ Θεk , on the subsequence

ξ(k) −→ ξ ∈ Θ in H, k → ∞.

From (4.27), there exist the sequences {tk ↗ ∞}, {z0k} ⊂ B0, zk ∈ K̃εk
z0
k
, such that ∀ k ≥ 1 ∥ξ(k) −

zk(tk)∥ ≤ 1/k. If zk do not have impulsive perturbations, then using (4.2) we obtain the estimation

∀ t ≥ 0 ∥zk(t)∥2H ≤ ∥z0k∥2He−δt +
2ε2kC

2

δ2
,

from which it follows that ξ(k) → 0 in H.
Otherwise, if zk have impulsive perturbations, then under conditions (4.25) for ξk = zk(tk), we

obtain the equality
ξk = yk(τk), yk ∈ Kεk

η+
k

,

whence, using the notation from the previous part of the proving, it follows that

τk := tk − T
(k)
i(k) −→ τ, η+k := η

(k)+
i(k) −→ η, i(k) → ∞, k → ∞.

Since τk ∈ [0, s
(k)
i(k)] and the point sk := s

(k)
i(k) satisfies inequality (4.22) and is a solution of the

equation
e−aλsk(1 + µ− 2βbλsk(u

k
0 , ψ)) + εkFεk(sk) = 1,

where uk0 , vk0 are the components of the vector η+k ∈ IM , for k → ∞ we obtain that on the subsequence
sk → s, where τ ∈ [0, s] and s is a solution of the equation

e−aλs(1 + µ− 2βbλs(u0, ψ)) = 1, (4.28)
|(u0, ψ1)| ≤ γ, α(u0, ψ1) + β(v0, ψ1) = 1 + µ. (4.29)

From (4.4), (4.5) we deduce that ∀ i ≥ 1

(uk(τk), ψi) = (uk0 , ψi)e
−aλiτk + εk

τk∫
0

e−aλi(τk−s)(f1(uk(s), vk(s)), ψi) ds,
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(vk(τk), ψi) =
(
(vk0 , ψi)− 2bλi(u

k
0 , ψi)τk

)
e−aλiτk + εk

τk∫
0

e−aλi(τk−s)(f2(uk(s), vk(s)), ψi) ds

− εk2bλi

τk∫
0

(τk − s)e−aλi(τk−s)(f1(uk(s), vk(s)), ψi) ds.

Analogously to (4.26), we can assume that

ξk =

(
uk(τk)
vk(τk)

)
−→ ξ = y(τ) =

(
u(τ)
v(τ)

)
in H, where y ∈ Kε, y(0) = η.

Then, as k → ∞, we obtain

(u(τ), ψ1) = (u0, ψ1)e
−aλiτ , (4.30)

(v(τ), ψ1) =
(
(v0, ψ1)− 2bλ1(u0, ψ1)τ

)
e−aλ1τ , (4.31)

where τ ∈ [0, s], s is a unique root of equation (4.28) under fixed u0, v0 from (4.29).
Taking into account a “non-impulsive” character of the coordinates j ≥ 2 along each impulsive

trajectory, from (2.2) we get

∀ j ≥ 2 |(uk0 , ψj)|+ |(vk0 , ψj)| −→ 0, k → ∞. (4.32)

Then from (4.30)–(4.32) we obtain that ξ ∈ Θ and (2.7) takes place.

Remark 4.2. As is shown in [12], for the impulsive DS the global attractor Θ is, generally speaking,
not invariant set of the semiflow G̃. However, the set Θ \ M [4] may have such a property. The
invariance property can be obtained from the explicit formula of Θ, when ε = 0. It turns out that if,
additionally, the map I is upper-semicontinuous, this fact is valid for a sufficiently small ε > 0, i.e.,
the equality

∀ t ≥ 0 G̃ε(t,Θε \M) = Θε \M

is satisfied. It will be done in the forthcoming papers.
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