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SOLVABILITY OF PERIODIC BOUNDARY VALUE
PROBLEMS OF FRACTIONAL DIFFERENTIAL
SYSTEMS WITH IMPULSE EFFECTS



Abstract. Two new classes of periodic boundary value problems of coupled impulsive fractional
differential equations are proposed. Sufficient conditions are given for the existence of solutions of
these problems. The analysis relies on the well known Schauder’s fixed point theorem. The obtained
results show that the Riemann—Liouville fractional derivative and the Caputo’s fractional derivative
have similar properties. Examples are given to illustrate the main theorems.
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1 Introduction

The fractional derivatives serve an excellent tool for the description of hereditary properties of various
materials and processes. Fractional differential equations arise naturally in many engineering and
scientific disciplines such as physics, chemistry, biology, electrochemistry, electromagnetic, control
theory, economics, signal and image processing, aerodynamics, and porous media. The boundary value
problems for nonlinear fractional differential equations have been addressed by several researchers
during the last decades. There have been many results obtained on the existence of solutions of
boundary value problems for nonlinear fractional differential equations (see [7,8,33,35,36,47,55,58]).
Applications of fractional order differential systems are in many fields, as for example, rheology,
mechanics, chemistry, physics, bioengineering, robotics and many others (see [11]). Diethehm [12]
proposed the model of the type (which is called a multi-order fractional differential system):

{CDgiyxt) = filt,yi(t), .. ya(t), i=1,2,...n, (1.1)

y;(0) = 5.0, i=1,2...,n

Here “Df, is the standard Caputo’s fractional derivative. This system contains many models as
special cases, see Chen’s fractional order system [51,52] with a double scroll attractor, Genesio-Tesi
fractional-order system [19], Lu’s fractional order system [13], Volta’s fractional-order system [38,39],
Rossler’s fractional-order system [27] and so on. Other applications of fractional differential systems
may be seen in Chapter 10 in [40].

In [16,37,49], the fractional order nonlinear dynamical model of interpersonal relationships

Dz (t) + aqwy (t) = Ay + Bra2(t) (1 — (1)),

1.2

Dzy(t) + apma(t) = Ag + Bow (t) (1 — exi (1)), 2
was proposed, where 0 < oo < 1, o; > 0, 5;, A; (i = 1,2), € are the real constants. These parameters
are oblivion, reaction, and attraction constants. The variables z; and x5 are the measures of love of
individuals and for their respective partners, where positive and negative measures represent feelings.
In the equations in (1.2), we assume that feelings decay exponentially fast in the absence of partners.
The parameters specify the romantic style of individuals 1 and 2. For instance, «; describes the
extent to which individual ¢ is encouraged by his/her own feeling. In other words, a; indicates the
degree to which an individual has internalized a sense of his/her self-worth. In addition, it can be
used as the level of anxiety and dependency on other person’s approval in romantic relationships. The
parameter f3; represents the extent to which individual ¢ is encouraged by his/her partner, and/or
expects his/her partner to be supportive. It measures the tendency to seek or avoid closeness in a
romantic relationship. Therefore, the term —q;x; says that the love measure of 7, in the absence of
the partner, decays exponentially and «; is the time required for love to decay (see [37]).

From the viewpoint of the theoretics and practice, it is natural for mathematicians to investigate
the impulsive fractional differential equations. In recent years, many authors [1,9,15,17,20,22,25,26,
28,29,34,41,46,47,54] studied the existence or uniqueness of solutions of impulsive initial or boundary
value problems for fractional differential equations. For examples, impulsive anti-periodic boundary
value problems (see [2-4,43]), impulsive periodic boundary value problems (see [44]), impulsive initial
value problems (see [10, 14,31, 50]), two-point, three-point or multi-point impulsive boundary value
problems (see [5,45,57]), impulsive boundary value problems on infinite intervals (see [56]). However,
there has been no papers concerned with the solvability of periodic boundary value problems of
impulsive fractional differential systems.

In [9], the authors have studied the solvability of the following periodic boundary value problem:

D x(t) — Ax(t) = p(t) f(t,x(t)), te€ (tistitr), i=0,1,...,m,
z(1) — }gr(l) 2 (t) = 0,

lim (t — ;)" " [z(t) — 2(t;)] = L(z(t:)), i=1,2,...,m,

t—t}
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where @ € (0,1), 0 =tg < t1 < -+ < typy1 = 1, fo is the standard Riemann-Liouville fractional
derivative, I; : R — R is continuous, A #£ 0, f is continuous at every points in (¢;,%;4+1] X R and for
every function v € CO(t;,#;1] the limit lim+ v(t) exists (finite), then lim+ ft, (t — ) to(t)) exists
t—t] t—t]
(finite).
In [24], Liu studied the existence of solutions of the following periodic type boundary value problem
of nonlinear singular fractional differential equation

DY [®(p() D u(t))] = a(t)f (t,u(t), Dgu(t), ¢ € (0,1),

lim t'~%u(t) — lim t'~u(t) = /G(S,u(s), Dy u(s)) ds,

t—1 0
0
1
}1_{% ' P®(p(t) DG u(t)) — hmt1 PO (p(t) Dy u(t /H D¢y u(s)) ds,
0
lim+ u(t) = I(t1,u(tr), D§u(tr)),
t—t]
lim (I’( ( )D0+u( )) = J(tl,u(tl),Dg+u(t1)).
t—t}

where 0 < o, 8 < 1, D§, (or Dg +) is the Riemann-Liouville fractional derivative of order « (or 3),
® : R — R is a sup-multiplicative-like function with supporting function w, its inverse function is
denoted by ®~! : R — R with supporting function v, 0 < t; < 1, I,.J : (0,1) x R? — R are continuous
functions, ¢, : (0,1) — R with ¢|(0,¢,}, pl(0,t,] € L'(0,t;) and Bl 175 Pl 1) € L'(t1,1), p: (0,1) —
[0, +00) with p|o) € C°(0,t1] and p|¢, 1) € C°(t1, 1) satisfies that there exist numbers L > 0 and
k > —a such that p(t) > % for all t € (0,1), t # ¢1, ¢ : (0,1) = R with q|(g,) € C°(0,%4]
and al(t,,1) € C°(t1,1) and there exist numbers Ly > 0 and ky > —f such that |q(t)| < Lit* for all

€ (0,1), f, G, H defined on (0,¢1) | J(t1,1) x R X R are impulsive Carathéodory functions that
may be singular at ¢ =0, ¢; and 1.

One knows that both of the fractional derivatives (the Riemann-Liouville fractional derivative
and the Caputo’s fractional derivative) are actually nonlocal operators because integrals are nonlocal
operators. Moreover, calculating time fractional derivatives of a function at some time requires all the
past history and hence fractional derivatives can be used for modeling systems with memory. In [9],
the fractional derivative has a variable base points t; (i = 0,1,2,...,m). This action may short the
memory time. However, in applications, fractional differential equation involves fractional derivative
that has a constant base point.

In this paper, we discuss the following impulsive periodic boundary value problems of singular
fractional differential systems with a constant base point ¢ = 0:

Dgta(t) — Mx(t) = pi(t) fu(t, =(t),y(t), t€ (tistipr), i€ No,

Dgzy(t) — Aay(t) = p2(t) fo(t, 2(1), y(1)), t € (ti,tivr), i€ No,

z(1) — }i_{%tlfal z(t) =0,

y(1) = lim t'm2y(t) = 0, (1.3)
lim (t — ;)" " a(t) = I(t;, (L), y(t:)), i€ N,

t—th

lim (t —t;)' " *y(t) = J (4, z(t;), y(t:)), i€ N,

t—t]

and
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“Dyla(t) — Mz(t) = p3(t) fa(t, =(t),y(t)), t€ (ti tiv1), @€ No,

“Daiy(t) — Azy(t) = pa(t) falt,x(), y(1)), t€ (titisr)), i€ No,

x(1) — hm :c( )=

y(1 )—}g%y( ) = (1.4)
hmx I(tl,x i), i€ N,

hrr;ry J(tl,x Z-), i1 €N,

where

(a) 0 < aq, ag <1, A1, A2 € R, D* is the standard Riemann-Liouville fractional derivative of order
x> 0, °D* is the standard Caputo’s fractional derivative of order * > 0;

(b) m is a positive integer, 0 = tg < t; < ta <+ < tmo1 < tm < tmy1 =1, No ={0,1,2,...,m}
and N ={1,2,...,m};

(¢) p1, p2 are continuous on (0,1) and py,p2 € L'(0,1) and there exist constants k; > —1, [; €
(—a;,0] with 1+ k; +1; >0 (j = 1,2) such that |p;(t)| <tk (1 —t)li for all t € (0,1), j = 1,2;
)

(c1) ps,ps are continuous on (0,1) and p1,pa € L'(0,1) and there exist constants k; > —1, [; €
(—a,0] with o + k; +1; > 0 (j = 1,2) such that [p;(t)| < tki (1 —¢)b for all t € (0,1), j = 3,4;

(d) fi, f2 defined on U (tistiv1) X R? are I-Carathéodory functions (see the definition in Sec-

tion 2), I,J : {t;: i 6 N} x R? — R are discrete I-Carathéodory functions;

(d1) fs, fs defined on U (tistiy1) x R? are II-Carathéodory functions (see the definition in
Section 2), I, J : {t i € N} x R? - R are discrete II-Carathéodory functions.

A pair of functions z,y : (0,1] — R is called a solution of BVP (1.3) if

x|(ti,ti+1] S Co(ti,ti+1], y‘(ti,ti-H] € Co<ti’ti+1], Z S No, (15)
and the limits
lim (t — ;)7 2(t), lim (t — ;)7 *2y(t), i € Ny,
t—tt t—th
exist and x, y satisfy all equations in (1.3).
A pair of functions z,y : (0,1] — R is called a solution of BVP (1.4) if the limits

lim z(¢), hm y(t), i € Np,

t—t} t—t}

exist and x, y satisfy all equations in (1.4).

To the best of the authors knowledge, no one has studied the existence of solutions for BVPs (1.3)
and (1.4). We obtain results on the existence of at least one solution for BVPs (1.3) and (1.4),
respectively. Two examples are given to illustrate the efficiency of the main theorems.

The remainder of this paper is organized as follows: in Section 2, we present preliminary results.
In Sections 3 and 4, the existence theorems and their proofs on BVPs (1.3) and (1.4) are given,
respectively. Finally, we present examples to show the applications of the main theorems.
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2 Preliminaries

For the convenience of the readers, we firstly present the necessary definitions from the fractional
calculus theory. These definitions and results can be found in [23,40].

Let the Gamma function, Beta function and two classical Mittag—Leffler special functions be
defined by

+00 1
Do) = / z*te " dz, B(p,q) = /:L"pfl(l —z)9 de,
0 0
E = - _  E = -
(@) ,; fokray e g T(6k +1)’

respectively, for « > 0, p > 0, ¢ > 0, § > 0. We note that Ess(x) > 0 for all z € R and Ess(x) is
strictly increasing in z. Then for x > 0, we have

Ess(—r) < Es5(0) = ﬁ < Es5(x).

Definition 2.1 ([23]). Let ¢ € R. The Riemann-Liouville fractional integral of order a > 0 of a
function g : (¢,00) — R is given by

19, g(t) = ﬁ / (t — )2 g(s) ds.

provided that the right-hand side exists.

Definition 2.2 ([23]). Let ¢ € R. The Riemann-Liouville fractional derivative of order o > 0 of a
continuous function g : (¢,00) — R is given by

o oy L d" 9(s)
D5 = g e | =g

where a < n < a+1, ie., n = [a], provided that the right-hand side exists.
Lemma 2.1 ([23]). Let a <n <a+1, u € C%ec,00) N L(c,00). Then
A D% u(t) =u(t) + C1(t — )+ Colt —e)* 24+ + Cpt — 0)*7 ",
where C; € R, 1=1,2,...,n.
We use the function space

X:{x: (0,1 = R:

] S Co(ti7ti+1}, 1€ N(),

(tistitr
there exist the limits lim (t —¢;)' ~*a(t), i € NO}.

t—t

Define
Joll = llzllx =max{ sup (£=£)" " a(®)] : i € No}.
te(titiva]

Lemma 2.2. X is a Banach space with the norm || - || defined.
Proof. In fact, it is easy to see that X is a normed linear space with the norm || - ||. Let {z,} be a

Cauchy sequence in X. Then ||z, — z,| = 0, u,v — +o00. It follows that

sup  (t—t;) 7 ’xu(t) - xv(t)’ — 0, v,u— 400, i€ Npy.
te(tistit1]
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and
(tistiya]

Define z; = x

lim (t — ;) " a(t), t=t,,
(t — ;) T (t) = =t
(t—t)mrz(t), t € (tiytiv].

We know that ¢ — (¢t — ;)1 ~*1Z(t) is continuous on [t;, t;11]. Thus t — (t —t;)1=*17, ,;(t) is a Cauchy
sequence in Cl[t;, t;1]. Then (t — t;)1=*1Z, ;(t) uniformly converges to some zq; in C[t;,t;11] as
u — +o00. It follows that

sup |(t — ) T, (t) — x07i| — 0, u— 400, i € Np.
tE[ti,tiy1]

That is,
sup (¢ — ;)" T () — (¢ — t:)™ " taoi| — 0, u— +o0, i€ Ny.
tE [t tiya]

Let xo(t) = (t — ;) " txg(t) for t € (t;,tiy1], i € No. It is easy to see that zg € X and z, — xg as

u — +oo in X. It follows that X is a Banach space. The proof is complete. O
Define
v ={y: 01> R:yl,,  €COoltitil] i€ No,
there exist the limits lim (¢t — ¢;)*~*2y(t), i € N, }
t—t]

with the norm

loll = llglly = max{ sup (t—t)""[y(t)]: i€ No}.
te(ti,tit)

Then Y is a Banach space. Choose E = X x Y with the norm ||(z,)|| = max{||z| x, ||ly|ly}. Then E
is a Banach space. We will seek for solutions of BVP (1.3) in E.

Definition 2.3. We call F : |J (t;,ti11) x R? = R an I-Carathéodory function if it satisfies the

m
=0

following conditions:
(i) t — F(t, (t —t;)*  tu, (t — t;)*2~ ') are measurable on (t;,t;11), i € Ny for any (u,v) € R?;
(ii) (u,v) = F (L, (t — t;)** ~tu, (t — t;)*> ') are continuous on R? for all t € (t;,t41), i € No;

(iii) for each 7 > 0, there exists M, > 0 such that |F(¢, (¢ — t;)* " u, (t — ¢;)*2"1v)| < M, for all
t € (ti,tiy1), i € No and |ul, [v] < r.

We call G : {t; : i € N} x R?> - R a discrete I-Carathéodory function if it satisfies the
following conditions:

(i) (u,v) = Gt (t; — ti—1) 1w, (¢ — t;—1)*2 ), i € N are continuous on R?;

(ii) for each r > 0, there exists M, > 0 such that |G(t;, (t; — t;—1) " u, (t; — t;—1)*2 " v)| < M, for
almost all i € N and |ul, [v] < r.

m

Definition 2.4. We call F': [ (ti, ti1) x R? — R a II-Carathéodory function if it satisfies the
following conditions: =

(i) t — F(t,u,v) are measurable on (t;,t;11), i € No for any (u,v) € R?;

(ii) (u,v) — F(t,u,v) are continuous on R? for all t € (t;,t;41), i € No;

(iii) for each r > 0, there exists M, > 0 such that |F (¢, u,v)| < M, for all t € (¢;,t,11), ¢ € No and
lul, o] < 7.
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We call G : {t; : i € N} x R?> — R a discrete II-Carathéodory function if it satisfies the
following conditions:

(i) (u,v) — G(t;,u,v), i € N are continuous on R?;

(ii) for each r > 0, there exists M, > 0 such that |G(t;,u,v)] < M, for almost all i € N and
Jul, v <.

We also use the function space

Xlz{x: (0,1] = R: z

COts,tis1], i € Ny, there exist the limits lim x(t), i € No}.

S
(tistiva] t—t]

Define

lall = llzllx, =max{ sup |a(®)]: i € No}.
te(ti,tip1]

Then X, is the Banach space with the norm || - || x, defined. Choose Ey = X; x X; with the norm
[(x,y)|| = max{||z|x,,|¥llx,}. Then E; is a Banach space. We will seek for solutions of BVP (1.4)
in E1~

To ease expression, we denote 6, x(f,t;) = (t—t;)* ' Eq o (A(t—1t;)*) for t € (t;,t;41] and a € (0, 1]
and A € R.

3 Solvability of BVP (1.3)

In this section, we study the solvability of BVP (1.3) by seeking solutions in the Banach space E.

Lemma 3.1. Suppose that o € L'(0,1) and there exist numbers k; > —1 and max{—ay, —k; — 1} <
1 <0 such that |o(t)| < tF1(1 — )t for all t € (0,1). Then x € X is a solution of

Dg‘iw(t) — Alx(t) = O’(t)7 te (ti,ti+1), i € Ny, (31)

if and only if there exist constants A; (i € Ny) such that

i t
1’(t) = I‘(al) ZAJ6G¢1,)\1 (t,tj) + /(5,117)\1 (t, 8)0(8) dS, te (ti)ti+1]7 1€ N(). (32)
j=0 0

Proof. We do two steps:
Step 1. Suppose that z € X is a solution of (3.1). By (3.26) in [8], we know that there exist
numbers Ag such that

2(t) = T(01) Aodas r, (£, 0) + / S (£ 5)(s) ds, £ € (0,41]. (3.3)
0

We know that (3.2) holds when ¢ = 0. Now suppose that (3.2) holds for i =0,1,2,...,n (n <m—1).
We will prove that (3.2) holds for ¢ = n 4+ 1. Suppose that

" t

2(t) = B() + (o) 3 Ajdan, (1,5) + / Sasns (8, 8)0(8) s, £ € (busrstnyal. (3.4)
j=0 0

It is easy to check that for ¢ € (t,, 11, tn42]

tj+1

t; lnt1

[ als) <
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J s
n tj'“ZAur(al)(s_tu)al_lEahal(Al(s_tu)al)+f(8_v)al_1Eal,Dé1 ()\1(8—’[})&1)0(’[}) dv
= /“:0 alo ds
= (t—s)
t ()43 AT (1) (s=1)* T Eay oy (M (s—15)*) +[(s=0)* " By oy (M1 (5—0)* )0 (v) dv
Jj=0 0
d
" / (t—s)m ’
tn+1
[ as) " (5= 8™ By (s — £)*)
S §—1y)"' " " Eaya 1(8 = ty)™
= —_— AT 1,01
| s+ oY A e ds
tog1 j=0u=0 g
tjt1 s 1
- (s =) 1 Ey 0, (A1(s —v)*)o(v)dv
2 / (t— )™ ds
=01 0
t
n _tNa-lp — )
+3 AT () / (5= t) (tal’asiAl(S 1)) g
— 8 1
7=0

tnt1

1Eo¢1,a1 ()\1 (3 - U)al)O'(U) dv

[ s— 0

d
(t —s) 5
t
Fa(s) " a Al
S w S—t ajw
= d AT t— —051 ozl 1 d
/(t—s)a 8+‘ Z (al)/( 2 Z a1w+1) 5
t 7=0u=0 i w=0
n+1 j
" t
+ZAF(041) / (t— S)*al _ al 1 Z S —t aw ds
; ! (s ( w+1 )
Jj=0 g
tj tj+1
AP (s —v)ow
1 1—1 1
+]ZO (t—s)=¢ ) Z T(an(w + 1)) dso(v)dv
0 i

t t
n J+1tj+1

B )\w( U)(xlw
t_ —Qq _ a;—1 AT g d
z:(:)/ s) (s —w ;)F(al(w+1)) so(v)dv
n+1 )\
w _ ozlw
/ / (t—s)""(s yer—t Z oj wa_ dso(v)dv
tn+1
AP (s —v)ow
—Q a 1 1
//t—s H( " Z T(ar(w + 1)) dso(v)dv
n+1 v
: B(s) n J +oo \w tit1
S
= d AUF -1 t— g) —t, a1w+a171d
/ (t— s)o S+ZZ (m)zl“(al(w—i—l)) /( §) 7O (s —t,) s
tnt1 j=0u=0 w=0

t
t

/ (t _ s)—(n (S _ tj)oqw-Hn—l dS

tn+1
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n Bty tj+1
+ Z / Z o (w + ) / (t — )" (s —v)** T~ dso(v) dv
n+1+oo t
/ Z o (w + ) / (t—s)" (s —v)W Tl gdso(v) dv
tw+1
t t
/ Z:O o (w + 0 /(t —8) " (s —v) Tl gs o (v) dv
tnt1
. ti+1—tu
400 w t—tq
/ s +ZZA lay) S ALE=f)™" / -
1— a1, agwtag—1
tnt1 j=0u=0 1;) (041(11) + 1)) . ( w) ? o
=
n +oo 1
t— ;)
+ AF(OLl) ( / o —a1, ,apwta;—1
tog1—tj
n Y too N |
AV (t —v)w
_’_Z/ 1 / 1 _ —a1, ajwta;—1
2 2 T(og(w +1)) ) (1-w) Mw dw o (v) dv
R
n Ltoo t— U t=v
—|—;) / Z:O Tlon(w+1)) / (1 —w)~ Tl gy, g (v) dv
=Y W 0
TR - 0) 1
Pt —v)n® _
+ / Z NCACED)) / (1 — w) " wrwta=l gy o(v) dv
0 w=0 thil—u
[ AV (t —v)ow /
/ Z oy (w1 1) /(1 —w) et gy g (v) dv
71+1
d A, Wt — ) —a1, o w
- [ s Srten S TR [ 0
n+1
0
n +oo 1
w t _ t _)alw
+ AT (o) 1( J / _ )T arwtag—1
tng1—tj
n 7 +o00 ( thr—l;v |
AP (t —v)rw
+Z/Z T(or(w+ 1)) / (1 —w) wrrwtoa=1dy g (v)dv
j=193 w=0 tj—v

1
t—wv

+ Z / Z 7&&1(“) D) / (1 —w)~ Tl gy, g (v) dv

j=0 i w=0 0
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ntl o 1
A (t — v)oaw B B
1— a1, 1wty 1d d
/wZOF(Oél 1)) / (1-w) ™ Mw wo(v)dv
tny1—v

t oo 1
)\w t— ozlw
/ Z 1 /(1 —w) vt dy g (v) dv
Oél w
tnt1 0

1
(t—ty)
—ds AT (« 1 —w) Mwrwtear=lyg
—|—Z Zf‘alw—i—l)/( w) Mw w
0

tnt1
tip1—v
P N oy [
+ / ! / (1 —w)~*rwrrwtor=1 gy g (v) dv
;0 w=0 F(al(w+ 1)) tj—v
‘s tj+1-v
S -
1 _ —Qq QW+ — d d
+Z/Zf(a1(w+1)) / (1-w) ™ Mw wo(v)dv
7=0 t; w=0 0
tnt1 o A\ ( ) 1
w(¢ _ p)oaw
1 —« ajw+ta;—1
_ 1-— 1yt 1= d d
+ / 2}F<a1(w+1)) / (1—-w) Mw wo(v)dv
0 w= tn+1/_'”
b oo 1
)\w t— alw
/ Z v) /(1 —w) vt dy g (v) dv
Doy (w+1 )
tn+1 0
/t 2(s) d+zn:A I( )+Z L tu) /1 —aymutar—ly
= S w @) w
) (t —s)> s ! — w+1 )
nt1

t oo 1
Ilﬂ(tiv)alw / —a ajw+ta;—1
1— 1 1 1 .
+/2_:0F(a1(w+1)) (1-w) *w dw o (v) dv
0 w= 0

One can see that for t € (tp41, tn2]

SR IR ——

n+1

1
n arw—1

1 Aagw(t — ty,)
AuF 1 1 _ —o ozuu—&-oel 1d
+ I(1—oq) Zo (1) Zl I (w+ 1 / w) “
U= w= 0

alw

1
t— 1
/Z 1a1w v) /1—w —ogerwtar=l gy, o (v) dv
1—a1 [ (w+ 1))
0

1
1_ —Q 041 1
+I‘(1—a1 / w) dwo(t)
0
Aajw(t —t,)v—t
= D (t) A T( ! B(1 -
o(t)+ D (t) 1—a1 Z (o Z Na(ws ) BU-anawta)
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= Yaw(t —v)*wl
B(1 - d
iy [ S it

XN aqw(t—t,)o w1 X\ ayw(t—v)w=1
=o(t)+D* AT ! / 1 d
( ) t7+L+1 +Z al Z F(Oq’LU-l—l Z a1w+1)) U(U) v

= o(t) JFD;&+ O(t) + M\ § AT () (t—t5)* By o (M1 (E—t5))
n+1 j:O
t

Y / (t = )1 B, oy (M (t = 8)™)o(s) ds.
0

So,

(1) = Dja(t) = Ma(t) = ! - (/ (tx(ss))a ds)l
0

- A1 (‘I’(t) + Zn: AT (e )(t = ) 7 By g (M (t = 5)™)

n / (t = )™ By oy (At — )°)o(s) ds)

ot) + Dl ®(t) — M P(t).

n+1

It follows that D‘X1 O(t) — M ®(t) =0 for t € (tnt1,tnt2]. Hence there exists a constant A, 1; € R

n+1

such that ®(¢t) = Ap1D(1)(t — th1)* ' Eay 0y (A (t — ta41)*). Substituting @ into (9), we know
that (3.2) holds for ¢« = n + 1. Thus, due to induction, (3.2) holds for all i € Ny.

Step 2. Now suppose that x satisfies (3.2). We prove that € X and z satisfies (3.1).
Firstly, we prove that x € X. In fact, we have for 0 < t; < to < 1 that

t2 t1
‘ /(tz - s)al*lEahal()\l(tg —5)*)o(s)ds — /(t1 - s)al*lEahal()\l(tl —5)*)o(s)ds
0 0
ta
< /(t2 )M B o (A (ts — )*)sM (1 — 8)1 ds
t1
ty
+ / (2 — )21 — (t1 — )| By oy (a(f2 — 5)™)s51 (1 — )1 dis
0
t1
+ /(tl - S)al_1|Eal,0¢1 (Al(tQ - S)al) - Eal,al (Al(tl - S)a1)|skl(1 - s)ll ds
0
to
to — aw+ai+1l;—1 k1
t1

ty

+ Z F al w + 1 / [(tl _ S)alfl . (t2 . 8)“171](152 - S)alwskl(]_ . s)ll ds

0
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t1

+ /(t1 = 8)" 7 Eay oy (M (ta = 8)™) = Bay g (A1 (t1 — )]s (1 = 5)" ds
0
=: M1 + M2 + M3.

We see that the first term M satisfies
1
Z toz1w+a1+7€1+ll (]_ . w)aw+a1+11*1wk1 dw
F 041 w —|— 1 2
1
< Eoyoq (M1t5? /1—wa1+l11k1dw—>0 as t; — ta.

The second term My satisfies

ty

M- t — a;—1 _ to — a;—1 1— I kld
Q_Zl“alw-i-l)/[(l s) (ta — ) (1 —s)rs™ ds
0
+o00 t1 +oo 3 t1
t— ap—1 to— 5 kld _ /t e+l —1 kld
< 3 gy 1" e = S flamsy s
0 w= 0
400 \w ty oo \w t1
< A t1 — g 041+11*15k?1 ds — / to — 5 a1+11715k1 ds
<2 Morw 1) J6-9) 2 Ty )
w= 0 w= )
+o00 w L
— Z )\1 Ot1+k1+l1/ a1+l1 1 kl dw
o F(oq(w—l— 1 )
t1
+oo NG to
_ 7t051+k1+l1/ 1 —w a1+llflwk1 dw
;Or(al(w+ 0) b2 (1-w)

0
— Eal,al ()\1) [t?l“l‘kl"rll _ tg‘1+k1+l1]B(a1 + ll7 ki + 1)
1

- Ealyal()\l)tgﬁkﬁll /(1 - w)o‘ﬁll*lwkl dw — 0 as t; — ta.

t
t2

Now for the third term Mjz, we know that E,, o, (A12z®) is uniformly continuous on [0, 3], thus for
each € > 0 there exists § > 0 such that |Eq, o, (M2]) — Eay 0, (M128)] < € for |21 — 22| < §. Then
for s € [0,t1] and [t — t2] < 0, we have t; — s,ta — s € [0,¢2] and [(t1 — s) — (t2 — s)| < . So
|Eoy 0 (A1(t2 — $)Y) — By, 0 (M1 (81 — $)*1)| < €. Hence,

t1
M; < /(t1 C T By (At — 8)™) — Bay oy (Mt — 5))]s5 ds
0
t1
< 5/(t1 —s)thi=lgk s < eB(ag + 1y, k1 + 1).
0

Thus M3 — 0 as t1 — to.
¢
So, t — [(t — s) 1 Ey, 0, (M1 (t — s)*1)a(s) ds is continuous on (0,1]. Then z € CO(t;,t;11],

0
i € Ny. For t € (0,t1], we get
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t t
th=o | [(t—=8) " B, 0. (M (t—8))o(s)ds| <t'= [(t—8) " E,. 0. (A (t—s)*1)sF1 (1—s)"1 ds
1,1 1,1
0 0
t
)\l t—s) a” )\’ t—s)
:tl—al _ ozl 1 k1 1— lld <t1—o¢1/t a1+ll 1 k:1 d
/ Z [(aritaq) (1=s)" ds< ) Z T(aritaq) 5

0
t

+oo )\i
— tl_al .1 / t—sg a1+a1i+l1—18k1 ds
;F(alz—l—al) ) ( )

1

400 A\
— ¢l Z r .1 ta1+o<1i+l1+k1 /(1 _ w)a1+a1i+l1—1wk1 dw
= Dt +aa) 0

1
< tl ay Z tOé1+Otli+ll+k1 (1 _ w)a1+ll—1wk1 dw
I(aqi —|— a1)
0

too NG et
= t1+l1+k1B(Oz1 + 11, k1 + 1) Z
=0

L =¢lththp li, k1 + 1) Eay oy (A1™).
T(oni+ar) (@b ) a0 (M)

From ki +1; +1 > 0, we get

lim ¢!~
t—0

=0.

/ (t = ) B o (M (t = 5)™ )o(s) ds
0

Then hm+ t1=212(t) exists. It is similar to prove that lim (t ti)171x(t), i € N, exist. Hence x € X.
t—0 t—tf

By direct computation, similarly to Step 1, we can show for t € (t;,ti41], ¢ € Ny, that

Dita(t) = Mat) = fr—o (jt—s —a1g, ds>/—/\13:(t):a(t).
0

So, x is a solution of (3.1) in X. O

Lemma 3.2. Suppose that A = 1 — T'(a1)En, oy (M1) # 0, 0 € L'(0,1) and there exist numbers
k1 > —1 and max{—aq,—k1 — 1} <1y <0 such that |o(t)] < tkl( t)lr for allt € (0,1). Thenz € X
is a solution of

DS&ZE( ) )\116( ) (t) t e (ti,ti+1)7 i € Ny,

(1) = lim 1= x(t) = 0, (3.5)
lim (t —t;)'"*2(t)=I;, i€ N,
t—tf
if and only if x € X and
1
[(a1)%60, 2, (t,0) I'a1)da, 2, (2,0
o(t) = PO B 57 g5 1) 4 HO Ve 6O [ s)ots)as
j=1 0

P(01) S Libann, (h15) + / Sasns (8, 8)0(s) s, t€ (tiytisa], i € No. (3.6)
=1
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Proof. Let x be a solution of (3.5). Similarly to Step 2 in Lemma 3.1, since [ < 0 for ¢ € (0, 1], one

can see that
t
[t ds
0

From ky +1; +1 > 0, we get

t17a1 — t17a1

/(t C M E o (O (t— 8™ )o(s) ds
0

< t1+l1+k1B(a1 + 11, k1 + 1)Ea1,a1 (Altal)'

t

/5041,)1(15, s)o(s)ds
0

lim ¢~ =0. (3.7)
t—0

From Lemma 3.1, there exist constants A; € R (i € Np) such that
i
“T(a1) Y Ao, (115) +/5a1,h(t,s)a(s) ds, t € (tstin], i€ No. (3.8)
— )

Note that Ey, o, (0) = F(il) . It follows from the boundary conditions and the impulse assumption in
(3.5) that

m 1
F(al)ZAjaal,Al(Ltj)+/5a1,)\1(175)0(5) dS*Ao :0, Az :Ii7 ’LEN
j=0 0

It follows that .
A0—< o) Zmamu +/ Sons (1,8)0 )d)

0
Substituting A; (i € Np) into (3.8), we obviously get (3.6) by changing the term order.

On the other hand, if x satisfies (3.6), ] is continuous and the
limit tlirtn (t—t;)'™12(t) exists for i € Ny. Using Lemma 3.1, we can prove that z satisfies (3.5). O
—t+

Lemma 3.3. Suppose that V = 1 — I'(a2)Epy 0, (A2) # 0, 0 € L'(0,1) and there exist numbers
ko > —1 and max{—ay, —ko — 1} < Iy < 0 such that |o(t)| < t*2(1—1t)!2 for allt € (0,1). Thenz €Y
is a solution of

Dgfl’(t) — )\2%( ) 0( ) te (ti,ti+1), 1€ No,

. 11—
2(1) = lim 7% (t) dt = (3.9)
lim (t —t;) " *22(t) = J;, €N
t—t

if and only if t € Y and

1
T(02)das 1, (,0) /50[27&(1,8)0(8) ds
\Y
0

(€3] 2 « ) -
(t) = T2 00 S 1 a(t,),y(63)) s (1,15) +
=1

F(OQ) Z‘](tjvx(tj)vy(tj))aoéz)q (tvtj) + /5042-,)\2 (t,S)U(S) ds, te (tivti+1]7 i € No. (310)
=1

Proof. The proof is similar to that of Lemma 3.2, and hence we omit it. O
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Let A,V be defined in Lemmas 3.2 and 3.3. Define the nonlinear operator 7' on E by T'(x,y)(t) =
(Ta(2,9))(1), (T2 (2, y)) (1)) with
T(01)250, 0, (t,0) <=
(T, ) ) = T e (0 Do (152040

1
+ — " F( al A / arn (1, 8)p1(s) f1(s, 2(s),y(s)) ds
0
NG ZI t 2 (t3), y(t5)) 000 3 (1 15)

+/5041,>\1 (t’8)p1(5)f1(87x(8)7y(5)) dS’ te (tivtiJrl]’ i€ N07

and
() 1) = HOD OO S5 140005, 0007), )
Ho2lna(60) / Sz (1 pa(5) s, (), (5)) s
042 Z’] ))6a2,>\2(t t; )
+/50427)\2(ta 3)P2(8)f2(8,x(s),y(s)) dS, te (ti,ti+1], 1 € Ny,
for (z,y) € E.

Lemma 3.4. Suppose that f1, fo are I-Carathéodory functions, I, J are discrete I-Carathéodory
functions. Then (x,y) € E is a solution of BVP (1.3) if and only if (x,y) is a fixed point of T in E
and T : E — E is well defined and is completely continuous.

Proof. It is easy to see from Lemmas 3.2 and 3.3 that (x,y) € E is a solution of BVP (1.3) if and only
if (x,y) is a fixed point of T in E. We divide the remainder of the proof into the following steps:

Step (i). We prove that T : E — E is well defined. Similarly to the proofs of Lemma 3.1, we can
prove that T} (z,y) € X and Ta(x,y) € Y for all (z,y) € E. Thus T : E — E is well defined.

Step (ii). We prove that T is continuous.
Let (zn,yn) € E with (4, yn) — (20, y0) as n — oco. We can show that T'(z,,yn) = T(zo,yo) as
n — 0o by using the dominant convergence theorem. We refer the readers to the papers [42,48,53].

Step (iii). Prove that T is compact, i.e., T'(2) is relatively compact for every bounded subset Q C E.
Let © be a bounded open nonempty subset of E. Then there exists r > 0 such that

el =max{ swp (t= a0, swp (E— )y i€ No} <r<too (311
te(tstit1] te(ti,tiy1]

holds for all (z,y) € Q. Since fi, f» are I-Carathéodory functions and I, J are discrete I-Cara-
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théodory functions, there exist constants My, My, My, , Mg, > 0 such that

_ z)l “a(t) (E—t)' " 2y(t)
|f1 t 1’ | ‘f( — ¢ )1 ay (t _ti)l—ag

\fz(t,:c t),y(t >>\<Mf2, te(ti,tm), i € No,

)‘ < My, te (ti,tit1), @ € No,

3.12
I(ts,2(t) e (t; —tic) "™ @(ty) (6 —ti—1)' "2y (t;) <M, ieN (3.12)
| ( ’L?:C( | - ‘ ( (2 (tq, —tifl)l_al ) (tz _ti71>1 as )’ 1, 1€ )
|J(t“x tz),y(tl))‘ < My, i€ N.
This step is done by three sub-steps.
Sub-step (iiil). Prove that T(Q) is uniformly bounded.
Using the definition of Ty, for t € (0,t1] we have
[D(1)?Fay o, (M85 &
£ (Ty , ) (1) < ) Fanan (X 1 By (L= 1)) M,
A
j:l
D(01) oo, (M) [
aq a1,001 1 ta a]— «
+ 1|A| L /(175) ! lEahm()\l(lfs) Nsh(1— )l ds My,

t

4l /(t - .s)o‘rlEoéha1 (M (t — s)o‘l)skl (1- s)ll ds My,

0
< Tl Bouos ol (1 g =t 1)y (01
+ (F(al)EaAl,lal(P\l) + I)B(Otl + 1,k + 1)Ea17a1(|)\1‘)Mf1.

Similarly, we can prove for t € (¢;,t;11], i € N, that

(t = t:) | (T1 (2, )(D)]

T(a1)2t9 ™ By an (M [E21) & )
: (1—t;) " By, 0, (A (1 — t;)*)M;
|A| ; J 1,001 j
F(al)tivl*lEahal(|>\1|t?;1) B(
A

< (tigr — i) ™

+ (tiy1 — ti)l_al a1 + 1, k1 + 1) Eay 0y (M) My,

+T(1) Y Ea,ar (M l(tin — 5)*) My
j=1
+ max {1 ta1+k1+l1 }B a + ll? kl + 1)E0(1 01(‘/\1|tz+1)Mf1

D(a)tY Eay oy (1A
< ( ( 1) 1 1, 1(‘ 1|)(1 7tm)a171 +1)mr(a1)Ea1,a1(‘/\l|)MI
A
Da)t By, (A N
+ ( (al) 1 |A| 1, 1(| 1|) —|—max{1,t11+k1+ll })B(al —|—l1,k1 + 1)Ea17a1(|)\1|)Mf1.

Then

()t ' By, o (I o —
73l < (HO T )t )0 B, (DM,

(F(al)t?l_lEal,al(lhl)
1A

+ max {1,#;1”1“1})]3(@1 + 1, k1 + 1) Eay oy (M) My,
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We can also find that

[ (a2)t5? " Eoy.an (A
[Tl < (HOE Zeaea P gyt 1) 00) o (e
as—1
(o2t Pomoalel) s (1,544 B 41 o + 1B s (e M

From the above discussion, T(Q) is uniformly bounded.

Sub-step (iii2). Prove that both {(t—t;)'~* (T1(x,y))(t) : (x,y) € Q} and {(t—t;)* > (Ta(x,y))(t) :
(z,y) € Q} are equi-continuous on each subinterval [a,b] C (t;,t;+1], @ € No, respectively.
Let so < s1 and s1, 82 € [a,b] C (0,¢1]. We can prove

ls17 (T (@, ) (s1) = 85~ (Th (2, y))(52)]
Eal,oél ()‘18?1) — Eahal /\18
A

Z a1 1Ea1,0t1 (/\1(1 — 1 )al)MI
j=1

< D(@)?|

+ ()

o
’Eahal()\ls]_l) - al,Oél )‘182
A

1
/ $) M By 0y (M (1 = 5)*)sM (1 — s)l1 ds
0

+

51" /(81 = 8)" 7 Bay o (51— 8))pa(s) fi(s, 2(5), 5 (s)) ds
0

S2

=57 [0 = )™ By (o2 = ) Ipa(5) (5,0 (5),y(s)) s

0

(i) It is easy to show that Eq, o, (A12®') is uniformly continuous on [0,b]. Then for any € > 0,
there exists § > 0 such that |Eq, o, (A157") — Eay 0, (A155 )| < ¢ for all 1,52 € [0,b] with |s; —sa| < 6.

(i) Both > (1—t;)*" "1 Eqa, o, (A1(1—¢;)%) M and f(l—s)al—lEal,al(Al(l—s)al)s’ﬂ(l—s)ll ds
j=1 0

are constants.
(iii) It is easy to prove that

F—yt <(x—y)* forall pe (0,1, z>y>0,
Pyt <t —y) forall p>1, o>y >0,
1 1
hi(z) = xc* ! is increasing on (0, ——) and decreasing on ( - — —|—oo), ce(0,1),
Inc Inc
ho(z) = —zInz > min { — (b —a)In(b — a), —bInb} for all = € [b— a,b].
It follows that

1 1 1 1
< 2 < 1, } 1, b—a,b].
hl(m)imax{l e —clnc} max{ "¢ min{—(b — a)In(b— a), —bInb} z>1, celb—alb
Then we have for s, s1 € [a,b] with s; > s9 that

S1

st / (51— 8 By oy (51 — )™ )p1 () (s, 2(5), y(s) ds

0

. / (52— ) Eay ay (52— )71 (5) (5, 2(5), y(s)) ds
0

Oélkl

i oo BB
0
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)\ o ozlk
_sé—al/ _ 061 12 1 82]{;—51 (S)fl(s,x(s)ay(s))ds

|>\Ii " 1 51 /(81 _ S)al(kJrl)ilpl(S)fl(S,3’3(8),y(s))ds
0

pr |);e1+1 / Jer =g (5) fi (5, 2(5), y(s)) ds
0

S1

$1 /(31 — )ty (5) fi (s, 2(s), y(s)) ds

11—y al(k+1) 1
— S5

p1(8)f1(s,2(s),y(s)) ds

o\

‘/\1 l1—o 1—a 7 ay(k+1)—1
— Z ey [ s = o) ). (s s
0

S1

+sp / (51— )™ D p ()] | fu(s, 2(s), y(s)) | ds

S2

sl / (51— )1 BFD=1 (g — )01 ()] £, (s, (s), y(s))] ds
&l i

<M 1 1—aq _ 1—aq / _ Oél(kt+1)fl k1 1_ lld

<M Sk s 1) Dsl 2| [ o1 =) (1 —s)tds
- 0

51

+ 51 a1 /(31 - s)o‘l(kﬂ)*lskl(l - s)l1 ds

S2
S2
455 / ‘(31 — gyl () s)(’“(kﬂ)_l‘skl(l — )l ds
0
<M Jf |A1]F ‘81 a1 _ gl- al‘ _ g)ea(bED 1 g
=N LTy (k + 1)) 2
k=0

S1

+ 857% /(51 — s)“l(k+1)+ll_lsk1 ds

82
S2

+ 51 ay / |(51 - S)al(k+1)71 - (52 - S)al(k+1)71|5k1(1 _ 5)l1 d8:|

1
|Aq|F 1— 1— ay (k+1)+k1+1 (k l k
- M gl—a1 _ gl-anj 1+l Otl +1+11 1 dw
flzralkﬂ 51 2 s

0

1
— k+1)+ky+1 _
+S% 0418?1( +1)+k1+11 /(1 _w)al(k—i-l)—i-ll lwkl dw
sg
51
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s2

+ sé_o‘l / |(51 — s)o‘l(k“)*l — (82 — s)o‘l(k+1)*1|sk1(1 — s)ll ds}
0

+oo ‘)\1|k

<M l—o 1 ay ar+kiHi bOéerrHl /1 O¢1+11 1 kld
< flkzﬂ)if(al(k+1)) [|s1 | max {a } w) w

4 max {aa1+k1+117b(¥1+k1+11} /(1 _ w)a1+11—1wk1 dw

s1

1 041/‘ s1 —8 al(k+1) 1 ( —8)a1(k+1)_1}8k1(1—8)11 ds|.

One can see

1
}81 M5 M| — 0, /(1 —w) Ty dyy — 0 as s; — so.

52
S1

On the other hand, for a;(k+ 1) — 1 € (0, 1] we have

1 ay /’ 81 _ s)al(k—i-l) 1 (82 _ s)oq(k—i—l) 1’8161 _ S)ll ds

So 1
< (51 _ 82)a1(k+1)—1 /skl (82 _ S)ll ds = (81 _ 52)a1(k+1)—1sl2ﬂ+ll+1 /(1 _ ’w)llwkl ds
0 0

1
< (31—52)"‘1(k+1)_1/(1—w)l1wk1 dw—0
0

1 1
as s1 — S9 uniformly for k= [07} -1, [—] et

For ay(k+1)—1>1,

1 oy /| 81 _ S a1 (k+1)— (82 _ S)al(lc+1)—l|8k1(1 _ S)ll ds
(s1— s2 / o (k+1) —1)(sy — s)rFFD=2k () — )11 s
0

s]Cl 5275 ds

< (81— 52) {11 :
< (51 — s9) max e min{—(b—a)In(b— a), —blnb}

1

1 1 ki+l1 +1/ k l

< — — 1 1 1 _ 1

< (s sz)max{l, e min{—(b—a)In(b — a),—blnb}}s2 w1 —w) dw
0

1

/wk1 (1—w) ll dw—0 as s;—Sso.
0

1
"¢ min{—(b—a)In(b—a), —blnb}

< (81 —82) max {1
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For ay(k+1)—-1<0,
52
Séfal / ’(51 _ S)a1(k+1)—1 _ (52 _ S)al(k—‘rl)—l’Sk‘l(l _ S)ll dS

0
s

< / [(82 _ S)al(k+1)—1 _ (81 _ S)al(k+1)—1]sk1 (82 _ S)ll ds

0
S2 S2
< /(52 — syl +h =Lk gy /(51 — sy =Lgk 50 s)h ds
0 0
82 82
< /(82 _ S)al(k+1)+l1—18k1d8 _ /(81 _ s)al(k-l-l)-i-ll—lskl ds
0 0

52

1 2

k+1)+k1+1 _ k+1)+k1+1 _
_ (Tt 1/(1_w)o¢1(k:+1)+l1 Lkt g — gt (D) R 1/(1_w)a1(k+1)+l1 Lkt du
0 0
1
k+1)+k1+1 k+1)+k1+1 _
< |sgl( +D+ki+l 8(111( +1)+k1+ 1’/(1 _w)al(k+1)+l1 lwk1 dw

0

1
k+1)+ky+1 _
+511341( +1)+ki+1 /(1 _w)al(k+1)+l1 L®t duw
s2
51

1
k+1)+k1+1 k+1)+k1+1 —
S|512341(+)+ 1+1_81111(+)+ 1+1’/(1_w)a1+l1 Lw®t dw

0
1

+ max {aa1+k1+ll’ba1+k1+l1} /(1 _ w)al+11*1wk1 dw — 0
52
51

1
as s; — so uniformly for £ =0,1,2,..., {—] — 1.

From the above discussion, there exists § > 0 such that

1
‘5%_0‘1 — sé_all <e, /(1 —w) Lk gy < e,

52
s1

§2
s%_al / ‘(51 - s)al(k“)*l — (82 — s)al(k“)*l‘skl(l — s)ll ds < e
0

hold for all s1,s92 € [a,b], 0 < s1 —$2 <9, k=0,1,2,.... Then

S1

170 (51 = ™ B 51 = %001 (91 50(5),(5)) ds
0

52

i / (52— 8 Fay oy (52 — )™)p1 () (s, 2(5), y(s) ds
0
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1

+oo k
A1l +k1+1 k _
M N L artkith partkith 1 — w)rth—1,k g
<M 2 i gy |t J 0 e du
- 0

+ max {aa1+k1+l1’bal+kl+ll} + 1:|
1
= ‘EMflEa1,a1(‘)‘1|) {max {aa1+k1+l1’ba1+k1+l1 } /(1 _ w)a1+ll—1wk1 dw
0

+max{ao‘1+k1+ll,ba1+k1+ll} + 1}, s1,82 € [a,b], 0<s1—s2<9, k=0,1,2,....

From (i), (ii) and (iii), we have
’sifql(Tl (x,y))(s1) — s;al(Tﬂx,y))(sQ)’ — 0 uniformly in [a,b] C (0,%1] as s3 — $a.
Similarly, we can show that for s1,s2 € [a,b] C (¢;,ti41], 1 € N,
|(s1—t:)" " (T1 (2, y))(s1) — (52 — t:)" " (T1(z,y))(s2)| —> O uniformly as s; — s2,
and for s1, s2 € [a,b] C (¢, ti+1], ¢ € No,
|(s1— t) T2 (Ty(2, ) (s1) — (52 — ;)1 72 (To(z,y))(s2)| — O uniformly as s1 — s5.

All of these expressions complete this step.

Sub-step (iii3). Prove that both {(t—t;)'~* (T1(x,y))(t) : (x,y) € Q} and {(t—t;)' = (Ta(x,y))(t) :
(x,y) € Q} are equi-convergent at t = t;, i € Ny, respectively.
For i € Ny, since 1in£r(t—ti)1_a1 (T1(z,y))(t) exists, we can easily see that {(t—t;)1 = (Ty(z,y))(t) :
t—t;

(z,y) € Q)} is equi-convergent at t = t;, i € No. Similarly, we can show that (t —t;)' =2 (Ta(z, y))(t) :

(z,y) € (Q)} is equi-convergent at t = t;, i € Ny. So T(Q) is relatively compact. Then T is completely
continuous. O

Now, we prove the first theorem of this paper by using the Schauder’s fixed point theorem [30].
We need the following assumptions:

(D1) fi, f2 are I-Carathéodory functions, I, J are discrete I-Carathéodory functions and there
exist non-decreasing functions ¢;,v; : [0,+00) x [0,+00) — [0,+0c), measurable functions
®i, P, 0 (0,1) = R (i = 1,2) and constants I;, J; such that

‘fl (t’ (t— tf)lfal’ (t— ti/)lfm) —¢1(t)| < oyl [yl), t € (tistiva), x,y€R, i€ Ny,
£t e o) 0] < allel ).t € (b ti) wy € R € No,
1t e ) Bl SRl b, GEN, wy e,
(o =y oy~ | e, SE N, zy ek

(D2) fi1, f2 are I-Carathéodory functions, I, J are discrete I-Carathéodory functions and there
exist nonnegative constants I;, J;, b;, a;, By, A, 75, 05 (j = 1,2,...,n) and measurable functions
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¢; :(0,1) = R (i = 1,2) such that

n
(0 e )~ O] € el 1€ (ttn). myeR, ieN,
K3 .

n
(0 i )~ O] S bl te (it wye R, N,
K3 .

n
I(t-7 )—I- <» Ajlz|¥|y|?, jeN, z,yER
’ Tty —tm)ter T (G —tyoa)tee ) Jz::l ’ ’ c
‘J(t' - ’ )—J' <§n:B-le”|yl”ﬂ' JEN, z,yeR
) — Y — —_ ) ) ) *
Ut —ta) e (=)t ) T

Define

2 m !
(1) = DO EO S5 1114 HO e (0) / Sason (1, 5)p ()01 (5) ds

j=1

I'(o Z%l A ()T +/5a1 At 8)pr(s)oi(s)ds, te (ti,tiva], i € Ny,

j=1
and
[(az)?0 0) v r 0) /
« [e % t, « Qe t
ba(t) = N2 LD S5 1)+ HO D) [ s)pas)oas) ds
j=1 0
i t
+F(a2)z5az,kz(tafj)t]j+/5a2,A2(t75)P2(5)¢2(5) ds, t€ (ti;tiy1], i € No.
Jj=1 0
Denote

L(a1)t? ™" Eaya, ([Aal)
A
F(al)t?lilEalxal (|>‘1|)
A

01271
py = (R0 Forn Pl 4 1, 45040412} VB0 + Dy b + 1) Eag (),

+ max {1,t?1+k1+l1 })B(al + lla k1 + 1)Ea1,al(|>‘1|)v

(1= )™~ 4 1)l (1) Bay o, (),

V|
D(a2)t]?" Bay a, (| A2])
V|

Theorem 3.1. Suppose that (D1) holds. Then BVP (1.3) has at least one solution if

(1= )71 4 1)m(02) B (1)

Pidy (r1 4 | @1, 72 + [|[@2]]) + @1y (r1 + |@1]], 72 + [|®2]]) < 71,

- s (3.13)
Pydy (1 + | @], 72 + [|[D2]]) + Qaws (r1 + |P1]], 72 + [|®2]]) < 72

has a couple of positive solutions (r1,r2).

Proof. To apply the Schauder’s fixed point theorem, we have to define a closed convex bounded subset
Q of E such that T(Q) C Q.
Let r1 > 0, r2 > 0, denote Q@ = {(z,y) € E: |z — @4 < 71, ||y — P2l < r2}. For (z,y) € Q,
we get
loll < llz— @1l + )l < 1+ 1010, llgll < lly — Bal] + @] < 72+ 2]
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Then (D1) implies that
_ 1 Qi g _ Z_lfocz
ittt te) = en(0)] = [ (1 s i) — o)
< o (It —ta) a1 (¢ = t) 2y (@)]) < oa(llz]l, yll)
<oy (ri 1@l e+ [|P2ll), t € (tistit1), @€ No,

|f2 t,.’[(t ’y | 52(7A1 + ||<D1||7T2+ ||(I)2||)a te (tiatiJrl)v 1€ NO)
| 1(t5, 2( 1)7 Ll <4y (ri+ @l 72 + | 92]l), 7 €N,
| J(t5,(t;),y Ji| < Uqy(r1 + @], 72 + [|®2]), j € N.

By the definition of T, using the above inequalities, similarly to Step (iiil) in the proof of Lemma 3.4,
we get

I'(01)t]" " Eay oy (|A1])
A
x mI' (1) Eay oy (A1) (r1 4+ @1, 72 + [|2]])

[(00)t7 ™ Eay oy (M) a
+( L N L +maX{1,t11+k1+l1})

X B(og + 11, k1 + 1) Eqy 0, (|A])@1 (11 + | @1]], 72 + [|®2]])
=Py (r1 + || 1], 72 + [|P2]]) + Quby (r1 + [|[ @1, 72 + [|D2]])-

173 (, ) - @1l < ( (1= tm) 7 1)

Similarly, we have

71EC¥2,0¢2(|)‘2D
4

X mI(02) By o (| X2]) o (r1 + @11, 72 + [|®2]])

as—1
+ (F(QQ)t12 |VEiOé27a2(|/\2|) + max{l,t‘f2+k2+l2})
x B(az + lo, k2 + 1) Ea, a, (| A2)) @2 (r1 + ([ @1, 72 + (| @2]])
= Pygy(r1 + | @1, 72 + [|D2]]) + Q2ws (r1 + |P1]], r2 + [|2]]).
From the assumption, the inequality of system (3.13) has positive solution (r1,72). We choose 2 =

{(z,y) € E: |lz — 1| <71, ||ly — Pa|| < ra}. Then we get T(Q) C Q. Hence the Schauder’s fixed
point theorem implies that 7" has a fixed point (z,y) € Q. So (x,y) is a solution of BVP (1.3). O

| To(z,y) — Pa|| < (F(az)t’f2 (1= t)" ! + 1)

Denote
D(a)tY Eay oy (1A o
Py = ( ( 1) : |A‘ - 1(| 1|) (1 _tm) o + l)mr(al)Ea1,a1(|>‘1|)AJ’
C(a)t Y E,, o (I N .
+ ( (041) 1 |A| 1, 1(| 1‘) —|—n’1aX{1,t11+k1+ll})B(Oé1+l17k1+1)Ea1,a1(|/\1|)aj’ 7=1,2,...,n,
NG A _
Qj — ( ( 2) 1 |va2,a2(| 2|) (1 _tm)az 1 + l)mF(ag)Ea27a2(|/\2|)Bj
I(02)t7? " Bay 0, (JA
( (a2) 1 |v| 2, 2(| 2‘)—|—maX{17t?2+k2+l2})B(a2+127k2+1)Ea2,a2(|)\2|)ij 71=12,...,n
Theorem 3.2. Suppose that (D2) holds. Then BVP (1.3) has at least one solution if
n n )
DR+ 1@ e + 1227 < D Q[+ 1 @all] 7 [ra + 1 @2]]]7 < 7o (3.14)
j=1 j=1

has a couple of positive solutions (r1,72).
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Proof. To apply the Schauder’s fixed point theorem, we have to define a closed convex bounded subset
) of E such that T(Q) C Q.
Let r1 > 0,79 > 0, denote Q = {(z,y) € E: |z — ®1]| < ry, |ly — P2f| < ra}. For (z,y) € Q, we
get
el < llz = @1l + [l < 1+ @1l [lgl] < lly — Bl + [ @] < r2+ [s]].

Then (D2) implies that

n

|fi(t,z(), (1) — ¢1(8)] <D aj[re +|@1]|]7 [r2 + 1027, t € (tirtipr), i€ No,

j—l

|f2(t,a:(t) y(t)) — da(t Zb 7‘1+H‘I>1||]TJ[7’2+||‘1>2H] t € (ti,tiy1), © € No,

j=1

|1ty 2ty y(t)) = L1 < - A [re+ 1 @all]™ [r2 + [ @2]]]7, € N,

j=1
[T (t5,2(t;),y(t;) = Ji| <D Bi[ra+ [1®4]]]7 [r2 + [®2]]]7, j € N.
j=1
By the definition of T, using the above inequalities, similarly to Step (iiil) in the proof of Lemma 3.4,
we get

D(a)t] ™ Bay aq (M)
1A

173 () — @1 < ( (1= tm)™ 7 1)

x mT(a1) Bay a0 (1M]) Y Ay [re + [®1]]]7 [r2 + (| @]
j=1

1 —1
n (F(Ofl)t?l Eoy 0, (|A1]) +max{1’t?1+k1+zl}>
|A]
x Blag + 11, k1 + 1) Eay o, (IM)) Y aj[r+ [ @4]]]7 [r2 + [|@2]]]7
j=1

=" Pi[ry 4 @47 [r2 + (@]
Jj=1

Similarly, we have

F(OZ?)t(lm_lEOQ,aQ (|)‘2|)
VI

I3z, y) - @] < ( (1= ) 1)

n

x mT() Bay 0 (|A2) Y By [r1 + [®1]]]7 [r2 + (| @[]
j=1

[(02)t5? ™ Eay,a, (| A2]) a
+( L v 222 +max{1,t12+k2+l2})

x B(ag + 12, ky + 1) Eay an (1X2]) Y bi[r1 + @117 [r2 + || @[]
Jj=1

n

Z [+ 1@l [r2 + (192

From the assumption, the inequality of system (3.14) has positive solution (r1,72). We choose 2 =
{(z,y) € E: ||lx — @1 <71, |[y — P2l < r2}. Then we get T(Q2) C Q. Hence the Schauder’s fixed
point theorem implies that T has a fixed point (z,y) € Q. So (x,y) is a solution of BVP (1.3). O
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Remark 3.1. Suppose that (D2) holds. Fix r; > 0 and r2 > 0. Since

Aj,a;—

lim Z Qjlr + 1®1]l]” [r2 + [|®2]]]” = le,ibxgoz Pylry+ [[®@4]]]7 [r2 + |1 @2]1]7 =0,
52050 =

(3.14) holds for sufficiently small nonnegative constants b;, a; (i = 1,2,...,n), B;, A; (i=1,2,...,n).
So it is easy to see that BVP (1.3) has at least one solution if the nonnegative constants b;, a;
(i=1,2,...,n), B;, A4; (i=1,2,...,n) are sufficiently small.

4 Solvability of BVP (1.4)

In this section, we study the solvability of BVP (1.4). We will seek for solutions of BVP (1.4) in Ej.

Lemma 4.1. Suppose thato € L'(0,1) and there exist numbers k > —1 and max{—ay, —k—1} <1 <0
such that |o(t)| < tF(1 —t)! for allt € (0,1). Then x € X; is a solution of

“Dita(t) — Max(t) = o(t), t € (ti,tiy1), i€ No, (4.1)
if and only if there exist constants ¢; (i € Np) such that

t

l’(t) = I‘(al) ZCanhl()‘l(t — tj)al) -+ /5,11,)1 (t, 8)0(8) dS, te (ti,ti+1], i€ No. (42)
j=0 0

¢
Proof. Suppose that x satisfies (4.2). Firstly, we prove that [ 84, x, (£, 5)0(s)ds is convergent. In fact,
0

we have for ¢t € (¢;,%;11] that

t
’/5(11,,\1(@5)0(5) ds
0

— :s)(“_lEal,a1 (Mt =9)")o(s)ds

\w
—
~

IN

= 8)*  Bay 0, (Mt — 5)*)]o(s)| ds

—~
~+

\w o\& o

—~
~+

IN

— s)‘“_lEahal()\l(t — s)”‘l)sk(l — s)l ds

0
&N 1 e

= t—s) 7 (t—s5)"s"(1—s)d
> iy [T e s
j=0 0
&N o .

<> A gyt g)aighg

<3 Gy [ gstas
j=0 0
+o0 )\] L )

_ N ta1+a1j+k+l/ a1+o¢1]+l71wkdw
= ((+Dan) )
400 i paeg g 1

< >\J1t H ta1+k+l/(17w)a1+l71wk dw
= ((G+1Da)

=t TR, o (Mt*)B(ag + 1,k +1).
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One knows that x

(titisa] is continuous. Now, we prove that = satisfies (4.1). In fact, for t € (¢o, 1]
we have

1

‘Dota(t) = oy /(t —s5)™ " (CoEal,l(Al(S)m)
0

+ O/ (5 — ) B, 0, (M (s — 0)*)o(v) dv) ds

—+o0 —+o0

B (1_0‘1)0/t_5 <COZ 2: Ja—;jl Z ((jfi)al)o/(S—U)al1($—v)o‘1ja(v)dv>/d5

t
+o00 o 061])\] ar1j— 1d8
1—a1 Z

= I(aj +1)
1 +oo /
+ (t—s)~ s —v)tei=lg(y dv> ds
2 o [ (fee o
Co = O[lj)\ 1 =
— 7a1+alj —ay,,,a15—1 d )\chal IOL1+061J t
(1—a1) 2 (a1j+ / w w+Z 1 o+ o+ ()
Jj=1 0 j=0
Co = alj)\j (1= 1) (1)) (t — s)i=t
_ Z I y—antanj _7 )+ Z N /7 o(s)ds
(1-a) = (aj+1) (1+a1j—on) (a1j)
too .y j-1 : t I= a1(j=1)
C¥1j)\ a1(j—1) (alj) / ar—1 j—1 (t—S) 1
= \iC L geaU=h) A a4 A [ (E—s)™ AN T ————0(s)ds
' 0; (a1j+1) (I+oj—a1) ) 10 t=e) JZ:I ! (a1j) )

t

B . )\J 1t(¥1(J 1) (0[1] —+ 1) o s ap—1 s i (s s
= g T T <t>+A10/<t )" ) (Mt = 5)™)r(s) d
= Mz(t) + o(t).

Now, suppose that t € (¢;,t;4+1] (¢ > 1). Similarly we have

t

7(1 —lal) /(t —8) "2/ (s)ds

0

Da(t) =

i—1 b

- ﬁ [Z /(t—s)_alaﬁ’(s) ds—f—/t(t—s)_alx’(s) ds]

j=0 t;

S

X (,{Z:CHEQLI()\I(S — 1)) + /(s — ) By, 0 (Ai(s —v)*)a(v) dv)/ds

0

+ / (t ) (Zcﬁ a5 = )) + /S<s—v>m—1Em,al<A1<s—v>m>a<v>dv)/d8}

t;
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ZWZ/ (t—s)~ {ch an1(A1( s—t)o‘l)] ds

+ﬁ/t—s [ch ar1(Ar(s =t )al)} ds

t s

+ﬁ /(t —5) " [/(5 — )" By, 0, (M (s — )Mo (v) dv} l ds

to 0

) . tit1
ie1 i+
1

+oo m(g _ nmal ’
ZWZZC,{ /(tfs)*m[ZM] ds

i=0k=0 =y (moit1)

t

i +oo ym s — may 4/
+(1_16“)Zcﬁ/(t—s)_al[n;/\l(t“)} ds

prd (ma; + 1)

tir
+00 7
A'may

T+ 1) [ =

tj

m=0

t oo
cﬁ/(t—S)‘“l (s—to)™ 1 Lds+ > NPeDS I " o (1)
t;

fit1—ts
t—ts

)\1 maog 4 ma ey —oy,, may—1
= (lfal)z (moy £ 1) Zc,{t—t 1o (1 —w) " w™ ™ dw
m=1 tji—tr

]OHO

t—tp

1
+ 1 i mal)‘l ZC t— t arm—aq 1 U) T ,man— 1dw—|—§>\m10{1m (t)
(1—a1) &= (mai+1) «

L —vn m=0
=

fi+1—te
)\mmal L S 1
_ _ may—o _ —a,,,may—
= (l—al)z (mas 1) Zcﬁt b)) 12 / (1 —w) "t w™ ™ dw
m=1

J=K ¢,

—th

.

—tk
i—1

1 = moq A7
+ 1 C,{t—tn aym—aoq
T 2= 2 enlt =)

(may +1) o

(1 —w)~*rwmr =1 dy

\H”

- ti—Yr
4—%—,

oo 1

041)\71% —« maq—1
1 — w)~Cgmer=lg t
1—a1 Z ma1+1)/( w) " wolt)
- 0

400 m—1/  \ai(m—1)
/ Z -t A (F=9) o(s)ds
m=1

(c1m)

1
OO
T'man -1
_ c t _ t maoq —o alwmal dw
1—a1 Z ma1+lz'{ /
= 0
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+oo 1

mag A" / _ 1
1- GyMmaT g t
1—041 Z (may + 1) (1—w)™"w w+o(t)
= 0

f +oo m—1/  \ai(m—1)
+A1 / (t—s)™" AT - 9) o(s)ds = \a(t) +o(t).
0

(cim)

m=1

Thus, due to induction, we conclude that x satisfies (4.1) if x satisfies (4.2).
We now suppose that x is a solution of (4.1). We will prove that x satisfies (4.2). Since z is
continuous on (tg,t1] and the limit lim+ x(t) exists, by Theorem 6.11 in [21], there exists ¢y € R such
t—0

that

33( ) = CQE&1 1 )\115 /6a1 )\1 t S )dS, te (to,tl].

This means that (4.2) holds for ¢ = 0. Suppose
2(8) = B(t) + 0By 1 (At /5a1 a4 8)o(s) ds, t € (tr, a). (4.3)
By “Dgia(t) — Mx(t) = o(t), t € (t1,t2], we get

o(t) +Mx(t) = “Dgia(t) = ﬁ /(t —8)"™2/(s)ds

t1

0
- ﬁ (/(t —8) "2l (s)ds + /t(t —8)7*2/(s) ds)
0 i1

- | / (# 5)7 (aBasa(as™) / (501" B, (s — 0 o) )] s

0
t s

+/(t _ g (@(s) + coBuy 1 (Ms™) + /(s )Ty, 0 (A (s — 0))o (o) dv)lds
0

t1
t

t1
1 1
R — /(t —5) ™ (coEahl()\lsal))/ds + — /(t — s)al*l(coEahl(/\lsal)),ds
) (1—an)

(1—041) ;

t

-y /t—s o </S(3_U>a1_1Ea1,a1()\1(8—v)o‘l)a(v)dv>lds

0
t
+;/(t—s)a1_1¢’(s)ds
(170[1)
= mag A"
t— —a mal 1d
1—a1 z_: ma1—|—1/ 2 §
= 0
= mog A"
1 —a1 omagp—1
t— ! 17 d
1—a1 z_: (mag + 1) /( 8)""s §
t1
1 1 AT (s — v)orm !
t— )T d d
+(1—oz1 s) ( Z (o (m+1 )J(v) v) s



136 Yuji Liu

_ ; — 5) 71 (s) ds
+(1_O‘1)t/(t )11/ (s) d

t
— () + M / (t = )™ By, (Mt — 5))r(s) ds + AicoEa, 1 (Mt™) + D% D (2)
0
=o(t) + Mz(t) + D O(t) — M D(t).

It follows that “D'! ®(t) — A ®(t) = 0 for all t € (t1,12]. By Theorem 6.11 in [21], there exists ¢ € R
1

such that ®(t) = c1Eq 1(A(t — t1)®) for ¢ € (¢1,t2]. Substituting ® into (22), we find that (4.2) holds
for ¢ = 2. Now suppose that (4.2) holds for all i = 0,1,2,...,n < m — 1. By a similar method used

above, we can prove that (4.2) holds for i = n 4+ 1. Due to induction, x satisfies (4.2), = (histepa] 18
continuous and lim z(t) exists. O
t—t}

Lemma 4.2. Suppose that A =1 —T(a1)Ea, 1(A1) # 0, 0 € LY(0,1) and that there exist numbers
k> —1and a; +k+1> 0 such that |o(t)] < tk(1 —t)! for allt € (0,1). Then x € X is a solution of

CDgix(t) — /\1.T(t) = O'(t), te (ti,ti+1), i € Ny,
z(1) — }irr(l)x(t) =0,
—

(4.4)
lim z(t) =1;, i€ N,
t—tt
if and only if x € X and
1
T(1)?Ea, 1 (A1) < ar - D(a))Eq, 1 (Mt
x(t) = ) A : );IJ’Eal,l(Al(l—tj) Y+ . IA( : )/5041,%1(1,8)0(8)018
= 0
i t
+F(a1)ZIanh1(A1(t — tj)al) + /50(1,)\1 (t,S)O’(S) dS, te (ti7ti+1}, i € Np. (45)
j=1 0

Proof. Let x be a solution of (4.4). Similarly to Step 2 in Lemma 4.1 since [ < 0 for ¢ € (0,¢;], one
can see that

<t B (g + 1k 4 1) Eay .y (A1E™).

t
’/5,}17)\1@,8)0'(8) ds
0

From a1 + k+1 > 0, we get

lim
t—0

/ (t— ) B o (M (t = 8)™ )o(s) ds| = 0. (4.6)
0

Due to Lemma 4.1, there exist constants A; € R(i € Ny) such that

i t
.’E(t) = I‘(al) ZAanl’l()‘l(t — tj)al) + /5041’)\1 (t, S)O’(S) ds, te€ (ti7ti+1], i € Ny. (47)
j=0 0

Boundary conditions and the impulse assumption in (4.4) yield that

m 1
I‘(al) ZAanlvl(Al(l — tj)al) + /50417)\1(1,8)0(8) ds — AO = 0, Az = Ii, xS N.
j=0 0
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It follows that

m

1
Ao = % (F(al) 2 LB (1= 1)) + /&nm(l, s)o(s) ds>.
0

Substituting A; (i € Np) into (4.7), we obviously get (4.5) by changing the term order.

On the other hand, if x satisfies (4.5), ., Is continuous and the

limit tlirtn x(t) exists for ¢ € Ny. Using Lemma 4.1, we can prove that x satisfies (4.4). O
—l+

Lemma 4.3. Suppose that V =1—T(az2)Ea,1(X2) #0, 0 € L1(0,1) and there exist numbers k > —1
and max{—ag, —k — 1} < 1 < 0 such that |o(t)| < tkF(1 —t)! for all t € (0,1). Then z € Y is a
solution of

CDgfl‘(t) — /\Q.Z‘(t) = O'(t), te (ti,ti+1), 1 € Ny,

z(1) — lim x(t) =0,

(4.8)
hm x(t)=J;, €N,
t—tF
if and only if x €Y and
[(a2)?Epy 1 (Aat??) D(a2) By 1 (Aot
o) = N Lo B 57 O — gy OBt Q) [ o) s
j=1
042 ZJ E‘o(2 1()\2(t—t a2 /6a2,)\2 t S) ( )dS, te (ti,ti+1], i € Np. (49)
j=1
Proof. The proof is similar to that of Lemma 4.2 and we omit it here. O

Let A, V be defined as in Lemmas 4.2 and 4.3. Define the nonlinear operator T'on E by T'(x, y)(t) =
((Ta(z,9)) (@), (T2(2,9))(?)) for (z,y) € E with

F(al) al) )\1t

(T (2, ))(t) = ZEal 1A (1= 25) ") I (25, 2(t5), y(t5))

n F(al)EOX A1to1) /6041 A (1, 8)ps(s) f3(s, z(s), y(s)) ds

+ () Zqu,l()‘l(t —t5) ) (s, z(t)), y(t;))

+/60417/\1 (ta3)P3(8)f3(8,33(s),y(3)) dS, te (ti7ti+1]a 1 € Ny,

a3)? Ea, 1 (Aat™?)
(o)1) =~ Eet B S b a1 %) 0, (07), (1)

+ F(Oég OQ7 )\2ta2

(12)\2 1 S p4 )f4(s’x(5)7y(5)) ds

O\H

D(a2) Y Baga (Aot = 5)%2)J (1), 2(t;), y(t5)

j=1

+/5042’)\2(tﬂ 5)?4(8)f4(8796(8),y(s)) ds, te (ti7ti+1], 1 € Np.
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Lemma 4.4. Suppose that f3, f4 are II-Carathéodory functions, I, J discrete II-Carathéodory
functions, Then (x,y) € E is a solution of BVP (1.4) if and only if (x,y) is a fized point of T in E;
and T : By — FEy is well defined and completely continuous.

Proof. The proof is similar to that of of Lemma 3.4 and is omitted. O

Now, we prove the main theorem in this section by using the Schauder’s fixed point theorem [30].
We need the following assumptions:

(D3) f3, f4 are II-Carathéodory functions, I, J are discrete II-Carathéodory functions and there
exist non-decreasing functions ¢;,v; : [0,400) X [0,+00) — [0,4+00), measurable functions
¢; - (0,1) - R (i = 1,2) and constants I;, J; such that

| fs(t,z,y) — ¢s(t)| < @3(x,y), t € (tistipr), z,y € R, i€ Ny,
|fa(t, 2, y) — ¢a(t)| < ylw,y), t € (titigr), x,y € R, i€ Ny,
[I(tj,2,y) = I;| <¥s(w,y), jEN, 2,y €R,
| J(ty,z,y) — Jj| <Py(x,y), jEN, z,y€R.

(D4) f5, f4 are II-Carathéodory functions, I, J are discrete II-Carathéodory functions and there
exist nonnegative constants I;, J;, b;, a;, By, A;, 75, 05 (j = 1,2,...,n) and measurable functions
¢;:(0,1) = R (i = 1,2) such that

| f3(t, 2z, y) Zag|$|TJ|y|UJ € (ti,tiv1), =,y € R, i € No,
| fa(t, 2, y) Zb |z[@]y|?7, t € (ti,tiv1), =,y € R, i€ No,
’I(tj,x,y)—lj| SZAj|x‘Tj|y|Uj’ jEN, z,y€R,

=1

}J(tj7$7y)_‘]j’ gZ’é!']|x‘7—3|:l/|o-J7 JeNa 937y€R
Jj=1

D(a1)?Ea, 1 (Mt™) &
@(t) = DO Ed ) Sh -,
j=1

) .
'« a )\t . «@
+ (1) 1’ ! /6@1,)\1 (1,8)pi(s )¢1(5)d5+r(a1)ZEoml()‘l(t*tj) )
0 =t
t

+/5a1,>\1(t,5)171(3)¢1(3) ds, te (titit1], 1€ No,

0
()2 Eay 1 (Aat®?) &
By (t) = 02 v’1(2 )ZEa2,1(/\2(1—tj)a2)Jj
j=1
r Eag )\taz ‘ «@
4 Heo) v / Oz 32 (1, 8)02(5)82(5) ds + T(02) D By 1 (ot = 1))

Jj=1

+/5a2,>\2(t7s)p2(s)¢2(s) ds, t€ (t;,tir1], © € Np.
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Denote
P = F(al)Elzlfl(')\lD B(og + 1, k1 + D) Eg, 1(JM]) + Blag + 1, k1 + 1) Eay 1 (M),
Ql:Iﬁhyﬁghﬂuﬂnlah<Mn>+wwanﬂ%hm<Aum
P, = F(az)Elng(')\zD B(ag + I3, k2 + 1)Eqy 1(JA2]) + B(ag + 12, ke + 1) Eq, 1 (| A2]),
QQ:Ihmyﬁ%J“M|mﬂudMﬂ%+mrwa Eo (M),

Theorem 4.1. Suppose that (D3) holds. Then BVP (1.4) has at least one solution if

Pigs(r1 + | @], 72 + [|@2]]) + Quog(r1 + || 1], m2 + [|D2]]) < 74,

° b (4.10)
Pydy(r1 + | @1, 72 + [|[@2]]) + Qatby(r1 + |1, 72 + [|®2]]) < 72

has a couple of positive solutions (r1,72).

Proof. To apply the Schauder’s fixed point theorem, we have to define a closed convex bounded subset
Q of E such that T(Q) C Q.

Let 71 > 0, ro > 0, denote Q = {(z,y) € E : |z — 1] < 71, ||y — P2| < r2}. For (x,y) € Q, we
get

[zl <l = @ufl +[[@oll <7+ Pall, yll < lly = ofl + [[D2f] < 72 + (| D]

Then (D3) implies that

| f3(t (), y(t) — ¢3(1)] <

&3 (lz@®)], ly®)]) < e ([l lyll)
< @a(r1 + @2l r2 + |B2l), t € (ti,tiy1), i€ No,

| fa(t, 2(t), y(t) — da(t)| < dy(r1 + 1@l ro + [|R2]), ¢ € (ti,tit1), i € No,
[I(t,2(t;),y(t;)) — Li| < s(re + @1, 2 + |®2]]), j €N,
[Tt 2(t;),y(t;)) — J;| < ha(re + @1, 72 + |2]]), j€N.

By the definition of T, using the above inequalities and the first inequality in the proof of Lemma 4.2,
we get

m

I'a ar,1 (A1t
| T1(z,y) — @] < (@)°F |A|1 - ZEQI, (A (1 =) )| I(t, 2(t5),y(t;) — |

N (T

o) ZEall (ALt = t5) )| I(t5, a(t;),y(t;)) — I
1
) J
+/@Mﬁsm3|msz y(s)) — ds(s)| ds
0
L(o1)?Eay 1 (||

Al mEa, 1(|\]) (¥5(r1 + (|01, 72 + | @2])))

IN

] / S (1,9l (5) 50

+mI'(a1)Eq, 1 (\)\1|)(1/J3 1+ |1l ro + [|P2])
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t
+ /5a1,xl(tvs)lp3(8)ld8 (05(r1 + | @2l 72 + [|22]])
0

T(01)2Ea, 1 (A _
< KOS Et O o (D) @yt + 0l 72 + 22])

[(a1)Eay 1 ([M])
A
+mT(a1)Bay 1 (M) (€501 + [ @1l 72 + (| D2]]))
+tThA R B (g + 11,k + 1) Eay 1 (At™) (@31 + [|®@a]], 72 + || @2]])
< Prgs(r1 + |1, 72 + [|®2]]) + Quibs (r1 + | @1l 72 + [|D2]]).

+

B(ai+1y, k1 +1) Eq, 1 (1M ]) (@3 (r1+ D2, r2+ | @2]]))

Similarly, we have
[ Ta(2,y) = @afl < Pagy(r1 + 1@l 72 + [ @2]]) + Qotdy (r1 + [|@1]], 2 + || D2]]).

From the assumption, the inequality of system (4.10) has a positive solution (r1,72). We choose
Q={(z,y) € E: ||lz—P1|| <1y, |ly— P2| < r2}. Then we get T(Q2) C Q. Hence the Schauder’s fixed
point theorem implies that T has a fixed point (z,y) € Q. So (z,y) is a solution of BVP (1.4). O

Denote
['(a1) Eay 1 (|A1])
P = ( Al + 1)mF(al)Ea1,1(|>\1|)Aj
E, ;
(F(Oll) |A1|71(|)\1) + I)B(Oq + ll,kl + l)Ea1,1(|Al|)aj7 ] = 1’2, Lo, N,
['(a2)Eay 1 (|A2])
Q; = ( < + 1)mf(a2)Ea2,1(|>\2|)Bj
E
(F(az) |%2|’1(|)‘2) + 1)B(a2 +lo, k2 + 1) Ea, 1 (JA2])bj, j=1,2,...,n.

Theorem 4.2. Suppose that (D4) holds. Then BVP (1.4) has at least one solution if

n

Do+ R] 7 [ra 4 [ 22ll] < vy Y Qe+ 1Rl] T 2+ 1 @2]]] < 7 (4.11)
j=1 j=1

has a couple of positive solutions (r1,72).
Proof. The proof is similar to that of Lemma 3.2 and is omitted. O

Remark 4.1. Suppose that (D4) holds. Fix r; > 0 and r2 > 0. Since

Aj,ajaO -

lim ZQ] [7’1 + ||(I>1H]TJ [7‘2 + ||(I)2|H0j = Blimﬂoz Pj [7‘1 + ||(I)1||]T] [7’2 -+ H(I)QH]Gj = 0,
]:1 7% ,]21

(4.11) holds for sufficiently small nonnegative constants b;, a; (i =1,2,...,n), B;, 4; (i =1,2,...,n),
we know that BVP (1.4) has at least one solution if the nonnegative constants b;, a; (i =1,2,...,n),
B;, A; (i=1,2,...,n) are sufficiently small.

5 Examples

To illustrate the usefulness of our main results, we present two examples to see that Theorems 3.1
and 4.1 can be readily applied.
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Example 5.1. Consider the following impulsive boundary value problem
2 o g .
D05+u(t) _u(t) :ql(t)[cl +a; [(t_t )% (t)} +a’2|:(t_t )% (t)] ]’ 7’:0717273a

D0+U( ) —v(t) = @a(t) [e2 + b [(t — t:)3u(t)]” + b2 [(t—t:)Fv(8)]7], i=0,1,2,3,

2 (5.1)
u(l) — limtgu(t) =0, v(1)—limtsu(t) =0,
t—0
lim (£ — ¢;)3u(t) = lim (t — t;)30(t) = 0, i=1,2,3,
t—t t—t;

where c¢1,c0 € R, b1,a1,bs,as > 0 are constants, 0 =ty < t; = i <ty = % <tz = % <ty = 1 with
m=3,qi(t) = @(t) =775 (1—1)"75, t € (0,1), 0 > 0.

We apply Theorem 3.2 to get solutions of BVP (5.1). Corresponding to BVP (1.3), we have
ar =2, a0 =32, A\ =X =1, q1, g2 satisfy the condition |g;(t)] < t* (1 — ) with k; = l; = —1&
(i=1,2), f1, f2, I, J satisfy the following items:

O‘\M

fl(t7 (t_tl)_%xv(t_tl) y) _Cl+a1x +G2y ) te (tlatz-‘rl] i207172a37
f2(t7 (t_tl)_%x7(t_tz) y) 02+b1{1} +b2y ) t e (tl7tz+1] Z:07172737
I(t y) J(thxvy) = 05 1= 17273'

C\N)

It is easy to show that fi, fs are I-Carathéodory functions, I, J are discrete I-Carathéodory functions.
Furthermore, choose ¢1(t) = ¢1 and ¢a(t) = ca, I; = J; = 0. It is easy to see

‘fl(t, (t—t:) S, (t —t;) " by) — ¢1(t)’ < ai|z|” +azlyl?, t € (tistiva], i=0,1,2,3,

2t (= 1) 2, (1= 1) " Fy) = 61| < bafal” + bafyl”, ¢ € (b tina], i =0,1,2,3,
(tiaxay) _IZ| = |J(t1a'r7y) - Jll = 0’ 1= 172a3'

By the Mathlab tool we find that

2<E(1)§1 HNIE I O S
2 2 == - = ..
T ST(E(+1) T3 ) 1) )
QTN S SR S S
T 3 T rE)
L S B St
TOT(2) (&) T(%)  330(32)  35I(H) 37F(§)
<7+ L1 1 ! 8
T - Hi-g IHi-g
1 1 1 1 1
2<FEss(1)= + + + + + + +
e LE) @) T NE) ) rE) rE)
g 5 1L 55 1 551 555 1
T TR(E) 10512 1B38T(E) 16116 T(E)
L5551 5555 1
191491(2) 2217127 1(%)
<4+§ 1 +£ 1 +§§ 1 +££ 1
7T 1@ 7Tr(E) 1010 1(2)
L8555 1 555 1
TTTT(Z) 101010 I'(2)
1 5 1 5
T 7-5 T8 10-5"



142 Yuji Liu

By direct computation, using a; + k; +1; > 0, we get

P:( I'(Z )fEi,g()H)B(;ﬁ

)E2 2 (1)a; < 1035a;, j=1,2,

I'(2)V16 Es 5 (1) ] 14
j( : |+1>B(15,15) s 5 (1)b; < 16b;, j=1,2.

One finds that

1
F(al)éah)\l (t7 O)

t
D(t) =1 A /5(117)\1(1, $)p1(s)ds + ¢ /6a17>\1(t, s)p1(s)ds
0 0

and

t

1
r Oan 2o (t,0)
Dy(t) = cg ———22 "~ (a2 2)‘2 / s 2 (1, 8)pa(s )ds+02/5a27>\2(t, s)pa2(s) ds.
0

[}

Then

E: 2(1) 1 14
3| < 55 1 B(f,—)E 1) < 1035|cy).
I2: ( “< 5 1B (513722 0) < 10350

We can also get

( Es (1) 8 14
D, < 55 1)B(—,— |F 1) <16 .
|| 2||_|c2|(|1 (%) O JB(5 15 B s0) < 160

Then Theorem 3.2 implies that BVP (5.1) has at least one solution if

1035a1 [r1 + 1035]e1|]7 + 1035az [ro + 16]e2|] 7 < 71,

- - (5.2)
16b1 [7'1 -+ 1035|Cl|] -+ 16b2 [T’Q + 16|02|] S T2

has a couple of positive solutions (r1,72). So BVP (5.1) has at least one solution for every ¢1,c2 € R
and sufficiently small a;, b;.

Example 5.2. Consider the following impulsive boundary value problem

DS, ult) — (t)[er + ar[u(t)]” +azfo(t)]7], t € (titiyr), i=0,1,2,3,

”Dow( ) — (t)[c2 + bi[u(t)]” + a2lv(®)]7],  t € (ti,tip1), i=0,1,2,3,

u(l) — hII(l) u(t) =0, wv(1)— hm 11( ) =0, 5:3)
tlirgu( ):tlgzle]jfv(t):ti7 i€ N,

where c1,¢c0 € R, b1,a1,ba,a5 > 0 are constants, 0 =ty < t; = i <ty = % <tz = % < ty = 1 with
m = 37 Q1(t) = QQ(t) = tiTls(]- - t)7%7 te (07 1)

We apply Theorem 4.2 to get solutions of BVP (5.3). Corresponding to BVP (1.4), we have a; = % ,
B; = % ;A1 = Ay = 1, q1, go satisfy the condition |g;(¢)| < tF (1—-t)1 with k; = I; = —% , f3, fa, I, J are
defined by f3(t,2,y) = c1 + a127 +asy?, fa(t,x,y) = co+b1ax? +boy? and I(t;,x,y) = J(t;, z,y) = t;,
i=1,2,3.

It is easy to show that f3, fy are II-Carathéodory functions, I, J are discrete II-Carathéodory
functions. Choose ¢1(t) = ¢1 and ¢o(t) = co, I; = J; = t;. Tt is easy to see

‘fg(t,.’]},y) - ¢1(t>‘ < al|x|a +a/2|y|[77 te (tiati+1)7 T,y € Ra
‘f4(t,l‘,y) - ¢2(t)‘ < b1|x|(7 + b2|y‘aa te (tiati-‘rl)v T,y €< R7
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|I(t7,7x7y)_11’ = ’J(tzaxay>_‘]l’ :07 ZEN, $7yER

By the direct computation, we get

I'(2)E: 1(1) 114
P, — 5 1)B(=, 2Bz ,(1)a; < 465a;, j=1,2,
J (|1F(§)E§71(1)|+) (3 15) 5,1( )GJ as, J
I'(2)E: 1(1) 8 14
_ 5 B(2, 22 Es ,(1)b; < 203b;, j=1,2.
@ <|1—F<§>E§,1<1>|+> (15 15) Baa )ty <2035,

Then Theorem 4.2 implies that BVP (5.3) has at least one solution if (5.2) holds. So BVP (5.3) has

at 1

east one solution for every cj,co € R and sufficiently small a;, b;.
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