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SOME REMARKS ON FUNCTIONAL
DIFFERENTIAL EQUATIONS IN ABSTRACT SPACES



Abstract. The aim of this paper is to present some remarks concerning the functional differential
equation

v′(t) = G(v)(t)

in a Banach space X, where G : C([a, b];X) → B([a, b];X) is a continuous operator and C([a, b];X),
resp. B([a, b];X), denotes the Banach space of continuous, resp. Bochner integrable, abstract func-
tions.

It is proved, in particular, that both initial value problems (Darboux and Cauchy) for the hyper-
bolic functional differential equation

∂2u(t, x)

∂t ∂x
= F (u)(t, x)

with a Carathéodory right-hand side on the rectangle [a, b] × [c, d] can be rewritten as initial value
problems for abstract functional differential equation with a suitable operator G and X = C([c, d];R).∗
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ÒÄÆÉÖÌÄ. ÍÀÛÒÏÌÛÉ ÌÏÚÅÀÍÉËÉÀ ÒÀÌÃÄÍÉÌÄ ÛÄÍÉÛÅÍÀ, ÒÏÌÄËÉÝ ÄáÄÁÀ ×ÖÍØÝÉÏÍÀËÖÒ-ÃÉ×Ä-
ÒÄÍÝÉÀËÖÒ ÂÀÍÔÏËÄÁÀÓ

v′(t) = G(v)(t)

ÁÀÍÀáÉÓ X ÓÉÅÒÝÄÛÉ, ÓÀÃÀÝ G : C([a, b];X) → B([a, b];X) ÖßÚÅÄÔÉ ÏÐÄÒÀÔÏÒÉÀ, áÏËÏ
C([a, b];X) ÃÀ B([a, b];X), ÛÄÓÀÁÀÌÉÓÀÃ, ÖßÚÅÄÔ ÃÀ ÁÏáÍÄÒÉÓ ÀÆÒÉÈ ÉÍÔÄÂÒÄÁÀÃ ÀÁÓÔÒÀØÔÖË
×ÖÍØÝÉÀÈÀ ÓÉÅÒÝÄÄÁÉÀ.

ÊÄÒÞÏÃ, ÃÀÃÂÄÍÉËÉÀ, ÒÏÌ ÃÀÒÁÖÓÀ ÃÀ ÊÏÛÉÓ ÀÌÏÝÀÍÄÁÉ äÉÐÄÒÁÏËÖÒÉ ÔÉÐÉÓ ×ÖÍØÝÉÏÍÀ-
ËÖÒ-ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏËÄÁÉÓÈÅÉÓ

∂2u(t, x)

∂t ∂x
= F (u)(t, x)

ÊÀÒÀÈÄÏÃÏÒÉÓ ÌÀÒãÅÄÍÀ ÌáÀÒÉÈ [a, b]× [c, d] ÌÀÒÈÊÖÈáÄÃÆÄ ÛÄÉÞËÄÁÀ ÂÀÃÀÉßÄÒÏÓ ÒÏÂÏÒÝ
ÓÀßÚÉÓÉ ÀÌÏÝÀÍÀ ÀÁÓÔÒÀØÔÖËÉ ×ÖÍØÉÏÍÀËÖÒ-ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏËÄÁÉÓÈÅÉÓ ÛÄÓÀ×Ä-
ÒÉÓÉ G ÏÐÄÒÀÔÏÒÉÈÀ ÃÀ X = C([c, d];R) ÓÉÅÒÝÉÈ.

∗Reported on Conference “Differential Equation and Applications”, September 4-7, 2017, Brno



Some Remarks on Functional Differential Equations in Abstract Spaces 105

1 Statement of problem
On the interval [a, b], we consider the functional differential equation

v′(t) = G(v)(t) (1.1)

in a Banach space ⟨X, ∥ · ∥X⟩, where G : C([a, b];X) → B([a, b];X) is a continuous operator1 satisfying
the local Carathéodory condition (see Definition 2.9).

Definition 1.1. By a solution of equation (1.1) we understand an abstract function v : [a, b] → X
which is strongly absolutely continuous on [a, b] (see Definition 2.1), differentiable a.e. on [a, b] (see
Definition 2.2), and satisfies equality (1.1) almost everywhere on [a, b].

Remark 1.2. In Definition 1.1:

(a) Differentiability a.e. on [a, b] has to be assumed, because it does not follow from the strong
absolute continuity (in general). Indeed, let X = L([0, 1];R) and

v(t)(x) =

{
1 if 0 ≤ x ≤ t ≤ 1,

0 if 0 ≤ t < x ≤ 1.

Then v is strongly absolutely continuous on [0, 1], but not differentiable a.e. on [0, 1] (see [3,
Example 7.3.9]).

(b) Solutions of equation (1.1) are understood as global and strong ones, the notions like local
existence and extendability of solutions have no sense in our concept.

Remark 1.3. In the existing literature, several kinds of abstract differential equations can be found
and for each of them, a solution is defined in a different way. For instance, equation (1.1) differs from
frequently studied abstract differential equations of the type

v′ = A(t)v + f(t, vt),

where A(t) are usually densely closed linear operators with values in X that generate a semigroup
etc. In those cases the so-called mild solutions are considered, i.e., the solutions of the corresponding
integral equation

v(t) = V̂ (t, 0)v(0) +

t∫
0

V̂ (t, s)f(s, vs)ds,

where V̂ (t, s) denotes an evolution operator for A(t).

We mention here two natural and straightforward particular cases of equation (1.1):

(A) X = R – scalar first-order functional differential equations, for example,

• differential equation with an argument deviation

v′(t) = f(t, v(t), v(τ(t))),

where f : [a, b]× R2 → R is a Carathéodory function and τ : [a, b] → [a, b] is a measurable
function,

• integro-differential equation

v′(t) =

b∫
a

K(t, s)v(τ(s))ds,

where K : [a, b]× [a, b] → R and τ : [a, b] → [a, b] are suitable functions,
1For definition of the spaces C([a, b];X) and B([a, b];X), see Section 2.
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• differential equation with a maximum

v′(t) = p(t)max
{
v(s) : τ1(t) ≤ s ≤ τ2(s)

}
+ q(s),

where p, q ∈ L([a, b];R) and τ1, τ2 : [a, b] → [a, b] are measurable functions.

(B) X = Rn – systems of first-order functional differential equations and scalar higher-order func-
tional differential equations.

For both cases R and Rn, there are plenty of results concerning solvability as well as unique solv-
ability of various boundary value problems, theorems on differential inequalities (maximum principles
in other terminology), oscillations, etc. In order to extend our results from those topics (as well as
our methodology) for functional differential equations in abstract spaces, some additional operations
and structures are needed in X (like ordering, positivity, monotonicity, unit element, . . . ). Therefore,
we are interested in other particular cases of (1.1) besides (A) and (B) that can help one to find out
what operations and structures a Banach space X should be endowed with. We will show in Section 4
that the hyperbolic functional differential equation

∂2u(t, x)

∂t ∂x
= F (u)(t, x)

with a Carathéodory right-hand side on the rectangle [a, b]× [c, d] can be regarded as a particular case
of the abstract equation (1.1) with X = C([c, d];R).

2 Notation and definitions
The following notation is used throughout the paper:

(1) ⟨X, ∥ · ∥X⟩ is a Banach space.

(2) C([a, b];X) is the Banach space of continuous abstract functions v : [a, b] → X endowed with the
norm ∥v∥C([a,b];X) = max{∥v(t)∥X : t ∈ [a, b]}.

(3) AC([a, b];X) is the set of strongly absolutely continuous abstract functions v : [a, b] → X (see
Definition 2.1 below).

(4) B([a, b];X) is the Banach space of Bochner integrable abstract functions g : [a, b] → X endowed

with the norm ∥g∥B([a,b];X) =
b∫
a

∥g(t)∥X dt.

(5) L([a, b];R) = B([a, b];R), see Lemma 2.7 below.

(6) D = [a, b]× [c, d].

(7) C(D;R) is the Banach space of continuous functions u : D → R endowed with the norm
∥u∥C(D;R) = max{|u(t, x)| : (t, x) ∈ D}.

(8) The first- and the second-order partial derivatives of the function v : D → R at the point
(t, x) ∈ D are denoted by v′[1](t, x) (or v′t(t, x),

∂v(t,x)
∂t ), v′[2](t, x) (or v′x(t, x),

∂v(t,x)
∂x ), v′′[1,2](t, x)

(or v′′tx(t, x),
∂v(t,x)
∂t ∂x ), and v′′[2,1](t, x) (or v′′xt(t, x),

∂v(t,x)
∂x ∂t ).

(9) AC(D;R) is the set of functions u : D → R absolutely continuous in the sense of Carathéodory
(see Definition 2.4 and Proposition 2.5 below).

(10) L(D;R) is the Banach space of Lebesgue integrable functions p : D → R endowed with the norm
∥p∥L(D;R) =

∫∫
D

|p(t, x)| dtdx.

(11) measE denotes the Lebesgue measure of a (measurable) set E ⊂ R.
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Definition 2.1 ( [3, Definition 7.1.7]). A function v : [a, b] → X is said to be strongly absolutely
continuous, if for each ε > 0 there exists δ > 0 such that

∑
i

∥v(bi)− v(ai)∥X < ε whenever {[ai, bi]} is

a finite system of mutually non-overlapping subintervals of [a, b] that satisfies
∑
i

(bi − ai) < δ.

Definition 2.2 ([3, Definition 7.3.2]). A function v : [a, b] → X is said to be differentiable at the point
t ∈ [a, b], if there is χ ∈ X such that

lim
δ→0

∥∥∥v(t+ δ)− v(t)

δ
− χ

∥∥∥
X
= 0.

We denote χ = v′(t) the derivative of v at t. If v is differentiable at every point t ∈ E ⊆ [a, b] with
measE = b− a, then v is called differentialbe almost everywhere (a.e.) on [a, b].

Definition 2.3 ([1, § 7.3]). Let S(D) denote the system of rectangles [t1, t2]× [x1, x2] contained in D.
A mapping Φ : S(D) → R is said to be absolutely continuous function of rectangles, if it is additive
and for every ε > 0 there exists δ > 0 such that for any finite system {[ai, bi] × [ci, di]} of mutually
non-overlapping rectangles contained in D, the implication∑

i

(bi − ai)(di − ci) < δ =⇒
∑
i

∣∣Φ([ai, bi]× [ci, di])
∣∣ < ε

holds.

Definition 2.4. We say that a function u : D → R is absolutely continuous in the sense of
Carathéodory if the following conditions hold:

(a) the function of rectangles

Φu([t1, t2]× [x1, x2]) := u(t1, x1)− u(t1, x2)− u(t2, x1) + u(t2, x2) for [t1, t2]× [x1, x2] ⊆ D

associated with u is absolutely continuous.

(b) the functions u( · , c) : [a, b] → R and u(a, · ) : [c, d] → R are absolutely continuous.

Proposition 2.5 ([4, Theorem 3.1]). The following assertions are equivalent:

(1) The function u : D → R is absolutely continuous in the sense of Carathéodory.

(2) The function u : D → R admits the integral representation

u(t, x) = e+

t∫
a

f(s)ds+
x∫

c

q(η)dη +
∫∫

[a,t]×[c,x]

p(s, η) dsdη for (t, x) ∈ D, (2.1)

where e ∈ R, f ∈ L([a, b];R), q ∈ L([c, d];R), and p ∈ L(D;R).

(3) The function u : D → R satisfies the following conditions:

(a) u( · , x) ∈ AC([a, b];R) for every x ∈ [c, d], u(a, · ) ∈ AC([c, d];R),
(b) u′[1](t, · ) ∈ AC([c, d];R) for almost all t ∈ [a, b],
(c) u′′[1,2] ∈ L(D;R).

(4) The function u : D → R satisfies the following conditions:

(A) u(t, · ) ∈ AC([c, d];R) for every t ∈ [a, b], u( · , c) ∈ AC([a, b];R),
(B) u′[2]( · , x) ∈ AC([a, b];R) for almost all x ∈ [c, d],
(C) u′′[2,1] ∈ L(D;R).
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Lemma 2.6 ( [4, Proposition 3.5]). Let a function u be defined by formula (2.1), where e ∈ R,
f ∈ L([a, b];R), q ∈ L([c, d];R), and p ∈ L(D;R). Then there exists a measurable set E ⊆ [a, b] such
that measE = b− a and

u′[1](t, x) = f(t) +

x∫
c

p(t, η)dη for t ∈ E, x ∈ [c, d].

Lemma 2.7 ([3, Remark 1.3.14]). A function g : [a, b] → R is Bochner integrable if and only if it is
Lebesgue integrable and the two integrals of g have the same value.

Lemma 2.8 ([3, Theorem 1.4.3]). If g ∈ B([a, b];X), then the function ∥g( · )∥X : [a, b] → R is Lebesgue
integrable.

Definition 2.9. We say that an operator G : C([a, b];X) → B([a, b];X) satisfies the local Carathéodory
condition if for each r > 0 there exists a function qr ∈ L([a, b];R) such that

∥G(w)(t)∥X ≤ qr(t) for a.e. t ∈ [a, b] and all w ∈ C([a, b];X), ∥w∥C([a,b];X) ≤ r.

Definition 2.10. We say that an operator F : C(D;R) → L(D;R) satisfies the local Carathéodory
condition if for each r > 0 there exists a function ζr ∈ L(D;R) such that

|F (z)(t, x)| ≤ ζr(t, x) for a.e. (t, x) ∈ D and all z ∈ C(D;R), ∥z∥C(D;R) ≤ r.

3 Hyperbolic functional differential equation
On the rectangle D = [a, b]× [c, d], we consider the hyperbolic functional differential equation

∂2u(t, x)

∂t ∂x
= F (u)(t, x), (3.1)

where F : C(D;R) → L(D;R) is a continuous operator satisfying the local Carathéodory condition
(see Definition 2.10).

Definition 3.1. By a solution of equation (3.1) we understand a function u : D → R which is
absolutely continuous in the sense of Carathéodory and satisfies equality (3.1) almost everywhere on D.

Two main initial value problems for equation (3.1) are studied in the literature.

Darboux problem
The values of the solution u are prescribed on both characteristics t = a and x = c, i.e., the initial
conditions are

u(t, c) = α(t) for t ∈ [a, b], u(a, x) = β(x) for x ∈ [c, d], (3.2)

where α ∈ AC([a, b];R), β ∈ AC([c, d];R) are such that α(a) = β(c).
The following statement follows from the proof of [5, Theorem 4.1].

Proposition 3.2. The function u is a solution of problem (3.1), (3.2) if and only if it is a solution of
the integral equation

u(t, x) = −α(a) + α(t) + β(x) +

t∫
a

x∫
c

F (u)(s, η) dη ds

in the space C(D;R).
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Cauchy problem
Let H be a curve, which is defined as the graph of a decreasing continuous (not absolutely continuous,
in general) function h : [a, b] → [c, d] such that h(a) = d and h(b) = c. The values of the solution u
and its partial derivative u′[2] are prescribed on H as follows:

u(t, h(t)) = γ(t) for t ∈ [a, b], u′[2](h
−1(x), x) = ψ(x) for a.e. x ∈ [c, d], (3.3)

where γ ∈ C([a, b];R), ψ ∈ L([c, d];R) are such that

the function t 7−→ γ(t) +

d∫
h(t)

ψ(η)dη is absolutely continuous on [a, b] (3.4)

(in other words, the pair (γ, ψ) is h-consistent, see [2, Section 3]).
The following statement follows from [2, Lemmas 3.3 and 3.4].

Proposition 3.3. The function u is a solution of problem (3.1), (3.3) if and only if it is a solution of
the integral equation

u(t, x) = γ(t) +

x∫
h(t)

ψ(η)dη +
t∫

h−1(x)

x∫
h(s)

F (u)(s, η) dη ds

in the space C(D;R).

4 Main results
In this section, we formulate main results of the paper, namely, Theorems 4.1 and 4.4 showing that
both Darboux and Cauchy problems for the hyperbolic equation (3.1) can be rewritten as initial value
problems for the abstract equation (1.1) in the Banach space C([c, d];R). Consequently, the hyperbolic
equation (3.1) can be regarded as a particular case of (1.1) with X = C([c, d];R).

Theorem 4.1. Let α ∈ AC([a, b];R), β ∈ AC([c, d];R) be such that α(a) = β(c) and let F : C(D;R) →
L(D;R) be a continuous operator satisfying the local Carathéodory condition.

If u is a solution of problem (3.1), (3.2), then the function v defined by the formula

v(t)(x) := u(t, x) for t ∈ [a, b], x ∈ [c, d], (4.1)

is a solution of the problem

v′(t) = G(v)(t),

v(a) = β (4.2)

in the Banach space C([c, d];R), where

G(w)(t) := w̃(t) for a.e. t ∈ [a, b] and all w ∈ C([a, b];C([c, d];R)),

w̃(t)(x) := α′(t) +

x∫
c

F (z)(t, η)dη for a.e. t ∈ [a, b] and all x ∈ [c, d],

z(t, x) := w(t)(x) for (t, x) ∈ D.


(4.3)

Conversely, if v is a solution of problem (1.1), (4.2) with G given by (4.3), then the function u
defined by the formula

u(t, x) := v(t)(x) for (t, x) ∈ D (4.4)
is a solution of problem (3.1), (3.2).



110 Jiří Šremr

Remark 4.2. It follows from Propositions 5.1, 5.2, and 5.9 below that the formulation of Theorem 4.1
is correct.

Remark 4.3. Theorem 4.1 can be easily extended to a “more general” Darboux problem for equation
(3.1), where the values of the solution u are prescribed on characteristics t = t0 and x = x0, i.e., the
initial conditions are

u(t, x0) = α(t) for t ∈ [a, b], u(t0, x) = β(x) for x ∈ [c, d],

where t0 ∈ [a, b], x0 ∈ [c, d], α ∈ AC([a, b];R), β ∈ AC([c, d];R) are such that α(t0) = β(x0).

Theorem 4.4. Let h ∈ C([a, b];R) be a decreasing function such that h(a) = d and h(b) = c. Let,
moreover, γ ∈ C([a, b];R) and ψ ∈ L([c, d];R) be such that condition (3.4) holds and F : C(D;R) →
L(D;R) be a continuous operator satisfying the local Carathéodory condition.

If u is a solution of problem (3.1), (3.3), then the function v defined by formula (4.1) is a solution
of the problem

v′(t) = G(v)(t),

v(t)(h(t)) = γ(t) for t ∈ [a, b] (4.5)

in the Banach space C([c, d];R), where

G(w)(t) := w̃(t) for a.e. t ∈ [a, b] and all w ∈ C([a, b];C([c, d];R)),

w̃(t)(x) :=
d
dt

(
γ(t) +

d∫
h(t)

ψ(η)dη
)
+

x∫
h(t)

F (z)(t, η)dη for a.e. t ∈ [a, b] and all x ∈ [c, d],

z(t, x) := w(t)(x) for (t, x) ∈ D.


(4.6)

Conversely, if v is a solution of problem (1.1), (4.5) with G given by (4.6), then the function u
defined by formula (4.4) is a solution of problem (3.1), (3.3).

Remark 4.5. It follows from Propositions 5.1, 5.2, and 5.10 below that the formulation of Theorem 4.4
is correct.

5 Proofs of main results
5.1 Auxiliary statements
We first show the properties of the relationship between abstract functions and the functions of two
variables given by formulae (4.1) and (4.4).

Proposition 5.1. Let u ∈ C(D;R) and the function v be defined by formula (4.1). Then v ∈
C([a, b];C([c, d];R)).

Proof. It follows easily from the definitions of continuity.

Proposition 5.2. Let v ∈ C([a, b];C([c, d];R)) and the function u be defined by formula (4.4). Then
u ∈ C(D;R).

Proof. Let (t0, x0) ∈ D be arbitrary and let {(tn, xn)}+∞
n=1 be a sequence of points from the rectangle

D such that (tn, xn) → (t0, x0) as n→ +∞. Then, clearly,

lim
n→+∞

tn = t0, lim
n→+∞

xn = x0.

Let ε > 0 be arbitrary. Since v ∈ C([a, b];C([c, d];R)) and v(t0) ∈ C([c, d];R), there exists n0 ∈ N
such that

∥v(tn)− v(t0)∥C([c,d];R) <
ε

2
, |v(t0)(xn)− v(t0)(x0)| <

ε

2
for n ≥ n0
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which yields
|v(tn)(x)− v(t0)(x)| <

ε

2
for x ∈ [c, d], n ≥ n0.

Consequently, we get

|u(tn, xn)− u(t0, x0)| ≤ |v(tn)(xn)− v(t0)(xn)|+ |v(t0)(xn)− v(t0)(x0)| ≤ ε

for n ≥ n0 and thus, lim
n→+∞

u(tn, xn) = u(t0, x0).

Proposition 5.3. Let u ∈ AC(D;R). Then the function v defined by formula (4.1) is strongly
absolutely continuous, i.e., v ∈ AC([a, b];C([c, d];R)).

Proof. It follows from Proposition 2.5 that the function u admits the integral representation (2.1),
where e ∈ R, f ∈ L([a, b];R), q ∈ L([c, d];R), and p ∈ L(D;R).

Let ε > 0 be arbitrary. Since the function

t 7−→ |f(t)|+
d∫

c

|p(t, η)|dη

is Lebesgue integrable on [a, b], there exists δ > 0 such that

∫
E

(
|f(s)|+

d∫
c

|p(s, η)|dη
)

ds < ε for E ⊆ [a, b], measE < δ. (5.1)

Let {[ak, bk]}nk=1 be an arbitrary system of mutually non-overlapping subintervals of [a, b] such that

n∑
k=1

(bk − ak) < δ.

By virtue of (2.1) and (4.1), it is clear that

v(bk)(x)− v(ak)(x) =

bk∫
ak

(
f(s) +

x∫
c

p(s, η)dη
)

ds for x ∈ [c, d], k = 1, . . . , n,

and thus, we get

n∑
k=1

∥v(bk)− v(ak)∥C([c,d];R) =

n∑
k=1

max
{∣∣∣∣

bk∫
ak

(
f(s) +

x∫
c

p(s, η)dη
)

ds
∣∣∣∣ : x ∈ [c, d]

}

≤
∫
A

(
|f(s)|+

d∫
c

|p(s, η)|dη
)

ds, (5.2)

where A :=
n∪

k=1

[ak, bk]. Since measA =
n∑

k=1

(bk − ak) < δ, it follows from (5.1) and (5.2) that

n∑
k=1

∥v(bk)− v(ak)∥C([c,d];R) < ε.

Lemma 5.4. Let q ∈ L(D;R) be such that

q(t, x) ≥ 0 for a.e. (t, x) ∈ D. (5.3)
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Then there exists a measurable set E ⊆ [a, b] such that measE = b−a and for each t ∈ E the condition

lim
δ→0

1

δ

t+δ∫
t

( x∫
c

q(s, η)dη
)

ds =
x∫

c

q(t, η)dη uniformly on [c, d] (5.4)

holds.

Proof. It follows from Lemma 2.6 that there exists a measurable set E ⊆ ]a, b[ such that measE = b−a
and

d
dt

t∫
a

x∫
c

q(s, η) dη ds =
x∫

c

q(t, η)dη for t ∈ E, x ∈ [c, d],

i.e.,

lim
δ→0

1

δ

t+δ∫
t

( x∫
c

q(s, η)dη
)

ds =
x∫

c

q(t, η)dη for (t, x) ∈ E × [c, d]. (5.5)

Let t0 ∈ E and ε > 0 be arbitrary. Since q(t0, · ) ∈ L([c, d];R), there exists ζ > 0 such that
d1∫

c1

q(t0, η)dη < ε

2
for c1, d1 ∈ [c, d], |d1 − c1| < ζ. (5.6)

It is clear that there is a collection x1, x2, . . . , xn ∈ [c, d] such that c = x1 < x2 < · · · < xn = d and

max{xk+1 − xk : k = 1, . . . , n− 1} < ζ.

Condition (5.5) yields that for each k ∈ {1, . . . , n}, there exists ζk > 0 such that∣∣∣∣1δ
t0+δ∫
t0

( xk∫
c

q(s, η)dη
)

ds−
xk∫
c

q(t0, η)dη
∣∣∣∣ < ε

2
for 0 < |δ| < ζk. (5.7)

Put ζ0 := min{ζk : k = 1, . . . , n} and let x0 ∈ [c, d] be arbitrary. It is clear that there exists
m ∈ {1, . . . , n− 1} such that xm ≤ x0 ≤ xm+1. According to assumption (5.3), the function

x 7−→ 1

δ

t0+δ∫
t0

( x∫
c

q(s, η)dη
)

ds is non-decreasing on [c, d]

and thus, by virtue of (5.6) and (5.7), for any δ ∈ R satisfying 0 < |δ| < ζ0, we get

1

δ

t0+δ∫
t0

( x0∫
c

q(s, η)dη
)

ds−
x0∫
c

q(t0, η)dη

≤ 1

δ

t0+δ∫
t0

( xm+1∫
c

q(s, η)dη
)

ds−
xm+1∫
c

q(t0, η)dη +
xm+1∫
x0

q(t0, η)dη ≤ ε

2
+
ε

2
= ε

and
x0∫
c

q(t0, η)dη − 1

δ

t0+δ∫
t0

( x0∫
c

q(s, η)dη
)

ds

≤
x0∫

xm

q(t0, η)dη +
xm∫
c

q(t0, η)dη − 1

δ

t0+δ∫
t0

( xm∫
c

q(s, η)dη
)

ds ≤ ε

2
+
ε

2
= ε.
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However, it means that∣∣∣∣1δ
t0+δ∫
t0

( x0∫
c

q(s, η)dη
)

ds−
x0∫
c

q(t0, η)dη
∣∣∣∣ < ε for 0 < |δ| < ζ0.

Since x0 is arbitrary and ζ0 does not depend on x0, we have∣∣∣∣1δ
t0+δ∫
t0

( x∫
c

q(s, η)dη
)

ds−
x∫

c

q(t0, η)dη
∣∣∣∣ < ε for 0 < |δ| < ζ0, x ∈ [c, d],

i.e., the desired condition (5.4) holds for every t ∈ E.

Proposition 5.5. Let u ∈ AC(D;R). Then the function v defined by formula (4.1) is differentiable
a.e. on [a, b] and

v′(t) = u′[1](t, · ) for a.e. t ∈ [a, b]. (5.8)

Proof. It follows from Proposition 2.5 that the function u admits the integral representation (2.1),
where e ∈ R, f ∈ L([a, b];R), q ∈ L([c, d];R), and p ∈ L(D;R).

By virtue of Lemma 2.6, there exists a measurable set E1 ⊆ [a, b] such that measE1 = b− a and

u′[1](t, x) = f(t) +

x∫
c

p(t, η)dη for t ∈ E1, x ∈ [c, d], (5.9)

lim
δ→0

1

δ

t+δ∫
t

f(s)ds = d
dt

t∫
a

f(s)ds = f(t) for t ∈ E1. (5.10)

Moreover, it follows from Lemma 5.4 with q := |p|+p
2 and q := |p|−p

2 that there exists a measurable
set E2 ⊆ [a, b] such that measE2 = b− a and for every t ∈ E2, relation (5.4) holds.

Put E = E1 ∩ E2 and let t0 ∈ E be arbitrary. In view of (4.1) and (5.9), from (2.1) we get∣∣∣v(t0 + δ)(x)− v(t0)(x)

δ
− u′[1](t0, x)

∣∣∣
≤

∣∣∣∣1δ
t0+δ∫
t0

f(s)ds+ 1

δ

t0+δ∫
t0

( x∫
c

p(s, η)dη
)

ds− f(t0)−
x∫

c

p(t0, η)dη
∣∣∣∣

≤
∣∣∣∣1δ

t0+δ∫
t0

f(s)ds− f(t0)

∣∣∣∣+ ∣∣∣∣1δ
t0+δ∫
t0

( x∫
c

p(s, η)dη
)

ds−
x∫

c

p(t0, η)dη
∣∣∣∣

for x ∈ [c, d] and δ ̸= 0 small enough which, together with (5.10) and (5.4) with t := t0, guarantees that

lim
δ→0

∥∥∥v(t0 + δ)− v(t0)

δ
− u′[1](t0, · )

∥∥∥
C([c,d];R)

= 0.

However, it means that the abstract function v is differentiable at t0 and, moreover, v′(t0) = u′[1](t0, · ).
To conclude the proof it is sufficient to mention that t0 ∈ E was arbitrary and measE = b− a.

Now we provide several statements concerning Bochner integrable abstract functions and their
primitives.

Lemma 5.6. Let g ∈ B([a, b];X) and F (t) :=
t∫
a

g(s)ds for t ∈ [a, b]. Then F ∈ AC([a, b];X), F is

differentiable a.e. on [a, b], and

F ′(t) = g(t) for a.e. t ∈ [a, b]. (5.11)
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Proof. The assertion of the lemma follows from Theorems 7.4.9, 7.4.11, and 5.3.4 stated in [3].

Lemma 5.7 ([3, Theorem 7.4.13 and 5.3.4]). Let F ∈ AC([a, b];X) be differentiable a.e. on [a, b] and
condition (5.11) hold. Then g ∈ B([a, b];X) and

F (t) = F (a) +

t∫
a

g(s)ds for t ∈ [a, b]. (5.12)

Proposition 5.8. Let f ∈ L([a, b];R) and p ∈ L(D;R). For a.e. t ∈ [a, b], we put

g(t)(x) := f(t) +

x∫
c

p(t, η)dη for x ∈ [c, d]. (5.13)

Then g ∈ B([a, b];C([c, d];R)) and for each t ∈ [a, b], the equality

( t∫
a

g(s)ds
)
(x) =

t∫
a

f(s)ds+
t∫

a

x∫
c

p(s, η) dη ds for x ∈ [c, d] 2 (5.14)

holds.

Proof. Observe that the abstract function g : [a, b] → C([c, d];R) is defined a.e. on [a, b]. Put

u(t, x) :=

t∫
a

f(s)ds+
t∫

a

x∫
c

p(s, η) dη ds for (t, x) ∈ D (5.15)

and define the function v by formula (4.1). It follows from Proposition 2.5 that u ∈ AC(D;R) and, in
view of Lemma 2.6, we have

u′[1](t, x) = f(t) +

x∫
c

p(t, η)dη for a.e. t ∈ [a, b] and all x ∈ [c, d]. (5.16)

On the other hand, Proposition 5.5 yields that the abstract function v : [a, b] → C([c, d];R) is differen-
tiable a.e. on [a, b] and condition (5.8) holds which, together with (5.13) and (5.16), guarantees that

v′(t) = g(t) for a.e. t ∈ [a, b]. (5.17)

Moreover, according to Proposition 5.3, v ∈ AC([a, b];C([c, d];R)) and thus, it follows from (5.17) and
Lemma 5.7 that g ∈ B([a, b];C([c, d];R)) and

v(t) = v(a) +

t∫
a

g(s)ds for t ∈ [a, b].

However, in view of (4.1) and (5.15), it means that for each t ∈ [a, b], equality (5.14) holds.

At the end of this section, we provide two statements guaranteeing that formulations of Theo-
rems 4.1 and 4.4 are correct.

Proposition 5.9. Let α ∈ AC([a, b];R) and F : C(D;R) → L(D;R) be a continuous operator
satisfying the local Carathéodory condition (see Definition 2.10). Then the operator G defined by
formula (4.3) maps the set C([a, b];C([c, d];R)) into the set B([a, b];C([c, d];R)), it is continuous and
satisfies the local Carathéodory condition (see Definition 2.9).

2Observe that the integral on the left-hand side of the equality is Bochner one, whereas both integrals on its righ-hand
side are Lebesgue ones.
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Proof. Let w ∈ C([a, b];C([c, d];R)) be arbitrary and put z(t, x) := w(t)(x) for (t, x) ∈ D. Observe
that, in view of Proposition 5.2, we have z ∈ C(D;R). It follows from Proposition 5.8 with f := α′

and p := F (z) that G(w) ∈ B([a, b];C([c, d];R)) and thus, the operator G maps C([a, b];C([c, d];R))
into B([a, b];C([c, d];R)).

Now let vn, v ∈ C([a, b];C([c, d];R)), n ∈ N, be such that lim
n→+∞

∥vn − v∥C([a,b];C([c,d];R)) = 0. Put

un(t, x) := vn(t)(x), u(t, x) := v(t)(x) for (t, x) ∈ D, n ∈ N. (5.18)

Then, by virtue of Proposition 5.2, we have un, u ∈ C(D;R) for n ∈ N and, moreover, it is not difficult
to verify that

lim
n→+∞

∥un − u∥C(D;R) = 0.

Since the operator F is supposed to be continuous, the latter relation yields

lim
n→+∞

∫∫
D

|F (un)(s, η)− F (u)(s, η)| dsdη = 0. (5.19)

According to (4.3) and (5.18), it is clear that

∥G(vn)(t)−G(v)(t)∥C([c,d];R) = max
{∣∣∣∣

x∫
c

F (un)(t, η)dη −
x∫

c

F (un)(t, η)dη
∣∣∣∣ : x ∈ [c, d]

}

≤
d∫

c

|F (un)(t, η)− F (un)(t, η)|dη for a.e. t ∈ [a, b], n ∈ N,

whence we get

∥G(vn)−G(v)∥B([a,b];C([c,d];R))

=

b∫
a

∥G(vn)(t)−G(v)(t)∥C([c,d];R) dt ≤
∫∫
D

|F (un)(s, η)− F (u)(s, η)| dsdη for n ∈ N.

However, the latter inequality and (5.19) guarantee that lim
n→+∞

∥G(vn) − G(v)∥B([a,b];C([c,d];R)) = 0,

i.e., the operator G is continuous.
Finally, let r > 0 be arbitrary and ζr ∈ L(D;R) be the function appearing in the Carathéodory

condition for the operator F (see Definition 2.10). Let, moreover, w ∈ C([a, b];C([c, d];R)) be an
arbitrary function such that ∥w∥C([a,b];C([c,d];R)) ≤ r and put z(t, x) := w(t)(x) for (t, x) ∈ D. In view
of Proposition 5.2, we have z ∈ C(D;R) and, moreover, it is not difficult to verify that ∥z∥C(D;R) ≤ r.

Then

∥G(w)(t)∥C([c,d];R) = max
{∣∣∣∣α′(t) +

x∫
c

F (z)(t, η)dη
∣∣∣∣ : x ∈ [c, d]

}

≤ |α′(t)|+
d∫

c

|F (z)(t, η)|dη ≤ |α′(t)|+
d∫

c

ζr(t, η)dη

for a.e. t ∈ [a, b]. Since the function

t 7−→ |α′(t)|+
d∫

c

ζr(t, η)dη is Lebesgue integrable on [a, b],

the operator G satisfies the local Carathéodory condition with the function qr = |α′| +
d∫
c

ζr( · , η)dη

(see Definition 2.9).
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Proposition 5.10. Let h ∈ C([a, b];R) be a decreasing function such that h(a) = d and h(b) = c. Let,
moreover, γ ∈ C([a, b];R) and ψ ∈ L([c, d];R) be such that condition (3.4) holds and F : C(D;R) →
L(D;R) be a continuous operator satisfying the local Carathéodory condition (see Definition 2.10).
Then the operator G defined by formula (4.6) maps C([a, b];C([c, d];R)) into B([a, b];C([c, d];R)), it
is continuous and satisfies the local Carathéodory condition (see Definition 2.9).

Proof. Let w ∈ C([a, b];C([c, d];R)) be arbitrary. Put z(t, x) := w(t)(x) for (t, x) ∈ D and

H :=
{
(s, η) ∈ D : a ≤ s ≤ b, c ≤ η ≤ h(s)

}
.

Observe that, in view of Proposition 5.2, we have z ∈ C(D;R). Since F (z) ∈ L(D;R), it is easy to see
that ∫∫

H

F (z)(s, η) dsdη =

b∫
a

( h(s)∫
c

F (z)(s, η)dη
)

ds

and thus,

the function t 7−→
h(t)∫
c

F (z)(t, η)dη is Lebesgue integrable on [a, b]. (5.20)

Now we put

φ(t) :=
d
dt

(
γ(t) +

d∫
h(t)

ψ(η)dη
)
. (5.21)

Clearly, φ ∈ L([a, b];R) because we assume that condition (3.4) holds. Therefore, it follows from

Proposition 5.8 with f := φ−
h( · )∫
c

F (z)( · , η)dη and p := F (z) that G(w) ∈ B([a, b];C([c, d];R)) and

thus, the operator G maps C([a, b];C([c, d];R)) into B([a, b];C([c, d];R)).
Analogously to the proof of Proposition 5.9, we show that the operator G is continuous and

satisfies the local Carathéodory condition with the function qr = φ+
d∫
c

ζr( · , η)dη (see Definition 2.9),

where ζr ∈ L(D;R) is the function appearing in the Carathéodory condition for the operator F (see
Definition 2.10).

5.2 Proofs of Theorems 4.1 and 4.4
Proof of Theorem 4.1. Let u be a solution of problem (3.1), (3.2) and let the function v be defined by
formula (4.1). In view of Proposition 3.2, it follows from Lemma 2.6 that

u′[1](t, x) = α′(t) +

x∫
c

F (u)(t, η)dη for a.e. t ∈ [a, b] and all x ∈ [c, d]. (5.22)

On the other hand, Propositions 5.3 and 5.5 yield that the abstract function v : [a, b] → C([c, d];R) is
strongly absolutely continuous, differentiable a.e. on [a, b], and satisfies condition (5.8). Hence, from
(5.8) and (5.22) we get

v′(t) = α′(t) +

·∫
c

F (u)(t, η)dη = G(v)(t) for a.e. t ∈ [a, b],

where the operator G is defined by formula (4.3). Moreover, v(a) = u(a, · ) = β and thus, the function
v is a solution of problem (1.1), (4.2) in the Banach space C([c, d];R).
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Conversely, assume that v is a solution of problem (1.1), (4.2) with G given by (4.3) and define
the function u by formula (4.4). Since the function v is strongly absolutely continuous, according to
Proposition 5.2, we have u ∈ C(D;R). It follows immediately from Lemma 5.7 that

v(t) = v(a) +

t∫
a

G(v)(s)ds for t ∈ [a, b], (5.23)

i.e.,

v(t) = β +

t∫
a

g(s)ds for t ∈ [a, b], (5.24)

where the function g : [a, b] → C([c, d];R) is for a. a. t ∈ [a, b] defined by formula (5.13) with f := α′

and p := F (u). Therefore, by virtue of Proposition 5.8, we get( t∫
a

g(s)ds
)
(x) =

t∫
a

α′(s)ds+
t∫

a

x∫
c

F (u)(s, η) dη ds for (t, x) ∈ D

which, together with (4.4) and (5.24), yields that

u(t, x) = −α(a) + α(t) + β(x) +

t∫
a

x∫
c

F (u)(s, η) dη ds for (t, x) ∈ D.

Consequently, according to Proposition 3.2, the function u is a solution of problem (3.1), (3.2).

Proof of Theorem 4.4. Define the function φ by formula (5.21). It is clear that φ ∈ L([a, b];R) because
we assume that condition (3.4) holds.

Let u be a solution of problem (3.1), (3.3) and let the function v be defined by formula (4.1). In
view of Proposition 3.3, it follows from Lemma 2.6 that

u′[1](t, x) = φ(t) +

x∫
h(t)

F (u)(t, η)dη for a.e. t ∈ [a, b] and all x ∈ [c, d]. (5.25)

On the other hand, Propositions 5.3 and 5.5 yield that the abstract function v : [a, b] → C([c, d];R) is
strongly absolutely continuous, differentiable a.e. on [a, b], and satisfies condition (5.8). Hence, from
(5.8) and (5.25) we get

v′(t) = φ(t) +

·∫
h(t)

F (u)(t, η)dη = G(v)(t) for a.e. t ∈ [a, b],

where the operator G is defined by formula (4.6). Moreover, v(t)(h(t)) = u(t, h(t)) = γ(t) for t ∈ [a, b]
and thus, the function v is a solution of problem (1.1), (4.5) in the Banach space C([c, d];R).

Conversely, assume that v is a solution of problem (1.1), (4.5) with G given by (4.6) and define
the function u by formula (4.4). Since the function v is strongly absolutely continuous, according to
Proposition 5.2, we have u ∈ C(D;R). Analogously to the proof of Proposition 5.10, we show that

the function t 7−→
h(t)∫
c

F (u)(t, η)dη is Lebesgue integrable on [a, b].

It follows immediately from Lemma 5.7 that condition (5.23) holds, i.e.,

v(t) = v(a) +

t∫
a

g(s)ds for t ∈ [a, b], (5.26)



118 Jiří Šremr

where the function g : [a, b] → C([c, d];R) is for a.a. t ∈ [a, b] defined by formula (5.13) with

f := φ−
h( · )∫
c

F (u)( · , η)dη and p := F (u). Therefore, by virtue of Proposition 5.8, we get

( t∫
a

g(s)ds
)
(x) =

t∫
a

(
φ(s)−

h(s)∫
c

F (u)(s, η)dη
)

ds+
t∫

a

x∫
c

F (u)(s, η) dη ds

= γ(t) +

d∫
h(t)

ψ(η)dη − γ(a) +

t∫
a

x∫
h(s)

F (u)(s, η) dη ds

for (t, x) ∈ D which, together with (4.4) and (5.26), yields that

u(t, x) = u(a, x) + γ(t)− γ(a) +

d∫
h(t)

ψ(η)dη +
t∫

a

x∫
h(s)

F (u)(s, η)dη ds for (t, x) ∈ D. (5.27)

It follows from the initial condition (4.5) that u(h−1(x), x) = γ(h−1(x)) for x ∈ [c, d]. Therefore,
substituting h−1(x) for t in equality (5.27), we get

u(a, x) = γ(a)−
d∫

x

ψ(η)dη −
h−1(x)∫
a

x∫
h(s)

F (u)(s, η) dη ds for x ∈ [c, d].

Hence, (5.27) implies

u(t, x) = γ(t) +

x∫
h(t)

ψ(η)dη +
t∫

h−1(x)

x∫
h(s)

F (u)(s, η) dη ds for (t, x) ∈ D.

Consequently, according to Proposition 3.3, the function u is a solution of problem (3.1), (3.3).
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