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Abstract. We consider boundary value problems for all equations from a family of linear functional
differential equations. The necessary and sufficient conditions for the unique solvability and existence
of non-negative (non-positive) solutions are obtained.∗
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ÒÄÆÉÖÌÄ. ßÒ×ÉÅÉ ×ÖÍØÝÉÏÍÀËÖÒ-ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏËÄÁÄÁÉÓÈÅÉÓ ÂÀÍáÉËÖËÉÀ ÓÀ-
ÓÀÆÙÅÒÏ ÀÌÏÝÀÍÄÁÉ. ÃÀÃÂÄÍÉËÉÀ ÀÌÏÝÀÍÄÁÉÓ ÝÀËÓÀáÀ ÀÌÏáÓÍÀÃÏÁÉÓ ÃÀ ÀÒÀÖÀÒÚÏ×ÉÈÉ
(ÀÒÀÃÀÃÄÁÉÈÉ) ÀÌÏÍÀáÓÍÉÓ ÀÒÓÄÁÏÁÉÓ ÀÖÝÉËÄÁÄËÉ ÃÀ ÓÀÊÌÀÒÉÓÉ ÐÉÒÏÁÄÁÉ.
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1 Introduction
In the recent years, the boundary value problems for functional differential equations have been
investigated in many works (for example, [1, 6–12]). We offer new conditions for a unique solvability
of boundary value problems and the existence of solutions with a given sign. It turns out, these
conditions are sharp in some family of equations.

Here we use the following notation: ACn−1[0, 1] is the space of functions x : [0, 1] → R for which
there exist absolutely continuous derivatives of order less than n; C[0, 1] is the space of continuous
functions x : [0; 1] → R with the norm ∥x∥C = max

t∈[0,1]
|x(t)|; L[0, 1] is the space of integrable functions

z : [0; 1] → R with the norm ∥ z∥L =
1∫
0

|z(s)| ds.

We consider general boundary value problems for linear functional differential equations{
x(n)(t) = (Tx)(t) + f(t), t ∈ [0, 1],

ℓix = αi, i = 1, . . . , n,
(1.1)

where T : C[0, 1] → L[0, 1] is a linear bounded operator; f ∈ L[0, 1]; ℓi : ACn−1[0, 1] → R, i =
1, . . . , n, are linear bounded functionals with the representation

ℓix =

n−1∑
j=0

aijx
(j)(0) +

1∫
0

φi(s)x
(n)(s) ds, i = 1, . . . , n,

φi : [0, 1] → R, i = 1, . . . , n, are measurable bounded functions, aij ∈ R, i, j = 1, . . . , n; αi ∈ R,
i = 1, . . . , n. A solution of (1.1) is a function from the space ACn−1[0, 1] which satisfies for almost all
t ∈ [0, 1] the functional differential equation from problem (1.1) and the boundary value conditions
from (1.1).

Such problem (1.1) has the Fredholm property (see, for example, [2]), therefore problem (1.1) is
uniquely solvable if and only if the homogeneous boundary value problem{

x(n)(t) = (Tx)(t), t ∈ [0, 1],

ℓix = 0, i = 1, . . . , n,
(1.2)

has only the trivial solution.
We will use the notation ℓ ≡ {ℓ1, ℓ2, . . . , ℓn}, α ≡ {α1, α2, . . . , αn}.
An operator T : C[0, 1] → L[0, 1] is called positive if for every non-negative function x ∈ C[0, 1]

the inequality (Tx)(t) ≥ 0 holds for a.a. t ∈ [0, 1].
Here we suppose that p+, p− ∈ L[0, 1] are the given non-negative functions.

Definition 1.1. Denote by S(p+, p−) the family of all operators T : C[0, 1] → L[0, 1] such that

T = T+ − T−,

where T+, T− : C[0, 1] → L[0, 1] are linear positive operators satisfying the conditions

T+1 = p+, T−1 = p−.

Definition 1.2. We say that the pair (p+, p−) belongs to the set An,ℓ if problem (1.1) is uniquely
solvable for every operator T ∈ S(p+, p−).

Definition 1.3. We say that the pair (p+, p−) belongs to the set B+
n,ℓ(α, f) if (p+, p−) ∈ An,ℓ and a

unique solution of problem (1.1) is non-negative for every operator T ∈ S(p+, p−).

Definition 1.4. We say that the pair (p+, p−) belongs to the set B−
n,ℓ(α, f) if (p+, p−) ∈ An,ℓ and a

unique solution of problem (1.1) is non-positive for every operator T ∈ S(p+, p−).
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In this paper, we give an effective description of the sets An,ℓ, B+
n,ℓ(α, f), B−

n,ℓ(α, f) under the
following condition. We suppose that the boundary value problem{

x(n)(t) = f(t), t ∈ [0, 1],

ℓix = αi, i = 1, . . . , n,
(1.3)

is uniquely solvable. Then its solution w has a representation

w(t) ≡
n∑

i=1

αixi(t) + (Gf)(t), t ∈ [0, 1],

where the functions x1, x2, . . . , xn form a fundamental system of solutions to the equation x(n) = 0 ;
G : L[0, 1] → ACn−1[0, 1] is the Green operator defined by the equality

(Gf)(t) =

1∫
0

G(t, s)f(s) ds, t ∈ [0, 1];

G(t, s) is the Green function of problem (1.3). Note, that the Green function G(t, s) has a represen-
tation

G(t, s) = C(t, s) +

n∑
i=1

n∑
j=1

cijxi(t)φj(s), t, s ∈ [0, 1],

where

C(t, s) =


(t− s)n−1

(n− 1)!
, 0 ≤ s ≤ t ≤ 1,

0, 0 ≤ t < s ≤ 1,

cij ∈ R, i, j ∈ {1, 2, . . . , n}.

2 The unique solvability for all equations with operators from
the family S(p+, p−)

Denote

p(t) ≡ p+(t)− p−(t), v(t) ≡ 1− (Gp)(t), t ∈ [0, 1],

gt2,t1,v(s) ≡ G(t2, s)v(t1)−G(t1, s)v(t2), s ∈ [0, 1], 0 ≤ t1 ≤ t2 ≤ 1,

[a]+ ≡ |a|+ a

2
, [a]− ≡ |a| − a

2
for any a ∈ R.

Theorem 2.1. The pair (p+, p−) belongs to the set An,ℓ if and only if one of the following conditions
holds:

(1) v(t) > 0 for all t ∈ [0, 1] and

1∫
0

(
p+(s)[gt2,t1,v(s)]

− + p−(s)[gt2,t1,v(s)]
+
)
ds < v(t2) for all 0 ≤ t1 ≤ t2 ≤ 1;

(2) v(t) < 0 for all t ∈ [0, 1] and

1∫
0

(
p+(s)[gt2,t1,v(s)]

+ + p−(s)[gt2,t1,v(s)]
−) ds < −v(t2) for all 0 ≤ t1 ≤ t2 ≤ 1.
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For proving Theorem 2.1, we need the following lemma (see [3, 4]).

Lemma 2.1. Boundary value problem (1.2) has only the trivial solution for every operators T ∈
S(p+, p−) if and only if the boundary value problem{

x(n)(t) = p1(t)x(t1) + p2(t)x(t2), t ∈ [0, 1],

ℓix = 0, i = 1, . . . , n,
(2.1)

has only the trivial solution for every functions p1, p2 and points t1, t2 such that

p1, p2 ∈ L[0, 1], (2.2)
p1 + p2 = p+ − p−, (2.3)

−p−(t) ≤ pi(t) ≤ p+(t), t ∈ [0, 1], i = 1, 2, (2.4)
0 ≤ t1 ≤ t2 ≤ 1. (2.5)

Proof of Theorem 2.1. Boundary value problem (2.1) is equivalent to the equation

x(t) = (Gp1)(t)x(t1) + (Gp2)(t)x(t2), t ∈ [0, 1].

This equation has only the trivial solution if and only if the algebraic system

x(t1) = (Gp1)(t1)x(t1) + (Gp2)(t1)x(t2), x(t2) = (Gp1)(t2)x(t1) + (Gp2)(t2)x(t2)

with respect to x(t1), x(t2) has only the trivial solution, that is, when

∆(t1, t2, p1, p2) ≡

∣∣∣∣∣1− (Gp1)(t1) −(Gp2)(t1)

−(Gp1)(t2) 1− (Gp2)(t2)

∣∣∣∣∣
=

∣∣∣∣∣1− (Gp1)(t1) v(t1)

−(Gp1)(t2) v(t2)

∣∣∣∣∣ = v(t2) +

1∫
0

p1(s)gt2,t1,v(s) ds ̸= 0, (2.6)

We use Lemma 2.1. From the form of the set of admissible function pi (2.4), it follows that
∆(t1, t2, p1, p2) does not equal to zero for every ti, pi, i = 1, 2, if and only if the conditions of Theo-
rem 2.1 are fulfilled. It guarantees the unique solvability of all problems (2.1) under the conditions
(2.2)–(2.5).

3 Examples
Consider the Cauchy problem {

ẋ(t) = (Tx)(t) + f(t), t ∈ [0, 1],

x(0) = α1.

As an immediate result from Theorem 2.1, we have

Corollary 3.1. The pair (p+, p−) belongs to the set A1,{x(0)} if and only if the inequality

1 +

t1∫
0

p−(s) ds

(
1−

t2∫
t1

p−(s) ds

)
−

t2∫
0

p+(s) ds+

t1∫
0

p+(s) ds

t2∫
t1

p+(s) ds > 0

holds for all 0 ≤ t1 ≤ t2 ≤ 1.

Now we can easily get the following known assertion.
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Corollary 3.2 ([5]).

(p+,0 ) ∈ A1,{x(0)} if and only if
1∫
0

p+(s) ds < 1;

(0 , p−) ∈ A1,{x(0)} if and only if
1∫
0

p−(s) ds < 3.

Set p+(t) ≡ T +t, p−(t) ≡ T −t, t ∈ [0, 1], where T + ≥ 0, T − ≥ 0.

Corollary 3.3. The pair (p+, p−) belongs to the set A1,{x(0)} if and only if

0 ≤ T + < 2, 0 ≤ T − < 1 +
√
5

or

0 ≤ T + < 2, T − > 1 +
√
5,

(T −)2 (6− T −)(T − + 2)− (T +)2 (4− T +)2 + 2T +T −(T +T − − 2T + − 4T −) > 0.

Consider the Cauchy problem for the second order functional differential equation{
ẍ(t) = (Tx)(t) + f(t), t ∈ [0, 1],

x(a) = α1, ẋ(a) = α2,

From Theorem 2.1, we have

Corollary 3.4.

(0 , T −) ∈ A2,{x(0),ẋ(0)} if and only if T − < 16;

(0 , p−) ∈ A2,{x(0),ẋ(0)} if p−(t) ≤ 16 for all t ∈ [0, 1], p− ̸≡ 16.

Consider the Dirichlet boundary value problem{
ẍ(t) = (Tx)(t) + f(t), t ∈ [0, 1],

x(0) = α1, x(1) = α2,

Corollary 3.5.

(T +,0 ) ∈ A2,{x(0),x(1)} if and only if T + < 32;

(p+,0 ) ∈ A2,{x(0),x(1)} if p+(t) ≤ 32 for all t ∈ [0, 1], p+ ̸≡ 32.

4 Non-negative (non-positive) solutions for all equations
with operators from the family S(p+, p−)

Suppose αi ∈ R, i = 1, . . . , n, f ∈ L and

n∑
i=1

|αi|+
1∫

0

|f(s)| ds > 0.

For every 0 ≤ t1 ≤ t2 ≤ 1, define

gt2,t1,w(s) ≡ G(t2, s)w(t1)−G(t1, s)w(t2), s ∈ [0, 1],
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R1(t1, t2) ≡ w(t1) +

1∫
0

(
p+(s)[gt2,t1,w(s)]

− + p−(s)[gt2,t1,w(s)]
+
)
ds,

R2(t1, t2) ≡ w(t2) +

1∫
0

(
p+(s)[gt2,t1,w(s)]

+ + p−(s)[gt2,t1,w(s)]
−) ds,

R3(t1, t2) ≡ w(t1)−
1∫

0

(
p+(s)[gt2,t1,w(s)]

+ + p−(s)[gt2,t1,w(s)]
−) ds,

R4(t1, t2) ≡ w(t2)−
1∫

0

(
p+(s)[gt2,t1,w(s)]

− + p−(s)[gt2,t1,w(s)]
+
)
ds.

Theorem 4.1. Suppose (p+, p−) ∈ An,ℓ.
The pair (p+, p−) belongs to the set B+

n,ℓ(α, f) if and only if one of the following conditions holds:

(1) v(t) > 0, w(t) ≥ 0 for all t ∈ [0, 1] and R3(t1, t2) ≥ 0, R4(t1, t2) ≥ 0 for all 0 ≤ t1 ≤ t2 ≤ 1;

(2) v(t) < 0, w(t) ≤ 0 for all t ∈ [0, 1] and R1(t1, t2) ≤ 0, R2(t1, t2) ≤ 0 for all 0 ≤ t1 ≤ t2 ≤ 1.

The pair (p+, p−) belongs to the set B−
n,ℓ(α, f) if and only if one of the following conditions holds:

(1) v(t) < 0, w(t) ≥ 0 for all t ∈ [0, 1] and R3(t1, t2) ≥ 0, R4(t1, t2) ≥ 0 for all 0 ≤ t1 ≤ t2 ≤ 1;

(2) v(t) > 0, w(t) ≤ 0 for all t ∈ [0, 1] and R1(t1, t2) ≤ 0, R2(t1, t2) ≤ 0 for all 0 ≤ t1 ≤ t2 ≤ 1.

Lemma 4.1. Let (p+, p−) ∈ An,ℓ. Then the set of all solutions of problems (1.1) for all operators
T ∈ S(p+, p−) coincides with the set of solutions of the boundary value problem{

x(n)(t) = p1(t)x(t1) + p2(t)x(t2) + f(t), t ∈ [0, 1],

ℓix = αi, i = 1, . . . , n,
(4.1)

for all functions p1, p2 and points t1, t2 satisfying conditions (2.2)–(2.5).

Proof. Let y be a solution of problem (4.1) for some functions p1, p2 and for some points t1, t2
satisfying conditions (2.2)–(2.5). Then y is a solution of problem (1.1), where T = T+ − T− and the
positive operators T+, T− are defined by the equalities

(T+x)(t) = p+(t)ζ(t)x(t1) + p+(t)(1− ζ(t))x(t2), t ∈ [0, 1],

(T−x)(t) = p−(t)(1− ζ(t))x(t1) + p−(t)ζ(t)x(t2), t ∈ [0, 1],

ζ : [0, 1] → [0, 1] is a measurable function such that

p1(t) = p+(t)ζ(t)− p−(t)(1− ζ(t)), t ∈ [0, 1].

Therefore, T ∈ S(p+, p−).
Conversely, let y be a solution of problem (1.1) with T ∈ S(p+, p−). Let

min
t∈[0,1]

y(t) = y(t1), max
t∈[0,1]

y(t) = y(t2).

Then for positive operators T+, T− such that T+1 = p+, T−1 = p− the following inequalities hold:

p+(t)y(t1) ≤ (T+y)(t) ≤ p+(t)y(t2), t ∈ [0, 1],

p−(t)y(t1) ≤ (T−y)(t) ≤ p−(t)y(t2), t ∈ [0, 1].

Therefore, there exist measurable functions ζ, ξ : [0, 1] → [0, 1] such that

(T+y)(t) = p+(t)(1− ζ(t))y(t1) + p+(t)ζ(t)y(t2), t ∈ [0, 1],
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(T−y)(t) = p−(t)(1− ξ(t))y(t1) + p−(t)ξ(t)y(t2), t ∈ [0, 1].

So, the function y satisfies problem (4.1) for the functions

p1(t) = (T+1 )(t)(1− ζ(t))− (T−1 )(t)(1− ξ(t)), t ∈ [0, 1],

p2(t) = (T+1 )(t)ζ(t)− (T−1 )(t)ξ(t), t ∈ [0, 1].

It is clear that equality (2.3) and inequalities (2.4) hold. If t1 > t2, then by renumbering p1, p2, t1,
t2, condition (2.5) will be valid.

Proof of Theorem 4.1. Find when solutions of (1.1) retain their sign for all T ∈ S(p+, p−). Use
Lemma 4.1. The maximal and minimal values x1 ≡ x(t1), x2 ≡ x(t2) of a unique solution of problem
(1.1) satisfy the system {

x1 = w(t1) + (Gp1)(t1)x1 + (Gp2)(t1)x2,

x2 = w(t2) + (Gp1)(t2)x1 + (Gp2)(t2)x2

(4.2)

for some p1, p2 ∈ L[0, 1] such that conditions (2.3), (2.4) are fulfilled.
Note that w ̸≡ 0 .
From (4.2), we obtain

x1 =
∆1(t1, t2, p1, p2)

∆(t1, t2, p1, p2)
, x2 =

∆2(t1, t2, p1, p2)

∆(t1, t2, p1, p2)
,

where the functional ∆(t1, t2, p1, p2) is defined by equality (2.6) and retains its sign (the condi-
tions of Theorem 2.1 are fulfilled, therefore sgn(∆(t1, t2, p1, p2)) = sgn(1 − Gp)); the functionals
∆1(t1, t2, p1, p2) and ∆2(t1, t2, p1, p2) are defined by the equalities

∆1(t1, t2, p1, p2) ≡

∣∣∣∣∣w(t1) −(Gp2)(t1)

w(t2) 1− (Gp2)(t2)

∣∣∣∣∣ = w(t1)−
1∫

0

p2(s)gt2,t1,w(s) ds,

∆2(t1, t2, p1, p2) ≡

∣∣∣∣∣1− (Gp1)(t1) w(t1)

−(Gp1)(t2) w(t2)

∣∣∣∣∣ = w(t2) +

1∫
0

p1(s)gt2,t1,w(s) ds.

(4.3)

Find the maximum and the minimum of ∆1(t1, t2, p1, p2), ∆2(t1, t2, p1, p2) with respect to p1, p2
at the fixed rest arguments. From representations (4.3) we have

R1(t1, t2) = max
−p−≤p2≤p+

∆1(t1, t2, p1, p2), R2(t1, t2) = max
−p−≤p1≤p+

∆2(t1, t2, p1, p2),

R3(t1, t2) = min
−p−≤p2≤p+

∆1(t1, t2, p1, p2), R4(t1, t2) = min
−p−≤p1≤p+

∆2(t1, t2, p1, p2),

that proves the theorem.

5 Example
As an illustrative example, consider the Dirichlet problem{

ẍ(t) = (Tx)(t) + 1, t ∈ [0, 1],

x(0) = 0, x(1) = 0.
(5.1)

From Theorem 4.1 we immediately obtain a sharp condition for the existence of non-positive solutions
of (5.1).

Corollary 5.1. If p+(t) ≤ 11 + 5
√
5 for all t ∈ [0, 1], then (p+,0 ) ∈ B−

2,{x(0),x(1)}((0, 0),1 ). The
constant 11 + 5

√
5 is sharp.
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