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p-MOMENT EXPONENTIAL STABILITY OF
DIFFERENTIAL EQUATIONS WITH RANDOM
IMPULSES AND THE ERLANG DISTRIBUTION



Abstract. The investigation of differential equations with random impulses combines ideas in the
qualitative theory of differential equations and probability theory. The p-moment exponential stability
of the solutions is defined and studied when the waiting time between two consecutive impulses is
Erlang distributed. The study is based on the application of Lyapunov functions. Some examples are
given to illustrate the results.
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1 Introduction

In some real world phenomena the investigated process changes instantaneously at uncertain mo-
ments. In modeling such processes it is necessarily to combine deterministic differential equations
with random variables presenting the moments of impulses. The presence of randomness in the jump
condition changes the behavior of solutions of differential equations significantly. The study of prop-
erties of solutions combines methods of deterministic differential equations and probability theory.
Impulsive differential equations with random impulsive moments differ from stochastic differential
equations with jumps [5,9-11]. Investigations concerning deterministic differential equations with
random impulses were considered in [2,3,7,8,12], but there are some inaccuracies there concerning
properties of deterministic variables and random variables.

In this paper we study nonlinear differential equations subject to impulses occurring at random
moments. Inspired by queuing theory and the distribution for the waiting time, we study the case of
Erlang distributed random variables between two consecutive moments of impulses. The p-moment
exponential stability of the solution is investigated by employing Lyapunov’s functions.

2 Random impulses in differential equations

Let the increasing sequence of nonnegative points {7} }7°, be given with klim {T}} = oco. Consider
— 00

the initial value problem for the system of impulsive differential equations (IDE) with fixed points of
impulses
' = f(t,x(t)) for t € (Ty, Try1), k=0,1,2,...,

(T +0) = I (2(T,, — 0)) for k=1,2,..., (2.1)
ZL’(TQ) = Zo,
where z,z0 € R"?, f € C[Ry x R*,R"], I}, : R4 x R™ — R™.
We will assume the following condition is satisfied
H1. f(¢,0) =0 and I(t,0) =0 fort >0, k=1,2,....
Let the probability space (2, F, P) be given. Let {7}, be a sequence of independent random
variables that are defined on the sample space 2. We will call the random variables 7 waiting times.
Assume > 7, = oo with probability 1.

k=1
We will assume the following condition is satisfied:

H2. The random variables {4} 1, T € Erlang(ax, \) are independent random variables.

We will recall some properties of Erlang distribution:

(i) If X € Erlang(ay, ) and Y € Erlang(as, \) are independent random variables, then X +Y €
Erlang(ay + ag, A);

(ii) The cumulative distribution function (CDF) of Erlang(c, \) is

a—1
Az)
F(x;a,\) =1— (Jxl) e M >0,
j=1
and the density function is
(Az)e—t
f(fL',O[,)\) = )\We )\(L’ xz > 0.

Define the sequence of random variables {£x}72, such that

k
fk:TO+ZTia k:172a"'7
i=1
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where Ty > 0 is a fixed point.

We note that {{,}72, is an increasing sequence of random variables defined by the recurrence
formula &y = Tp, & = Ex—1+ Tk, K = 1,2,... . The random variable &, will be called the waiting time
and it gives the arrival time of n-th impulses.

n

n
Remark 2.1. The random variables £, =&, —Tp = Y. 7; € Erlang( > g, )\) are continuous with
i i=1
CDF

i=1

il

- (At)!
F(t;Zai,)\) —PE,<t)=1- > j! e for t>0.
i=1 j=1
Let the points ¢ be arbitrary values of the random variables 74, k = 1,2,..., correspondingly.

k
Define the increasing sequence of points T, = T+ >_ t;, k = 1,2,3..., that are values of the random
i=1

variables &j.

Consider the initial value problem (IVP) for the system of impulsive fractional differential equations
(IFrDE) with fixed points of impulses (2.1). The solution of IVP for IDE (2.1) depends not only on
the initial condition (Tp,z) but on the moments of impulses Ty, k¥ = 1,2,..., i.e. the solution
depends on the initially chosen arbitrary values t; of the random variables 74, k = 1,2,.... We
denote the solution of the initial value problem (2.1) by z(¢;To, zo, {T%x}). We will assume that
z(Ty; To, xo, {tr}) = t_}%?_ox(t;T(%xOv {tx}) for any k=1,2,....

The set of all solutions z(t; Ty, xo, {Tx}) of IVP for IDE (2.1) for any values t; of the random
variables 7, £ = 1,2,..., generates a stochastic process with state space R™. We denote it by
x(t; To, xo, {71 }) and we will say that it is a solution of the following initial value problem for impulsive
differential equations with random moments of impulses (RIDE)

2'(t) = f(t,x(t)) for t >To, & <t <E&t1, k=0,1,...,
(& +0) = I(x(& — 0)) for k=1,2,..., (2.2)
l‘(To) = Xo.

k
Definition 2.1. Let t; be a value of the random variable 7, k = 1,2,3,..., and T, = Ty + >_ t;,
i=1
k=1,2,.... Then the solution x(t; Ty, xg, {Tk}) of the IVP for the IDE with fixed points of impulses
(2.1) is called a sample path solution of the IVP for the RIDE (2.2).

Any sample path solution z(t; Ty, zo, {1} }) € C*((Tk, Ti41], R™), k= 0,1,2,... .

Definition 2.2. A stochastic process x(t; To, xo, {7% }) with an uncountable state space R™ is said to
be a solution of the IVP for the system of RIDE (2.2) if for any values ¢ of the random variable 7,

k
k=1,23,...,and T, = To + >_ t;, k = 1,2,..., the corresponding function x(t; T, zo, {T%}) is a
i=1
sample path solution of the IVP for RIDE (2.2).

Example.
Case 1 (differential equation). Consider the following scalar ordinary differential equation (ODE)
2’ =0, x(0) = x¢ # 0. Its solution z(t) = x, t > 0, is stable but does not approach 0.

Case 2 (impulsive differential equations with fized points of impulses). Consider the following IVP
for the scalar IDE (2.1)
' =0 for t >0, t#Ty,
2(Tp +0) =ax(Ty —0) for k=1,2,..., (2.3)
xz(0) =9 # 0,
where a is a constant.

The solution of IVP (2.3) is the piecewise continuous function z(¢;2¢) = a*z¢ for t € (T, Ty11].
The behavior of z(t; xy) depends significantly on the amplitude a of the impulses.
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If |a| < 1 then |x(t;z0)| approaches 0.

Case 3 (differential equation with random points of impulses). Consider the following partial case
of the IVP for RIDE (2.2)

' =0 for t >0, & <t <&y,

(&, 4 0) = ax(&, — 0) for k=1,2,..., (2.4)
xz(0) = x9 # 0,
where x € R, a is a constant and the random variables &, are defined above.
k
Let for any £ = 1,2, ... the point t; be an arbitrary value of the random variable 7, and Ty, = Y ¢;,

i=0
k=1,2,3...,ie. T is a value of the random variable . Consider the IVP for the corresponding IDE

' =0 for t >0, t#T},
(T +0) = ax(T, — 0) for k=1,2,..., (2.5)
x(0) = xo.

The solution of (2.5) is x(¢;0, xg, {Tk}) = a*z¢ for Ty, < t < Tj41. It depends on both initial value
ro and the moments of impulses Ty, i.e. on the initially chosen arbitrary values t; of the random
variables 7, k =1,2,... .

The set of all solutions of the IVP (2.5) for any values ¢ of the random variables 7; generates a
stochastic process x(t; xg, {1}) = a¥z for & < t < &x41 which has an expected value

Ela(t;zo, {m})| = [2olP(To <t < &) + Y _ |aFao|P(& <t < &),
k=1

i.e. it depends significantly on the distribution of the random variables 7.

3 Preliminary probability results

Lemma 3.1. Let the condition (H2) be satisfied. Then the probability that there will be exactly k
impulses until time t, t > Ty, is given by

Xk: a;—1
i=1 _ ]
P(S(t) = e 0T § (At _|To)) .
J=Zlf;11 [e23 I

where the events Si(t) = {w € Q: &(w) <t < &p1(w)h, k=1,2,....

Proof. According to Remark 2.1 we get

P(Sk(t) = P(& <t < &y1) = P& —To <t — Ty < &1 — To)

k k+1
:FEk<t_TO;ZO‘i7>‘)_F5k+1<t_T0;Zai7>‘>' O

i=1 i=1
Corollary. Let the condition (H2) be satisfied with o; = o, i = 1,2,.... Then the probability that

there will be exactly k impulses until time t, t > Ty, is given by

P(S)(t)) = e t=To) kil (/\(t—iTo))j.

1l
j=-na L
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We now obtain a formula for the solution of the initial value problem for a scalar linear differential
equation with random moments of impulses:

u = —mypu for t > Ty, & <t <&it,
u(€r +0) =bpu(&e — 0) for k=1,2,..., (3.1)
u(Ty) = uo,
where ug € R, mp >0, k=0,1,2,...,and by #1, k =1,2,..., are real constants.

Lemma 3.2. Let the condition (H2) be satisfied and the nonincreasing sequence of real positive

numbers {m;}32, be such that
o0

k
Z e~ Mk (t=To) H |b;] < 0.

k=0 i=1
Then the solution of the IVP for the linear RIDE (3.1) is given by the formula

uge—mo(t=To) for To<t<m

k
Ut;Tvuv Tk = k - > mi_1T
(t:To, uo, {mic}) u0<Hbi>e ST g (=) for & <t <&ky1, K=1,2,...,
i=1
and the expected value of the solution satisfies the inequality

E([u(t; T, uo, {m})]) <|uO|Ze-mk<t [l for 1> T
i=1

Proof. The formula for the solution follows from the formula for the solution of the corresponding
IVP for the linear IDE with fixed points of impulses and Definition 2.2.

According to Lemma 3.1, formula (3.2), the independence of the random variables 73 and inequality
E(n) < E(€) for the random variables n,£ : 0 <n < & we have

E(|u(t; To, uo, {1})|) = |uole ™1 P(ry > ¢ —TO)
+Z\u0|(H|b \) —mi(t= T0>HE e~ (mis1=mIT) PS,(8)) for t > Tp. (3.3)

Using the definition of the density function of the Erlang distribution and substituting (m; —my +
Az = s we get
oo oo
Felm—mori _ /e(mkfmi)mA A)* 0 e gy = ™ /ef(mifm;ﬁ»)\)xxaifl .

(Oli — 1)' € T (O[Z' — 1)'
0 0

_ 1 N T an A
C(mi — my A (ai—l)!/e s ds = (mi_mk+)\) : (34)
0

Substitute (3.4) in (3.3), use Lemma 3.1 and obtain

[0 Bt 1 1
E(Ju(t; To, uo, {7 })|) = |uole™ (mot+X)(=To) Z ﬂ

j=1 7!
k
E aifl
. —(mr+X)(t—To) - b - A a1 (At — TO))j 3.5
+ 2 fuole (D) (=) (49
k=1 =1 i=1 j:Zi‘C;f a;
Inequalities (3.5) and m <1 prove the lemma. O

Remark 3.1. Note that the conditions of Lemma 3.2 are satisfied for my = m and |b;| =
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4 p-exponential stability

In this paper we will use Lyapunov functions V (¢, z) : J x A — R, which are continuous on J x A
and locally Lipschitzian with respect to its second argument, where J C Ry and A C R", 0 € A, and
their Dini derivatives.

Definition 4.1. Let p > 0. Then the trivial solution (g = 0) of the RIDE (2.2) is said to
be p-moment exponentially stable if for any zo € R™ there exist constants «, g > 0 such that
E||lz(t; To, zo, {e })|IP] < al|zo|[Pe=#=T0) for all ¢ > Ty, where z(t; Tp, zo, {7k} is the solution of the
IVP for the RIDE (2.2).

Theorem 4.1. Let the following conditions be satisfied:
1. The conditions (H1), (H2) hold.

2. The function V € A(Ry,R™) and there exist positive constants a, b such that
(i) all=|” <V (t,x) <bl|z|? fort € Ry, z € R";

(ii) there exists a constant m > 0 such that
D(E.l)V(t,m) < —mV(t,x) for te Ry, x€R™;
(iii) for any k =1,2,... there exist functions w, € C(R4+,Ry) and constants Cy, > 0, wy(t) <
© k
Cy fort >0 such that >, [[ Ci =C < oo and
k=01i=1
V(t, In(x)) < wp(£)V(t,x) for t € Ry, z€R™ (4.1)

Then the trivial solution of the RIDE (2.2) is p-moment exponentially stable.

Proof. Let (Ty,x9) € Ry x R™ be an arbitrary initial data and the stochastic process z.(t) =
x(t; Ty, o, {71 }) be a solution of the IVP for the RIDE (2.2).

Now consider the IVP for the scalar linear RIDE (3.1) with my = m, b = C, and ug = V (T, o)
with a solution w,(t) = u(¢; Ty, o, {7k }). According to Lemma 3.2 the inequality

co k

E(jur(8)]) < [ugle™T) ST ICi| = Clugle™ =)

k=0i=1
holds. i
Let ¢ be arbitrary values of the random variables 74, k = 1,2,..., and T, = Top + >_ t;, k =

i=1
1,2,... . Consider the sample path solutions x(t) = z(¢; To, xo, {Tx}) and u(t) = u(t; To, o, {Tk })-
Let v(t) = V(¢,x(t)) for t > Tp. The function v(t) satisfies the linear impulsive differential inequ-

alities with fixed points of impulses

Div(t) < —muw,(t) for Ty <t < Tgi1,

U(Tk+) < CkU(Tk)v k= 1a2,"'a (42)

U(To) = V(T(),l‘o).

The function m(t) = v(t) —u(t), t > Ty, is a piecewise continuous function and satisfies IVP (4.2) with
a zero initial condition. Therefore m(t) < 0 on [Ty, 00) (for details see the books [4,6]). Therefore
vr(t) < u,(t) where the set of v(t; Ty, xo, {Tx}) for any values t; of the random variables 73, k =

1,2,..., generates a stochastic process v, (t) with state space R™.
From the condition 2 (i) of Theorem 4.1 we obtain

Bl ()I7) = - Ballz()IP) < - BV (ta,(6) = - Bos(6) < - Blue(0)

Qe

Cb
S — V(To, Qio)e_m(t_To) S e ||3?0||1‘D€_m(t_T°)7 t Z T(). O
a a

Remark 4.1. If o, = 1 for all k, i.e. the random variables 7, € Exp()\), the p-moment exponential
stability is studied in [1].
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