Memoirs on Differential Equations and Mathematical Physics

 Volume 70, 2017, 7-97Tamaz Tadumadze

VARIATION FORMULAS OF SOLUTIONS FOR FUNCTIONAL DIFFERENTIAL EQUATIONS WITH SEVERAL CONSTANT DELAYS AND THEIR APPLICATIONS IN OPTIMAL CONTROL PROBLEMS

Abstract

For nonlinear functional differential equations with several constant delays, the theorems on the continuous dependence of solutions of the Cauchy problem on perturbations of the initial data and on the right-hand side of the equation are proved. Under the initial data we mean the collection of the initial moment, constant delays, initial vector and initial function. Perturbations of the initial data and of the right-hand side of the equation are small in a standard norm and in an integral sense, respectively. Variation formulas of a solution are derived for equations with a discontinuous initial and continuous initial conditions. In the variation formulas, the effects of perturbations of the initial moment and delays as well as the effects of continuous initial and discontinuous initial conditions are revealed. For the optimal control problems with delays, general boundary conditions and functional, the necessary conditions of optimality are obtained in the form of equality or inequality for the initial and final moments, for delays and an initial vector and also in the form of the integral maximum principle for the initial function and control.

2010 Mathematics Subject Classification. 34K99, 34K27, 49K21.
Key words and phrases. Delay functional differential equations, continuous dependence of solutions, variation formula of a solution, effect of initial moment perturbation, effect of the discontinuous initial condition, effect of the continuous initial condition, effect of constant delays perturbations, optimal control problem with delays, necessary conditions of optimality.

Introduction

As is known, real economical, biological, physical and majority of processes contain an information about their behavior in the past, i.e., the processes that contain effects with delayed action and which are described by functional differential equations with delays. To illustrate this, below we will consider two simplest models of the economic growth and the immune response with several constant delays.

The economic growth model. Let $N(t)$ be a quantity of a product produced at the moment t expressed in money units. The fundamental principle of the economic growth is of the form

$$
\begin{equation*}
N(t)=C(t)+I_{i n v}(t), \tag{0.1}
\end{equation*}
$$

where $C(t)$ is the so-called apply function and $I_{i n v}(t)$ is a quantity induced investment. We consider the case where the functions $C(t)$ and $I(t)$ have the form

$$
\begin{equation*}
C(t)=\alpha_{0} N(t), \quad \alpha_{0} \in(0,1) \tag{0.2}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{i n v}(t)=\sum_{i=1}^{s} \alpha_{i} N\left(t-\tau_{i}\right)+\alpha_{s+1} \dot{N}(t), \quad \tau_{i}>0, \quad i=\overline{1, s} \tag{0.3}
\end{equation*}
$$

Formula (0.3) shows that the value of investment at the moment t depends on the quantity of money at the moments $t-\tau_{i}, i=\overline{1, s}$ (in the past), and on the velocity (production current) at the moment t. From the formulas (0.1)-(0.3) we get the equation with delays

$$
\dot{N}(t)=\frac{1-\alpha_{0}}{\alpha_{s+1}} N(t)-\sum_{i=1}^{s} \frac{\alpha_{i}}{\alpha_{s+1}} N\left(t-\tau_{i}\right)
$$

The immune response Marchuk's model [26]. A simple model about viruses attack on an organism and its immune response is the following functional differential equation:

$$
\left\{\begin{array}{l}
\dot{x}_{1}(t)=p_{1} x_{1}(t)-p_{2} x_{1}(t) x_{3}(t) \tag{0.4}\\
\dot{x}_{2}(t)=\sum_{i=1}^{s} p_{i+2} x_{1}\left(t-\tau_{i}\right) x_{3}\left(t-\tau_{i}\right)-p_{s+3}\left(x_{2}(t)-x_{2}^{*}\right), \\
\dot{x}_{3}(t)=p_{s+4} x_{2}(t)-p_{s+5} x_{3}(t)-p_{s+6} x_{1}(t) x_{3}(t)
\end{array}\right.
$$

where $x_{1}(t)$ is the viruses concentration at time $t ; x_{2}(t)$ is the plasma cells concentration producing antibodies. Plasma cells after a certain time period give the immune response which is characterized by the summand $\sum_{i=1}^{s} p_{i+2} x_{1}\left(t-\tau_{i}\right) x_{3}\left(t-\tau_{i}\right)$, where $\tau_{i}>0$ are delays of immune reactions, i.e., this expression supports reproduction of antibodies; $x_{3}(t)$ is the antibodies concentration which kills viruses. The first equation of system (0.4) describes changes of $x_{1}(t)$, here the first term $p_{1} x_{1}(t)$ supports reproduction of viruses and the second term $p_{2} x_{1}(t) x_{3}(t)$ characterizes the struggle between viruses and antibodies and do not supports reproduction of viruses. x_{2}^{*} is the physiological level of plasma cells, i.e., this concentration of plasma cells is always in the organism, and in the absence of viruses in the organism, the plasma cells remain at a constant level. Finally, $p_{1}, p_{2}, \ldots, p_{s+6}$ are the positive constants.

A great deal of works (including, for example, $[1-4,12,13,19,22]$) are devoted to the investigation of functional differential equations with delay.

The present work consists of two parts, interconnected naturally in their meaning.
The first part considers the equation

$$
\begin{equation*}
\dot{x}(t)=f\left(t, x(t), x\left(t-\tau_{1}\right), \ldots, x\left(t-\tau_{s}\right)\right) \tag{0.5}
\end{equation*}
$$

with the discontinuous initial condition

$$
\begin{equation*}
x(t)=\varphi(t), \quad t<t_{0}, \quad x\left(t_{0}\right)=x_{0} \tag{0.6}
\end{equation*}
$$

The condition (0.6) is called a discontinuous initial condition since, in general, $x\left(t_{0}\right) \neq \varphi\left(t_{0}\right)$.
In the same part we study the continuous dependence of solutions of the problem (0.5), (0.6) on the initial data and on the right-hand side of the equation (0.5). Under the initial data we mean the collection of initial moment t_{0}, delays $\tau_{i}, i=\overline{1, s}$, initial vector x_{0} and initial function $\varphi(t)$. Moreover, we derive variation formulas of a solution (variation formulas) for the differential equation (0.5) with the discontinuous initial condition (0.6) and the continuous initial condition

$$
\begin{equation*}
x(t)=\varphi(t), \quad t \leq t_{0} . \tag{0.7}
\end{equation*}
$$

The condition (0.7) is called a continuous initial condition since, always, $x\left(t_{0}\right)=\varphi\left(t_{0}\right)$. The term "variation formula of solution" has been introduced by R. V. Gamkrelidze and proved in [6] for the ordinary differential equation.

In the second part, the optimization problems are investigated for the controlled equation

$$
\dot{x}(t)=f\left(t, x(t), x\left(t-\tau_{1}\right), \ldots, x\left(t-\tau_{s}\right), u(t)\right),
$$

and the necessary optimality conditions are obtained.
In Section 1, we prove a theorem on the continuous dependence of a solution in the case where the perturbation of f is small in the integral sense and initial data are small in the standard norm. Theorems on the continuous dependence of solutions of the Cauchy problem and the boundary value problems for various classes of ordinary differential equations and delay functional differential equations when perturbations of the right-hand side are small in the integral sense, are given in $[6,7,18-21,23,24,33-35,39]$.

In Sections 2 and 3, we prove the variation formulas in which the effects of perturbations of the initial moment and several delays and also the effects of discontinuous and continuous initial conditions are detected. The variation formula of a solution plays a basic role in proving the necessary conditions of optimality for sensitivity analysis of mathematical models. Moreover, the variation formula allows one to get an approximate solution of the perturbed equation. The variation formulas for various classes of differential equations are given in [6,7,18-20, 36-42].

In Section 4, we extend the central result of the axiomatic theory of extremal problems (R. V. Gamkrelidze and G. L. Kharatishvili's theorem on the necessary criticality condition [7-9]) to the mappings defined on a finitely locally convex set. This is stipulated by the fact that it is more convenient to treat the optimal problems with delays as the problems of finding the mappings, defined and critical on a finitely locally convex set and on a quasi-convex filter, respectively. The proof of the necessary criticality condition given in Subsection 4.1, is performed according to the scheme presented in [7-9] with nonessential changes.

In Subsection 4.3, we prove the quasiconvexity of the filter arising in the optimal control problem with delays. The concept of quasiconvexity of a filter was introduced by R. V. Gamkrelidze, as a result of studying slide modes $[10,11]$. Of special interest is the finding of control systems with a quasiconvex filter, since the necessary optimality conditions for these systems are deduced from the necessary criticality condition. In Subsection 4.4, we consider optimal control problems with a general functional and boundary conditions, the discontinuous initial condition and the continuous condition. The necessary conditions are obtained: for the initial and final moments in the form of inequalities and equalities, for delays in the form of inequalities and equalities, for the initial vector in the form of equality, and for the initial function and control function in the form of integral maximum principle. Optimal control problems for various classes of functional differential equations are investigated in $[5,15-18,20,25,27-31]$.

1 Continuous dependence of solutions

1.1 Notation and auxiliary assertions

Let $I=[a, b]$ be a finite interval and \mathbb{R}^{n} be the n-dimensional vector space of points $x=\left(x^{1}, \ldots, x^{n}\right)^{\top}$ with $|x|^{2}=\sum_{i=1}^{n}\left|x^{i}\right|^{2}$, where T is the sign of transposition. Let $\theta_{i 2}>\theta_{i 1}>0, i=\overline{1, s}$, be the given numbers; suppose that $O \subset \mathbb{R}^{n}$ is an open set, and E_{f} is a set of functions $f=\left(f^{1}, \ldots, f^{n}\right)^{\top}$: $I \times O^{s+1} \rightarrow \mathbb{R}^{n}$ satisfying the following conditions: for each fixed $\left(x, x_{1}, \ldots, x_{s}\right) \in O^{s+1}$, the function $f\left(t, x, x_{1}, \ldots, x_{s}\right)$ is measurable; for each $f \in E_{f}$ and compact set $K \subset O$, there exist functions $m_{f, K}(t), L_{f, K}(t) \in L_{1}\left(I, R_{+}\right), R_{+}=[0, \infty)$, such that for almost all $t \in I$

$$
\left|f\left(t, x, x_{1}, \ldots, x_{s}\right)\right| \leq m_{f, K}(t) \forall\left(x, x_{1}, \ldots, x_{s}\right) \in K^{s+1}
$$

and

$$
\begin{aligned}
\left|f\left(t, x, x_{1}, \ldots, x_{s}\right)-f\left(t, y, y_{1}, \ldots, y_{s}\right)\right| & \leq L_{f, K}(t)\left[|x-y|+\sum_{i=1}^{s}\left|x_{i}-y_{i}\right|\right] \\
& \forall\left(x, x_{1}, \ldots, x_{s}\right) \in K^{s+1}, \forall\left(y, y_{1}, \ldots, y_{s}\right) \in K^{s+1}
\end{aligned}
$$

Two functions $f_{1}, f_{2} \in E_{f}$ are said to be equivalent, if for every fixed $\left(x, x_{1}, \ldots, x_{s}\right) \in O^{s+1}$ and for almost all $t \in I$

$$
f_{1}\left(t, x, x_{1}, \ldots, x_{s}\right)-f_{2}\left(t, x, x_{1}, \ldots, x_{s}\right)=0
$$

The equivalence classes of functions of the space E_{f} compose a vector space which is also denoted by E_{f}; these classes are called the functions and denoted by f again. In what follows, under $f \in E_{f}$ it is assumed any representative from the equivalence class of f.

Lemma 1.1 ([6, p. 56]). Let $f \in E_{f}$. Then the function

$$
H\left(f ; t^{\prime}, t^{\prime \prime}, x, x_{1}, \ldots, x_{s}\right)=\left|\int_{t^{\prime}}^{t^{\prime \prime}} f\left(t, x, x_{1}, \ldots, x_{s}\right) d t\right|
$$

is continuous in $\left(t^{\prime}, t^{\prime \prime}, x, x_{1}, \ldots, x_{s}\right) \in I^{2} \times O^{s+1}$
Lemma 1.2 ($\left[6\right.$, p. 41]). Let $K_{0} \subset O$ and $K_{1} \subset O$ be compact sets with $K_{0} \subset \operatorname{int} K_{1}$. Then there exist a compact set $Q \subset O^{s+1}$ and a continuously differentiable function $\chi\left(x, x_{1}, \ldots, x_{s}\right),\left(x, x_{1}, \ldots, x_{s}\right) \in$ $\mathbb{R}^{n} \times \cdots \times \mathbb{R}^{n}$ such that $K_{0}^{s+1} \subset Q \subset \operatorname{int} K_{1}^{s+1}$ and

$$
\chi\left(x, x_{1}, \ldots, x_{s}\right)= \begin{cases}1, & \left(x, x_{1}, \ldots, x_{s}\right) \in Q \tag{1.1}\\ 0, & \left(x, x_{1}, \ldots, x_{s}\right) \notin K_{1}^{s+1}\end{cases}
$$

Lemma 1.3. Let $f \in E_{f}$. Then the function

$$
g\left(t, x, x_{1}, \ldots, x_{s}\right)= \begin{cases}\chi\left(x, x_{1}, \ldots, x_{s}\right) f\left(t, x, x_{1}, \ldots, x_{s}\right), & t \in I, \tag{1.2}\\ 0, & \left(x, x_{1}, \ldots, x_{s}\right) \in K_{1}^{s+1}, \\ & t \in I, \\ \left(x, x_{1}, \ldots, x_{s}\right) \notin K_{1}^{s+1}\end{cases}
$$

satisfies for almost all $t \in I$ the following conditions:

$$
\begin{equation*}
\left|g\left(t, x, x_{1}, \ldots, x_{s}\right)\right| \leq m_{f, K_{1}}(t) \forall\left(x, x_{1}, \ldots, x_{s}\right) \in \mathbb{R}^{n} \times \cdots \times \mathbb{R}^{n} \tag{1.3}
\end{equation*}
$$

and

$$
\begin{align*}
& \left|g\left(t, x, x_{1}, \ldots, x_{s}\right)-g\left(t, y, y_{1}, \ldots, y_{s}\right)\right| \leq L_{f}(t)\left[|x-y|+\sum_{i=1}^{s}\left|x_{i}-y_{i}\right|\right] \tag{1.4}\\
& \forall\left(x, x_{1}, \ldots, x_{s}\right) \in \mathbb{R}^{n} \times \cdots \times \mathbb{R}^{n}, \forall\left(y, y_{1}, \ldots, y_{s}\right) \in \mathbb{R}^{n} \times \cdots \times \mathbb{R}^{n}
\end{align*}
$$

where

$$
\begin{gather*}
L_{f}(t)=L_{f, K_{1}}(t)+\alpha_{0} m_{f, K_{1}}(t) \tag{1.5}\\
\alpha_{0}=\sup \left\{\left|\chi_{x}\left(x, x_{1}, \ldots, x_{s}\right)\right|+\sum_{i=1}^{s}\left|\chi_{x_{i}}\left(x, x_{1}, \ldots, x_{s}\right)\right|: \quad\left(x, x_{1}, \ldots, x_{s}\right) \in \mathbb{R}^{n} \times \cdots \times \mathbb{R}^{n}\right\} .
\end{gather*}
$$

Proof. The inequality (1.3) follows from the definition of the function g. Let

$$
\left(x, x_{1}, \ldots, x_{s}\right) \in K_{1}^{s+1} \text { and }\left(y, y_{1}, \ldots, y_{s}\right) \in K_{1}^{s+1}
$$

then (see (1.2)) we have

$$
\begin{align*}
& \left|g\left(t, x, x_{1}, \ldots, x_{s}\right)-g\left(t, y, y_{1}, \ldots, y_{s}\right)\right| \\
& =\left|\chi\left(x, x_{1}, \ldots, x_{s}\right) f\left(t, x, x_{1}, \ldots, x_{s}\right)-\chi\left(y, y_{1}, \ldots, y_{s}\right) f\left(t, y, y_{1}, \ldots, y_{s}\right)\right| \\
& =\mid \chi\left(x, x_{1}, \ldots, x_{s}\right)\left(f\left(t, x, x_{1}, \ldots, x_{s}\right)-f\left(t, y, y_{1}, \ldots, y_{s}\right)\right) \\
& \\
& \quad+\left(\chi\left(x, x_{1}, \ldots, x_{s}\right)-\chi\left(y, y_{1}, \ldots, y_{s}\right)\right) f\left(t, y, y_{1}, \ldots, y_{s}\right) \mid \tag{1.6}\\
& \left.\quad \leq L_{f, K_{1}}(t)\left[|x-y|+\sum_{i=1}^{s}\left|x_{i}-y_{i}\right|\right]+\mid \chi\left(x, x_{1}, \ldots, x_{s}\right)-\chi\left(y, y_{1}, \ldots, y_{s}\right)\right) \mid m_{f, K_{1}}(t) .
\end{align*}
$$

It is not difficult to see that

$$
\begin{aligned}
& \left.\mid \chi\left(x, x_{1}, \ldots, x_{s}\right)-\chi\left(y, y_{1}, \ldots, y_{s}\right)\right) \mid \\
& =\left|\int_{0}^{1} \frac{d}{d \xi} \chi\left(y+\xi(x-y), y_{1}+\xi\left(x_{1}-y_{1}\right), \ldots, y_{s}+\xi\left(x_{s}-y_{s}\right)\right) d \xi\right| \\
& \leq \int_{0}^{1}\left[\left|\chi_{x}\left(y+\xi(x-y), y_{1}+\xi\left(x_{1}-y_{1}\right), \ldots, y_{s}+\xi\left(x_{s}-y_{s}\right)\right)\right||x-y|+\sum_{i=1}^{s}\left|\chi_{x_{i}}(\cdot)\right|\left|x_{i}-y_{i}\right|\right] d \xi \\
& \leq \alpha_{0}\left[|x-y|+\sum_{i=1}^{s}\left|x_{i}-y_{i}\right|\right]
\end{aligned}
$$

Taking this relation into account, from (1.6) we obtain (1.4). Let

$$
\left(x, x_{1}, \ldots, x_{s}\right) \in K_{1}^{s+1} \text { and }\left(y, y_{1}, \ldots, y_{s}\right) \notin K_{1}^{s+1}
$$

then $\chi\left(y, y_{1}, \ldots, y_{s}\right)=0$, i.e., $g\left(y, y_{1}, \ldots, y_{s}\right)=0$, therefore we have

$$
\begin{aligned}
& \left|g\left(t, x, x_{1}, \ldots, x_{s}\right)-g\left(t, y, y_{1}, \ldots, y_{s}\right)\right| \\
& \left.=\left|g\left(t, x, x_{1}, \ldots, x_{s}\right)\right|=\mid \chi\left(x, x_{1}, \ldots, x_{s}\right)-\chi\left(y, y_{1}, \ldots, y_{s}\right)\right)\left|\left|f\left(t, x, x_{1}, \ldots, x_{s}\right)\right|\right. \\
& \leq \alpha_{0} m_{f, K_{1}}(t)\left[|x-y|+\sum_{i=1}^{s}\left|x_{i}-y_{i}\right|\right] \leq L_{f}(t)\left[|x-y|+\sum_{i=1}^{s}\left|x_{i}-y_{i}\right|\right]
\end{aligned}
$$

It is easily seen that the latter inequality also holds in the case

$$
\left(x, x_{1}, \ldots, x_{s}\right) \notin K_{1}^{s+1} \text { and }\left(y, y_{1}, \ldots, y_{s}\right) \in K_{1}^{s+1}
$$

Let $I_{1}=[\widehat{\tau}, b]$, where $\widehat{\tau}=a-\max \left\{\theta_{12}, \ldots, \theta_{s 2}\right\}$. By $\operatorname{PC}\left(I_{1}, \mathbb{R}^{n}\right)$ we denote the space of piecewisecontinuous functions $\varphi: I_{1} \rightarrow \mathbb{R}^{n}$ with finitely many discontinuities of the first kind equipped with the norm $\|\varphi\|_{I_{1}}=\sup \left\{|\varphi(t)|: t \in I_{1}\right\}$. By $\Phi=\left\{\varphi \in \mathrm{PC}\left(I_{1}, \mathbb{R}^{n}\right): \operatorname{cl} \varphi\left(I_{1}\right) \subset O\right\}$ we denote a set of initial functions, where $\varphi\left(I_{1}\right)=\left\{\varphi(t): t \in I_{1}\right\}$.

Let $\varphi_{i} \in \Phi, i=\overline{0, s}$, be fixed functions and let $t_{\alpha} \in(a, b), \alpha=\overline{1, p}$, be discontinuity points of the function $\psi(t)=\left(\varphi_{0}(t), \varphi_{1}\left(t-\tau_{1}\right), \ldots, \varphi_{s}\left(t-\tau_{s}\right)\right)$, where $\tau_{i} \in\left[\theta_{i 1}, \theta_{i 2}\right], i=\overline{1, s}$, are the given numbers.

We now introduce the notation

$$
\varphi_{i j}(t)= \begin{cases}\varphi_{i}\left(t_{j-1}-\tau_{i}+\right), & t=t_{j-1} \tag{1.7}\\ \varphi_{i}\left(t-\tau_{i}\right), & t \in\left(t_{j-1}, t_{j}\right) \\ \varphi_{i}\left(t_{j}-\tau_{i}-\right), & t=t_{j}\end{cases}
$$

where $i=\overline{0, s}, j=\overline{1, p+1}, t_{0}=a, t_{p+1}=b, \tau_{0}=0$. Clearly, the function $\varphi_{i j}(t)$ is continuous on the interval $\left[t_{j-1}, t_{j}\right]$. Next, let k be a fixed natural number,

$$
\begin{aligned}
w_{j}(k ; \psi) & =\sup \left\{\sum_{i=0}^{s}\left|\varphi_{i j}\left(t^{\prime}\right)-\varphi_{i j}\left(t^{\prime \prime}\right)\right|: t^{\prime}, t^{\prime \prime} \in\left[t_{j-1}, t_{j}\right],\left|t^{\prime}-t^{\prime \prime}\right| \leq \frac{t_{j}-t_{j-1}}{k}\right\}, \\
w(k ; \psi) & =\sup \left\{w_{j}(k ; \psi): 1 \leq j \leq p+1\right\}
\end{aligned}
$$

Lemma 1.4. Let $\varphi_{i} \in \Phi, i=\overline{0, s}$, and let $\varphi_{i}(t) \in K$, where $K \subset O$ is a compact set. Then for an arbitrary $f \in E_{f}$ and a natural number k, the inequality

$$
\begin{aligned}
\beta & =\sup \left\{\left|\int_{\xi_{1}}^{\xi_{2}} f\left(t, \varphi_{0}(t), \varphi_{1}\left(t-\tau_{1}\right), \ldots, \varphi_{s}\left(t-\tau_{s}\right)\right) d t\right|: \xi_{1}, \xi_{2} \in I\right\} \\
& \leq w(k ; \psi) \int_{I} L_{f, K}(t) d t+k(p+1) H_{0}(f ; K)
\end{aligned}
$$

holds, where

$$
H_{0}(f ; K)=\sup \left\{H\left(f ; t^{\prime}, t^{\prime \prime}, x, x_{1}, \ldots, x_{s}\right): \quad\left(t^{\prime}, t^{\prime \prime}, x, x_{1}, \ldots, x_{s}\right) \in I^{2} \times K^{s+1}\right\}
$$

(see Lemma 1.1).
Proof. There exist the numbers $a_{1}, b_{1} \in I$ such that

$$
\beta=\left|\int_{a_{1}}^{b_{1}} f\left(t, \varphi_{0}(t), \varphi_{1}\left(t-\tau_{1}\right), \ldots, \varphi_{s}\left(t-\tau_{s}\right)\right) d t\right|
$$

Let $a_{1} \in\left[t_{l-1}, t_{l}\right)$ and $b_{1} \in\left[t_{q-1}, t_{q}\right)$ with $1 \leq l \leq q \leq p+1$. Divide each of the intervals $\left[a_{1}, t_{l}\right]$, $\left[t_{j-1}, t_{j}\right], j=\overline{l+1, q-1},\left[t_{q-1}, b_{1}\right]$, into k equal parts $\Delta_{\rho}^{l}, \Delta_{\rho}^{j}, j=\overline{l+1, q-1}, \Delta_{\rho}^{q}, \rho=\overline{1, k}$, respectively. Obviously,

$$
\left[a_{1}, b_{1}\right]=\left[a_{1}, t_{l}\right] \cup\left(\bigcup_{j=l+1}^{q-1}\left[t_{j-1}, t_{j}\right]\right) \cup\left[t_{q-1}, b_{1}\right]=\bigcup_{j=l}^{q} \bigcup_{\rho=1}^{k} \Delta_{\rho}^{j}
$$

Using this relation and the notation (1.7), we obtain

$$
\beta \leq \sum_{j=l}^{q} \sum_{\rho=1}^{k}\left|\int_{\Delta_{\rho}^{j}} f\left(t, \varphi_{0 j}(t), \varphi_{1 j}(t), \ldots, \varphi_{s j}(t)\right) d t\right|
$$

Let $t_{\rho}^{j} \in \Delta_{\rho}^{j}, j=\overline{1, q}, \rho=\overline{1, k}$, be arbitrary fixed points. Then

$$
\beta \leq \sum_{j=l}^{q} \sum_{\rho=1}^{k} \int_{\Delta_{\rho}^{j}}\left|f\left(t, \varphi_{0 j}(t), \varphi_{1 j}(t), \ldots, \varphi_{s j}(t)\right)-f\left(t, \varphi_{0 j}\left(t_{\rho}^{j}\right), \varphi_{1 j}\left(t_{\rho}^{j}\right), \ldots, \varphi_{s j}\left(t_{\rho}^{j}\right)\right)\right| d t
$$

$$
\begin{aligned}
& +\sum_{j=l}^{q} \sum_{\rho=1}^{k}\left|\int_{\Delta_{\rho}^{j}} f\left(t, \varphi_{0 j}\left(t_{\rho}^{j}\right), \varphi_{1 j}\left(t_{\rho}^{j}\right), \ldots, \varphi_{s j}\left(t_{\rho}^{j}\right)\right) d t\right| \\
\leq & \sum_{j=l}^{q} \sum_{\rho=1}^{k} \int_{\Delta_{\rho}^{j}}\left[L_{f, K}(t) \sum_{i=0}^{s}\left|\varphi_{i j}(t)-\varphi_{i j}\left(t_{\rho}^{j}\right)\right|\right] d t+k(q-l+1) H_{0}(f ; K) \\
\leq & \sum_{j=l}^{q} \sum_{\rho=1}^{k} w_{j}(k ; \psi) \int_{\Delta_{\rho}^{j}} L_{f, K}(t) d t+k(p+1) H_{0}(f ; K) \\
\leq & w(k ; \psi) \int_{I} L_{f, K}(t) d t+k(p+1) H_{0}(f ; K) .
\end{aligned}
$$

Lemma 1.5. Let $\varphi_{i} \in \Phi, i=\overline{0, s}$, and let $\varphi_{i}(t) \in K$, where $K \subset O$ is a compact set. Further, let the sequence $\delta f_{i} \in E_{f}, i=1,2, \ldots$, satisfy the conditions

$$
\int_{I} L_{\delta f_{i}, K}(t) d t \leq \alpha_{1}=\text { const, } \quad i=1,2, \ldots, \text { and } \lim _{i \rightarrow \infty} H_{0}\left(\delta f_{i} ; K\right)=0 .
$$

Then $\lim _{i \rightarrow \infty} \beta_{i}=0$, where

$$
\beta_{i}=\sup \left\{\left|\int_{\xi_{1}}^{\xi_{2}} \delta f_{i}\left(t, \varphi_{0}(t), \varphi_{1}\left(t-\tau_{1}\right), \ldots, \varphi_{s}\left(t-\tau_{s}\right)\right) d t\right|: \xi_{1}, \xi_{2} \in I\right\}
$$

Proof. Let $\varepsilon>0$ be an arbitrary number. By Lemma 1.4, we have

$$
\begin{equation*}
\beta_{i} \leq w(k ; \psi) \int_{I} L_{\delta f_{i}, K}(t) d t+k(p+1) H_{0}\left(\delta f_{i} ; K\right) \leq \alpha_{1} w(k ; \psi)+k(p+1) H_{0}\left(\delta f_{i} ; K\right) . \tag{1.8}
\end{equation*}
$$

The functions $\varphi_{i j}(t), t \in\left[t_{j-1}, t_{j}\right]$, are continuous. Therefore, $\lim _{k \rightarrow \infty} w(k ; \psi)=0$. There exist natural numbers k_{0} and i_{0} such that

$$
\begin{equation*}
w\left(k_{0} ; \psi\right) \leq \frac{\varepsilon}{2} \text { and } k_{0}(p+1) H_{0}\left(\delta f_{i} ; K\right) \leq \frac{\varepsilon}{2}, \quad i \geq i_{0} . \tag{1.9}
\end{equation*}
$$

Taking into account the relations (1.9) in (1.8), we obtain $\beta_{i} \leq \varepsilon$ for $i \geq i_{0}$. By the arbitrariness of ε, we can conclude that $\beta_{i} \rightarrow 0$, as $i \rightarrow \infty$.

Lemma 1.6 ([6, p. 68]). Let $m(t) \in L_{1}\left(I, \mathbb{R}_{+}\right)$. Then the formula

$$
\int_{a}^{t} m\left(\xi_{1}\right) d \xi_{1} \int_{a}^{\xi_{1}} m\left(\xi_{2}\right) d \xi_{2} \cdots \int_{a}^{\xi_{k-1}} m\left(\xi_{k}\right) d \xi_{k}=\frac{1}{k!}\left(\int_{a}^{t} m(\xi) d \xi\right)^{k}
$$

holds.
Lemma 1.7. Let $f_{1}, f_{2} \in E_{f}$ be equivalent functions. Then for an arbitrary function $\varphi \in \Phi$, the relation

$$
\begin{equation*}
\left|\int_{\xi_{1}}^{\xi_{2}} \widehat{f}\left(t, \varphi(t), \varphi\left(t-\tau_{1}\right), \ldots, \varphi\left(t-\tau_{s}\right)\right) d t\right|=0 \quad \forall \xi_{1}, \xi_{2} \in I \tag{1.10}
\end{equation*}
$$

holds, where

$$
\widehat{f}\left(t, x, x_{1}, \ldots, x_{s}\right)=f_{1}\left(t, x, x_{1}, \ldots, x_{s}\right)-f_{2}\left(t, x, x_{1}, \ldots, x_{s}\right) .
$$

Proof. It is clear that for almost all $t \in I$,

$$
\widehat{f}\left(t, x, x_{1}, \ldots, x_{s}\right)=0 \quad \forall\left(x, x_{1}, \ldots, x_{s}\right) \in O^{1+s}
$$

Therefore

$$
H_{0}(\widehat{f} ; K)=0, \text { where } K=\operatorname{cl} \varphi\left(I_{1}\right) \subset O
$$

Using Lemma 1.3, for an arbitrary natural number k and $\xi_{1}, \xi_{2} \in I$, we get

$$
\left|\int_{\xi_{1}}^{\xi_{2}} \widehat{f}\left(t, \varphi(t), \varphi\left(t-\tau_{1}\right), \ldots, \varphi\left(t-\tau_{s}\right)\right) d t\right| \leq w(k ; \psi) \int_{I} L_{\widehat{f} ; K}(t) d t
$$

where $\psi(t)=\left(\varphi(t), \varphi\left(t-\tau_{1}\right), \ldots, \varphi_{s}\left(t-\tau_{s}\right)\right)$ and $w(k ; \psi) \rightarrow 0$, as $k \rightarrow \infty$. Thus the relation (1.10) is valid.

Lemma 1.8. Let $f \in E_{f}$. Then the mapping

$$
\varphi \longrightarrow \int_{a}^{t} f\left(\xi, \varphi(\xi), \varphi\left(\xi-\tau_{1}\right), \ldots, \varphi\left(\xi-\tau_{s}\right)\right) d \xi, \varphi \in \Phi
$$

is uniquely defined (see Lemma 1.7).
Let X be a metric space, ϱ be a distance function on X, and let

$$
\begin{equation*}
F(\cdot ; \mu): X \rightarrow X \tag{1.11}
\end{equation*}
$$

be a family of mappings depending on the parameter $\mu \in \Lambda$, where Λ is a topological space. The family of the mappings (1.11) is said to be uniformly contractive if there exists a number $\alpha \in(0,1)$ independent of μ such that the inequality

$$
\varrho\left(F\left(y_{1} ; \mu\right), F\left(y_{2} ; \mu\right)\right) \leq \alpha \varrho\left(y_{1}, y_{2}\right) \forall y_{1}, y_{2} \in X
$$

holds for each $\mu \in \Lambda$.
Define the iteration of the mapping (1.11):

$$
F^{k}(y ; \mu)=F\left(F^{k-1}(y ; \mu) ; \mu\right), \quad k=1,2, \ldots, \quad F^{0}(y ; \mu)=y
$$

Obviously,

$$
\begin{equation*}
F^{k}(\cdot ; \mu): X \rightarrow X \quad \forall \mu \in \Lambda \tag{1.12}
\end{equation*}
$$

Theorem 1.1 ([6, p. 61]; [14, p. 608]). Let X be a complete metric space. If a certain iteration (1.12) is a uniformly contractive family, then for every $\mu \in \Lambda$ the mapping (1.11) has a unique fixed point $y_{\mu} \in X$, i.e., $F\left(y_{\mu} ; \mu\right)=y_{\mu}$. Moreover, if for fixed $\mu_{0} \in \Lambda$, a certain iteration $F^{k}\left(y_{\mu_{0}} ; \cdot\right): \Lambda \rightarrow X$ is continuous at the point μ_{0}, then the mapping $y_{\mu}: \Lambda \rightarrow X$ is likewise continuous at the point μ_{0}.

1.2 Theorems on continuous dependence of solutions

To each element

$$
\mu=\left(t_{0}, \tau_{1}, \ldots, \tau_{s}, x_{0}, \varphi, f\right) \in \Lambda=[a, b) \times\left[\theta_{11}, \theta_{12}\right] \times \cdots \times\left[\theta_{s 1}, \theta_{s 2}\right] \times O \times \Phi \times E_{f}
$$

we assign the delay functional differential equation

$$
\begin{equation*}
\dot{x}(t)=f\left(t, x(t), x\left(t-\tau_{1}\right), \ldots, x\left(t-\tau_{s}\right)\right) \tag{1.13}
\end{equation*}
$$

with the discontinuous initial condition

$$
\begin{equation*}
x(t)=\varphi(t), \quad t \in\left[\widehat{\tau}, t_{0}\right), x\left(t_{0}\right)=x_{0} . \tag{1.14}
\end{equation*}
$$

Definition 1.1. Let $\mu=\left(t_{0}, \tau_{1}, \ldots, \tau_{s}, x_{0}, \varphi, f\right) \in \Lambda$. A function $x(t)=x(t ; \mu) \in O, t \in\left[\widehat{\tau}, t_{1}\right]$, $t_{1} \in\left(t_{0}, b\right]$, is called a solution of the equation (1.13) with the initial condition (1.14), or a solution corresponding to the element μ and defined on the interval $\left[\widehat{\tau}, t_{1}\right]$, if it satisfies the condition (1.14) and on the interval $\left[t_{0}, t_{1}\right]$ satisfies the integral equation

$$
x(t)=x_{0}+\int_{t_{0}}^{t} f\left(\xi, x(\xi), x\left(\xi-\tau_{1}\right), \ldots, x\left(\xi-\tau_{s}\right)\right) d \xi
$$

(see Lemma 1.7).
Obviously, the function $x(t ; \mu), t \in\left[t_{0}, t_{1}\right]$, is absolutely continuous and satisfies the equation (1.13) almost everywhere on $\left[t_{0}, t_{1}\right]$. If $t_{1}-t_{0}$ is sufficiently small, then there exists a solution corresponding to $\mu[3,13,22]$.

In the space E_{f}, we introduce a family of subsets

$$
\Re=\left\{V_{K, \delta}: K \subset O, \quad \delta>0\right\} .
$$

Here, $K \subset O$ is a compact set, $\delta>0$ is an arbitrary number, and

$$
V_{K, \delta}=\left\{\delta f \in E_{f}: \quad H_{0}(\delta f ; K) \leq \delta\right\}
$$

The family \Re can be taken as a basis of neighborhoods of zero in the space E_{f} [32]. Hence it defines a locally convex Hausdorff vector topology with which E_{f} becomes a topological vector space. Everywhere in what follows, we will assume that the space E_{f} is endowed precisely with that topology.

We introduce the set

$$
W(K ; \alpha)=\left\{\delta f \in E_{f}: \exists m_{\delta f, K}(t), L_{\delta f, K}(t) \in L_{1}\left(I, R_{+}\right), \quad \int_{I}\left[m_{\delta f, K}(t)+L_{\delta f, K}(t)\right] d t \leq \alpha\right\}
$$

where $K \subset O$ is a compact set and $\alpha>0$ is a fixed number independent of δf.
Let $\mu_{0}=\left(t_{00}, \tau_{10}, \ldots, \tau_{s 0}, x_{00}, \varphi_{0}, f_{0}\right) \in \Lambda$ be a fixed element,

$$
\begin{gathered}
B\left(t_{00} ; \delta\right)=\left\{t_{0} \in I: \quad\left|t_{0}-t_{00}\right|<\delta\right\}, \quad B\left(\tau_{i 0} ; \delta\right)=\left\{\tau_{i} \in\left[\theta_{i 1}, \theta_{i 2}\right]: \quad\left|\tau_{i}-\tau_{i 0}\right|<\delta\right\}, \quad i=\overline{1, s}, \\
B\left(x_{00} ; \delta\right)=\left\{x_{0} \in O: \quad\left|x_{0}-x_{00}\right|<\delta\right\}, \quad B\left(\varphi_{0} ; \delta\right)=\left\{\varphi \in \Phi:\left\|\varphi-\varphi_{0}\right\|_{I_{1}}<\delta\right\},
\end{gathered}
$$

Theorem 1.2. Let $x_{0}(t)$ be a solution corresponding to $\mu_{0}=\left(t_{00}, \tau_{10}, \ldots, \tau_{s 0}, x_{00}, \varphi_{0}, f_{0}\right) \in \Lambda$ and defined on $\left[\hat{\tau}, t_{10}\right]$, where $t_{10}<b$, and let $K_{1} \subset O$ be a compact set containing a certain neighborhood of the set $K_{0}=\operatorname{cl} \varphi_{0}\left(I_{1}\right) \cup x_{0}\left(\left[t_{00}, t_{10}\right]\right)$. Then the following conditions hold:
1.1. There exist numbers $\delta_{i}>0, i=0,1$, such that to each element

$$
\begin{aligned}
& \mu=\left(t_{0}, \tau_{1}, \ldots, \tau_{s}, x_{0}, \varphi, f_{0}+\delta f\right) \in V\left(\mu_{0} ; K_{1}, \delta_{0}, \alpha\right) \\
&=B\left(t_{00} ; \delta_{0}\right) \times B\left(\tau_{10} ; \delta_{0}\right) \times \cdots \times B\left(\tau_{s 0} ; \delta_{0}\right) \times B\left(x_{00} ; \delta_{0}\right) \times B\left(\varphi_{0} ; \delta_{0}\right) \\
& \times\left[f_{0}+\left(W\left(K_{1} ; \alpha\right) \cap V_{K_{1}, \delta_{0}}\right)\right]
\end{aligned}
$$

there corresponds the solution $x(t ; \mu)$ defined on the interval $\left[\widehat{\tau}, t_{10}+\delta_{1}\right] \subset I_{1}$ and satisfying the condition $x(t ; \mu) \in K_{1}$.
1.2. For an arbitrary $\varepsilon>0$, there exists a number $\delta_{2}=\delta_{2}(\varepsilon) \in\left(0, \delta_{0}\right)$ such that the inequality

$$
\left|x(t ; \mu)-x\left(t ; \mu_{0}\right)\right| \leq \varepsilon \forall t \in\left[\theta, t_{10}+\delta_{1}\right], \quad \theta=\max \left\{t_{0}, t_{00}\right\}
$$

holds for any $\mu \in V\left(\mu_{0} ; K_{1}, \delta_{2}, \alpha\right)$.
1.3. For an arbitrary $\varepsilon>0$, there exists a number $\delta_{3}=\delta_{3}(\varepsilon) \in\left(0, \delta_{0}\right)$ such that the inequality

$$
\int_{\widehat{\tau}}^{t_{10}+\delta_{1}}\left|x(t ; \mu)-x\left(t ; \mu_{0}\right)\right| d t \leq \varepsilon
$$

holds for any $\mu \in V\left(\mu_{0} ; K_{1}, \delta_{3}, \alpha\right)$.

Due to the uniqueness, the solution $x\left(t ; \mu_{0}\right)$ is a continuation of the solution $x_{0}(t)$ on the interval $\left[\widehat{\tau}, t_{10}+\delta_{1}\right]$.

In the space $E_{\delta \mu}=E_{\mu}-\mu_{0}$ with the elements $\delta \mu=\left(\delta t_{0}, \delta \tau_{1}, \ldots, \delta \tau_{s}, \delta x_{0}, \delta \varphi, \delta f\right)$, where $E_{\mu}=$ $\mathbb{R} \times \mathbb{R} \times \cdots \times \mathbb{R} \times \mathbb{R}^{n} \times \operatorname{PC}\left(I_{1}, \mathbb{R}^{n}\right) \times E_{f}$, we introduce the set of variations

$$
\begin{aligned}
\Im= & \left\{\delta \mu=\left(\delta t_{0}, \delta \tau_{1}, \ldots, \delta \tau_{s}, \delta x_{0}, \delta \varphi, \delta f\right) \in E_{\delta \mu}:\right. \\
& \left.\left|\delta t_{0}\right| \leq \gamma, \quad\left|\delta \tau_{i}\right| \leq \gamma, \quad i=\overline{1, s}, \quad\left|\delta x_{0}\right| \leq \gamma, \quad\|\delta \varphi\|_{I} \leq \gamma, \quad \delta f=\sum_{i=1}^{k} \lambda_{i} \delta f_{i}, \quad\left|\lambda_{i}\right| \leq \gamma, \quad i=\overline{1, k}\right\},
\end{aligned}
$$

where $\gamma>0$ is a fixed number and $\delta f_{i} \in E_{f}-f_{0}, i=\overline{1, k}$, are fixed functions.
Theorem 1.3. Let $x_{0}(t)$ be a solution corresponding to $\mu_{0}=\left(t_{00}, \tau_{10}, \ldots, \tau_{s 0}, x_{00}, \varphi_{0}, f_{0}\right) \in \Lambda$ and defined on $\left[\widehat{\tau}, t_{10}\right]$ with $t_{00}, t_{10} \in(a, b), \tau_{i 0} \in\left(\theta_{i 1}, \theta_{i 2}\right), i=\overline{1, s}$, and let $K_{1} \subset O$ be a compact set containing a certain neighborhood of the set K_{0}. Then the following conditions hold:
1.4. There exist numbers $\varepsilon_{1}>0$ and $\delta_{1}>0$ such that for an arbitrary $(\varepsilon, \delta \mu) \in\left[0, \varepsilon_{1}\right] \times \Im$, we have $\mu_{0}+\varepsilon \delta \mu \in \Lambda$ and the solution $x\left(t ; \mu_{0}+\varepsilon \delta \mu\right)$ defined on the interval $\left[\widehat{\tau}, t_{10}+\delta_{1}\right] \subset I_{1}$ corresponds to this element. Moreover, $x\left(t ; \mu_{0}+\varepsilon \delta \mu\right) \in K_{1}$.
1.5. The following relations hold:

$$
\begin{array}{r}
\lim _{\varepsilon \rightarrow 0} \sup \left\{\left|x\left(t ; \mu_{0}+\varepsilon \delta \mu\right)-x\left(t ; \mu_{0}\right)\right|: \quad t \in\left[\theta, t_{10}+\delta_{1}\right]\right\}=0 \\
\lim _{\varepsilon \rightarrow 0} \int_{\widehat{\tau}}^{t_{10}+\delta_{1}}\left|x\left(t ; \mu_{0}+\varepsilon \delta \mu\right)-x\left(t ; \mu_{0}\right)\right| d t=0
\end{array}
$$

uniformly in $\delta \mu \in \Im$, where $\theta=\max \left\{t_{00}, t_{00}+\varepsilon \delta t_{0}\right\}$.
Theorem 1.2 is the corollary of Theorem 1.1.
Let $E_{u}(I)$ be the space of measurable functions $u(t) \in \mathbb{R}^{r}, t \in I$, satisfying the condition: cl $u(I)$ is a compact set in \mathbb{R}^{r}. Let $U_{0} \subset \mathbb{R}^{r}$ be an open set and $\Omega\left(I, U_{0}\right)=\left\{u \in E_{u}(I): \operatorname{cl} u(I) \subset U_{0}\right\}$.

To each element $w=\left(t_{0}, \tau_{1}, \ldots, \tau_{s}, x_{0}, \varphi, u\right) \in \Lambda_{1}=[a, b) \times\left[\theta_{11}, \theta_{12}\right] \times \cdots \times\left[\theta_{s 1}, \theta_{s 2}\right] \times O \times \Phi \times$ $\Omega\left(I, U_{0}\right)$ we assign the delay controlled functional differential equation

$$
\begin{equation*}
\dot{x}(t)=\phi\left(t, x(t), x\left(t-\tau_{1}\right), \ldots, x\left(t-\tau_{s}\right), u(t)\right) \tag{1.15}
\end{equation*}
$$

with the discontinuous initial condition (1.14). Here the function $\phi\left(t, x, x_{1}, \ldots, x_{s}, u\right)$ is defined on $I \times O^{s+1} \times U_{0}$ and satisfies the following conditions: for each fixed $\left(x, x_{1}, \ldots, x_{s}, u\right) \in O^{s+1} \times U_{0}$ the function $\phi\left(\cdot, x, x_{1}, \ldots, x_{s}, u\right): I \rightarrow \mathbb{R}^{n}$ is measurable; for each compact sets $K \subset O$ and $U \subset U_{0}$ there exist the functions $m_{K, U}(t), L_{K, U}(t) \in L_{1}\left(I, R_{+}\right)$such that for almost all $t \in I$,

$$
\begin{gathered}
\left|\phi\left(t, x, x_{1}, \ldots, x_{s}, u\right)\right| \leq m_{K, U}(t) \forall\left(x, x_{1}, \ldots, x_{s}, u\right) \in K^{s+1} \times U \\
\left|\phi\left(t, x, x_{1}, \ldots, x_{s}, u_{1}\right)-\phi\left(t, y, y_{1}, \ldots, y_{s}, u_{2}\right)\right| \leq L_{f, K}(t)\left[|x-y|+\sum_{i=1}^{s}\left|x_{i}-y_{i}\right|+\left|u_{1}-u_{2}\right|\right] \\
\forall\left(x, x_{1}, \ldots, x_{s}\right) \in K^{s+1}, \forall\left(y, y_{1}, \ldots, y_{s}\right) \in K^{s+1} \text { and } \forall\left(u_{1}, u_{2}\right) \in U^{2} .
\end{gathered}
$$

Definition 1.2. Let $w=\left(t_{0}, \tau_{1}, \ldots, \tau_{s}, x_{0}, \varphi, u\right) \in \Lambda_{1}$. A function $x(t)=x(t ; w) \in O, t \in\left[\widehat{\tau}, t_{1}\right]$, $t_{1} \in\left(t_{0}, b\right]$, is called a solution of the equation (1.15) with the initial condition (1.14), or a solution corresponding to the element w and defined on the interval $\left[\widehat{\tau}, t_{1}\right]$, if it satisfies the condition (1.14) and is absolutely continuous on the interval $\left[t_{0}, t_{1}\right]$ and satisfies the equation (1.15) almost everywhere (a.e.) on $\left[t_{0}, t_{1}\right]$.

Theorem 1.4. Let $x_{0}(t)$ be a solution corresponding to $w_{0}=\left(t_{00}, \tau_{10}, \ldots, \tau_{s 0}, x_{00}, \varphi_{0}, u_{0}\right) \in \Lambda_{1}$ and defined on $\left[\widehat{\tau}, t_{10}\right]$, with $t_{10}<b$, and let $K_{1} \subset O$ be a compact set containing a certain neighborhood of the set $K_{0}=\operatorname{cl} \varphi_{0}\left(I_{1}\right) \cup x_{0}\left(\left[t_{00}, t_{10}\right]\right)$. Then the following conditions hold:
1.6. There exist the numbers $\delta_{i}>0, i=0,1$, such that to each element

$$
\begin{aligned}
w & =\left(t_{0}, \tau_{1}, \ldots, \tau_{s}, x_{0}, \varphi, u\right) \in \widehat{V}\left(w_{0} ; \delta_{0}\right) \\
& =B\left(t_{00} ; \delta_{0}\right) \times B\left(\tau_{10} ; \delta_{0}\right) \times \cdots \times B\left(\tau_{s 0} ; \delta_{0}\right) \times B\left(x_{00} ; \delta_{0}\right) \times B\left(\varphi_{0} ; \delta_{0}\right) \times B\left(u_{0} ; \delta_{0}\right)
\end{aligned}
$$

there corresponds a solution $x(t ; w)$ defined on the interval $\left[\widehat{\tau}, t_{10}+\delta_{1}\right] \subset I_{1}$ and satisfying the condition $x(t ; w) \in K_{1}$; here $B\left(u_{0} ; \delta_{0}\right)=\left\{u \in \Omega\left(I, U_{0}\right):\left\|u-u_{0}\right\|_{I}<\delta_{0}\right\}$.
1.7. For an arbitrary $\varepsilon>0$, there exists a number $\delta_{2}=\delta_{2}(\varepsilon) \in\left(0, \delta_{0}\right)$ such that the inequality

$$
\left|x(t ; w)-x\left(t ; w_{0}\right)\right| \leq \varepsilon \forall t \in\left[\theta, t_{10}+\delta_{1}\right], \quad \theta=\max \left\{t_{0}, t_{00}\right\}
$$

holds for any $w \in \widehat{V}\left(w_{0} ; \delta_{2}\right)$.
1.8. For an arbitrary $\varepsilon>0$, there exists a number $\delta_{3}=\delta_{3}(\varepsilon) \in\left(0, \delta_{0}\right)$ such that the inequality

$$
\int_{\widehat{\tau}}^{t_{10}+\delta_{1}}\left|x(t ; w)-x\left(t ; w_{0}\right)\right| d t \leq \varepsilon
$$

holds for any $w \in \widehat{V}\left(w_{0} ; \delta_{3}\right)$.
Due to the uniqueness, the solution $x\left(t ; w_{0}\right)$ is a continuation of the solution $x_{0}(t)$ on the interval $\left[\widehat{\tau}, t_{10}+\delta_{1}\right]$.

In the space $E_{\delta w}=E_{w}-w_{0}$ with the elements $\delta w=\left(\delta t_{0}, \delta \tau_{1}, \ldots, \delta \tau_{s}, \delta x_{0}, \delta \varphi, \delta u\right)$, where $E_{w}=$ $\mathbb{R} \times \mathbb{R} \times \cdots \times \mathbb{R} \times \mathbb{R}^{n} \times \operatorname{PC}\left(I_{1}, \mathbb{R}^{n}\right) \times E_{u}(I)$, we introduce the set of variations

$$
\begin{aligned}
& \Im_{1}=\left\{\delta w=\left(\delta t_{0}, \delta \tau_{1}, \ldots, \delta \tau_{s}, \delta x_{0}, \delta \varphi, \delta u\right) \in E_{\delta w}:\right. \\
& \left.\qquad\left|\delta t_{0}\right| \leq \gamma, \quad\left|\delta \tau_{i}\right| \leq \gamma, \quad i=\overline{1, s}, \quad\left|\delta x_{0}\right| \leq \beta, \quad\|\delta \varphi\|_{I_{1}} \leq \gamma, \quad\|\delta u\|_{I} \leq \gamma\right\}
\end{aligned}
$$

where $\gamma>0$ is a fixed number.
Theorem 1.5. Let $x_{0}(t)$ be a solution corresponding to $w_{0}=\left(t_{00}, \tau_{10}, \ldots, \tau_{s 0}, x_{00}, \varphi_{0}, u_{0}\right) \in \Lambda_{1}$ and defined on $\left[\widehat{\tau}, t_{10}\right]$ with $t_{00}, t_{10} \in(a, b), \tau_{i 0} \in\left(\theta_{i 1}, \theta_{i 2}\right), i=\overline{1, s}$, and let $K_{1} \subset O$ be a compact set containing a certain neighborhood of the set K_{0}. Then the following conditions hold:
1.9. There exist numbers $\varepsilon_{1}>0$ and $\delta_{1}>0$ such that for an arbitrary $(\varepsilon, \delta w) \in\left[0, \varepsilon_{1}\right] \times \Im_{1}$ we have $w_{0}+\varepsilon \delta w \in \Lambda_{1}$ and the solution $x\left(t ; w_{0}+\varepsilon \delta w\right)$ defined on the interval $\left[\widehat{\tau}, t_{10}+\delta_{1}\right] \subset I_{1}$ corresponds to this element. Moreover, $x\left(t ; w_{0}+\varepsilon \delta w\right) \in K_{1}$.
1.10. The following relations hold:

$$
\begin{array}{r}
\lim _{\varepsilon \rightarrow 0} \sup \left\{\left|x\left(t ; w_{0}+\varepsilon \delta w\right)-x\left(t ; w_{0}\right)\right|: \quad t \in\left[\theta, t_{10}+\delta_{1}\right]\right\}=0 \\
\lim _{\varepsilon \rightarrow 0} \int_{\widehat{\tau}}^{t_{10}+\delta_{1}}\left|x\left(t ; w_{0}+\varepsilon \delta w\right)-x\left(t ; w_{0}\right)\right| d t=0
\end{array}
$$

uniformly in $\delta w \in \Im_{1}$, where $\theta=\max \left\{t_{00}, t_{00}+\varepsilon \delta t_{0}\right\}$.
Theorem 1.5 is the corollary of Theorem 1.4.
Let $I_{2}=\left[a, \widehat{\tau}_{1}\right]$, where $\widehat{\tau}_{1}=b+\max \left\{\theta_{12}, \ldots, \theta_{s 2}\right\}$. By $\Phi_{1}=\left\{\varphi \in \operatorname{PC}\left(I_{2}, \mathbb{R}^{n}\right): \operatorname{cl} \varphi\left(I_{2}\right) \subset O\right\}$ we denote a set of initial functions for the functional differential equation with advanced arguments. To each element

$$
\vartheta=\left(t_{1}, \tau_{1}, \ldots, \tau_{s}, x_{1}, \varphi, f\right) \in \Lambda_{2}=(a, b] \times\left[\theta_{11}, \theta_{12}\right] \times \cdots \times\left[\theta_{s 1}, \theta_{s 2}\right] \times O \times \Phi_{1} \times E_{f}
$$

we assign the functional differential equation with the advanced argument

$$
\dot{x}(t)=f\left(t, x(t), x\left(t+\tau_{1}\right), \ldots, x\left(t+\tau_{s}\right)\right)
$$

with the discontinuous initial condition

$$
x\left(t_{1}\right)=x_{1}, \quad x(t)=\varphi(t), \quad t \in\left(t_{1}, \widehat{\tau}_{1}\right] .
$$

Definition 1.3. Let $\vartheta=\left(t_{1}, \tau_{1}, \ldots, \tau_{s}, x_{1}, \varphi, f\right) \in \Lambda_{2}$. A function $x(t)=x(t ; \vartheta) \in O, t \in\left[t_{0}, \widehat{\tau}_{1}\right]$, $t_{0} \in\left[a, t_{1}\right)$, is called a solution corresponding to the element ϑ and defined on the interval $\left[t_{0}, \widehat{\tau}_{1}\right]$ if it satisfies the initial condition and is absolutely continuous on the interval $\left[t_{0}, t_{1}\right]$ and satisfies the integral equation

$$
x(t)=x_{1}+\int_{t}^{t_{1}} f\left(\xi, x(\xi), x\left(\xi+\tau_{1}\right), \ldots, x\left(\xi+\tau_{s}\right)\right) d \xi
$$

Theorem 1.6. Let $x_{0}(t)$ be a solution corresponding to $\vartheta_{0}=\left(t_{10}, \tau_{10}, \ldots, \tau_{s 0}, x_{10}, \varphi_{0}, f_{0}\right) \in \Lambda_{2}$ and defined on $\left[t_{00}, \widehat{\tau}_{2}\right]$, where $t_{00}>a$, and let $K_{1} \subset O$ be a compact set containing a certain neighborhood of the set $\operatorname{cl} \varphi_{0}\left(I_{2}\right) \cup x_{0}\left(\left[t_{00}, t_{10}\right]\right)$. Then the following conditions hold:
1.11. There exist numbers $\delta_{i}>0, i=0,1$, such that to each element

$$
\begin{aligned}
& \quad \vartheta=\left(t_{1}, \tau_{1}, \ldots, \tau_{s}, x_{1}, \varphi, f_{0}+\delta f\right) \in V\left(\vartheta_{0} ; K_{1}, \delta_{0}, \alpha\right) \\
& =B\left(t_{10} ; \delta_{0}\right) \times B\left(\tau_{10} ; \delta_{0}\right) \times \cdots \times B\left(\tau_{s 0} ; \delta_{0}\right) \times B\left(x_{10} ; \delta_{0}\right) \times B_{1}\left(\varphi_{0} ; \delta_{0}\right) \times\left[f_{0}+\left(W\left(K_{1} ; \alpha\right) \cap V_{K_{1}, \delta_{0}}\right)\right]
\end{aligned}
$$

there corresponds the solution $x(t ; \vartheta)$ defined on the interval $\left[t_{00}-\delta_{1}, \widehat{\tau}_{2}\right] \subset I_{2}$ and satisfying the condition $x(t ; \vartheta) \in K_{1}$.
1.12. For an arbitrary $\varepsilon>0$, there exists a number $\delta_{2}=\delta_{2}(\varepsilon) \in\left(0, \delta_{0}\right)$ such that the inequality

$$
\left|x(t ; \vartheta)-x\left(t ; \vartheta_{0}\right)\right| \leq \varepsilon \forall t \in\left[t_{00}-\delta_{1}, \theta\right], \quad \theta=\min \left\{t_{1}, t_{10}\right\}
$$

holds for any $\vartheta \in V\left(\vartheta_{0} ; K_{1}, \delta_{2}, \alpha\right)$.
1.13. For an arbitrary $\varepsilon>0$, there exists a number $\delta_{3}=\delta_{3}(\varepsilon) \in\left(0, \delta_{0}\right)$ such that the inequality

$$
\int_{t_{00}-\delta_{1}}^{\widehat{\tau}_{2}}\left|x(t ; \vartheta)-x\left(t ; \vartheta_{0}\right)\right| d t \leq \varepsilon
$$

holds for any $\mu \in V\left(\mu_{0} ; K_{1}, \delta_{3}, \alpha\right)$.
Here $B_{1}\left(\varphi_{0} ; \delta\right)=\left\{\varphi \in \Phi_{1}:\left\|\varphi-\varphi_{0}\right\|_{I_{2}}<\delta\right\}$.
Theorem 1.6 is proved analogously to Theorem 1.2.
1.3 Proof of Theorem 1.2 (on the continuous dependence of a solution for a class of functional differential equations)
To each element $\mu=\left(t_{0}, \tau_{1}, \ldots, \tau_{s}, x_{0}, \varphi, f\right) \in \Lambda$ we assign the functional differential equation

$$
\begin{equation*}
\dot{y}(t)=f\left(t_{0}, \tau_{1}, \ldots, \tau_{s}, \varphi, y\right)(t)=f\left(t, y(t), h\left(t_{0}, \varphi, y\right)\left(t-\tau_{1}\right), \ldots, h\left(t_{0}, \varphi, y\right)\left(t-\tau_{s}\right)\right) \tag{1.16}
\end{equation*}
$$

with the initial condition

$$
\begin{equation*}
y\left(t_{0}\right)=x_{0}, \tag{1.17}
\end{equation*}
$$

where $h: I \times \Phi \times C\left(I, \mathbb{R}^{n}\right) \rightarrow \mathrm{PC}\left(I_{1}, \mathbb{R}_{n}\right)$ is the operator given by the formula

$$
h\left(t_{0}, \varphi, y\right)(t)= \begin{cases}\varphi(t) & \text { for } t \in\left[\widehat{\tau}, t_{0}\right) \tag{1.18}\\ y(t) & \text { for } t \in\left[t_{0}, b\right]\end{cases}
$$

and $C\left(I, \mathbb{R}^{n}\right)$ is the space of continuous function $y: I \rightarrow \mathbb{R}^{n}$ equipped with the distance $d\left(y_{1}, y_{2}\right)=$ $\left\|y_{1}-y_{2}\right\|_{I}$.

Definition 1.4. An absolutely continuous function $y(t)=y(t ; \mu) \in O, t \in\left[r_{1}, r_{2}\right] \subset I$, is called a solution of the equation (1.16) with the initial condition (1.17), or a solution corresponding to the element $\mu \in \Lambda$ and defined on $\left[r_{1}, r_{2}\right]$, if $t_{0} \in\left[r_{1}, r_{2}\right], y\left(t_{0}\right)=x_{0}$ and it satisfies the equation (1.16) a.e. on the interval $\left[r_{1}, r_{2}\right]$.

Remark 1.1. Let $y(t ; \mu), t \in\left[r_{1}, r_{2}\right], \mu \in A$, be a solution of the equation (1.16) with the initial condition (1.17). Then, as is easily seen, the function

$$
x(t ; \mu)=h\left(t_{0}, \varphi, y(\cdot ; \mu)\right)(t), \quad t \in\left[\widehat{\tau}, r_{2}\right],
$$

is the solution of the equation (1.13) with the initial condition (1.14).
Theorem 1.7. Let $y_{0}(t)=y\left(t ; \mu_{0}\right), \mu_{0} \in A$, be a solution defined on $\left[r_{1}, r_{2}\right] \subset(a, b)$, and let $K_{1} \subset O$ be a compact set containing a certain neighborhood of the set $K_{0}=\operatorname{cl} \varphi_{0}\left(I_{1}\right) \cup y_{0}\left(\left[r_{1}, r_{2}\right]\right)$. Then the following conditions hold:
1.14. There exist the numbers $\delta_{i}>0, i=0,1$, such that a solution $y(t ; \mu)$ defined on $\left[r_{1}-\delta_{1}, r_{2}+\delta_{1}\right] \subset I$ corresponds to each element

$$
\mu=\left(t_{0}, \tau_{1}, \ldots, \tau_{s}, x_{0}, \varphi, f_{0}+\delta f\right) \in V\left(\mu_{0} ; K_{1}, \delta_{0}, \alpha\right)
$$

Moreover,

$$
\varphi(t) \in K_{1}, \quad t \in I_{1} ; \quad y(t ; \mu) \in K_{1}, \quad t \in\left[r_{1}-\delta_{1}, r_{2}+\delta_{1}\right]
$$

for arbitrary $\mu \in V\left(\mu_{0} ; K_{1}, \delta_{0}, \alpha\right)$.
1.15. For an arbitrary $\varepsilon>0$, there exists a number $\delta_{2}=\delta_{2}(\varepsilon) \in\left(0, \delta_{0}\right]$ such that the inequality

$$
\begin{equation*}
\left|y(t ; \mu)-y\left(t ; \mu_{0}\right)\right| \leq \varepsilon \forall t \in\left[r_{1}-\delta_{1}, r_{2}+\delta_{1}\right] \tag{1.19}
\end{equation*}
$$

holds for any $\mu \in V\left(\mu_{0} ; K_{1}, \delta_{2}, \alpha\right)$.
Proof. Let $\varepsilon_{0}>0$ be insomuch small that a closed ε_{0}-neighborhood of the set K_{0}

$$
K\left(\varepsilon_{0}\right)=\left\{x \in \mathbb{R}^{n}: \quad \exists \widehat{x} \in K_{0}, \quad|x-\widehat{x}| \leq \varepsilon_{0}\right\}
$$

lies in int K_{1}. By Lemma 1.2, there exist a compact set $Q: K_{0}^{s+1}\left(\varepsilon_{0}\right) \subset Q \subset K_{1}^{s+1}$ and a continuously differentiable function $\chi: \mathbb{R}^{n(s+1)} \rightarrow[0,1]$ of the form (1.1).

To each element $\mu \in \Lambda$, we assign the functional differential equation

$$
\begin{equation*}
\dot{z}(t)=g\left(t_{0}, \tau_{1}, \ldots, \tau_{s}, \varphi, z\right)(t)=g\left(t, z(t), h\left(t_{0}, \varphi, z\right)\left(t-\tau_{1}\right), \ldots, h\left(t_{0}, \varphi, z\right)\left(t-\tau_{s}\right)\right) \tag{1.20}
\end{equation*}
$$

with the initial condition

$$
\begin{equation*}
z\left(t_{0}\right)=x_{0}, \tag{1.21}
\end{equation*}
$$

where $g=\chi f$. The function $g\left(t, x, x, x_{1}, \ldots, x_{s}\right)$ satisfies the conditions (1.3) and (1.4).
The solution of the equation (1.20) with the initial condition (1.21) depends on the parameter

$$
\mu \in \Lambda_{0}=[a, b) \times\left[\theta_{11}, \theta_{12}\right] \times \cdots \times\left[\theta_{s 1}, \theta_{s 2}\right] \times O \times \Phi \times\left(f_{0}+W\left(K_{1}, \alpha\right)\right) \subset E_{\mu}
$$

The topology in Λ_{0} is inherited from the vector space E_{μ}.
On the complete metric space $C\left(I, \mathbb{R}^{n}\right)$ we introduce a family

$$
\begin{equation*}
F(\cdot ; \mu): C\left(I, \mathbb{R}^{n}\right) \rightarrow C\left(I, \mathbb{R}^{n}\right) \tag{1.22}
\end{equation*}
$$

of mapping depending on the parameter μ by the formula

$$
\zeta(t)=\zeta(t ; z, \mu)=x_{0}+\int_{t_{0}}^{t} g\left(t_{0}, \tau_{1}, \ldots, \tau_{s}, \varphi, z\right)(\xi) d \xi
$$

Clearly, every fixed point $z(t ; \mu), t \in I$, of the mapping (1.22) is a solution of the equation (1.20) with the initial condition (1.21).

Define the k th iteration $F^{k}(z ; \mu)$ by

$$
\zeta_{k}(t)=\zeta_{k}(t ; z, \mu)=x_{0}+\int_{t_{0}}^{t} g\left(t_{0}, \tau_{1}, \ldots, \tau_{s}, \varphi, \zeta_{k-1}\right)(\xi) d \xi, \quad k=1,2, \ldots, \quad \zeta_{0}(t)=z(t)
$$

Let us now prove that for a sufficiently large k, the family of mappings $F^{k}(z ; \mu)$ is uniformly contractive. For this purpose, we estimate the difference

$$
\begin{gather*}
\left|\zeta_{k}^{\prime}(t)-\zeta_{k}^{\prime \prime}(t)\right|=\left|\zeta_{k}\left(t ; z^{\prime}, \mu\right)-\zeta_{k}\left(t ; z^{\prime \prime}, \mu\right)\right| \\
\leq \int_{a}^{t}\left|g\left(t_{0}, \tau_{1}, \ldots, \tau_{s}, \varphi, \zeta_{k-1}^{\prime}\right)(\xi)-g\left(t_{0}, \tau_{1}, \ldots, \tau_{s}, \varphi, \zeta_{k-1}^{\prime \prime}\right)(\xi)\right| d \xi \\
\leq \int_{a}^{t} L_{f}(\xi)\left[\left|\zeta_{k-1}^{\prime}(\xi)-\zeta_{k-1}^{\prime \prime}(\xi)\right|+\sum_{j=1}^{s}\left|h\left(t_{0}, \varphi, \zeta_{k-1}^{\prime}\right)\left(t-\tau_{j}\right)-h\left(t_{0}, \varphi, \zeta_{k-1}^{\prime \prime}\right)\left(t-\tau_{j}\right)\right|\right] d \xi \tag{1.23}\\
k=1,2, \ldots
\end{gather*}
$$

(see (1.4)), where the function $L_{f}(\xi)$ is of the form (1.5). Here it is assumed that $\zeta_{0}^{\prime}=z^{\prime}(t)$ and $\zeta_{0}^{\prime \prime}=z^{\prime \prime}(t)$. It follows from the definition of the operator $h(\cdot)$ (see (1.18)) that

$$
h\left(t_{0}, \varphi, \zeta_{k-1}^{\prime}\right)\left(\xi-\tau_{j}\right)-h\left(t_{0}, \varphi, \zeta_{k-1}^{\prime \prime}\right)\left(\xi-\tau_{j}\right)=h\left(t_{0}, 0, \zeta_{k-1}^{\prime}-\zeta_{k-1}^{\prime \prime}\right)\left(\xi-\tau_{j}\right)
$$

Hence, for $\xi \in\left[a, t_{0}+\tau_{j}\right)$, we have

$$
\begin{equation*}
h\left(t_{0}, 0, \zeta_{k-1}^{\prime}-\zeta_{k-1}^{\prime \prime}\right)\left(\xi-\tau_{j}\right)=0 \tag{1.24}
\end{equation*}
$$

Let $t_{0}+\tau_{j}<b$; then for $\xi \in\left[t_{0}+\tau_{j}, b\right]$ we obtain

$$
\begin{align*}
& \left.\left|h\left(t_{0}, 0, \zeta_{k-1}^{\prime}-\zeta_{k-1}^{\prime \prime}\right)\left(\xi-\tau_{j}\right)\right|=\mid \zeta_{k-1}^{\prime}\left(\xi-\tau_{j}\right)-\zeta_{k-1}^{\prime \prime}\right)\left(\xi-\tau_{j}\right) \mid \\
& \leq \sup \left\{\left|\zeta_{k-1}^{\prime}\left(t-\tau_{j}\right)-\zeta_{k-1}^{\prime \prime}\left(t-\tau_{j}\right)\right|: \quad t \in\left[t_{0}+\tau_{j}, \xi\right]\right\} \\
& \quad \leq \sup \left\{\left|\zeta_{k-1}^{\prime}(t)-\zeta_{k-1}^{\prime \prime}(t)\right|: \quad t \in[a, \xi]\right\} \tag{1.25}
\end{align*}
$$

If $t_{0}+\tau_{j}>b$, then (1.24) holds on the whole interval I. The relation (1.23), together with (1.24) and (1.25), implies that

$$
\begin{aligned}
\left|\zeta_{k}^{\prime}(t)-\zeta_{k}^{\prime \prime}(t)\right| & \leq \sup \left\{\left|\zeta_{k}^{\prime}(\xi)-\zeta_{k}^{\prime \prime}(\xi)\right|: \quad \xi \in[a, t]\right\} \\
& \leq(s+1) \int_{a}^{t} L_{f}\left(\xi_{1}\right) \sup \left\{\left|\zeta_{k-1}^{\prime}(\xi)-\zeta_{k-1}^{\prime \prime}(\xi)\right|: \xi \in\left[a, \xi_{1}\right]\right\} d \xi_{1}, \quad k=1,2, \ldots
\end{aligned}
$$

Therefore,

$$
\left|\zeta_{k}^{\prime}(t)-\zeta_{k}^{\prime \prime}(t)\right| \leq(s+1)^{2} \int_{a}^{t} L_{f}\left(\xi_{1}\right) d \xi_{1} \int_{a}^{\xi_{1}} L_{f}\left(\xi_{2}\right) \sup \left\{\left|\zeta_{k-2}^{\prime}(\xi)-\zeta_{k-2}^{\prime \prime}(\xi)\right|: \xi \in\left[a, \xi_{2}\right]\right\} d \xi_{2}
$$

Continuing this procedure, we obtain

$$
\left|\zeta_{k}^{\prime}(t)-\zeta_{k}^{\prime \prime}(t)\right| \leq(s+1)^{k} \alpha_{k}(t)\left\|z^{\prime}-z^{\prime \prime}\right\|_{I},
$$

where

$$
\alpha_{k}(t)=\int_{a}^{t} L_{f}\left(\xi_{1}\right) d \xi_{1} \int_{a}^{\xi_{1}} L_{f}\left(\xi_{2}\right) d \xi_{2} \cdots \int_{a}^{\xi_{k-1}} L_{f}\left(\xi_{k}\right) d \xi_{k}=\frac{1}{k!}\left(\int_{a}^{t} L_{f}(\xi) d \xi\right)^{k}
$$

(see Lemma 1.6). Thus

$$
d\left(F^{k}\left(z^{\prime} ; \mu\right), F^{k}\left(z^{\prime \prime} ; \mu\right)\right)=\left\|\zeta_{k}^{\prime}-\zeta_{k}^{\prime \prime}\right\|_{I} \leq \frac{(s+1)^{k}}{k!}\left(\int_{a}^{b} L_{f}(\xi) d \xi\right)^{k}\left\|z^{\prime}-z^{\prime \prime}\right\|_{I}=\alpha_{k}(b)\left\|z^{\prime}-z^{\prime \prime}\right\|_{I}
$$

Let us prove the existence of a number $\alpha_{2}>0$ such that

$$
\int_{I} L_{f}(t) d t \leq \alpha_{2} \quad \forall f \in f_{0}+W\left(K_{1} ; \alpha\right)
$$

Indeed, let $\left(x, x_{1}, \ldots, x_{s}\right) \in K_{1}^{s+1}$ and $f \in f_{0}+W\left(K_{1} ; \alpha\right)$, then

$$
\left|f\left(t, x, x_{1}, \ldots, x_{2}\right)\right| \leq m_{f_{0}, K_{1}}(t)+m_{\delta f, K_{1}}(t):=m_{f, K_{1}}(t), \quad t \in I
$$

Further, let $x^{\prime} x_{i}^{\prime}, x^{\prime \prime}, x_{i}{ }^{\prime \prime} \in K_{1}, i=\overline{1, s}$, then

$$
\begin{aligned}
& \left|f\left(t, x^{\prime} \cdot x_{1}^{\prime}, \ldots, x_{s}^{\prime}\right)-f\left(t, x^{\prime \prime}, x_{1}^{\prime \prime}, \ldots, x_{s}^{\prime \prime}\right)\right| \\
& \leq\left|f_{0}\left(t, x^{\prime}, x_{1}^{\prime}, \ldots, x_{s}^{\prime}\right)-f_{0}\left(t, x^{\prime \prime}, x_{1}^{\prime \prime}, \ldots, x_{s}^{\prime \prime}\right)\right|+\left|\delta f\left(t, x^{\prime}, x_{1}^{\prime}, \ldots, x_{s}^{\prime}\right)-\delta f\left(t, x^{\prime \prime}, x_{1}^{\prime \prime}, \ldots, x_{s}^{\prime \prime}\right)\right| \\
& \leq\left(L_{f_{0}, K_{1}}(t)+L_{\delta f, K_{1}}(t)\right)\left[\left|x^{\prime}-x^{\prime \prime}\right|+\sum_{i=1}^{s}\left|x_{i}^{\prime}-x_{i}^{\prime \prime}\right|\right] \\
& \\
& =L_{f, K_{1}}(t)\left[\left|x^{\prime}-x^{\prime \prime}\right|+\sum_{i=1}^{s}\left|x_{i}^{\prime}-x_{i}^{\prime \prime}\right|\right]
\end{aligned}
$$

where $L_{f, K_{1}}(t)=L_{f_{0}, K_{1}}(t)+L_{\delta f, K_{1}}(t)$.
By (1.5),

$$
\begin{aligned}
& \int_{I} L_{f}(t) d t=\int_{I}\left(L_{f, K_{1}}(t)+\alpha_{0} m_{f, K_{1}}(t)\right) d t \\
& \qquad \begin{aligned}
& =\int_{I}\left[L_{f_{0}, K_{1}}(t)+L_{\delta f, K_{1}}(t)+\alpha_{0}\left(m_{f_{0}, K_{1}}(t)+m_{\delta f, K_{1}}(t)\right)\right] d t \\
& \leq \alpha\left(\alpha_{0}+1\right)+\int_{I}\left[L_{f_{0}, K_{1}}(t)+\alpha_{0} m_{f_{0}, K_{1}}(t)\right] d t:=\alpha_{2}
\end{aligned} .
\end{aligned}
$$

Taking into account this estimate, we obtain $\alpha_{k}(b) \leq\left((s+1) \alpha_{2}\right)^{k} / k$!. Consequently, there exists a positive integer k_{1} such that $\alpha_{k_{1}}(b)<1$. Therefore, the k_{1} st iteration of the family (1.22) is contracting. By Theorem 1.1, the mapping (1.22) has a unique fixed point for each μ. Hence it follows that the equation (1.20) with the initial condition (1.21) has a unique solution $z(t ; \mu), t \in I$.

Let us prove that the mapping $F^{k}\left(z\left(\cdot ; \mu_{0}\right) ; \cdot\right): \Lambda_{0} \rightarrow C\left(I, \mathbb{R}^{n}\right)$ is continuous at the point $\mu=\mu_{0}$ for an arbitrary $k=1,2, \ldots$. Towards this end, it suffices to show that if the sequence $\mu_{i}=$ $\left(t_{0 i}, \tau_{1 i}, \ldots, \tau_{s i}, x_{0 i}, \varphi_{i}, f_{i}\right) \in A_{0}, i=1,2, \ldots$, where $f_{i}=f_{0}+\delta f_{i}$, converges to $\mu_{0}=$ $\left(t_{00}, \tau_{10}, \ldots, \tau_{s 0}, x_{00}, \varphi_{0}, f_{0}\right)$, i.e. if

$$
\lim _{i \rightarrow \infty}\left(\left|t_{0 i}-t_{00}\right|+\sum_{j=1}^{s}\left|\tau_{j i}-\tau_{j 0}\right|+\left|x_{0 i}-x_{00}\right|+\left\|\varphi_{i}-\varphi_{0}\right\|_{1_{1}}+H_{0}\left(\delta f_{i} ; K_{1}\right)\right)=0
$$

then

$$
\begin{equation*}
\lim _{i \rightarrow \infty} F^{k}\left(z\left(\cdot ; \mu_{0}\right) ; \mu_{i}\right)=F^{k}\left(z\left(\cdot ; \mu_{0}\right) ; \mu_{0}\right)=z\left(\cdot ; \mu_{0}\right) \tag{1.26}
\end{equation*}
$$

We now prove the relation (1.26) by induction. Let $k=1$, then we have

$$
\begin{align*}
& \left|\zeta_{1}^{i}(t)-z_{0}(t)\right| \leq\left|x_{0 i}-x_{00}\right| \\
& \quad+\left|\int_{t_{0 i}}^{t} g_{i}\left(t_{0 i}, \tau_{1 i}, \ldots, \tau_{s i}, \varphi_{i}, z_{0}\right)(\xi) d \xi-\int_{t_{00}}^{t} g_{0}\left(t_{00}, \tau_{10}, \ldots, \tau_{s 0}, \varphi_{0}, z_{0}\right)(\xi) d \xi\right| \leq \alpha_{1}^{i}+\alpha_{2}^{i}(t) \tag{1.27}
\end{align*}
$$

where

$$
\begin{gathered}
\zeta_{1}^{i}(t)=\zeta_{1}\left(t ; z_{0}, \mu_{i}\right), \quad z_{0}(t)=z_{0}\left(t ; \mu_{0}\right), \quad g_{i}=\chi f_{i}=g_{0}+\delta g_{i}, \quad g_{0}=\chi f_{0}, \quad \delta g_{i}=\chi \delta f_{i} ; \\
\alpha_{1}^{i}=\left|x_{0 i}-x_{00}\right|+\left|\int_{t_{0 i}}^{t_{00}}\right| g_{0}\left(t_{00}, \tau_{10}, \ldots, \tau_{s 0}, \varphi_{0}, z_{0}\right)(\xi)|d \xi|, \\
\alpha_{2}^{i}(t)=\left|\int_{t_{0 i}}^{t}\left[g_{i}\left(t_{0 i}, \tau_{1 i}, \ldots, \tau_{s i}, \varphi_{i}, z_{0}\right)(\xi)-g_{0}\left(t_{00}, \tau_{10}, \ldots, \tau_{s 0}, \varphi_{0}, z_{0}\right)(\xi)\right] d \xi\right| .
\end{gathered}
$$

According to (1.3),

$$
\alpha_{1}^{i} \leq\left|x_{0 i}-x_{00}\right|+\left|\int_{t_{0 i}}^{t_{00}} m_{f_{0}, K_{1}}(t) d t\right|
$$

therefore,

$$
\begin{equation*}
\lim _{i \rightarrow \infty} \alpha_{1}^{i}=0 \tag{1.28}
\end{equation*}
$$

After elementary transformation we obtain

$$
\begin{align*}
\alpha_{2}^{i}(t) \leq & \left|\int_{t_{0 i}}^{t}\left[g_{0}\left(t_{0 i}, \tau_{1 i}, \ldots, \tau_{s i}, \varphi_{i}, z_{0}\right)(\xi)-g_{0}\left(t_{00}, \tau_{10}, \ldots, \tau_{s 0}, \varphi_{0}, z_{0}\right)(\xi)\right] d \xi\right| \\
& +\left|\int_{t_{0}}^{t}\left[\delta g_{i}\left(t_{0 i}, \tau_{1 i}, \ldots, \tau_{s i}, \varphi_{i}, z_{0}\right)(\xi)-\delta g_{i}\left(t_{0 i}, \tau_{1 i}, \ldots, \tau_{s i}, \varphi_{0}, z_{0}\right)(\xi)\right] d \xi\right| \\
& +\left|\int_{t_{0 i}}^{t} \delta g_{i}\left(t_{0 i}, \tau_{1 i}, \ldots, \tau_{s i}, \varphi_{0}, z_{0}\right)(\xi) d \xi\right| \\
\leq & \sum_{j=1}^{s}\left(\alpha_{2 j}^{i}+\alpha_{3 j}^{i}\right)+\alpha_{4}^{i}(t), \tag{1.29}
\end{align*}
$$

where

$$
\begin{aligned}
\alpha_{2 j}^{i} & =\int_{I} L_{f_{0}}(\xi)\left|h\left(t_{0 i}, \varphi_{i}, z_{0}\right)\left(\xi-\tau_{j i}\right)-h\left(t_{00}, \varphi_{0}, z_{0}\right)\left(\xi-\tau_{j 0}\right)\right| d \xi \\
\alpha_{3 j}^{i} & =\int_{I} L_{\delta f_{i}}(\xi)\left|h\left(t_{0 i}, \varphi_{i}, z_{0}\right)\left(\xi-\tau_{j i}\right)-h\left(t_{0 i}, \varphi_{0}, z_{0}\right)\left(\xi-\tau_{j 0}\right)\right| d \xi \\
\alpha_{4}^{i}(t) & =\left|\int_{t_{0 i}}^{t} \delta g_{i}\left(t_{0 i}, \tau_{0 i}, \ldots, \tau_{s i}, \varphi_{0}, z_{0}\right)(\xi) d \xi\right|, \delta g_{i}=g_{i}-g_{0}
\end{aligned}
$$

We now estimate $\alpha_{2 j}^{i}, \alpha_{3 j}^{i}$ and $\alpha_{4}^{i}(t)$. We have

$$
\begin{aligned}
\alpha_{2 j}^{i} \leq & \int_{I} L_{f_{0}}(\xi)\left|h\left(t_{0 i}, \varphi_{i}, z_{0}\right)\left(\xi-\tau_{j i}\right)-h\left(t_{0 i}, \varphi_{0}, z_{0}\right)\left(\xi-\tau_{j i}\right)\right| d \xi \\
& +\int_{I} L_{f_{0}}(t)\left|h\left(t_{0 i}, \varphi_{0}, z_{0}\right)\left(\xi-\tau_{j i}\right)-h\left(t_{00}, \varphi_{0}, z_{0}\right)\left(\tau_{j 0}(t)\right)\right| d \xi \\
\leq & \int_{I} L_{f_{0}}(\xi)\left|h\left(t_{0 i}, \varphi_{i}-\varphi_{0}, 0\right)\left(\xi-\tau_{j i}\right)\right| d \xi
\end{aligned}
$$

$$
\begin{aligned}
& \quad+\int_{I} L_{f_{0}}(\xi)\left|h\left(t_{0 i}, \varphi_{0}, z_{0}\right)\left(\xi-\tau_{j i}\right)-h\left(t_{00}, \varphi_{0}, z_{0}\right)\left(\xi-\tau_{j i}\right)\right| d \xi \\
& \quad+\int_{I} L_{f_{0}}(\xi)\left|h\left(t_{00}, \varphi_{0}, z_{0}\right)\left(\xi-\tau_{j i}\right)-h\left(t_{00}, \varphi_{0}, z_{0}\right)\left(\xi-\tau_{j 0}\right)\right| d \xi \\
& \leq\left\|\varphi_{i}-\varphi_{0}\right\|_{I_{1}} \int_{I} L_{f_{0}}(\xi) d \xi+\alpha_{21 j}^{i}+\alpha_{22 j}^{i} .
\end{aligned}
$$

Introduce the notation

$$
\xi_{0 j i}=\min \left\{t_{00}+\tau_{j i}, t_{0 i}+\tau_{j i}\right\}, \quad \xi_{1 j i}=\max \left\{t_{00}+\tau_{j i}, t_{0 i}+\tau_{j i}\right\}
$$

It is easy to see that

$$
\alpha_{21 j}^{i}=\int_{\xi_{0 j i}}^{\xi_{1 j i}} L_{f_{0}}(\xi)\left|h\left(t_{0 i}, \varphi_{0}, z_{0}\right)\left(\xi-\tau_{j i}\right)-h\left(t_{00}, \varphi_{0}, z_{0}\right)\left(\xi-\tau_{j i}\right)\right| d \xi
$$

and

$$
\lim _{i \rightarrow \infty}\left(\xi_{1 j i}-\xi_{0 j i}\right)=0
$$

Consequently, $\alpha_{21 j}^{i} \rightarrow 0$.
Introduce the notation

$$
\nu_{0 j i}=\min \left\{t_{00}+\tau_{j i}, t_{00}+\tau_{j 0}\right\}, \quad \nu_{1 j i}=\max \left\{t_{00}+\tau_{j i}, t_{00}+\tau_{j 0}\right\}
$$

For $\alpha_{22 j}^{i}$, we have

$$
\alpha_{22 j}^{i}=\int_{\nu_{0 j i}}^{\nu_{1 j i}} L_{f_{0}}(\xi)\left|h\left(t_{00}, \varphi_{0}, z_{0}\right)\left(\xi-\tau_{j i}\right)-h\left(t_{00}, \varphi_{0}, z_{0}\right)\left(\xi-\tau_{j 0}\right)\right| d \xi
$$

Thus, $\alpha_{22 j}^{i} \rightarrow 0$. Consequently,

$$
\begin{equation*}
\alpha_{2 j}^{i} \rightarrow 0 \tag{1.30}
\end{equation*}
$$

Further,

$$
\begin{equation*}
\alpha_{3 j}^{i} \leq \int_{I} L_{\delta f_{i}}(\xi)\left|\varphi_{i}\left(\xi-\tau_{j i}\right)-\varphi_{0}\left(\xi-\tau_{j i}\right)\right| d \xi \leq\left\|\varphi_{i}-\varphi_{0}\right\|_{I_{1}} \int_{I} L_{\delta f_{i}}(\xi) d \xi \longrightarrow 0 . \tag{1.31}
\end{equation*}
$$

We now estimate $\alpha_{4}^{i}(t)$. The function $\varphi_{0}(\xi), \xi \in I_{1}$, is piecewise-continuous with a finite number of discontinuity points of the first kind, i.e., there exist subintervals $\left(\theta_{p}, \theta_{p+1}\right), p=\overline{1, m}$, where the function $\varphi_{0}(\xi)$ is continuous, with

$$
\theta_{1}=\widehat{\tau}, \quad \theta_{m+1}=b, \quad I_{1}=\bigcup_{p=1}^{m-1}\left[\theta_{p}, \theta_{p+1}\right) \cup\left[\theta_{m}, \theta_{m+1}\right]
$$

On the interval I_{1}, we define the continuous functions $z_{i}(\xi), i=\overline{1, m+1}$, as follows:

$$
z_{1}(\xi)=\varphi_{01}(\xi), \ldots, z_{m}(\xi)=\varphi_{0 m}(\xi), \quad z_{m+1}(\xi)= \begin{cases}z_{0}(a), & \xi \in[\widehat{\tau}, a) \\ z_{0}(\xi), & \xi \in I\end{cases}
$$

where

$$
\varphi_{0 p}(\xi)= \begin{cases}\varphi_{0}\left(\theta_{p}+\right), & \xi \in\left[\widehat{\tau}, \theta_{p}\right] \\ \varphi_{0}(\xi), & \xi \in\left(\theta_{p}, \theta_{p+1}\right), \quad p=\overline{1, m} \\ \varphi_{0}\left(\theta_{p+1}-\right), & \xi \in\left[\theta_{p+1}, b\right]\end{cases}
$$

One can readily see that $\alpha_{4}^{i}(t)$ satisfies the following estimation:

$$
\begin{align*}
\alpha_{4}^{i}(t) \leq & \sum_{m_{1}=1}^{m+1} \ldots \sum_{m_{s}=1}^{m+1} \max _{t^{\prime}, t^{\prime} \in I}\left|\int_{t^{\prime}}^{t^{\prime \prime}} \delta g_{i}\left(\xi, z_{0}(\xi), z_{m_{1}}\left(\xi-\tau_{1 i}\right), \ldots, z_{m_{s}}\left(\xi-\tau_{s i}\right)\right) d \xi\right| \\
\leq & \sum_{m_{1}=1}^{m+1} \ldots \sum_{m_{s}=1}^{m+1} \max _{t^{\prime}, t^{\prime} \in I}\left|\int_{t^{\prime}}^{t^{\prime \prime}} \delta g_{i}\left(\xi, z_{0}(\xi), z_{m_{1}}\left(\xi-\tau_{10}\right), \ldots, z_{m_{s}}\left(\xi-\tau_{s 0}\right)\right) d \xi\right| \\
& +\sum_{m_{1}=1}^{m+1} \ldots \sum_{m_{s}=1}^{m+1} \max _{t^{\prime}, t^{\prime \prime} \in I}\left|\int_{t^{\prime}}^{t^{\prime \prime}}\right| \delta g_{i}\left(\xi, z_{0}(\xi), z_{m_{1}}\left(\xi-\tau_{1 i}\right), \ldots, z_{m_{s}}\left(\xi-\tau_{s i}\right)\right) \\
- & \delta g_{i}\left(\xi, z_{0}(\xi), z_{m_{1}}\left(\xi-\tau_{10}\right), \ldots, z_{m_{s}}\left(\xi-\tau_{s 0}\right)\right)|d \xi| \\
\leq & \sum_{m_{1}=1}^{m+1} \ldots \sum_{m_{s}=1}^{m+1} \max _{t^{\prime}, t^{\prime} \in I}\left|\int_{t^{\prime}}^{t^{\prime \prime}} \delta g_{i}\left(\xi, z_{0}(\xi), z_{m_{1}}\left(\xi-\tau_{10}\right), \ldots, z_{m_{s}}\left(\xi-\tau_{s 0}\right)\right) d \xi\right| \\
& +\sum_{m_{1}=1}^{m+1} \ldots \sum_{m_{s}=1}^{m+1} \int_{I} L_{\delta f_{i}, K_{1}}(\xi) \sum_{j=1}^{s}\left|z_{m_{j}}\left(\xi-\tau_{j i}\right)-z_{m_{j}}\left(\xi-\tau_{j 0}\right)\right| d \xi \\
\leq & \sum_{m_{1}=1}^{m+1} \ldots \sum_{m_{s}=1}^{m+1} \max _{t^{\prime}, t^{\prime} \in I}\left|\int_{t^{\prime}}^{t^{\prime \prime}} \delta g_{i}\left(\xi, z_{0}(\xi), z_{m_{1}}\left(\xi-\tau_{10}\right), \ldots, z_{m_{s}}\left(\xi-\tau_{s 0}\right)\right) d \xi\right| \\
& +\sum_{m_{1}=1}^{m+1} \ldots \sum_{m_{s}=1}^{m+1} \sum_{j=1}^{s} \max _{\xi \in I}\left|z_{m_{j}}\left(\xi-\tau_{j i}\right)-z_{m_{j}}\left(\xi-\tau_{j 0}\right)\right| \int L_{\delta g_{i}, K_{1}}(\xi) d \xi . \tag{1.32}
\end{align*}
$$

Obviously,

$$
H_{0}\left(\delta g_{i} ; K_{1}\right)=H_{0}\left(\chi \delta f_{i} ; K_{1}\right) \leq H_{0}\left(\delta f_{i} ; K_{1}\right)
$$

(see (1.1)). Since $H_{0}\left(\delta f_{i} ; K_{1}\right) \rightarrow 0$, as $i \rightarrow \infty$, we have

$$
\lim _{i \rightarrow \infty} H_{0}\left(\delta g_{i}, K_{1}\right)=0
$$

This allows us to use Lemma 1.5 which, in its turn, implies that

$$
\lim _{i \rightarrow \infty} \max _{t^{\prime}, t^{\prime \prime} \in I}\left|\int_{t^{\prime}}^{t^{\prime \prime}} \delta g_{i}\left(\xi, z_{0}(\xi), z_{m_{1}}\left(\xi-\tau_{10}\right), \ldots, z_{m_{s}}\left(\xi-\tau_{s 0}\right)\right) d \xi\right|=0 \quad \forall m_{k} \in\{1, m+1\}, \quad k=\overline{1, s}
$$

Moreover, it is clear that

$$
\lim _{i \rightarrow \infty} \max _{t \in I}\left|z_{m_{j}}\left(\tau_{j i}(\xi)\right)-z_{m_{j}}\left(\tau_{j 0}(\xi)\right)\right|=0
$$

The right-hand side of the inequality (1.32) consists of finitely many summands and, therefore,

$$
\begin{equation*}
\lim _{i \rightarrow \infty} \alpha_{4}^{i}(t)=0 \tag{1.33}
\end{equation*}
$$

uniformly in $t \in I$.
The conditions (1.30), (1.31) and (1.33) yield

$$
\begin{equation*}
\lim _{i \rightarrow \infty} \alpha_{2}^{i}(t)=0 \tag{1.34}
\end{equation*}
$$

uniformly in $t \in I$ (see (1.29)).
Taking into account (1.28) and (1.34), we see that (1.27) implies

$$
\left\|\zeta_{1}^{i}-z_{0}\right\|_{I}=0
$$

The relation (1.26) is proved for $k=1$.
Let (1.26) hold for a certain $k>1$; we will prove it for $k+1$. Elementary transformations yield

$$
\begin{aligned}
& \left|\zeta_{k+1}^{i}(t)-z_{0}(t)\right| \\
& \leq\left|x_{0 i}-x_{00}\right|+\left|\int_{t_{0 i}}^{t} g_{i}\left(t_{0 i}, \tau_{1 i}, \ldots, \tau_{s i}, \varphi_{i}, \zeta_{k}^{i}\right)(\xi) d \xi-\int_{t_{00}}^{t} g_{0}\left(t_{00}, \tau_{10}, \ldots, \tau_{s 0}, \varphi_{0}, z_{0}\right)(\xi) d \xi\right| \\
& \leq\left|x_{0 i}-x_{00}\right|+\left|\int_{t_{0 i}}^{t_{00}} g_{0}\left(t_{00}, \tau_{10}, \ldots, \tau_{s 0}, \varphi_{0}, z_{0}\right)(\xi) d \xi\right| \\
& \quad+\left|\int_{t_{0 i}}^{t}\left[g_{i}\left(t_{0 i}, \tau_{1 i}, \ldots, \tau_{s i}, \varphi_{i}, z_{0}\right)(\xi)-g_{0}\left(t_{00}, \tau_{10}, \ldots, \tau_{s 0}, \varphi_{0}, z_{0}\right)(\xi)\right] d \xi\right| \\
& \quad+\left|\int_{t_{0 i}}^{t}\right| g_{i}\left(t_{0 i}, \tau_{1 i}, \ldots, \tau_{s i}, \varphi_{i}, \zeta_{k}^{i}\right)(\xi)-g_{i}\left(t_{0 i}, \tau_{1 i}, \ldots, \tau_{s i}, \varphi_{i}, z_{0}\right)(\xi)|d \xi|=\alpha_{1}^{i}+\alpha_{2}^{i}(t)+\alpha_{4 k}^{i}
\end{aligned}
$$

The quantities α_{1}^{i} and $\alpha_{2}^{i}(t)$ have been estimated previously, and it remains to estimate $\alpha_{4 k}^{i}$. We have

$$
\begin{aligned}
\alpha_{4 k}^{i} & \leq \int_{I} L_{f_{i}}(\xi)\left[\zeta_{k}^{i}(\xi)-z_{0}(\xi)\left|+\sum_{j=1}^{s}\right| h\left(t_{0 i}, 0, \zeta_{k}^{i}-z_{0}\right)\left(\xi-\tau_{j i}\right) \mid\right] d \xi \\
& \leq(s+1)\left\|\zeta_{k}^{i}-z_{0}\right\|_{I} \int_{I} L_{f_{i}}(\xi) d \xi \leq(s+1) \alpha_{2}\left\|\zeta_{k}^{i}-z_{0}\right\|_{I}
\end{aligned}
$$

Since

$$
\lim _{i \rightarrow \infty}\left\|\zeta_{k}^{i}-z_{0}\right\|_{I}=0
$$

it follows that

$$
\begin{equation*}
\lim _{i \rightarrow \infty} \alpha_{4 k}^{i}=0 \tag{1.35}
\end{equation*}
$$

According to (1.28), (1.34) and (1.35), we have

$$
\lim _{i \rightarrow \infty}\left\|\zeta_{k+1}^{i}-z_{0}\right\|_{I}=0
$$

The relation (1.26) is proved for every $k=1,2, \ldots$.
Let the number $\delta_{1}>0$ be insomuch small that $\left[r_{1}-\delta_{1}, r_{2}+\delta_{1}\right] \subset I$ and $\left|z\left(t ; \mu_{0}\right)-z\left(r_{1} ; \mu_{0}\right)\right| \leq \varepsilon_{0} / 2$ for $t \in\left[r_{1}-\delta_{1}, r_{1}\right]$ and $\left|z\left(t ; \mu_{0}\right)-z\left(r_{2} ; \mu_{0}\right)\right| \leq \varepsilon_{0} / 2$ for $t \in\left[r_{2}, r_{2}+\delta_{1}\right]$.

From the uniqueness of the solution $z\left(t ; \mu_{0}\right)$ we can conclude that $z\left(t ; \mu_{0}\right)=y_{0}(t)$ for $t \in\left[r_{1}, r_{2}\right]$. Taking into account the above inequalities, we have

$$
\begin{gathered}
\left(z\left(t ; \mu_{0}\right), h\left(t_{00}, \varphi_{0}, z\left(\cdot ; \mu_{0}\right)\right)\left(t-\tau_{10}\right), \ldots, h\left(t_{00}, \varphi_{0}, z\left(\cdot ; \mu_{0}\right)\right)\left(t-\tau_{s 0}\right)\right) \in K^{s+1}\left(\frac{\varepsilon_{0}}{2}\right) \subset Q, \\
t \in\left[r_{1}-\delta_{1}, r_{2}+\delta_{1}\right] .
\end{gathered}
$$

Hence

$$
\chi\left(z_{0}(t), h\left(t_{00}, \varphi_{0}, z\left(\cdot ; \mu_{0}\right)\right)\left(t-\tau_{10}\right), \ldots, h\left(t_{00}, \varphi_{0}, z\left(\cdot ; \mu_{0}\right)\right)\left(t-\tau_{s 0}\right)\right)=1, \quad t \in\left[r_{1}-\delta_{1}, r_{2}+\delta_{1}\right]
$$

and the function $z\left(t ; \mu_{0}\right)$ satisfies the equation

$$
\dot{y}(t)=f_{0}\left(t, z_{0}(t), h\left(t_{00}, \varphi, y\right)\left(t-\tau_{10}\right), \ldots, h\left(t_{00}, \varphi, y\right)\left(t-\tau_{s 0}\right)\right), \quad t \in\left[r_{1}-\delta_{1}, r_{2}+\delta_{1}\right],
$$

and the initial condition

$$
y\left(t_{00}\right)=x_{00} .
$$

Therefore,

$$
y\left(t ; \mu_{0}\right)=z\left(t ; \mu_{0}\right), \quad t \in\left[r_{1}-\delta_{1}, r_{2}+\delta_{1}\right] .
$$

According to the fixed point Theorem 1.1, for $\varepsilon_{0} / 2$ there exists a number $\delta_{0} \in\left(0, \varepsilon_{0}\right)$ such that a solution $z(t ; \mu)$ satisfying the condition

$$
\left|z(t ; \mu)-z\left(t ; \mu_{0}\right)\right| \leq \frac{\varepsilon_{0}}{2}, \quad t \in I
$$

corresponds to each element $\mu \in V\left(\mu_{0} ; K_{1}, \delta_{0}, \alpha\right)$.
Therefore, for $t \in\left[r_{1}-\delta_{1}, r_{2}+\delta_{1}\right]$,

$$
z(t ; \mu) \in K\left(\varepsilon_{0}\right) \forall \mu \in V\left(\mu_{0} ; K_{1}, \delta_{0}, \alpha\right)
$$

Taking into account that $\varphi(t) \in K\left(\varepsilon_{0}\right)$, we can see that for $t \in\left[r_{1}-\delta_{1}, r_{2}+\delta_{1}\right]$,

$$
\chi\left(z(t ; \mu), h\left(t_{0}, \varphi, z(\cdot ; \mu)\right)\left(t-\tau_{1}\right), \ldots, h\left(t_{0}, \varphi, z(\cdot ; \mu)\right)\left(t-\tau_{s}\right)\right)=1 \quad \forall \mu \in V\left(\mu_{0} ; K_{1}, \delta_{0}, \alpha\right)
$$

Hence the function $z(t ; \mu)$ satisfies the equation (1.16) and the condition (1.17), i.e.,

$$
\begin{equation*}
y(t ; \mu)=z(t ; \mu) \in K_{1}, \quad t \in\left[r_{1}-\delta_{1}, r_{2}+\delta_{1}\right], \quad \mu \in V\left(\mu_{0} ; K_{1}, \delta_{0}, \alpha\right) \tag{1.36}
\end{equation*}
$$

The first part of Theorem 1.7 is proved. By Theorem 1.1, for an arbitrary $\varepsilon>0$, there exists a number $\delta_{2}=\delta_{2}(\varepsilon) \in\left(0, \delta_{0}\right)$ such that for each $\mu \in V\left(\mu_{0} ; K_{1}, \delta_{2}, \alpha\right)$,

$$
\left|z(t ; \mu)-z\left(t ; \mu_{0}\right)\right| \leq \varepsilon, \quad t \in I
$$

whence, using (1.36), we obtain (1.19).
Proof of Theorem 1.2. In Theorem 1.7, let $r_{1}=t_{00}$ and $r_{2}=t_{10}$. Obviously, the solution $x_{0}(t)=$ $x\left(t ; \mu_{0}\right)$ on the interval $\left[t_{00}, t_{10}\right]$ satisfies the following equation:

$$
\dot{y}(t)=f_{0}\left(t_{0}, \tau_{10}, \ldots, \tau_{s 0}, \varphi_{0}, y\right)(t)
$$

Therefore, in Theorem 1.7, in the capacity of the solution $y_{0}(t)=y\left(t ; \mu_{0}\right)$ we can take the function $x_{0}(t), t \in\left[t_{00}, t_{10}\right]$.

By Theorem 1.7, there exist the numbers $\delta_{i}>0, i=0,1$, and for an arbitrary $\varepsilon>0$ there exists a number $\delta_{2}=\delta_{2}(\varepsilon) \in\left(0, \delta_{0}\right]$ such that the solution $y(t ; \mu), t \in\left[t_{00}-\delta_{1}, t_{10}+\delta_{1}\right]$, corresponds to each $\mu \in V\left(\mu_{0} ; K_{1}, \delta_{0}, \alpha\right)$. Moreover, the following conditions hold:

$$
\begin{cases}\varphi(t) \in K_{1}, & t \in I_{1} ; \quad y(t ; \mu) \in K_{1} \tag{1.37}\\ \left|y(t: \mu)-y\left(t ; \mu_{0}\right)\right| \leq \varepsilon, & t \in\left[t_{00}-\delta_{1}, t_{10}+\delta_{1}\right] \\ \mu \in V\left(\mu_{0} ; K_{1}, \delta_{2}, \alpha\right) & \end{cases}
$$

For an arbitrary $\mu \in V\left(\mu_{0} ; K_{1}, \delta_{0}, \alpha\right)$, the function

$$
x(t ; \mu)= \begin{cases}\varphi(t), & t \in\left[\widehat{\tau}, t_{0}\right), \\ y(t ; \mu), & t \in\left[t_{0}, t_{1}+\delta_{1}\right],\end{cases}
$$

is the solution corresponding to μ. Moreover, if $t \in\left[\theta, t_{10}+\delta_{1}\right]$, then $x\left(t ; \mu_{0}\right)=y\left(t ; \mu_{0}\right)$ and $x(t ; \mu)=$ $y(t ; \mu)$. Taking into account (1.37), we see that this implies 1.1 and 1.2. It is not difficult to note that for an arbitrary $\mu \in V\left(\mu_{0} ; K_{1}, \delta_{2}, \alpha\right)$, we have

$$
\begin{aligned}
\int_{\widehat{\tau}}^{t_{10}+\delta_{1}}\left|x(t ; \mu)-x\left(t ; \mu_{0}\right)\right| d t & =\int_{\widehat{\tau}}^{\theta_{0}}\left|\varphi(t)-\varphi_{0}(t)\right| d t+\int_{\theta_{0}}^{\theta}\left|x(t ; \mu)-x\left(t ; \mu_{0}\right)\right| d t+\int_{\theta}^{t_{10}+\delta_{1}}\left|x(t ; \mu)-x\left(t ; \mu_{0}\right)\right| d t \\
& \leq\left\|\varphi-\varphi_{0}\right\|_{I_{1}}(b-\widehat{\tau})+N\left|t_{0}-t_{00}\right|+\max _{t \in\left[\theta, t_{10}+\delta_{1}\right]} \mid x(t ; \mu)-x\left(t ; \mu_{0} \mid((b-\widehat{\tau}),\right.
\end{aligned}
$$

where $\theta_{0}=\min \left\{t_{0}, t_{00}\right\}, N=\sup \left\{\left|x^{\prime}-x^{\prime \prime}\right|: x^{\prime}, x^{\prime \prime} \in K_{1}\right\}$.
By 1.1 and 1.2 , this inequality implies 1.3.

1.4 Proof of Theorem 1.4

To each element $w \in \Lambda_{1}$ we put in correspondence the functional differential equation

$$
\begin{equation*}
\dot{y}(t)=\phi\left(t_{0}, \varphi, \tau_{1}, \ldots, \tau_{s}, y, u\right)(t)=\phi\left(t, y(t), h\left(t_{0}, \varphi, y\right)\left(t-\tau_{1}\right), \ldots, h\left(t_{0}, \varphi, y\right)\left(t-\tau_{s}\right), u(t)\right) \tag{1.38}
\end{equation*}
$$

with the initial condition (1.17).
Theorem 1.8. Let $y_{0}(t)=y\left(t ; w_{0}\right), w_{0}=\left(t_{00}, \tau_{10}, \ldots, \tau_{s 0}, x_{00}, \varphi_{0}, u_{0}\right) \in \Lambda_{1}$ be defined on $\left[r_{1}, r_{2}\right] \subset$ (a, b) and let $K_{1} \subset O$ be a compact set containing a certain neighborhood of the set $\mathrm{cl} \varphi_{0}\left(I_{1}\right) \cup y_{0}\left(\left[r_{1}, r_{2}\right]\right)$. Then the following conditions hold:
1.16. There exist numbers $\delta_{i}>0, i=0,1$, such that to each element

$$
\begin{aligned}
w & =\left(t_{0}, \tau_{1}, \ldots, \tau_{s}, x_{0}, \varphi, u\right) \in \widehat{V}\left(w_{0} ; \delta_{0}\right) \\
& =B\left(t_{00} ; \delta_{0}\right) \times V\left(\tau_{10} ; \delta_{0}\right) \times \cdots \times B\left(\tau_{s 0} ; \delta_{0}\right) \times B\left(x_{00} ; \delta_{0}\right) \times B\left(\varphi_{0} ; \delta_{0}\right) \times V_{2}\left(u_{0} ; \delta_{0}\right)
\end{aligned}
$$

there corresponds the solution $y(t ; w)$ defined on the interval $\left[r_{1}-\delta_{1}, r_{2}+\delta_{1}\right] \subset I$ and satisfying the condition $y(t ; w) \in K_{1}$.
1.17. For an arbitrary $\varepsilon>0$, there exists a number $\delta_{2}=\delta_{2}(\varepsilon) \in\left(0, \delta_{0}\right)$ such that the inequality

$$
\left|y(t ; w)-y\left(t ; w_{0}\right)\right| \leq \varepsilon \forall t \in\left[r_{1}-\delta_{1}, r_{2}+\delta_{1}\right]
$$

holds for any $w \in \widehat{V}\left(w_{0} ; \delta_{2}\right)$.
Proof. We rewrite the equation (1.38) in the form

$$
\dot{y}(t)=\phi_{0}\left(t_{0}, \varphi, \tau_{1}, \ldots, \tau_{s}, y\right)(t)+\delta \phi_{u}\left(t_{0}, \varphi, \tau_{1}, \ldots, \tau_{s}, y\right)(t),
$$

where

$$
\begin{aligned}
\phi_{0}\left(t, x, x_{1}, \ldots, x_{s}\right)=\phi\left(t, x, x_{1}, \ldots, x_{s}, u_{0}(t)\right) & \in E_{f} \\
\delta \phi_{u}\left(t, x, x_{1}, \ldots, x_{s}\right)=\phi\left(t, x, x_{1}, \ldots, x_{s}, u(t)\right)-\phi_{0}\left(t, x, x_{1}, \ldots, x_{s}\right) & \in E_{f}
\end{aligned}
$$

Let $\widehat{\delta}_{0}>0$ be a number insomuch small that $B\left(u_{0} ; \widehat{\delta}_{0}\right) \subset \Omega$. There exists a compact set $\widehat{U} \subset U_{0}$ such that any function from the neighborhood $B\left(u_{0} ; \widehat{\delta}_{0}\right)$ takes its values in \widehat{U}.

Let $K \subset O$ be a compact set. There exists a function $L_{K}(t) \in L_{1}\left(I, \mathbb{R}_{+}\right)$such that for almost all $t \in I$, the inequality

$$
\begin{aligned}
\left|\phi\left(t, x^{\prime}, x_{1}^{\prime}, \ldots, x_{s}^{\prime \prime}, u^{\prime}\right)-\phi\left(t, x^{\prime \prime}, x_{1}^{\prime}, \ldots, x_{s}^{\prime \prime}, u^{\prime \prime}\right)\right| & \leq L_{K}(t)\left[\left|x^{\prime}-x^{\prime \prime}\right|+\sum_{i=1}^{s}\left|x_{i}^{\prime}-x_{i}^{\prime \prime}\right|+\left|u^{\prime}-u^{\prime \prime}\right|\right] \\
& \forall x^{\prime}, x^{\prime \prime} \in K, \quad \forall x_{i}^{\prime}, x_{i}^{\prime \prime} \in K, \quad i=\overline{1, s}, \quad \forall u^{\prime}, u^{\prime \prime} \in \widehat{U}
\end{aligned}
$$

holds. Hence

$$
\begin{gathered}
\left|\delta \phi_{u}\left(t, x, x_{1}, \ldots, x_{s}\right)\right| \leq L_{K}(t)\left|u(t)-u_{0}(t)\right| \leq \widehat{\delta}_{0} L_{K}(t) \quad \forall x_{i} \in K, \quad i=\overline{1, s}, \quad \forall u \in B\left(u_{0} ; \widehat{\delta}_{0}\right), \\
\left|\delta \phi_{u}\left(t, x^{\prime}, x_{1}^{\prime}, \ldots, x_{s}^{\prime}\right)-\delta \phi_{u}\left(t, x^{\prime \prime}, x_{1}^{\prime \prime}, \ldots, x_{s}^{\prime \prime}\right)\right| \leq 2 L_{K}(t)\left[\left|x^{\prime}-x^{\prime \prime}\right|+\sum_{i=1}^{s}\left|x_{i}^{\prime}-x_{i}^{\prime \prime}\right|\right] \\
\forall x^{\prime}, x^{\prime \prime} \in K, \quad \forall x_{i}^{\prime}, x_{i}^{\prime \prime} \in K, \quad i=\overline{1, s} .
\end{gathered}
$$

It is easy to see that the inclusions $\left\{\delta \phi_{u}\left(t, x, x_{1}, \ldots, x_{s}\right): u \in B\left(u_{0} ; \delta\right)\right\} \subset W(K ; \alpha)$ and $\left\{\delta \phi_{u}\left(t, x, x_{1}, \ldots, x_{s}\right): u \in B\left(u_{0} ; \delta\right)\right\} \subset V_{K, \widehat{\delta}_{1}}$ hold for $\delta \in\left(0, \widehat{\delta}_{0}\right]$, where

$$
\alpha=\left(2+\widehat{\delta}_{0}\right) \int_{I} L_{K}(t) d t, \quad \widehat{\delta}_{1}=\delta \int_{I} L_{f}(t) d t .
$$

We can now apply Theorem 1.7 which, in its turn, proves Theorem 1.8.

Proof of Theorem 1.4. In Theorem 1.8, let $r_{1}=t_{00}$ and $r_{2}=t_{10}$. Obviously, the solution $x_{0}(t)=$ $x\left(t ; w_{0}\right)$ satisfies on the interval $\left[t_{00}, t_{10}\right]$ the following equation:

$$
\dot{y}(t)=\phi\left(t_{00}, \tau_{10}, \ldots, \tau_{s 0}, \varphi_{0}, y, u_{0}\right)(t)
$$

Therefore, in Theorem 1.8, we can take the function $x_{0}(t), t \in\left[t_{00}, t_{10}\right]$ as the solution $y_{0}(t)=y\left(t ; w_{0}\right)$. Then the proof of the theorem completely coincides with that of Theorem 1.2; for this purpose, it suffices to replace everywhere the element μ by the element w and the set $V\left(\mu_{0} ; K_{1}, \delta_{0}, \alpha\right)$ by the set $\widehat{V}\left(w_{0} ; \delta_{0}\right)$.

2 Variation formulas of solutions for equations with the discontinuous initial condition

2.1 Auxiliary assertions

Consider the set of functions $f=\left(f^{1}, \ldots, f^{n}\right)^{\top}: I \times O^{s+1} \rightarrow \mathbb{R}^{n}$ satisfying the following conditions: for almost all $t \in I$, the function $f(t, \cdot): O^{s+1} \rightarrow \mathbb{R}^{n}$ is continuously differentiable; for every $\left(x, x_{1}, \ldots, x_{s}\right) \in O^{s+1}$, the functions $f\left(t, x, x_{1}, \ldots, x_{s}\right), f_{x}(t, \cdot), f_{x_{i}}(t, \cdot), i=\overline{1, s}$, where $x=\left(x^{1}, \ldots, x^{n}\right)^{\top}, x_{i}=\left(x_{i}^{1}, \ldots, x_{i}^{n}\right)^{\top}$, are measurable on I; for any such function f and any compact set $K \subset O$, there exists a function $m_{f, K}(t) \in L_{1}\left(I, \mathbb{R}_{+}\right)$such that for any $\left(x, x_{1}, \ldots, x_{s}\right) \in K^{s+1}$ and for almost all $t \in I$,

$$
\left|f\left(t, x, x_{1}, \ldots, x_{s}\right)\right|+\left|f_{x}(t, \cdot)\right|+\sum_{i=1}^{s}\left|f_{x_{i}}(t, \cdot)\right| \leq m_{f, K}(t)
$$

The classes of such equivalent functions compose a vector space, which will be denoted by $E_{f}^{(1)}$; these classes are also called the functions and they will likewise be denoted by f.
Lemma 2.1 ([6, p. 80]). Let $K \subset O$ be a compact set and let $f \in E_{f}^{(1)}$. Then

$$
\sup \left\{\left|f\left(t, x, x_{1}, \ldots, x_{s}\right)\right|+\left|f_{x}(t, \cdot)\right|+\sum_{i=1}^{s}\left|f_{x_{i}}(t, \cdot)\right|: \quad\left(x, x_{1}, \ldots, x_{s}\right) \in K^{s+1}\right\} \in L_{1}\left(I, \mathbb{R}_{+}\right)
$$

Lemma 2.2. The inclusion

$$
\begin{equation*}
E_{f}^{(1)} \subset E_{f} \tag{2.1}
\end{equation*}
$$

holds.
Proof. Let $f \in E_{f}^{(1)}$ and let $K_{0} \subset O$ be an arbitrary compact set. To prove the inclusion (2.1), it suffices to show that there exists a function $L_{f, K_{0}}(t) \in L_{1}\left(I, \mathbb{R}_{+}\right)$such that for almost all $t \in I$,

$$
\begin{array}{r}
\left|f\left(t, x^{\prime}, x_{1}^{\prime}, \ldots, x_{s}^{\prime}\right)-f\left(t, x^{\prime \prime}, x_{1}^{\prime \prime}, \ldots, x_{s}^{\prime \prime}\right)\right| \leq L_{f, K_{0}}(t)\left\{\left|x^{\prime}-x^{\prime \prime}\right|+\sum_{i=1}^{s}\left|x_{i}^{\prime}-x_{i}^{\prime \prime}\right|\right\} \\
\forall x^{\prime}, x^{\prime \prime} \in K_{0}, \forall x_{i}^{\prime}, x_{i}^{\prime \prime} \in K_{0}, i=\overline{1, s}
\end{array}
$$

Introduce the function $g=\left(g^{1}, \ldots, g^{n}\right)^{\top}=\chi f=\left(\chi f^{1}, \ldots, \chi f^{n}\right)^{\top}$ (see (1.1) and (1.2)). Clearly, for $\left(x, x_{1}, \ldots, x_{s}\right) \notin K_{1}^{s+1}$, we have

$$
\begin{equation*}
\left|g_{x}\left(t, x, x_{1}, \ldots, x_{s}\right)\right|+\sum_{i=1}^{s}\left|g_{x_{i}}(t, \cdot)\right|=0, \quad i=\overline{1, s} \tag{2.2}
\end{equation*}
$$

Let $\left(x, x_{1}, \ldots, x_{s}\right) \in K_{1}^{s+1}$. It is not difficult to see that the relations

$$
\begin{aligned}
& \left|g_{x}\right|=\left[\sum_{k, j=1}^{n}\left|g_{x^{j}}^{k}\right|^{2}\right]^{\frac{1}{2}} \leq \sum_{k, j=1}^{n}\left|\left(\chi f^{k}\right)_{x^{j}}\right|, \\
& \left|g_{x_{i}}\right|=\left[\sum_{k, j=1}^{n}\left|g_{x_{i}^{j}}^{k}\right|^{2}\right]^{\frac{1}{2}} \leq \sum_{k, j=1}^{n}\left|\left(\chi f^{k}\right)_{x_{i}^{j}}\right|,
\end{aligned}
$$

where

$$
\left(\chi f^{k}\right)_{x^{j}}=\frac{\partial}{\partial x^{j}}\left(\chi f^{k}\right)
$$

are valid. We have

$$
\begin{gathered}
\left|\left(\chi f^{k}\right)_{x^{j}}\right| \leq\left|f^{k}\right|\left|\chi_{x^{j}}\right|+\left|f_{x^{j}}^{k}\right| \leq|f|\left|\chi_{x^{j}}\right|+\left|f_{x}\right| \leq m_{f, K_{1}}(t)\left(\alpha_{0}+1\right), \\
\left|\left(\chi f^{k}\right)_{x_{i}^{j}}\right| \leq\left|f^{k}\right|\left|\chi_{x_{i}^{j}}\right|+\left|f_{x_{i}^{j}}^{k}\right| \leq|f|\left|\chi_{x_{i}^{j}}\right|+\left|f_{x_{i}}\right| \leq m_{f, K_{1}}(t)\left(\alpha_{0}+1\right), \quad i=\overline{1, s},
\end{gathered}
$$

where

$$
\begin{aligned}
\alpha_{0} & =\sup \left\{\left|\chi_{x}\left(x, x_{1}, \ldots, x_{s}\right)\right|+\sum_{i=1}^{s}\left|\chi_{x_{i}}(\cdot)\right|: \quad\left(x, x_{1}, \ldots, x_{s}\right) \in \mathbb{R}^{n} \times \cdots \times \mathbb{R}^{n}\right\} \\
m_{f, K_{1}}(t) & =\sup \left\{\left|f\left(t, x, x_{1}, \ldots, x_{s}\right)\right|+\left|f_{x}(t, \cdot)\right|+\sum_{i=1}^{s} f_{x_{i}}(t, \cdot) \mid: \quad\left(x, x_{1}, \ldots, x_{s}\right) \in K_{1}^{s+1}\right\}
\end{aligned}
$$

(see (2.1)). Thus, for $\forall\left(t, x, x_{1}, \ldots, x_{s}\right) \in I \times K_{1}^{s+1}$, we get

$$
\begin{equation*}
\left|g_{x}\left(t, x, x_{1}, \ldots, x_{s}\right)\right|+\sum_{i=1}^{s}\left|g_{x_{i}}(t, \cdot)\right| \leq m_{g, K_{1}}(t), \quad i=\overline{1, s}, \tag{2.3}
\end{equation*}
$$

where

$$
m_{g, K_{1}}(t)=n^{2}(s+1)\left(\alpha_{0}+1\right) m_{f, K_{1}}(t)
$$

It is clear that (2.3) is valid for $\left(t, x, x_{1}, \ldots, x_{s}\right) \in I \times \mathbb{R}^{n} \times \cdots \times \mathbb{R}^{n}$, as well (see (2.2)). Let $\left(x^{\prime}, x_{1}^{\prime}, \ldots, x_{s}^{\prime}\right)$ and $\left(x^{\prime \prime}, x_{1}^{\prime \prime}, \ldots, x_{s}^{\prime \prime}\right)$ be arbitrary points in K_{0}^{s+1}. Then (see (1.1)) we have

$$
\begin{aligned}
& \mid f\left(t, x^{\prime}, x_{1}^{\prime}, \ldots, x_{s}^{\prime}\right)-f\left(t, x^{\prime \prime}, x_{1}^{\prime \prime}, \ldots, x_{s}^{\prime \prime}\right)\left|=\left|g\left(t, x^{\prime}, x_{1}^{\prime}, \ldots, x_{s}^{\prime}\right)-g\left(t, x^{\prime \prime}, x_{1}^{\prime \prime}, \ldots, x_{s}^{\prime \prime}\right)\right|\right. \\
& \leq\left|\int_{0}^{1} \frac{d}{d \theta} g\left(t, x^{\prime \prime}+\theta\left(x^{\prime}-x^{\prime \prime}\right), x_{1}^{\prime \prime}+\theta\left(x_{1}^{\prime}-x_{1}^{\prime \prime}\right), \ldots, x_{s}^{\prime \prime}+\theta\left(x_{s}^{\prime}-x_{s}^{\prime \prime}\right)\right) d \theta\right| \\
& \leq \int_{0}^{1}\left[\left|g_{x}\left(t, x^{\prime \prime}+\theta\left(x^{\prime}-x^{\prime \prime}\right), x_{1}^{\prime \prime}+\theta\left(x_{1}^{\prime}-x_{1}^{\prime \prime}\right), \ldots, x_{s}^{\prime \prime}+\theta\left(x_{s}^{\prime}-x_{s}^{\prime \prime}\right)\right)\right|\left|x^{\prime}-x^{\prime \prime}\right|\right. \\
&\left.+\sum_{i=1}^{s}\left|g_{x_{i}}\left(t, x^{\prime \prime}+\theta\left(x^{\prime}-x^{\prime \prime}\right), x_{1}^{\prime \prime}+\theta\left(x_{1}^{\prime}-x_{1}^{\prime \prime}\right), \ldots, x_{s}^{\prime \prime}+\theta\left(x_{s}^{\prime}-x_{s}^{\prime \prime}\right)\right)\right|\left|x_{i}^{\prime \prime}-x_{i}^{\prime \prime}\right|\right] d \theta \\
& \leq m_{g, K_{1}}(t)\left[\left|x^{\prime}-x^{\prime \prime}\right|+\sum_{i=1}^{s}\left|x_{i}^{\prime \prime}-x_{i}^{\prime \prime}\right|\right] .
\end{aligned}
$$

Therefore, as $L_{f, K_{0}}(t)$ we can take $m_{g, K_{1}}(t)$.
Consider now the linear delay functional differential equation

$$
\begin{equation*}
\dot{x}(t)=A(t) x(t)+\sum_{i=1}^{s} A_{i}(t) x_{i}\left(t-\tau_{i}\right)+f(t) \tag{2.4}
\end{equation*}
$$

with the discontinuous initial condition

$$
\begin{equation*}
x(t)=\varphi(t), \quad t \in\left[\widehat{\tau}, t_{0}\right), \quad x\left(t_{0}\right)=x_{0} \tag{2.5}
\end{equation*}
$$

Here, $A(t), A_{i}(t), i=\overline{1, s}$, are the integrable matrix functions of dimension $n \times n ; t_{0} \in[a, b)$, $\tau_{i} \in\left[\theta_{i 1}, \theta_{i 2}\right], i=\overline{1, s}$, are fixed numbers; $\varphi \in \operatorname{PC}\left(I_{1}, \mathbb{R}^{n}\right)$ is a fixed initial function and $x_{0} \in \mathbb{R}^{n}$ is a fixed initial vector.

The equation (2.4) with the initial condition (2.5) has a unique solution $x(t)$ defined on $[\widehat{\tau}, b]$ (see Definition 1.1).

For every $t \in(a, b]$, on the interval $[a, t]$, let us consider the following matrix functional differential equation with the advanced arguments:

$$
\begin{equation*}
Y_{\xi}(\xi ; t)=-Y(\xi ; t) A(\xi)-\sum_{i=1}^{s} Y\left(\xi+\tau_{i} ; t\right) A_{i}\left(\xi+\tau_{i}\right), \quad \xi \in[a, t] \tag{2.6}
\end{equation*}
$$

with the initial condition

$$
\begin{equation*}
Y(t ; t)=\Upsilon, \quad Y(\xi ; t)=\Theta, \quad \xi \in\left(t, \widehat{\tau}_{1}\right] \tag{2.7}
\end{equation*}
$$

where Υ is the identity matrix and Θ is the zero matrix.
For every $t \in(a, b]$, the equation (2.6) with the discontinuous initial condition (2.7) has a unique solution $Y(\xi ; t)$ defined on $\left[a, \widehat{\tau}_{1}\right]$ (see Definition 1.3).
Lemma 2.3 (Cauchy formula). The solution of the equation (2.4) with the initial condition (2.5) can be represented on the interval $\left[t_{0}, b\right]$ by the following formula:

$$
\begin{equation*}
x(t)=Y\left(t_{0} ; t\right) x_{0}+\sum_{i=1}^{s} \int_{t_{0}-\tau_{i}}^{t_{0}} Y\left(\xi+\tau_{i} ; t\right) A_{i}\left(\xi+\tau_{i}\right) \varphi(\xi) d \xi+\int_{t_{0}}^{t} Y(\xi ; t) f(\xi) d \xi, \tag{2.8}
\end{equation*}
$$

where $Y(\xi ; t)$ is a solution of the equation (2.6) with the initial condition (2.7).
Proof. On the interval $\left[t_{0}, t\right]$, where $\xi \in\left(t_{0}, b\right]$, consider the equation

$$
\begin{equation*}
\dot{x}(\xi)=A(\xi) x(\xi)+\sum_{i=1}^{s} A_{i}(\xi) x_{i}\left(\xi-\tau_{i}\right)+f(\xi) \tag{2.9}
\end{equation*}
$$

with the initial condition

$$
x(\xi)=\varphi(\xi), \quad \xi \in\left[\widehat{\tau}, t_{0}\right), \quad x\left(t_{0}\right)=x_{0}
$$

Multiplying the equation (2.9) by the matrix function $Y(\xi ; t)$ and integrating in $\xi \in\left[t_{0}, t\right]$, we obtain

$$
\begin{equation*}
\int_{t_{0}}^{t} Y(\xi ; t) \dot{x}(\xi) d \xi=\int_{t_{0}}^{t} Y(\xi ; t)\left[A(\xi) x(\xi)+\sum_{i=1}^{s} A_{i}(\xi) x\left(\xi-\tau_{i}\right)\right] d \xi+\int_{t_{0}}^{t} Y(\xi ; t) f(\xi) d \xi \tag{2.10}
\end{equation*}
$$

The integration by pats on the left-hand side of (2.10) with regard for $Y(t ; t)=\Upsilon$ yields

$$
\begin{equation*}
\int_{t_{0}}^{t} Y(\xi ; t) \dot{x}(\xi) d \xi=x(t)-Y\left(t_{0} ; t\right) x_{0}-\int_{t_{0}}^{t} Y_{\xi}(\xi ; t) x(\xi) d \xi \tag{2.11}
\end{equation*}
$$

Further,

$$
\begin{align*}
\int_{t_{0}}^{t} Y(\xi ; t) A_{i}(\xi) x\left(\xi-\tau_{i}\right) d \xi & =\int_{t_{0}-\tau_{i}}^{t-\tau_{i}} Y\left(\xi+\tau_{i} ; t\right) A_{i}\left(\xi+\tau_{i}\right) x(\xi) d \xi \\
& =\int_{t_{0}-\tau_{i}}^{t_{0}} Y\left(\xi+\tau_{i} ; t\right) A_{i}\left(\xi+\tau_{i}\right) \varphi(\xi) d \xi+\int_{t_{0}}^{t} Y\left(\xi+\tau_{i} ; t\right) A_{i}\left(\xi+\tau_{i}\right) x(\xi) d \xi \tag{2.12}
\end{align*}
$$

(see (2.7)). Taking into account (2.11) and (2.12), from (2.10) we find that

$$
\begin{aligned}
x(t) & =Y\left(t_{0} ; t\right) x_{0}+\sum_{i=1}^{s} \int_{t_{0}-\tau_{i}}^{t_{0}} Y\left(\xi+\tau_{i} ; t\right) A_{i}\left(\xi+\tau_{i}\right) \varphi(\xi) d \xi \\
& +\int_{t_{0}}^{t}\left[Y_{\xi}(\xi ; t)+A(\xi) x(\xi)+\sum_{i=1}^{s} Y\left(\xi+\tau_{i} ; t\right) A_{i}(\xi+\tau)\right] x(\xi) d \xi+\int_{t_{0}}^{t} Y(\xi ; t) f(\xi) d \xi
\end{aligned}
$$

$Y(\xi ; t)$ satisfies the equation (2.6) and, therefore, the latter relation implies the formula (2.8).

Lemma 2.4 (Gronwall-Bellman's inequality). Let $v(t) \geq 0, t \in\left[t_{0}, b\right]$, be a continuous scalar-valued function, $m(t) \in L_{1}\left(I, \mathbb{R}_{+}\right)$, and let the inequality

$$
v(t) \leq c+\int_{t_{0}}^{t} m(\xi) v(\xi) d \xi
$$

where $c \geq 0$, hold. Then

$$
v(t) \leq c \exp \left(\int_{t_{0}}^{t} m(\xi) d \xi\right), \quad t \in\left[t_{0}, b\right]
$$

Lemma 2.5. Let $t^{\prime} \in(a, b]$. For an arbitrary $\varepsilon>0$, there exists $\delta>0$ such that the inequality

$$
\left|Y\left(\xi ; t^{\prime}\right)-Y\left(\xi ; t^{\prime \prime}\right)\right| \leq \varepsilon \forall \xi \in[a, \underline{t}]
$$

holds for arbitrary $t^{\prime \prime} \in\left[t^{\prime}-\delta, t^{\prime}+\delta\right] \cap I$, where $\underline{t}=\min \left\{t^{\prime}, t^{\prime \prime}\right\}$.
Lemma 2.5 is a simple consequence of Theorem 1.6.
Lemma 2.6. The matrix function $Y(\xi ; t)$ is continuous on the set $\Pi=\{(\xi, t): a<\xi<t, t \in(a, b)\}$.
Proof. Let $(\xi, t) \in \Pi$ be a fixed point. There exists $\delta_{1}>0$ such that $\xi+\Delta \xi<\min \{t+\Delta t, t\}$ and $t+\Delta t<b$ for $|\Delta \xi| \leq \delta_{1},|\Delta t| \leq \delta_{1}$, i.e., $(\xi+\Delta \xi, t+\Delta t) \in \Pi$.

Using Lemma 2.5, we see that for each $\varepsilon>0$, there exists $\delta_{2} \in\left(0, \delta_{1}\right)$ such that for arbitrary $\Delta \xi$ and Δt satisfying the conditions $|\Delta \xi| \leq \delta_{2}$ and $|\Delta t| \leq \delta_{2}$, the inequality

$$
|Y(\xi+\Delta \xi ; t+\Delta t)-Y(\xi+\Delta \xi ; t)| \leq \frac{\varepsilon}{2}
$$

holds.
On the other hand, the function $Y(\varsigma ; t)$ is continuous with respect to $\varsigma \in[a, t]$, i.e., there exists a number $\delta_{3} \in\left(0, \delta_{1}\right)$ such that

$$
|Y(\xi+\Delta \xi ; t)-Y(\xi ; t)| \leq \frac{\varepsilon}{2}, \quad|\Delta \xi| \leq \delta_{3} .
$$

Hence, for $|\Delta \xi| \leq \delta,|\Delta t| \leq \delta, \delta=\left\{\delta_{2}, \delta_{3}\right\}$, we have

$$
\begin{aligned}
\mid Y(\xi+\Delta \xi ; t+\Delta t) & -Y(\xi ; t) \mid \\
& \leq|Y(\xi+\Delta \xi ; t+\Delta t)-Y(\xi+\Delta \xi ; t)|+|Y(\xi+\Delta \xi ; t)-Y(\xi ; t)| \leq \varepsilon
\end{aligned}
$$

2.2 Formulation of main results

To each element

$$
\mu=\left(t_{0}, \tau_{1}, \ldots, \tau_{s}, x_{0}, \varphi, f\right) \in \Lambda^{(1)}=[a, b) \times\left[\theta_{11}, \theta_{12}\right] \times \cdots \times\left[\theta_{s 1}, \theta_{s 2}\right] \times O \times \Phi \times E_{f}^{(1)}
$$

we assign the delay functional differential equation

$$
\begin{equation*}
\dot{x}(t)=f\left(t, x(t), x\left(t-\tau_{1}\right), \ldots, x\left(t-\tau_{s}\right)\right) \tag{2.13}
\end{equation*}
$$

with the discontinuous initial condition

$$
\begin{equation*}
x(t)=\varphi(t), \quad t \in\left[\widehat{\tau}, t_{0}\right), \quad x\left(t_{0}\right)=x_{0} . \tag{2.14}
\end{equation*}
$$

Definition 2.1. Let $\mu=\left(t_{0}, \tau_{1}, \ldots, \tau_{s}, x_{0}, \varphi, f\right) \in \Lambda^{(1)}$. A function $x(t)=x(t ; \mu) \in O, t \in\left[\widehat{\tau}, t_{1}\right]$, $t_{1} \in\left(t_{0}, b\right]$, is called a solution of the equation (2.13) with the initial condition (2.14), or a solution corresponding to the element μ and defined on the interval $\left[\widehat{\tau}, t_{1}\right]$, if it satisfies the condition (2.14) and is absolutely continuous on the interval $\left[t_{0}, t_{1}\right]$ and satisfies the equation (2.13) a.e. on $\left[t_{0}, t_{1}\right]$.

Let $x_{0}(t)$ be the solution corresponding to the element $\mu_{0}=\left(t_{00}, \tau_{10}, \ldots, \tau_{s 0}, x_{0}, \varphi_{0}, f_{0}\right) \in \Lambda^{(1)}$ and defined on the interval $\left[\widehat{\tau}, t_{10}\right]$, where $t_{00}, t_{10} \in(a, b), t_{00}<t_{10}$ and $\tau_{i 0} \in\left(\theta_{1 i}, \theta_{2 i}\right), i=\overline{1, s}$.

In the space $E_{\delta \mu}^{(1)}=E_{\mu}^{(1)}-\mu_{0}$ with the elements $\delta \mu=\left(\delta t_{0}, \delta \tau_{1}, \ldots, \delta \tau_{s}, \delta x_{0}, \delta \varphi, \delta f\right)$, where $E_{\mu}^{(1)}=$ $\mathbb{R} \times \mathbb{R} \times \cdots \times \mathbb{R} \times \mathbb{R}^{n} \times \operatorname{PC}\left(I_{1}, \mathbb{R}^{n}\right) \times E_{f}^{(1)}$, we introduce the set of variations

$$
\begin{aligned}
& \Im^{(1)}=\left\{\delta \mu=\left(\delta t_{0}, \delta \tau_{1}, \ldots, \delta \tau_{s}, \delta x_{0}, \delta \varphi, \delta f\right) \in E_{\delta \mu}^{(1)}: \quad\left|\delta t_{0}\right| \leq \gamma, \quad\left|\delta \tau_{i}\right| \leq \gamma, \quad i=\overline{1, s},\right. \\
& \left.\qquad\left|\delta x_{0}\right| \leq \gamma, \quad\|\delta \varphi\|_{I} \leq \gamma, \quad \delta f=\sum_{i=1}^{k} \lambda_{i} \delta f_{i}, \quad\left|\lambda_{i}\right| \leq \gamma, \quad i=\overline{1, k}\right\}
\end{aligned}
$$

where $\gamma>0$ is a fixed number and $\delta f_{i} \in E_{f}-f_{0}, i=\overline{1, k}$, are fixed functions.
There exist numbers $\delta_{1}>0$ and $\varepsilon_{1}>0$ such that for arbitrary $(\varepsilon, \delta \mu) \in\left(0, \varepsilon_{1}\right) \times \Im^{(1)}$, to the element $\mu_{0}+\varepsilon \delta \mu$ there corresponds the solution $x\left(t ; \mu_{0}+\varepsilon \delta \mu\right)$ defined on the interval $\left[\widehat{\tau}, t_{10}+\delta_{1}\right] \subset I_{1}$ (see Lemma 2.8).

Due to the uniqueness, the solution $x\left(t ; \mu_{0}\right)$ is a continuation of the solution $x_{0}(t)$ on the interval $\left[\widehat{\tau}, t_{10}+\delta_{1}\right]$. Therefore, in the sequel, the solution $x_{0}(t)$ is assumed to be defined on the interval $\left[\widehat{\tau}, t_{10}+\delta_{1}\right]$.

Let us define the increment of the solution $x_{0}(t)=x\left(t ; \mu_{0}\right)$:

$$
\begin{equation*}
\Delta x(t)=\Delta x(t ; \varepsilon \delta \mu)=x\left(t ; \mu_{0}+\varepsilon \delta \mu\right)-x_{0}(t) \forall(t, \varepsilon, \delta \mu) \in\left[\widehat{\tau}, t_{10}+\delta_{1}\right] \times\left(0, \varepsilon_{1}\right) \times \Im^{(1)} \tag{2.15}
\end{equation*}
$$

Theorem 2.1. Let the following conditions hold:
2.1. $\tau_{s 0}>\cdots>\tau_{10}$ and $t_{00}+\tau_{s 0}<t_{10}$;
2.2. the function $\varphi_{0}(t)$ is absolutely continuous and $\dot{\varphi}_{0}(t)$ is bounded;
2.3. the function $f_{0}(w), w=\left(t, x, x_{1}, \ldots, x_{s}\right) \in I \times O^{s+1}$, is bounded;
2.4. there exists the finite limit

$$
\lim _{w \rightarrow w_{0}} f_{0}(w)=f_{0}^{-}, \quad w \in\left(a, t_{00}\right] \times O^{s+1}
$$

where $w_{0}=\left(t_{00}, x_{00}, \varphi_{0}\left(t_{00}-\tau_{10}\right), \ldots, \varphi_{0}\left(t_{00}-\tau_{s 0}\right)\right)$;
2.5. there exist the finite limits

$$
\lim _{\left(w_{1 i}, w_{2 i}\right) \rightarrow\left(w_{1 i}^{0}, w_{2 i}^{0}\right)}\left[f_{0}\left(w_{1 i}\right)-f_{0}\left(w_{2 i}\right)\right]=f_{0 i},
$$

where $w_{1 i}, w_{2 i} \in(a, b) \times O^{s+1}, i=\overline{1, s}$,

$$
\begin{gathered}
w_{1 i}^{0}=\left(t_{00}+\tau_{i 0}, x_{0}\left(t_{00}+\tau_{i 0}\right), x_{0}\left(t_{00}+\tau_{i 0}-\tau_{10}\right), \ldots, x_{0}\left(t_{00}+\tau_{i 0}-\tau_{i-10}\right)\right. \\
\left.x_{00}, x_{0}\left(t_{00}+\tau_{i 0}-\tau_{i+10}\right), \ldots, x_{0}\left(t_{00}+\tau_{i 0}-\tau_{s 0}\right)\right) \\
w_{2 i}^{0}=\left(t_{00}+\tau_{i 0}, x_{0}\left(t_{00}+\tau_{i 0}\right), x_{0}\left(t_{00}+\tau_{i 0}-\tau_{10}\right), \ldots, x_{0}\left(t_{00}+\tau_{i 0}-\tau_{i-10}\right)\right. \\
\left.\varphi_{0}\left(t_{00}\right), x_{0}\left(t_{00}+\tau_{i 0}-\tau_{i+10}\right), \ldots, x_{0}\left(t_{00}+\tau_{i 0}-\tau_{s 0}\right)\right)
\end{gathered}
$$

Then there exist numbers $\varepsilon_{2} \in\left(0, \varepsilon_{1}\right)$ and $\delta_{2} \in\left(0, \delta_{1}\right)$, with $t_{10}-\delta_{2}>t_{00}+\tau_{s 0}$, such that for arbitrary $(t, \varepsilon, \delta \mu) \in\left[t_{10}-\delta_{2}, t_{10}+\delta_{2}\right] \times\left(0, \varepsilon_{2}\right) \times \Im_{-}^{(1)}$, where $\Im_{-}^{(1)}=\left\{\delta \mu \in \Im^{(1)}: \delta t_{0} \leq 0\right\}$, we have

$$
\begin{equation*}
\Delta x(t ; \varepsilon \delta \mu)=\varepsilon \delta x(t ; \delta \mu)+o(t ; \varepsilon \delta \mu) \tag{2.16}
\end{equation*}
$$

Here

$$
\begin{equation*}
\delta x(t ; \delta \mu)=-Y\left(t_{00} ; t\right) f_{0}^{-} \delta t_{0}+\beta(t ; \delta \mu) \tag{2.17}
\end{equation*}
$$

and

$$
\begin{aligned}
\beta(t ; \delta \mu) & =Y\left(t_{00} ; t\right) \delta x_{0}-\left[\sum_{i=1}^{s} Y\left(t_{00}+\tau_{i 0} ; t\right) f_{0 i}\right] \delta t_{0} \\
& -\sum_{i=1}^{s}\left[Y\left(t_{00}+\tau_{i 0} ; t\right) f_{0 i}+\int_{t_{00}}^{t} Y(\xi ; t) f_{0 x_{i}}[\xi] \dot{x}_{0}\left(\xi-\tau_{i 0}\right) d \xi\right] \delta \tau_{i} \\
& +\sum_{i=1}^{s} \int_{t_{00}-\tau_{i 0}}^{t_{00}} Y\left(\xi+\tau_{i 0} ; t\right) f_{0 x_{i}}\left[\xi+\tau_{i 0}\right] \delta \varphi(\xi) d \xi+\int_{t_{00}}^{t} Y(\xi ; t) \delta f[\xi] d \xi,
\end{aligned}
$$

where it is assumed that

$$
\int_{t_{00}}^{t} Y(\xi ; t) f_{0 x_{i}}[\xi] \dot{x}_{0}\left(\xi-\tau_{i 0}\right) d \xi=\int_{t_{00}}^{t_{00}+\tau_{i 0}} Y(\xi ; t) f_{0 x_{i}}[\xi] \dot{\varphi}_{0}\left(\xi-\tau_{i 0}\right) d \xi+\int_{t_{00}+\tau_{i 0}}^{t} Y(\xi ; t) f_{0 x_{i}}[\xi] \dot{x}_{0}\left(\xi-\tau_{i 0}\right) d \xi
$$

Next, $Y(\xi ; t)$ is the $n \times n$-matrix function satisfying the equation

$$
\begin{equation*}
Y_{\xi}(\xi ; t)=-Y(\xi ; t) f_{0 x}[\xi]-\sum_{i=1}^{s} Y\left(\xi+\tau_{i 0} ; t\right) f_{0 x_{i}}\left[\xi+\tau_{i 0}\right], \quad \xi \in\left[t_{00}, t\right] \tag{2.18}
\end{equation*}
$$

and the condition

$$
\begin{equation*}
Y(t ; t)=\Upsilon, \quad Y(\xi ; t)=\Theta, \quad \xi>t \tag{2.19}
\end{equation*}
$$

where

$$
\begin{aligned}
f_{0 x_{i}}[\xi] & =f_{0 x_{i}}\left(\xi, x_{0}(\xi), x_{0}\left(\xi-\tau_{10}\right), \ldots, x_{0}\left(\xi-\tau_{s 0}\right)\right), \\
\delta f[\xi] & =\delta f\left(\xi, x_{0}(\xi), x_{0}\left(\xi-\tau_{10}\right), \ldots, x_{0}\left(\xi-\tau_{s 0}\right)\right) .
\end{aligned}
$$

Some comments. The expression (2.17) is called the variation formula of the solution.
The addend

$$
-\left[Y\left(t_{00} ; t\right) f_{0}^{-}+\sum_{i=1}^{s} Y\left(t_{00}+\tau_{i 0} ; t\right) f_{0 i}\right] \delta t_{0}
$$

in the formula (2.17) is the effect of the discontinuous initial condition (2.14) and perturbation of the initial moment t_{00}.

The addend

$$
-\sum_{i=1}^{s}\left[Y\left(t_{00}+\tau_{i 0} ; t\right) f_{0 i}+\int_{t_{00}}^{t} Y(\xi ; t) f_{0 x_{i}}[\xi] \dot{x}_{0}\left(\xi-\tau_{i 0}\right) d \xi\right] \delta \tau_{i}
$$

in the formula (2.17) is the effect of perturbations of the delays $\tau_{i 0}, i=\overline{1, s}$. The expression

$$
Y\left(t_{00} ; t\right) \delta x_{0}+\sum_{i=1}^{s} \int_{t_{00}-\tau_{i 0}}^{t_{00}} Y\left(\xi+\tau_{i 0} ; t\right) f_{0 x_{i}}\left[\xi+\tau_{i 0}\right] \delta \varphi(\xi) d \xi
$$

in the formula (2.17) is the effect of perturbations of the initial vector x_{00} and the initial function $\varphi_{0}(t)$.

The addend

$$
\int_{t_{00}}^{t} Y(\xi ; t) \delta f[\xi] d \xi
$$

in the formula (2.17) is the effect of perturbation of the right-hand side of the equation

$$
\dot{x}(t)=f_{0}\left(t, x(t), x\left(t-\tau_{10}\right), \ldots, x\left(t-\tau_{s 0}\right)\right)
$$

Next, it is clear that

$$
\delta x(t ; \delta \mu)=\delta x_{0}(t ; \delta \mu)-\sum_{i=1}^{s} \delta x_{i}(t ; \delta \mu), \quad t \in\left[t_{10}-\delta_{2}, t_{10}+\delta_{2}\right]
$$

where

$$
\begin{aligned}
\delta x_{0}(t ; \delta \mu)= & Y\left(t_{00} ; t\right)\left[\delta x_{0}-f_{0}^{-} \delta t_{0}\right]+\sum_{i=1}^{s} \int_{t_{00}-\tau_{i 0}}^{t_{00}} Y\left(\xi+\tau_{i 0} ; t\right) f_{0 x_{i}}\left[\xi+\tau_{i 0}\right] \delta \varphi(\xi) d \xi \\
& \quad+\int_{t_{00}}^{t} Y(\xi ; t)\left[-\sum_{i=1}^{s} f_{0 x_{i}}[\xi] \dot{x}_{0}\left(\xi-\tau_{i 0}\right) \delta \tau_{i}+\delta f[\xi]\right] d \xi \\
\delta x_{i}(t ; \delta \mu)= & Y\left(t_{00}+\tau_{i 0} ; t\right) f_{0 i}\left(\delta t_{0}+\delta \tau_{i}\right) .
\end{aligned}
$$

On the basis of the Cauchy formula (see Lemma 2.3), the function

$$
\delta x_{0}(t)= \begin{cases}\delta \varphi(t), & t \in\left[\widehat{\tau}, t_{00}\right), \\ \delta x_{0}(t, \delta \mu), & t \in\left[t_{00}, t_{10}+\delta_{2}\right]\end{cases}
$$

is a solution of the equation

$$
\dot{\delta} x(t)=f_{0 x}[t] \delta x(t)+\sum_{i=1}^{s} f_{0 x_{i}}[t] \delta x\left(t-\tau_{i}\right)-\sum_{i=1}^{s} f_{0 x_{i}}[\xi] \dot{x}_{0}\left(\xi-\tau_{i 0}\right) \delta \tau_{i}+\delta f[\xi]
$$

with the initial condition

$$
\delta x(t)=\delta \varphi(t), \quad t \in\left[\widehat{\tau}, t_{00}\right), \quad \delta x\left(t_{00}\right)=\delta x_{0}-f_{0}[t] \delta t_{0}
$$

and the function

$$
\delta x_{i}(t)= \begin{cases}0, & t \in\left[\widehat{\tau}, t_{00}+\tau_{i 0}\right) \\ Y\left(t_{00}+\tau_{i 0} ; t\right) f_{0 i}\left(\delta t_{0}+\delta \tau_{i}\right), & t \in\left[t_{00}+\tau_{i 0}, t_{10}+\delta_{2}\right]\end{cases}
$$

is a solution of the equation

$$
\dot{\delta} x(t)=f_{0 x}[t] \delta x(t)+\sum_{i=1}^{s} f_{0 x_{i}}[t] \delta x\left(t-\tau_{i}\right)
$$

with the initial condition

$$
\delta x(t)=0, \quad t \in\left[\widehat{\tau}, t_{00}+\tau_{i 0}\right), \quad \delta x\left(t_{00}+\tau_{i 0}\right)=f_{0 i}\left(\delta t_{0}+\delta \tau_{i}\right) .
$$

Theorem 2.2. Let the conditions 2.1-2.3 and 2.5 of Theorem 2.1 hold. Moreover, there exists the finite limit

$$
\begin{equation*}
\lim _{w \rightarrow w_{0}} f_{0}(w)=f_{0}^{+}, \quad w \in\left[t_{00}, b\right) \times O^{s+1} \tag{2.20}
\end{equation*}
$$

Then there exist numbers $\varepsilon_{2} \in\left(0, \varepsilon_{1}\right)$ and $\delta_{2} \in\left(0, \delta_{1}\right)$, with $t_{10}-\delta_{2}>t_{00}+\tau_{s 0}$ such that for arbitrary $(t, \varepsilon, \delta \mu) \in\left[t_{10}-\delta_{2}, t_{10}+\delta_{2}\right] \times\left(0, \varepsilon_{2}\right) \times \Im_{+}^{(1)}$, where $\Im_{+}^{(1)}=\left\{\delta \mu \in \Im^{(1)}: \delta t_{0} \geq 0\right\}$, the formula (2.16) holds. Here,

$$
\delta x(t ; \delta \mu)=-Y\left(t_{00} ; t\right) f_{0}^{+} \delta t_{0}+\beta(t ; \delta \mu)
$$

Theorem 2.3. Let the conditions 2.1-2.5 of Theorem 2.1 and the condition (2.20) hold. Moreover, $f_{0}^{-}=f_{0}^{+}:=\widehat{f_{0}}$. Then there exist numbers $\varepsilon_{2} \in\left(0, \varepsilon_{1}\right)$ and $\delta_{2} \in\left(0, \delta_{1}\right)$, with $t_{10}-\delta_{2}>t_{00}+\tau_{s 0}$, such that for arbitrary $(t, \varepsilon, \delta \mu) \in\left[t_{10}-\delta_{2}, t_{10}+\delta_{2}\right] \times\left(0, \varepsilon_{2}\right) \times \Im^{(1)}$, the formula (2.16) holds, where

$$
\delta x(t ; \delta \mu)=-Y\left(t_{00} ; t\right) \widehat{f}_{0} \delta t_{0}+\beta(t ; \delta \mu) .
$$

Theorem 2.3 is a corollary to Theorems 2.1 and 2.2.
Theorem 2.4. Let the conditions 2.1-2.4 of Theorem 2.1 hold. Moreover, there exist the finite limits

$$
\lim _{\left(w_{1 i}, w_{2 i}\right) \rightarrow\left(w_{1 i}^{0}, w_{2 i}^{0}\right)}\left[f_{0}\left(w_{1 i}\right)-f_{0}\left(w_{2 i}\right)\right]=f_{0 i}^{-}, \quad w_{1 i}, w_{2 i} \in\left(a, t_{00}+\tau_{i 0}\right] \times O^{s+1}, \quad i=\overline{1, s},
$$

Then there exist numbers $\varepsilon_{2} \in\left(0, \varepsilon_{1}\right)$ and $\delta_{2} \in\left(0, \delta_{1}\right)$, with $t_{10}-\delta_{2}>t_{00}+\tau_{s 0}$, such that for arbitrary $(t, \varepsilon, \delta \mu) \in\left[t_{10}-\delta_{2}, t_{10}+\delta_{2}\right] \times\left(0, \varepsilon_{2}\right) \times \Im_{--}^{(1)}$, where $\Im_{--}^{(1)}=\left\{\delta \mu \in \Im^{(1)}: \delta t_{0} \leq 0, \delta \tau_{i} \leq 0, i=\overline{1, s}\right\}$, the formula (2.16) holds. Here

$$
\delta x(t ; \delta \mu)=-\left[Y\left(t_{00} ; t\right) f_{0}^{-}+\sum_{i=1}^{s} Y\left(t_{00}+\tau_{i 0} ; t\right) f_{0 i}^{-}\right] \delta t_{0}-\sum_{i=1}^{s}\left[Y\left(t_{00}+\tau_{i 0} ; t\right) f_{0 i}^{-}\right] \delta \tau_{i}+\beta_{1}(t ; \delta \mu),
$$

where

$$
\begin{aligned}
\beta_{1}(t ; \delta \mu)=Y\left(t_{00} ; t\right) \delta x_{0} & -\sum_{i=1}^{s}\left[\int_{t_{00}}^{t} Y(\xi ; t) f_{0 x_{i}}[\xi] \dot{x}_{0}\left(\xi-\tau_{i 0}\right) d \xi\right] \delta \tau_{i} \\
& +\sum_{i=1}^{s} \int_{t_{00}-\tau_{i 0}}^{t_{00}} Y\left(\xi+\tau_{i 0} ; t\right) f_{0 x_{i}}\left[\xi+\tau_{i 0}\right] \delta \varphi(\xi) d \xi+\int_{t_{00}}^{t} Y(\xi ; t) \delta f[\xi] d \xi .
\end{aligned}
$$

Theorem 2.4 can be proved by analogy to Theorem 2.1.
Theorem 2.5. Let the conditions 2.1-2.3 of Theorem 2.1 and the condition (2.20) hold. Moreover, there exist the finite limits

$$
\lim _{\left(w_{1 i}, w_{2 i}\right) \rightarrow\left(w_{1 i}^{0}, w_{2 i}^{0}\right)}\left[f_{0}\left(w_{1 i}\right)-f_{0}\left(w_{2 i}\right)\right]=f_{0 i}^{+}, \quad w_{1 i}, w_{2 i} \in\left[t_{00}+\tau_{i 0}, b\right) \times O^{s+1}, \quad i=\overline{1, s},
$$

Then there exist the numbers $\varepsilon_{2} \in\left(0, \varepsilon_{1}\right)$ and $\delta_{2} \in\left(0, \delta_{1}\right)$, with $t_{10}-\delta_{2}>t_{00}+\tau_{s 0}$, such that for arbitrary $(t, \varepsilon, \delta \mu) \in\left[t_{10}-\delta_{2}, t_{10}+\delta_{2}\right] \times\left(0, \varepsilon_{2}\right) \times \Im_{++}^{(1)}$, where $\Im_{++}^{(1)}=\left\{\delta \mu \in \Im^{(1)}: \delta t_{0} \geq 0, \delta \tau_{i} \geq 0, i=\overline{1, s}\right\}$, the formula (2.16) holds. Here

$$
\delta x(t ; \delta \mu)=-\left[Y\left(t_{00} ; t\right) f_{0}^{+}+\sum_{i=1}^{s} Y\left(t_{00}+\tau_{i 0} ; t\right) f_{0 i}^{+}\right] \delta t_{0}-\sum_{i=1}^{s}\left[Y\left(t_{00}+\tau_{i 0} ; t\right) f_{0 i}^{+}\right] \delta \tau_{i}+\beta_{1}(t ; \delta \mu) .
$$

Theorem 2.5 can be proved by analogy to Theorem 2.2.

2.3 Lemma on estimation of the increment of a solution with respect to the variation set $\Im_{-}^{(1)}$

To each element $\mu=\left(t_{0}, \tau_{1}, \ldots, \tau_{s}, x_{0}, \varphi, f\right) \in \Lambda^{(1)}$, we assign the functional differential equation

$$
\begin{equation*}
\dot{y}(t)=f\left(t_{0}, \tau_{1}, \ldots, \tau_{s}, \varphi, y\right)(t) \tag{2.21}
\end{equation*}
$$

with the initial condition

$$
\begin{equation*}
y\left(t_{0}\right)=x_{0} \tag{2.22}
\end{equation*}
$$

(see (1.16)).

Definition 2.2. Let $\mu=\left(t_{0}, \tau_{1}, \ldots, \tau_{s}, x_{0}, \varphi, f\right) \in \Lambda^{(1)}$. An absolutely continuous function $y(t)=$ $y(t ; \mu) \in O, t \in\left[r_{1}, r_{2}\right] \subset I$, is called a solution of the equation (2.21) with the initial condition (2.22), or a solution corresponding to the element μ and defined on the interval $\left[r_{1}, r_{2}\right]$, if $t_{0} \in\left[r_{1}, r_{2}\right]$, $y\left(t_{0}\right)=x_{0}$, and the function $y(t)$ satisfies the equation (2.21) a.e. on $\left[r_{1}, r_{2}\right]$.

Remark 2.1. Let $y(t ; \mu), t \in\left[r_{1}, r_{2}\right]$, be a solution corresponding to the element $\mu=\left(t_{0}, \tau_{1}, \ldots, \tau_{s}\right.$, $\left.x_{0}, \varphi, f\right) \in \Lambda^{(1)}$. Then the function

$$
\begin{equation*}
x(t ; \mu)=h\left(t_{0}, \varphi, y(\cdot ; \mu)\right)(t), \quad t \in\left[\widehat{\tau}, r_{2}\right] \tag{2.23}
\end{equation*}
$$

is a solution of the equation (2.13) with the initial condition (2.14) (see Definition 2.1 and (1.18)).
Lemma 2.7. Let $y_{0}(t)$ be a solution corresponding to the element $\mu_{0}=\left(t_{00}, \tau_{10}, \ldots, \tau_{s 0}, x_{0}, \varphi_{0}, f_{0}\right) \in$ $\Lambda^{(1)}$ and defined on $\left[r_{1}, r_{2}\right] \subset(a, b)$; let $t_{00} \in\left[r_{1}, r_{2}\right), \tau_{i 0} \in\left(\theta_{i 1}, \theta_{i 2}\right), i=\overline{1, s}$, and let $K_{1} \subset O$ be a compact set containing a neighborhood of the set $\varphi_{0}\left(I_{1}\right) \cup y_{0}\left(\left[r_{1}, r_{2}\right]\right)$. Then there exist numbers $\varepsilon_{1}>0$ and $\delta_{1}>0$ such that for any $(\varepsilon, \delta \mu) \in\left(0, \varepsilon_{1}\right) \times \Im^{(1)}$, we have $\mu_{0}+\varepsilon \delta \mu \in \Lambda^{(1)}$. In addition, to this element there corresponds a solution $y\left(t ; \mu_{0}+\varepsilon \delta \mu\right)$ defined on the interval $\left[r_{1}-\delta_{1}, r_{2}+\delta_{1}\right] \subset I$. Moreover,

$$
\begin{cases}\varphi(t):=\varphi_{0}(t)+\varepsilon \delta \varphi(t) \in K_{1}, & t \in I_{1} \tag{2.24}\\ y\left(t ; \mu_{0}+\varepsilon \delta \mu\right) \in K_{1}, & t \in\left[r_{1}-\delta_{1}, r_{2}+\delta_{1}\right]\end{cases}
$$

and

$$
\lim _{\varepsilon \rightarrow 0} y\left(t ; \mu_{0}+\varepsilon \delta \mu\right)=y\left(t ; \mu_{0}\right)
$$

uniformly for $(t, \delta \mu) \in\left[r_{1}-\delta_{1}, r_{2}+\delta_{1}\right] \times \Im^{(1)}$.
This lemma is a consequence of Theorem 1.7.
Lemma 2.8. Let $x_{0}(t)$ be a solution corresponding to the element $\mu_{0}=\left(t_{00}, \tau_{10}, \ldots, \tau_{s 0}, x_{0}, \varphi_{0}, f_{0}\right) \in$ $\Lambda^{(1)}$ and defined on $\left[\widehat{\tau}, t_{10}\right]$ (see Definition 1.1), let $t_{00}, t_{10} \in(a, b), \tau_{i 0} \in\left(\theta_{i 1}, \theta_{i 2}\right), i=\overline{1, s}$, and let $K_{1} \subset O$ be a compact set containing a neighborhood of the set $\varphi_{0}\left(I_{1}\right) \cup x_{0}\left(\left[t_{00}, t_{10}\right]\right)$. Then there exist numbers $\varepsilon_{1}>0$ and $\delta_{1}>0$ such that for any $(\varepsilon, \delta \mu) \in\left(0, \varepsilon_{1}\right) \times \Im^{(1)}$, we have $\mu_{0}+\varepsilon \delta \mu \in$ $\Lambda^{(1)}$. In addition, to this element there corresponds a solution $x\left(t ; \mu_{0}+\varepsilon \delta \mu\right)$ defined on the interval $\left[\widehat{\tau}, t_{10}+\delta_{1}\right] \subset I_{1}$. Moreover,

$$
\begin{equation*}
x\left(t ; \mu_{0}+\varepsilon \delta \mu\right) \in K_{1}, \quad t \in\left[\widehat{\tau}, t_{10}+\delta_{1}\right] . \tag{2.25}
\end{equation*}
$$

It is easy to see that if in Lemma 2.7 one puts $r_{1}=t_{00}, r_{2}=t_{10}$, then $x_{0}(t)=y_{0}(t), t \in\left[t_{00}, t_{10}\right]$, and

$$
x\left(t ; \mu_{0}+\varepsilon \delta \mu\right)=h\left(t_{0}, \varphi, y\left(\cdot ; \mu_{0}+\varepsilon \delta \mu\right)\right)(t), \quad(t, \varepsilon, \delta \mu) \in\left[\widehat{\tau}, t_{10}+\delta_{1}\right] \times\left(0, \varepsilon_{1}\right) \times \Im^{(1)}
$$

(see (2.23)). Thus, Lemma 2.8 is a simple corollary of Lemma 2.6 (see (2.24)).
Due to the uniqueness, the solution $y\left(t ; \mu_{0}\right)$ on the interval $\left[r_{1}-\delta_{1}, r_{2}+\delta_{1}\right]$ is a continuation of the solution $y_{0}(t)$. Therefore, we can assume that the solution $y_{0}(t)$ is defined on the interval $\left[r_{1}-\delta_{1}, r_{2}+\delta_{1}\right]$.

Lemma 2.7 allows one to define the increment of the solution $y_{0}(t)=y\left(t ; \mu_{0}\right)$:

$$
\begin{align*}
\Delta y(t) & =\Delta y(t ; \varepsilon \delta \mu)=y\left(t ; \mu_{0}+\varepsilon \delta \mu\right)-y\left(t ; \mu_{0}\right) \\
& =y(t)-y_{0}(t) \quad \forall(t, \varepsilon, \delta \mu) \in\left[r_{1}-\delta_{1}, r_{2}+\delta_{1}\right] \times\left(0, \varepsilon_{1}\right) \times \Im^{(1)} \tag{2.26}
\end{align*}
$$

Obviously,

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \Delta y(t ; \varepsilon \delta \mu)=0 \tag{2.27}
\end{equation*}
$$

uniformly with respect to $(t, \delta \mu) \in\left[r_{1}-\delta_{1}, r_{2}+\delta_{1}\right] \times \Im^{(1)}($ see Lemma 2.7).

Lemma 2.9. Let $\tau_{s 0}>\cdots>\tau_{10}$ and $t_{00}+\tau_{s 0} \leq r_{2}$. Moreover, the conditions 2.2-2.4 of Theorem 2.1 hold. Then there exists a number $\varepsilon_{2} \in\left(0, \varepsilon_{1}\right)$ such that

$$
\begin{equation*}
\max _{t \in\left[t_{00}, r_{2}+\delta_{1}\right]}|\Delta y(t)| \leq O(\varepsilon \delta \mu) \tag{2.28}
\end{equation*}
$$

for arbitrary $(\varepsilon, \delta \mu) \in\left(0, \varepsilon_{2}\right) \times \Im_{-}^{(1)}$. Moreover,

$$
\begin{equation*}
\Delta y\left(t_{00}\right)=\varepsilon\left[\delta x_{0}-f_{0}^{-} \delta t_{0}\right]+o(\varepsilon \delta \mu) \tag{2.29}
\end{equation*}
$$

Proof. Let $\varepsilon_{2} \in\left(0, \varepsilon_{1}\right)$ be insomuch small that for arbitrary $(\varepsilon, \delta \mu) \in\left(0, \varepsilon_{2}\right) \times \Im_{-}^{(1)}$ the inequalities

$$
\begin{equation*}
t_{0}+\tau_{i}>t_{00}, \quad i=\overline{1, s}, \tag{2.30}
\end{equation*}
$$

hold, where $t_{0}=t_{00}+\varepsilon \delta t_{0}, \tau_{i}=\tau_{i 0}+\varepsilon \delta \tau_{i}$. On the interval $\left[t_{00}, r_{2}+\delta_{1}\right]$, the function $\Delta y(t)=$ $y(t)-y_{0}(t)$, where $y(t)=y\left(t ; \mu_{0}+\varepsilon \delta \mu\right)$, satisfies the equation

$$
\begin{equation*}
\dot{\Delta} y(t)=a(t ; \varepsilon \delta \mu)+\varepsilon b(t ; \varepsilon \delta \mu) \tag{2.31}
\end{equation*}
$$

where

$$
\begin{align*}
a(t ; \varepsilon \delta \mu) & =f_{0}\left(t_{0}, \tau_{1}, \ldots, \tau_{s}, \varphi, y_{0}+\Delta y\right)(t)-f_{0}\left(t_{00}, \tau_{10}, \ldots, \tau_{s 0}, \varphi_{0}, y_{0}\right)(t) \\
b(t ; \varepsilon \delta \mu) & =\delta f\left(t_{0}, \tau_{1}, \ldots, \tau_{s}, \varphi, y_{0}+\Delta y\right)(t) \tag{2.32}
\end{align*}
$$

We rewrite the equation (2.31) in the integral form

$$
\Delta y(t)=\Delta y\left(t_{00}\right)+\int_{t_{00}}^{t}[a(\xi ; \varepsilon \delta \mu)+\varepsilon b(\xi ; \varepsilon \delta \mu)] d \xi
$$

Hence it follows that

$$
\begin{equation*}
|\Delta y(t)| \leq\left|\Delta y\left(t_{00}\right)\right|+a_{1}\left(t ; t_{00}, \varepsilon \delta \mu\right)+\varepsilon b_{1}\left(t_{00} ; \varepsilon \delta \mu\right) \tag{2.33}
\end{equation*}
$$

where

$$
a_{1}\left(t ; t_{00}, \varepsilon \delta \mu\right)=\int_{t_{00}}^{t}|a(\xi ; \varepsilon \delta \mu)| d \xi, \quad b_{1}\left(t_{00} ; \varepsilon \delta \mu\right)=\int_{t_{00}}^{r_{2}+\delta_{1}}|b(\xi ; \varepsilon \delta \mu)| d \xi
$$

Let us prove the formula (2.29). We have

$$
\begin{align*}
\Delta y\left(t_{00}\right) & =y\left(t_{00} ; \mu_{0}+\varepsilon \delta \mu\right)-y_{0}\left(t_{00}\right) \\
& =x_{00}+\varepsilon \delta x_{0}+\int_{t_{0}}^{t_{00}}\left[f_{0}\left(t, y_{0}(t)+\Delta y(t), \varphi\left(t-\tau_{1}\right), \ldots, \varphi\left(t-\tau_{s}\right)\right)+\varepsilon b(t ; \varepsilon \delta \mu)\right] d t-x_{00} \tag{2.34}
\end{align*}
$$

(see (2.30)). It is clear that if $t \in\left[t_{0}, t_{00}\right]$, then

$$
\lim _{\varepsilon \rightarrow 0}\left(t, y_{0}(t)+\Delta y(t), \varphi\left(t-\tau_{1}\right), \ldots, \varphi\left(t-\tau_{s}\right)\right)=\lim _{t \rightarrow t_{00}-}\left(t, y_{0}(t), \varphi_{0}\left(t-\tau_{10}\right), \ldots, \varphi_{0}\left(t-\tau_{s 0}\right)\right)=w_{0}
$$

(see (2.27)). Consequently,

$$
\lim _{\varepsilon \rightarrow 0} \sup _{t \in\left[t_{0}, t_{00}\right]}\left|f_{0}\left(t, y_{0}(t)+\Delta y(t), \varphi\left(t-\tau_{1}\right), \ldots, \varphi\left(t-\tau_{s}\right)\right)-f_{0}^{-}\right|=0
$$

This relation implies that

$$
\begin{align*}
& \int_{t_{0}}^{t_{00}} f_{0}\left(t, y_{0}(t)+\Delta y(t), \varphi\left(t-\tau_{1}\right), \ldots, \varphi\left(t-\tau_{s}\right)\right) d t \\
& =-\varepsilon f_{0}^{-} \delta t_{0}+\int_{t_{0}}^{t_{00}}\left[f_{0}\left(t, y_{0}(t)+\Delta y(t), \varphi\left(t-\tau_{1}\right), \ldots, \varphi\left(t-\tau_{s}\right)\right)-f_{0}^{-}\right] d t=-\varepsilon f_{0}^{-} \delta t_{0}+o(\varepsilon \delta \mu) . \tag{2.35}
\end{align*}
$$

Further, we have

$$
\begin{equation*}
\int_{t_{0}}^{t_{00}}|b(t ; \varepsilon \delta \mu)| d t \leq \int_{t_{0}}^{t_{00}} \sum_{i=1}^{k}\left|\lambda_{i}\right|\left|\delta f_{i}\left(t_{0}, \tau_{1}, \ldots, \tau_{s}, \varphi, y_{0}+\Delta y\right)(t)\right| d t \leq \gamma \sum_{i=1}^{k} \int_{t_{0}}^{t_{00}} m_{\delta f_{i}, K_{1}}(t) d t \tag{2.36}
\end{equation*}
$$

From (2.34), by virtue of (2.35), (2.36), we obtain (2.29).
Let us now prove the inequality (2.28). Let

$$
\rho_{i, 1}=\min \left\{t_{0}+\tau_{i}, t_{00}+\tau_{i 0}\right\}, \quad \rho_{i, 2}=\max \left\{t_{00}+\tau_{i}, t_{00}+\tau_{i 0}\right\}, \quad i=\overline{1, s} .
$$

It is easy to see that

$$
\rho_{i, 2} \geq \rho_{i, 1}>t_{00} \text { and } \rho_{i, 2}-\rho_{i, 1}=O(\varepsilon \delta \mu) .
$$

Let ε_{2} be insomuch small that for arbitrary $(\varepsilon, \delta \mu) \in\left(0, \varepsilon_{2}\right) \times \Im_{-}^{(1)}$ the inequalities

$$
\rho_{i, 1}<\rho_{i+1,1}, \quad i=\overline{1, s-1}, \quad \rho_{s, 2}<r_{2}+\delta_{1}
$$

hold. Now we estimate $a_{1}\left(t ; t_{00}, \varepsilon \delta \mu\right), t \in\left[t_{00}, r_{2}+\delta_{1}\right]$. Let $t \in\left[t_{00}, \rho_{1,1}\right]$. Obviously,

$$
\begin{equation*}
a_{1}\left(t ; t_{00}, \varepsilon \delta \mu\right) \leq \int_{t_{00}}^{t} L_{f_{0}, K_{1}}(\xi)|\Delta y(\xi)| d \xi+\sum_{i=1}^{s} a_{2 i}\left(t ; t_{00}, \varepsilon \delta \mu\right) \tag{2.37}
\end{equation*}
$$

where

$$
a_{2 i}\left(t ; t_{00}, \varepsilon \delta \mu\right)=\int_{t_{00}}^{t} L_{f_{0}, K_{1}}(\xi)\left|h\left(t_{0}, \varphi, y_{0}+\Delta y\right)\left(\xi-\tau_{i}\right)-h\left(t_{00}, \varphi_{0}, y_{0}\right)\left(\xi-\tau_{i 0}\right)\right| d \xi
$$

(see Lemma 2.2). It is clear that if $t \in\left[t_{00}, \rho_{11}\right.$), then for $\xi \in\left[t_{00}, t\right]$ and any $i=\overline{1, s}$, we have $\xi-\tau_{i}<t_{0}$ and $\xi-\tau_{i 0}<t_{00}$, therefore,

$$
\begin{aligned}
a_{2 i}\left(t ; t_{00}, \varepsilon \delta \mu\right) & =\int_{t_{00}}^{t} L_{f_{0}, K_{1}}(\xi)\left|\varphi\left(\xi-\tau_{i}\right)-\varphi_{0}\left(\xi-\tau_{i 0}\right)\right| d \xi \\
& \leq O(\varepsilon \delta \mu)+\int_{t_{00}}^{b} L_{f_{0}, K_{1}}(\xi)\left|\varphi_{0}\left(\xi-\tau_{i}\right)-\varphi_{0}\left(\xi-\tau_{i 0}\right)\right| d \xi, \quad i=\overline{1, s} .
\end{aligned}
$$

The boundedness of the function $\dot{\varphi}_{0}(t), t \in I_{1}$, yields

$$
\left|\varphi_{0}\left(\xi-\tau_{i}\right)-\varphi_{0}\left(\xi-\tau_{i 0}\right)\right|=\left|\int_{\xi-\tau_{i 0}}^{\xi-\tau_{i}} \dot{\varphi}_{0}(t) d t\right|=O(\varepsilon \delta \mu)
$$

Thus, for $t \in\left[t_{00}, \rho_{1,1}\right]$, we have

$$
a_{2 i}\left(t ; t_{00}, \varepsilon \delta \mu\right) \leq O(\varepsilon \delta \mu), \quad i=\overline{1, s}
$$

Consequently, for $t \in\left[t_{00}, \rho_{1,1}\right]$, we get

$$
\begin{equation*}
a_{1}\left(t ; t_{00}, \varepsilon \delta \mu\right) \leq O(\varepsilon \delta \mu)+\int_{t_{00}}^{t} L_{f_{0}, K_{1}}(\xi)|\Delta y(\xi)| d \xi \tag{2.38}
\end{equation*}
$$

Let $t \in\left[\rho_{1,1}, \rho_{1,2}\right]$. Then

$$
a_{1}\left(t ; t_{00}, \varepsilon \delta \mu\right)=a_{1}\left(\rho_{1,1} ; t_{00}, \varepsilon \delta \mu\right)+a_{1}\left(t ; \rho_{1,1}, \varepsilon \delta \mu\right) .
$$

By the condition of Theorem 2.1, the function $|a(\xi ; \varepsilon \delta \mu)|, \xi \in\left[t_{00}, r_{2}+\delta_{1}\right]$, is bounded, i.e.,

$$
\left|a_{1}\left(t ; \rho_{1,1}, \varepsilon \delta \mu\right)\right| \leq O(\varepsilon \delta \mu), \quad t \in\left[\rho_{1,1}, \rho_{1,2}\right] .
$$

Therefore, for $t \in\left[\rho_{1,1}, \rho_{1,2}\right]$, we have

$$
\begin{aligned}
a_{1}\left(t ; t_{00}, \varepsilon \delta \mu\right) & \leq a_{1}\left(\rho_{1,1} ; t_{00}, \varepsilon \delta \mu\right)+O(\varepsilon \delta \mu) \\
& \leq O(\varepsilon \delta \mu)+\int_{t_{00}}^{\rho_{1,1}} L_{f_{0}, K_{1}}(\xi)|\Delta y(\xi)| d \xi \leq O(\varepsilon \delta \mu)+\int_{t_{00}}^{t} L_{f_{0}, K_{1}}(\xi)|\Delta y(\xi)| d \xi
\end{aligned}
$$

Thus on the interval $\left[t_{00}, \rho_{1,2}\right]$, the formula (2.38) is valid.
Let $t \in\left[\rho_{1,2}, \rho_{2,1}\right]$, then $t-\tau_{1}>t_{0}, t-\tau_{10}>t_{00}$ and $t-\tau_{i}<t_{0}, t-\tau_{i 0}<t_{00}, i=\overline{2, s}$. For this case we have

$$
\begin{aligned}
a_{1}\left(t ; t_{00}, \varepsilon \delta \mu\right)=a_{1}\left(\rho_{1,2} ; t_{00}, \varepsilon \delta \mu\right) & +a_{1}\left(t ; \rho_{1,2}, \varepsilon \delta \mu\right) \\
\leq O(\varepsilon \delta \mu)+\int_{t_{00}}^{\rho_{1,2}} L_{f_{0}, K_{1}}(\xi)|\Delta y(\xi)| d \xi & +\int_{\rho_{1,2}}^{t} L_{f_{0}, K_{1}}(\xi)|\Delta y(\xi)| d \xi+\int_{\rho_{1,2}}^{t} L_{f_{0}, K_{1}}(\xi)\left|\Delta y\left(\xi-\tau_{1}\right)\right| d \xi \\
& +\int_{\rho_{1,2}}^{t} L_{f_{0}, K_{1}}(\xi)\left|y_{0}\left(\xi-\tau_{1}\right)-y_{0}\left(\xi-\tau_{10}\right)\right| d \xi+\sum_{i=2}^{s} a_{2 i}\left(t ; \rho_{12}, \varepsilon \delta \mu\right)
\end{aligned}
$$

(see (2.37)). It is clear that

$$
\left|y_{0}\left(\xi-\tau_{1}\right)-y_{0}\left(\xi-\tau_{10}\right)\right| \leq\left|\int_{\xi-\tau_{1}}^{\xi-\tau_{10}}\right| f_{0}\left(t_{00}, \tau_{10}, \ldots, \tau_{s 0}, y_{0}\right)(t)|d t| \leq O(\varepsilon \delta \mu)
$$

and

$$
\begin{aligned}
& a_{2 i}\left(t ; \rho_{1,2}, \varepsilon \delta \mu=\int_{\rho_{1,2}}^{t} L_{f_{0}, K_{1}}(\xi)\left|\varphi\left(\xi-\tau_{i}\right)-\varphi_{0}\left(\xi-\tau_{i 0}\right)\right| d \xi\right. \\
& \leq O(\varepsilon \delta \mu)+\int_{t_{00}}^{b} L_{f_{0}, K_{1}}(\xi)\left|\varphi_{0}\left(\xi-\tau_{i}\right)-\varphi_{0}\left(\xi-\tau_{i 0}\right)\right| d \xi \leq O(\varepsilon \delta \mu), \quad i=\overline{2, s}
\end{aligned}
$$

Thus, for $t \in\left[t_{00}, \rho_{2,1}\right]$,

$$
\begin{aligned}
a_{1}\left(t ; t_{00}, \varepsilon \delta \mu\right) \leq & O(\varepsilon \delta \mu)+\int_{t_{00}}^{t} L_{f_{0}, K_{1}}(\xi)|\Delta y(\xi)| d \xi+\int_{\rho_{1,2}-\tau_{1}}^{t-\tau_{1}} L_{f_{0}, K_{1}}\left(\xi+\tau_{1}\right)|\Delta y(\xi)| d \xi \\
& \leq O(\varepsilon \delta \mu)+\int_{t_{00}}^{t}\left[L_{f_{0}, K_{1}}(\xi)+\chi_{1}\left(\xi+\tau_{1}\right) L_{f_{0}, K_{1}}\left(\xi+\tau_{1}\right)\right]|\Delta y(\xi)| d \xi, \quad \rho_{1,2}-\tau_{1} \geq t_{00}
\end{aligned}
$$

where $\chi_{1}(\xi)$ is the characteristic function of the interval I. Continuing this process for $t \in\left[t_{00}, \rho_{s, 2}\right]$, we can prove that

$$
\begin{equation*}
a_{1}\left(t ; t_{00}, \varepsilon \delta \mu\right) \leq O(\varepsilon \delta \mu)+\int_{t_{00}}^{t}\left[L_{f_{0}, K_{1}}(\xi)+\sum_{i=1}^{s-1}(s-i) \chi_{1}\left(\xi+\tau_{i}\right) L_{f_{0}, K_{1}}\left(\xi+\tau_{i}\right)\right]|\Delta y(\xi)| d \xi \tag{2.39}
\end{equation*}
$$

Let $t \in\left[\rho_{s, 2}, r_{2}+\delta_{1}\right]$, then

$$
\begin{aligned}
a_{1}\left(t ; t_{00}, \varepsilon \delta \mu\right)= & a_{1}\left(\rho_{s, 2} ; t_{00}, \varepsilon \delta \mu\right)+a_{1}\left(t ; \rho_{s, 2}, \varepsilon \delta \mu\right) \\
\leq & O(\varepsilon \delta \mu)+\int_{t_{00}}^{\rho_{s, 2}}\left[L_{f_{0}, K_{1}}(\xi)+\sum_{i=1}^{s-1}(s-i) \chi_{1}\left(\xi+\tau_{i}\right) L_{f_{0}, K_{1}}\left(\xi+\tau_{i}\right)\right]|\Delta y(\xi)| d \xi \\
& +\int_{\rho_{s, 2}}^{t} L_{f_{0}, K_{1}}(\xi)\left[|\Delta y(\xi)|+\sum_{i=1}^{s}\left|y_{0}\left(\xi-\tau_{i}\right)-y_{0}\left(\xi-\tau_{i 0}\right)\right|+\sum_{i=1}^{s}\left|\Delta y\left(\xi-\tau_{i}\right)\right| d \xi\right] \\
\leq & O(\varepsilon \delta \mu)+\int_{t_{00}}^{t} L_{f_{0}, K_{1}}(\xi)|\Delta y(\xi)| d \xi+\int_{t_{00}}^{t}\left[\sum_{i=1}^{s-1}(s-i) \chi_{1}\left(\xi+\tau_{i}\right) L_{f_{0}, K_{1}}\left(\xi+\tau_{i}\right)\right]|\Delta y(\xi)| d \xi \\
& +\sum_{i=1}^{s} \int_{\rho_{s, 2}-\tau_{i}}^{t-\tau_{i}} \chi_{1}\left(\xi+\tau_{i}\right) L_{f_{0}, K_{1}}\left(\xi+\tau_{i}\right)|\Delta y(\xi)| d \xi \\
\leq & O(\varepsilon \delta \mu)+\int_{t_{00}}^{t}\left[L_{f_{0}, K_{1}}(\xi)+\sum_{i=1}^{s}(s-i+1) \chi_{1}\left(\xi+\tau_{i}\right) L_{f_{0}, K_{1}}\left(\xi+\tau_{i}\right)\right]|\Delta y(\xi)| d \xi
\end{aligned}
$$

Consequently, for $t \in\left[t_{00}, r_{2}+\delta_{1}\right]$, we have

$$
\begin{equation*}
a_{1}\left(t ; t_{00}, \varepsilon \delta \mu\right) \leq O(\varepsilon \delta \mu)+\int_{t_{00}}^{t}\left[L_{f_{0}, K_{1}}(\xi)+\sum_{i=1}^{s}(s-i+1) \chi_{1}\left(\xi+\tau_{i}\right) L_{f_{0}, K_{1}}\left(\xi+\tau_{i}\right)\right]|\Delta y(\xi)| d \xi \tag{2.40}
\end{equation*}
$$

(see (2.39)). Obviously,

$$
\begin{equation*}
b_{1}\left(t_{00}, \varepsilon \delta \mu\right) \leq \gamma \int_{t_{00}}^{r_{2}+\delta_{1}} \sum_{i=1}^{k}\left|\delta f_{i}\left(t_{0}, \tau_{1}, \ldots, \tau_{s}, y_{0}+\Delta y\right)(t)\right| d t \leq \gamma \sum_{i=1}^{k} \int_{I} m_{\delta f_{i}, K_{1}}(t) d t \tag{2.41}
\end{equation*}
$$

According to (2.29), (2.40) and (2.41), the inequality (2.33) directly implies

$$
\begin{aligned}
|\Delta y(t)| & \leq O(\varepsilon \delta \mu) \\
& +\int_{t_{00}}^{t}\left[L_{f_{0}, K_{1}}(\xi)+\sum_{i=1}^{s}(s-i+1) \chi_{1}\left(\xi+\tau_{i}\right) L_{f_{0}, K_{1}}\left(\xi+\tau_{i}\right)\right]|\Delta y(\xi)| d \xi, \quad t \in\left[t_{00}, r_{2}+\delta_{1}\right]
\end{aligned}
$$

By the Gronwall-Bellman inequality, from the above we obtain (2.28).

2.4 Proof of Theorem 2.1

Let $r_{1}=t_{00}$ and $r_{2}=t_{10}$ in Lemma 2.8, then

$$
x_{0}(t)= \begin{cases}\varphi_{0}(t), & t \in\left[\widehat{\tau}, t_{00}\right) \\ y_{0}(t), & t \in\left[t_{00}, t_{10}\right]\end{cases}
$$

and for arbitrary $(\varepsilon, \delta \mu) \in\left(0, \varepsilon_{1}\right) \times \Im_{-}^{(1)}$,

$$
x\left(t ; \mu_{0}+\varepsilon \delta \mu\right)= \begin{cases}\varphi(t):=\varphi_{0}(t)+\varepsilon \delta \varphi(t), & t \in\left[\widehat{\tau}, t_{0}\right), \\ y\left(t ; \mu_{0}+\varepsilon \delta \mu\right), & t \in\left[t_{0}, t_{10}+\delta_{1}\right]\end{cases}
$$

(see (2.23)). Note that $\delta \mu \in \Im_{-}^{(1)}$, i.e., $t_{0}<t_{00}$, therefore we have

$$
\Delta x(t)= \begin{cases}\varepsilon \delta \varphi(t) & \text { for } t \in\left[\widehat{\tau}, t_{0}\right) \\ y\left(t ; \mu_{0}+\varepsilon \delta \mu\right)-\varphi_{0}(t) & \text { for } t \in\left[t_{0}, t_{00}\right) \\ \Delta y(t) & \text { for } t \in\left[t_{00}, t_{10}+\delta_{1}\right]\end{cases}
$$

(see (2.15) and (2.26)). By Lemma 2.9, we have

$$
\begin{gather*}
|\Delta x(t)| \leq O(\varepsilon \delta \mu) \forall(t, \varepsilon, \delta \mu) \in\left[t_{00}, t_{10}+\delta_{1}\right] \times\left(0, \varepsilon_{2}\right) \times \Im_{-}^{(1)}, \tag{2.42}\\
\Delta x\left(t_{00}\right)=\varepsilon\left[\delta x_{0}-f_{0}^{-} \delta t_{0}\right]+o(\varepsilon \delta \mu) . \tag{2.43}
\end{gather*}
$$

The function $\Delta x(t)$ satisfies the equation

$$
\begin{align*}
\dot{\Delta} x(t) & =f_{0}\left[t, x_{0}+\Delta x\right]+\varepsilon \delta f\left[t, x_{0}+\Delta x\right]-f_{0}[t] \\
& =f_{0 x}[t] \Delta x(t)+\sum_{i=1}^{s} f_{0 x_{i}}[t] \Delta x\left(t-\tau_{i 0}\right)+\varepsilon \delta f[t]+\sum_{i=1}^{2} \vartheta_{i}(t ; \varepsilon \delta \mu) \tag{2.44}
\end{align*}
$$

on the interval $\left[t_{00}, t_{10}+\delta_{1}\right]$, where

$$
\begin{align*}
f_{0}\left[t, x_{0}+\Delta x\right] & =f_{0}\left(t, x_{0}(t)+\Delta x(t), x_{0}\left(t-\tau_{1}\right)+\Delta x\left(t-\tau_{1}\right), \ldots, x_{0}\left(t-\tau_{s}\right)+\Delta x\left(t-\tau_{s}\right)\right), \\
f_{0}[t] & =f_{0}\left(t, x_{0}(t), x_{0}\left(t-\tau_{10}\right), \ldots, x_{0}\left(t-\tau_{s 0}\right)\right) \\
\delta f\left[t, x_{0}+\Delta x\right] & =\delta f\left(t, x_{0}(t)+\Delta x(t), x_{0}\left(t-\tau_{1}\right)+\Delta x\left(t-\tau_{1}\right), \ldots, x_{0}\left(t-\tau_{s}\right)+\Delta x\left(t-\tau_{s}\right)\right), \\
\delta f[t] & =\delta f\left(t, x_{0}(t), x_{0}\left(t-\tau_{1}\right), \ldots, x_{0}\left(t-\tau_{s}\right)\right) \\
\vartheta_{1}(t ; \varepsilon \delta \mu) & =f_{0}\left[t, x_{0}+\Delta x\right]-f_{0}[t]-f_{0 x}[t] \Delta x(t)-\sum_{i=1}^{s} f_{0 x_{i}}[t] \Delta x\left(t-\tau_{i 0}\right), \tag{2.45}\\
\vartheta_{2}(t ; \varepsilon \delta \mu) & =\varepsilon\left[\delta f\left(\left[t, x_{0}+\Delta x\right]\right)-\delta f[t]\right] \tag{2.46}
\end{align*}
$$

By using the Cauchy formula, one can represent the solution of the equation (2.44) in the form

$$
\begin{equation*}
\Delta x(t)=Y\left(t_{00} ; t\right) \Delta x\left(t_{00}\right)+\varepsilon \int_{t_{00}}^{t} Y(\xi ; t) \delta f[\xi] d \xi+\sum_{p=0}^{2} R_{p}\left(t ; t_{00}, \varepsilon \delta \mu\right), \quad t \in\left[t_{00}, t_{10}+\delta_{1}\right] \tag{2.47}
\end{equation*}
$$

where

$$
\left\{\begin{array}{rl}
R_{0}\left(t ; t_{00}, \varepsilon \delta \mu\right) & =\sum_{i=1}^{s} R_{i 0}\left(t ; t_{00}, \varepsilon \delta \mu\right) \tag{2.48}\\
R_{i 0}\left(t ; t_{00}, \varepsilon \delta \mu\right) & =\int_{t_{00}-\tau_{i 0}}^{t_{00}} Y\left(\xi+\tau_{i 0} ; t\right) f_{0 x_{i}}\left[\xi+\tau_{i 0}\right] \Delta x(\xi) d \xi \\
R_{p}\left(t ; t_{00}, \varepsilon \delta \mu\right) & =\int_{t_{00}}^{t} Y(\xi ; t) \vartheta_{p}(\xi ; \varepsilon \delta \mu) d \xi
\end{array} \quad p=1,2,\right.
$$

and $Y(\xi ; t)$ is the matrix function satisfying the equation (2.18) and the condition (2.19). Let $\delta_{2} \in$ $\left(0, \delta_{1}\right)$ be insomuch small that the inequalities

$$
t_{00}-\delta_{2}>a, \quad t_{00}+\tau_{s 0}<t_{10}-\delta_{2}
$$

hold. The function $Y(\xi ; t)$ is continuous on the set $\left\{(\xi, t): \xi \in\left[t_{00}-\delta_{2}, t_{00}\right], t \in\left[t_{10}-\delta_{2}, t_{10}+\delta_{2}\right]\right\} \subset \Pi$, by Lemma 2.6. Therefore,

$$
\begin{equation*}
Y\left(t_{00} ; t\right) \Delta x\left(t_{00}\right)=\varepsilon Y\left(t_{00} ; t\right)\left[\delta x_{0}-f_{0}^{-} \delta t_{0}\right]+o(t ; \varepsilon \delta \mu) \tag{2.49}
\end{equation*}
$$

(see (2.29)). One can readily see that

$$
\begin{aligned}
& R_{i 0}\left(t ; t_{00}, \varepsilon \delta \mu\right)=\varepsilon \int_{t_{00}-\tau_{i 0}}^{t_{0}} Y\left(\xi+\tau_{i 0} ; t\right) f_{0 x_{i}}\left[\xi+\tau_{i 0}\right] \delta \varphi(\xi) d \xi+\int_{t_{0}}^{t_{00}} Y\left(\xi+\tau_{i 0} ; t\right) f_{0 x_{i}}\left[\xi+\tau_{i 0}\right] \Delta x(\xi) d \xi \\
& \quad=\varepsilon \int_{t_{00}-\tau_{i 0}}^{t_{00}} Y\left(\xi+\tau_{i 0} ; t\right) f_{0 x_{i}}\left[\xi+\tau_{i 0}\right] \delta \varphi(\xi) d \xi+\int_{t_{0}+\tau_{i 0}}^{t_{00}+\tau_{i 0}} Y(\xi ; t) f_{0 x_{i}}[\xi] \Delta x\left(\xi-\tau_{i 0}\right) d \xi+o(t ; \varepsilon \delta \mu) .
\end{aligned}
$$

Thus

$$
\begin{align*}
R_{0}\left(t ; t_{00}, \varepsilon \delta \mu\right)= & \varepsilon \sum_{i=1}^{s} \int_{t_{00}-\tau_{i 0}}^{t_{00}} Y\left(\xi+\tau_{i 0} ; t\right) f_{0 x_{i}}\left[\xi+\tau_{i 0}\right] \delta \varphi(\xi) d \xi \\
& +\sum_{i=1}^{s} \int_{t_{0}+\tau_{i 0}}^{t_{00}+\tau_{i 0}} Y(\xi ; t) f_{0 x_{i}}[\xi] \Delta x\left(\xi-\tau_{i 0}\right) d \xi+o(t ; \varepsilon \delta \mu) \tag{2.50}
\end{align*}
$$

Let

$$
\varrho_{i, 1}=\min \left\{t_{0}+\tau_{i}, t_{00}+\tau_{i 0}\right\}, \quad \varrho_{i, 2}=\max \left\{t_{0}+\tau_{i}, t_{00}+\tau_{i 0}\right\}, \quad i=\overline{1, s},
$$

and let a number $\varepsilon_{2} \in\left(0, \varepsilon_{1}\right)$ be insomuch small that

$$
t_{00}<\varrho_{1,1}, \quad \varrho_{i, 2}<\varrho_{i+1,1}, \quad i=\overline{1, s-1}, \quad \varrho_{s, 2}<t_{10}-\delta_{2} .
$$

For $t \in\left[t_{10}-\delta_{2}, t_{10}+\delta_{2}\right]$, we have

$$
R_{1}\left(t ; t_{00}, \varepsilon \delta \mu\right)=\sum_{i=0}^{s} w_{i}(t ; \varepsilon \delta \mu),
$$

where

$$
\begin{gathered}
w_{0}(t ; \varepsilon \delta \mu)=\int_{t_{00}}^{t_{00}+\tau_{10}} \vartheta_{11}(\xi ; t, \varepsilon \delta \mu) d \xi, \quad w_{i}(t ; \varepsilon \delta \mu)=\int_{t_{00}+\tau_{i 0}}^{t_{00}+\tau_{i+10}} \vartheta_{11}(\xi ; t, \varepsilon \delta \mu) d \xi, \quad i=\overline{1, s-1}, \\
w_{s}(t ; \varepsilon \delta \mu)=\int_{t_{00}+\tau_{s 0}}^{t} \vartheta_{11}(\xi ; t, \varepsilon \delta \mu) d \xi, \quad \vartheta_{11}(\xi ; t, \varepsilon \delta \mu)=Y(\xi ; t) \vartheta_{1}(\xi ; \varepsilon \delta \mu)
\end{gathered}
$$

$($ see $(2.45))$. Let $\varrho_{1,1}=t_{0}+\tau_{1}$ and $t_{0}+\tau_{1}<t_{0}+\tau_{10}$, then we have

$$
w_{0}(t ; \varepsilon \delta \mu)=w_{01}(t ; \varepsilon \delta \mu)+w_{02}(t ; \varepsilon \delta \mu) .
$$

Here,

$$
\begin{aligned}
w_{01}(t ; \varepsilon \delta \mu)= & \int_{t_{00}}^{t_{0}+\tau_{1}} \vartheta_{11}(\xi ; t, \varepsilon \delta \mu) d \xi \\
w_{02}(t ; \varepsilon \delta \mu)= & \int_{t_{0}+\tau_{1}}^{t_{00}^{+}+\tau_{10}} Y(\xi ; t)\left\{f_{0}\left[\xi, x_{0}+\Delta x\right]-f_{0}[\xi]\right\} d \xi \\
& -\int_{t_{0}+\tau_{1}}^{t_{00}+\tau_{10}} Y(\xi ; t)\left[f_{0 x}[\xi] \Delta x(\xi)+\sum_{i=2}^{s} f_{0 x_{i}}[\xi] \Delta x\left(\xi-\tau_{i 0}\right)\right] d \xi
\end{aligned}
$$

$$
-\int_{t_{0}+\tau_{1}}^{t_{0}+\tau_{10}} Y(\xi ; t) f_{0 x_{1}}[\xi] \Delta x\left(\xi-\tau_{10}\right) d \xi-\int_{t_{0}+\tau_{10}}^{t_{00}+\tau_{10}} Y(\xi ; t) f_{0 x_{1}}[\xi] \Delta x\left(\xi-\tau_{10}\right) d \xi
$$

We introduce the notations:

$$
\begin{gathered}
f_{0}[\xi ; \theta, \varepsilon \delta \mu]=f_{0}\left(\xi, x_{0}(\xi)+\theta \Delta x(\xi), x_{0}\left(\xi-\tau_{10}\right)+\theta\left(x_{0}\left(\xi-\tau_{1}\right)-x_{0}\left(\xi-\tau_{10}\right)+\Delta x\left(\xi-\tau_{1}\right)\right), \ldots,\right. \\
\left.x_{0}\left(\xi-\tau_{s 0}\right)+\theta\left(x_{0}\left(\xi-\tau_{s}\right)-x_{0}\left(\xi-\tau_{s 0}\right)+\Delta x\left(\xi-\tau_{s}\right)\right)\right), \\
\sigma(\xi ; \theta, \varepsilon \delta \mu)=f_{0 x}[\xi ; \theta, \varepsilon \delta \mu]-f_{0 x}[\xi], \quad \sigma_{i}(\xi ; \theta, \varepsilon \delta \mu)=f_{0 x_{i}}[\xi ; \theta, \varepsilon \delta \mu]-f_{0 x_{i}}[\xi] .
\end{gathered}
$$

It is easy to see that

$$
\begin{aligned}
& f_{0}\left[\xi, x_{0}+\Delta x\right]-f_{0}[\xi]=\int_{0}^{1} \frac{d}{d \theta} f_{0}[\xi ; \theta, \varepsilon \delta \mu] d \theta \\
& =\int_{0}^{1}\left\{f_{0 x}[\xi ; \theta, \varepsilon \delta \mu] \Delta x(\xi)+\sum_{i=1}^{s} f_{0 x_{i}}[\xi ; \theta, \varepsilon \delta \mu]\left(x_{0}\left(\xi-\tau_{i}\right)-x_{0}\left(\xi-\tau_{i 0}\right)+\Delta x\left(\xi-\tau_{i}\right)\right)\right\} d \theta \\
& =\sigma_{1}(\xi ; \varepsilon \delta \mu) \Delta x(\xi)+\sum_{i=1}^{s} \sigma_{i 1}(\xi ; \varepsilon \delta \mu)\left(x_{0}\left(\xi-\tau_{i}\right)-x_{0}\left(\xi-\tau_{i 0}\right)+\Delta x\left(\xi-\tau_{i}\right)\right) \\
& \quad+f_{0 x}[\xi] \Delta x(\xi)+\sum_{i=1}^{s} f_{0 x_{i}}[\xi]\left(x_{0}\left(\xi-\tau_{i}\right)-x_{0}\left(\xi-\tau_{i 0}\right)+\Delta x\left(\xi-\tau_{i}\right)\right)
\end{aligned}
$$

where

$$
\sigma_{1}(\xi ; \varepsilon \delta \mu)=\int_{0}^{1} \sigma(\xi ; \theta, \varepsilon \delta \mu) d \theta, \quad \sigma_{i 1}(\xi ; \varepsilon \delta \mu)=\int_{0}^{1} \sigma_{i}(\xi ; \theta, \varepsilon \delta \mu) d \theta
$$

Taking into account the last relation for $t \in\left[t_{10}-\delta_{2}, t_{10}+\delta_{2}\right]$, we have

$$
w_{01}(t ; \varepsilon \delta \mu)=\sum_{p=1}^{4} w_{01}^{(p)}(t ; \varepsilon \delta \mu),
$$

where

$$
\begin{aligned}
w_{01}^{(1)}(t ; \varepsilon \delta \mu) & =\int_{t_{00}}^{t_{0}+\tau_{1}} Y(\xi ; t) \sigma_{1}(\xi ; \varepsilon \delta \mu) \Delta x(\xi) d \xi, \\
w_{01}^{(2)}(t ; \varepsilon \delta \mu) & =\sum_{i=1}^{s} \int_{t_{00}}^{t_{0}+\tau_{1}} Y(\xi ; t) \sigma_{i 1}(\xi ; \varepsilon \delta \mu)\left[x_{0}\left(\xi-\tau_{i}\right)-x_{0}\left(\xi-\tau_{i 0}\right)+\Delta x\left(\xi-\tau_{i}\right)\right] d \xi \\
& =\sum_{i=1}^{s} \int_{t_{00}}^{t_{0}+\tau_{1}} Y(\xi ; t) \sigma_{i 1}(\xi ; \varepsilon \delta \mu)\left[\varphi_{0}\left(\xi-\tau_{i}\right)-\varphi_{0}\left(\xi-\tau_{i 0}\right)+\varepsilon \delta \varphi\left(\xi-\tau_{i}\right)\right] d \xi, \\
w_{01}^{(3)}(t ; \varepsilon \delta \mu) & =\sum_{i=1}^{s} \int_{t_{00}}^{t_{0}+\tau_{1}} Y(\xi ; t) f_{0 x_{i}}[\xi]\left[x_{0}\left(\xi-\tau_{i}\right)-x_{0}\left(\xi-\tau_{i 0}\right)\right] d \xi \\
& =\sum_{i=1}^{s} \int_{t_{00}}^{t_{0}+\tau_{1}} Y(\xi ; t) f_{0 x_{i}}[\xi]\left[\varphi_{0}\left(\xi-\tau_{i}\right)-\varphi_{0}\left(\xi-\tau_{i 0}\right)\right] d \xi,
\end{aligned}
$$

$$
\begin{aligned}
w_{01}^{(4)}(t ; \varepsilon \delta \mu) & =\sum_{i=1}^{s} \int_{t_{00}}^{t_{0}+\tau_{1}} Y(\xi ; t) f_{0 x_{i}}[\xi]\left[\Delta x\left(\xi-\tau_{i}\right)-\Delta x\left(\xi-\tau_{i 0}\right)\right] d \xi \\
& =\varepsilon \sum_{i=1}^{s} \int_{t_{00}}^{t_{0}+\tau_{1}} Y(\xi ; t) f_{0 x_{i}}[\xi]\left[\delta \varphi\left(\xi-\tau_{i}\right)-\delta \varphi\left(\xi-\tau_{i 0}\right)\right] d \xi .
\end{aligned}
$$

The function $\varphi_{0}(\xi), \xi \in I_{1}$ is absolutely continuous, therefore for each fixed Lebesgue point $\xi \in$ $\left(t_{00}, t_{10}+\delta_{2}\right)$ of function $\dot{\varphi}_{0}\left(\xi-\tau_{i 0}\right)$ we get

$$
\begin{equation*}
\varphi_{0}\left(\xi-\tau_{i}\right)-\varphi_{0}\left(\xi-\tau_{i 0}\right)=\int_{\xi}^{\xi-\varepsilon \delta \tau_{i}} \dot{\varphi}_{0}\left(\varsigma-\tau_{i 0}\right) d \varsigma=-\varepsilon \dot{\varphi}_{0}\left(\xi-\tau_{i 0}\right) \delta \tau_{i}+\gamma_{i}(\xi ; \varepsilon \delta \mu) \tag{2.51}
\end{equation*}
$$

where

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \frac{\gamma_{i}(\xi ; \varepsilon \delta \mu)}{\varepsilon}=0 \text { uniformly for } \delta \mu \in \Im_{-}^{(1)} \tag{2.52}
\end{equation*}
$$

Thus, (2.51) is valid for almost all points of the interval $\left(t_{00}, t_{10}+\delta_{2}\right)$. From (2.51), taking into account the boundedness of the function $\dot{\varphi}_{0}(\xi)$, we have

$$
\begin{equation*}
\left|\varphi_{0}\left(\xi-\tau_{i}\right)-\varphi_{0}\left(\xi-\tau_{i 0}\right)\right| \leq O(\varepsilon \delta \mu) \text { and }\left|\frac{\gamma_{i}(\xi ; \varepsilon \delta \mu)}{\varepsilon}\right| \leq \text { const. } \tag{2.53}
\end{equation*}
$$

According to (2.42) and (2.51), for the expression $w_{01}^{(p)}(t ; \varepsilon \delta \mu), p=\overline{1,4}$, we have

$$
\begin{aligned}
\left|w_{01}^{(1)}(t ; \varepsilon \delta \mu)\right| \leq & \|Y\| O(\varepsilon \delta \mu) \sigma_{1}(\varepsilon \delta \mu), \quad\left|w_{01}^{(2)}(t ; \varepsilon \delta \mu)\right| \leq\|Y\| O(\varepsilon \delta \mu) \sum_{i=1}^{s} \sigma_{i 1}(\varepsilon \delta \mu), \\
w_{01}^{(3)}(t ; \varepsilon \delta \mu)= & \sum_{i=1}^{s}\left[\gamma_{i 1}(t ; \varepsilon \delta \mu)-\varepsilon\left(\int_{t_{00}}^{t_{0}+\tau_{1}} Y(\xi ; t) f_{0 x_{i}}[\xi] \dot{\varphi}_{0}\left(\xi-\tau_{i 0}\right) d \xi\right) \delta \tau_{i}\right] \\
& \left|w_{01}^{(4)}(t ; \varepsilon \delta \mu)\right| \leq o(\varepsilon \delta \mu)\|Y\| \sum_{i=1}^{s} \int_{t_{00}}^{t_{0}+\tau_{1}}\left|f_{0 x_{i}}[\xi]\right| d \xi
\end{aligned}
$$

Here

$$
\begin{gathered}
\sigma_{1}(\varepsilon \delta \mu)=\int_{t_{00}}^{t_{00}+\tau_{10}}\left|\sigma_{1}(\xi ; \varepsilon \delta \mu)\right| d \xi, \quad \sigma_{i 1}(\varepsilon \delta \mu)=\int_{t_{00}}^{t_{00}+\tau_{10}}\left|\sigma_{i 1}(\xi ; \varepsilon \delta \mu)\right| d \xi, \\
\|Y\|=\sup \{|Y \xi ; t|: \quad(\xi, t) \in \Pi\}, \quad \gamma_{i 1}(t ; \varepsilon \delta \mu)=\int_{t_{00}}^{t} Y(\xi ; t) f_{0 x_{i}}[\xi] \gamma_{i}(\xi ; \varepsilon \delta \mu) d \xi .
\end{gathered}
$$

Obviously,

$$
\left|\frac{\gamma_{i 1}(t ; \varepsilon \delta \mu)}{\varepsilon}\right| \leq\|Y\| \int_{t_{00}}^{t_{00}+\tau_{10}}\left|f_{x_{i}}[\xi]\right|\left|\frac{\gamma_{i}(\xi ; \varepsilon \delta \mu)}{\varepsilon}\right| d \xi
$$

By the Lebesgue theorem on the passage to the limit under the integral sign, we have

$$
\lim _{\varepsilon \rightarrow 0} \sigma_{1}(\varepsilon \delta \mu)=0, \quad \lim _{\varepsilon \rightarrow 0} \sigma_{i 1}(\varepsilon \delta \mu)=0, \quad \lim _{\varepsilon \rightarrow 0}\left|\frac{\gamma_{i 1}(t ; \varepsilon \delta \mu)}{\varepsilon}\right|=0
$$

uniformly for $(t, \delta \mu) \in\left[t_{00}, t_{00}+\tau_{10}\right] \times \Im_{-}^{(1)}($ see (2.52) and (2.53)). Thus,

$$
\begin{gather*}
w_{01}^{(1)}(t ; \varepsilon \delta \mu)=w_{01}^{(2)}(t ; \varepsilon \delta \mu)=w_{01}^{(4)}(t ; \varepsilon \delta \mu)=o(t ; \varepsilon \delta \mu) \\
w_{01}^{(3)}(t ; \varepsilon \delta \mu)=-\varepsilon \sum_{i=1}^{s}\left[\int_{t_{00}}^{t_{0}+\tau_{1}} Y(\xi ; t) f_{0 x_{i}}[\xi] \dot{\varphi}_{0}\left(\xi-\tau_{i 0}\right) d \xi\right] \delta \tau_{i}+o(t ; \varepsilon \delta \mu) . \tag{2.54}
\end{gather*}
$$

Further,

$$
\varepsilon \int_{t_{0}+\tau_{1}}^{t_{00}+\tau_{10}} Y(\xi ; t) f_{0 x_{i}}[\xi] \dot{\varphi}_{0}\left(\xi-\tau_{i 0}\right) d \xi=o(t ; \varepsilon \delta \mu), \quad \dot{x}_{0}\left(\xi-\tau_{i 0}\right)=\dot{\varphi}_{0}\left(\xi-\tau_{i 0}\right), \quad \xi \in\left[t_{00}, t_{00}+\tau_{i 0}\right),
$$

therefore,

$$
\begin{equation*}
w_{01}^{(3)}(t ; \varepsilon \delta \mu)=-\varepsilon \sum_{i=1}^{s}\left[\int_{t_{00}}^{t_{00}+\tau_{10}} Y(\xi ; t) f_{0 x_{i}}[\xi] \dot{x}_{0}\left(\xi-\tau_{i 0}\right) d \xi\right] \delta \tau_{i}+o(t ; \varepsilon \delta \mu) \tag{2.55}
\end{equation*}
$$

On the basis of (2.54) and (2.55), we obtain

$$
w_{01}(t ; \varepsilon \delta \mu)=-\varepsilon \sum_{i=1}^{s}\left[\int_{t_{00}}^{t_{00}+\tau_{10}} Y(\xi ; t) f_{0 x_{i}}[\xi] \dot{x}_{0}\left(\xi-\tau_{i 0}\right) d \xi\right] \delta \tau_{i}+o(t ; \varepsilon \delta \mu)
$$

Let us now transform $w_{02}(t ; \varepsilon \delta \mu)$. We have

$$
w_{02}(t ; \varepsilon \delta \mu)=\int_{t_{0}+\tau_{1}}^{t_{00}+\tau_{10}} Y(\xi ; t)\left\{f_{0}\left[\xi, x_{0}+\Delta x\right]-f_{0}[\xi]\right\} d \xi-\int_{t_{0}+\tau_{10}}^{t_{00}+\tau_{10}} Y(\xi ; t) f_{0 x_{1}}[\xi] \Delta x\left(\xi-\tau_{10}\right) d \xi+o(t ; \varepsilon \delta \mu) .
$$

Since for $\xi \in\left[t_{0}+\tau_{1}, t_{00}+\tau_{10}\right]$,

$$
|\Delta x(\xi)| \leq O(\varepsilon \delta \mu), \quad\left|\Delta x\left(\xi-\tau_{i}\right)\right|=\varepsilon\left|\delta \varphi\left(\xi-\tau_{i}\right)\right|, \quad x_{0}\left(\xi-\tau_{i}\right)=\varphi_{0}\left(\xi-\tau_{i}\right), \quad i=\overline{2, s}
$$

and

$$
x_{0}\left(\xi-\tau_{1}\right)+\Delta x\left(\xi-\tau_{1}\right)=x\left(\xi-\tau_{1} ; \mu_{0}+\varepsilon \delta \mu\right)=y\left(\xi-\tau_{1} ; \mu_{0}+\varepsilon \delta \mu\right)=y_{0}\left(\xi-\tau_{1}\right)+\Delta y\left(\xi-\tau_{1} ; \varepsilon \delta \mu\right)
$$

we get

$$
\begin{aligned}
\lim _{\varepsilon \rightarrow 0}\left(\xi, x_{0}(\xi)+\Delta x(\xi), x_{0}\left(\xi-\tau_{1}\right)+\Delta x\left(\xi-\tau_{1}\right), \ldots, x_{0}\left(\xi-\tau_{s}\right)+\Delta x\left(\xi-\tau_{s}\right)\right) \\
=\lim _{\xi \rightarrow t_{00}+\tau_{10}-}\left(\xi, x_{0}(\xi), y_{0}\left(\xi-\tau_{10}\right), x_{0}\left(\xi-\tau_{10}\right), \ldots, x_{0}\left(\xi-\tau_{s 0}\right)\right)=w_{1 i}^{0} \\
\lim _{\xi \rightarrow t_{00}+\tau_{10}-}\left(\xi, x_{0}(\xi), x_{0}\left(\xi-\tau_{10}\right), \ldots, x_{0}\left(\xi-\tau_{s 0}\right)\right)=w_{0}
\end{aligned}
$$

i.e.,

$$
\lim _{\varepsilon \rightarrow 0} \sup _{\xi \in\left[t_{0}+\tau_{1}, t_{00}+\tau_{10}\right]}\left[f_{0}\left[\xi, x_{0}+\Delta x\right]-f_{0}[\xi]\right]=f_{01} .
$$

Moreover, the function $Y(\xi ; t)$ is continuous at the set $\left[t_{00}, t_{00}+\tau_{10}\right] \times\left[t_{00}-\tau_{2}, t_{10}+\delta_{2}\right] \subset \Pi$. Thus,

$$
\int_{t_{0}+\tau_{1}}^{t_{00}+\tau_{10}} Y(\xi ; t)\left\{f_{0}\left[\xi, x_{0}+\Delta x\right]-f_{0}[\xi]\right\} d \xi=-\varepsilon Y\left(t_{00}+\tau_{10} ; t\right) f_{10}\left(\delta t_{0}+\delta \tau_{1}\right)+o(t ; \varepsilon \delta \mu) .
$$

The expression $-\varepsilon Y\left(t_{00}+\tau_{10} ; t\right) f_{10}\left(\delta t_{0}+\delta \tau_{1}\right)$ is the effect of discontinuity. Consequently,

$$
\begin{align*}
w_{0}(t ; \varepsilon \delta \mu)= & -\varepsilon \sum_{i=1}^{s}\left[\int_{t_{00}}^{t_{00}+\tau_{10}} Y(\xi ; t) f_{0 x_{i}}[\xi] \dot{x}_{0}\left(\xi-\tau_{i 0}\right) d \xi\right] \delta \tau_{i}-\varepsilon Y\left(t_{00}+\tau_{10} ; t\right) f_{10}\left(\delta t_{0}+\delta \tau_{1}\right) \\
& -\int_{t_{0}+\tau_{10}}^{t_{00}+\tau_{10}} Y(\xi ; t) f_{0 x_{1}}[\xi] \Delta x\left(\xi-\tau_{10}\right) d \xi+o(t ; \varepsilon \delta \mu) . \tag{2.56}
\end{align*}
$$

Let $\varrho_{1,1}=t_{0}+\tau_{1}$ again and $t_{0}+\tau_{10}<t_{0}+\tau_{1}$, then we have

$$
w_{0}(t ; \varepsilon \delta \mu)=\sum_{k=1}^{2} \widehat{w}_{0 k}(t ; \varepsilon \delta \mu),
$$

where

$$
\begin{aligned}
\widehat{w}_{01}= & \int_{t_{00}}^{t_{0}+\tau_{10}} Y(\xi ; t) \vartheta_{1}(\xi ; \varepsilon \delta \mu) d \xi \\
\widehat{w}_{02}= & \int_{t_{0}+\tau_{10}}^{t_{0}+\tau_{1}} Y(\xi ; t)\left\{f_{0}\left[\xi ; x_{0}+\Delta x\right]-f_{0}[\xi]\right\} d \xi+\int_{t_{0}+\tau_{1}}^{t_{00}+\tau_{10}} Y(\xi ; t)\left\{f_{0}\left[\xi ; x_{0}+\Delta x\right]-f_{0}[\xi]\right\} d \xi \\
& -\int_{t_{00}+\tau_{10}}^{t_{0}+\tau_{10}} Y(\xi ; t)\left\{f_{0 x}[\xi] \Delta x(\xi)+\sum_{i=2}^{s} f_{0 x_{i}}[\xi] \Delta x\left(\xi-\tau_{i 0}\right)\right\} d \xi \\
& -\int_{t_{0}+\tau_{10}}^{t_{00}+\tau_{10}} Y(\xi ; t) f_{x_{1}}[\xi] \Delta x\left(\xi-\tau_{10}\right) d \xi
\end{aligned}
$$

For this case the formula (2.56) is valid and can be proved by the scheme described above.
Let $\varrho_{1,1}=t_{00}+\tau_{10}$, i.e., $t_{00}+\tau_{10}<t_{0}+\tau_{i}$. In this case, by analogous transformations can be proved the formula

$$
\begin{aligned}
w_{0}(t ; \varepsilon \delta \mu)= & -\varepsilon \sum_{i=1}^{s}\left[\int_{t_{00}}^{t_{00}+\tau_{10}} Y(\xi ; t) f_{0 x_{i}}[\xi] \dot{x}_{0}\left(\xi-\tau_{i 0}\right) d \xi\right] \delta \tau_{i} \\
& -\int_{t_{0}+\tau_{10}}^{t_{00}+\tau_{10}} Y(\xi ; t) f_{0 x_{1}}[\xi] \Delta x\left(\xi-\tau_{10}\right) d \xi+o(t ; \varepsilon \delta \mu)
\end{aligned}
$$

without discontinuity effect $-\varepsilon f_{01}\left(\delta t_{0}+\delta \tau_{1}\right)$. We notice that this effect appears under transformation of the addend $w_{1}(t ; \varepsilon \delta \mu)$. For $R_{1}\left(t ; t_{00}, \varepsilon \delta \mu\right)$, after transformations of $w_{i}(t ; \varepsilon \delta \mu), i=\overline{1, s}$, we obtain

$$
\begin{align*}
R_{1}\left(t ; t_{00}, \varepsilon \delta \mu\right)= & -\varepsilon \sum_{i=1}^{s}\left[\int_{t_{00}}^{t} Y(\xi ; t) f_{0 x_{i}}[\xi] \dot{x}_{0}\left(\xi-\tau_{i 0}\right) d \xi\right] \delta \tau_{i}-\sum_{i=1}^{s} \int_{t_{0}+\tau_{i 0}}^{t_{00}+\tau_{i 0}} Y(\xi ; t) f_{0 x_{1}}[\xi] \Delta x\left(\xi-\tau_{i 0}\right) d \xi \\
& -\varepsilon \sum_{i=1}^{s} Y\left(t_{00}+\tau_{i 0} ; t\right) f_{i 0}\left(\delta t_{0}+\delta \tau_{i}\right)+o(t ; \varepsilon \delta \mu) \tag{2.57}
\end{align*}
$$

Finally, let us estimate $R_{2}\left(t ; t_{00}, \varepsilon \delta \mu\right)$. We have

$$
\left|R_{2}\left(t ; t_{00}, \varepsilon \delta \mu\right)\right| \leq \varepsilon \gamma v(\varepsilon \delta \mu)
$$

where

$$
\begin{aligned}
v(\varepsilon \delta \mu) & =\int_{t_{00}}^{t_{10}+\delta_{2}} \widehat{L}(t)\left\{|\Delta x(t)|+\sum_{i=1}^{s}\left[\left|x_{0}\left(t-\tau_{i}\right)-x_{0}\left(t-\tau_{i 0}\right)\right|+\left|\Delta x\left(t-\tau_{i}\right)\right|\right]\right\} d t \\
\widehat{L}(t) & =\sum_{j=1}^{s} L_{\delta f_{j}, K_{1}}(t)
\end{aligned}
$$

(see (2.46)). It is clear that

$$
\begin{aligned}
v(\varepsilon \delta \mu) \leq O(\varepsilon \delta \mu) \int_{t_{00}}^{t_{10}+\delta_{2}} \widehat{L}(t) d t & +\sum_{i=1}^{s} \int_{t_{00}}^{\varrho_{i, 1}} \widehat{L}(t)\left[\left|\varphi_{0}\left(t-\tau_{i}\right)-\varphi_{0}\left(t-\tau_{i 0}\right)\right|+\varepsilon\left|\delta \varphi\left(t-\tau_{i}\right)\right|\right] d t \\
& +\sum_{i=1}^{s} \int_{\varrho_{i, 1}}^{\varrho_{i, 2}} \widehat{L}(t)\left[\left|x_{0}\left(t-\tau_{i}\right)-x_{0}\left(t-\tau_{i 0}\right)\right|+\left|\Delta x\left(t-\tau_{i}\right)\right|\right] d t \\
& +\sum_{i=1}^{s} \int_{\varrho_{i, 2}}^{t_{00}+\tau_{i 0}} \widehat{L}(t)\left[\left|x_{0}\left(t-\tau_{i}\right)-x_{0}\left(t-\tau_{i 0}\right)\right|+O(\varepsilon \delta \mu)\right] d t
\end{aligned}
$$

Further,

$$
\begin{gathered}
\varphi_{0}\left(t-\tau_{i}\right)-\varphi_{0}\left(t-\tau_{i 0}\right)=\int_{t-\tau_{i 0}}^{t-\tau_{i}} \dot{\varphi}_{0}(\xi) d \xi \\
x_{0}\left(t-\tau_{i}\right)-x_{0}\left(t-\tau_{i 0}\right)=\int_{t-\tau_{i 0}}^{t-\tau_{i}} \dot{x}_{0}(\xi) d \xi=\int_{t-\tau_{i 0}}^{t-\tau_{i}} f_{0}[\xi] d \xi
\end{gathered}
$$

Taking into account the boundedness of the functions $\dot{\varphi}_{0}(\xi)$ and $f_{0}[\xi]$, we obtain

$$
\left|\varphi_{0}\left(t-\tau_{i}\right)-\varphi_{0}\left(t-\tau_{i 0}\right)\right|=O(\varepsilon \delta \mu), \quad\left|x_{0}\left(t-\tau_{i}\right)-x_{0}\left(t-\tau_{i 0}\right)\right|=O(\varepsilon \delta \mu)
$$

Moreover,

$$
\left|x_{0}\left(t-\tau_{i}\right)-x_{0}\left(t-\tau_{i 0}\right)\right|+\left|\Delta x\left(t-\tau_{i}\right)\right|, \quad t \in\left[\varrho_{i, 1}, \varrho_{i, 2}\right],
$$

is bounded. From these relations it follows that

$$
\lim _{\varepsilon \rightarrow 0} v(\varepsilon \delta \mu)=0
$$

uniformly for $\delta \mu \in \Im_{-}^{(1)}$. Thus,

$$
\begin{equation*}
R_{2}\left(t ; t_{00}, \varepsilon \delta \mu\right)=o(t ; \varepsilon \delta \mu) \tag{2.58}
\end{equation*}
$$

From (2.47), by virtue of $(2.50),(2.57)$ and (2.58), we obtain (2.16), where $\delta x(t ; \delta \mu)$ has the form (2.17).

2.5 Lemma on the estimation of the increment of a solution with respect to the variation set $\Im_{+}^{(1)}$

Lemma 2.10. Let $\tau_{s 0}>\cdots>\tau_{10}$ and $t_{00}+\tau_{s 0} \leq r_{2}$. Moreover, the conditions 2.2-2.3 of Theorem 2.1 and the condition (2.20) hold. Then there exists a number $\varepsilon_{2} \in\left(0, \varepsilon_{1}\right)$ such that

$$
\begin{equation*}
\max _{t \in\left[t_{0}, r_{2}+\delta_{1}\right]}|\Delta y(t)| \leq O(\varepsilon \delta \mu) \tag{2.59}
\end{equation*}
$$

for arbitrary $(\varepsilon, \delta \mu) \in\left(0, \varepsilon_{2}\right) \times \Im_{+}^{(1)}$. Moreover,

$$
\begin{equation*}
\Delta y\left(t_{0}\right)=\varepsilon\left[\delta x_{0}-f_{0}^{+} \delta t_{0}\right]+o(\varepsilon \delta \mu) \tag{2.60}
\end{equation*}
$$

Proof. Let $\varepsilon_{2} \in\left(0, \varepsilon_{1}\right)$ be insomuch small that for arbitrary $(\varepsilon, \delta \mu) \in\left(0, \varepsilon_{2}\right) \times \Im_{+}^{(1)}$ the inequalities

$$
\begin{equation*}
t_{00}+\tau_{i}>t_{0}, \quad t_{00}+\tau_{i 0}>t_{0}, \quad i=\overline{1, s}, \tag{2.61}
\end{equation*}
$$

hold. On the interval $\left[t_{0}, r_{2}+\delta_{1}\right]$, the function $\Delta y(t)=y(t)-y_{0}(t)$ satisfies the equation

$$
\begin{equation*}
\dot{\Delta} y(t)=a(t ; \varepsilon \delta \mu)+\varepsilon b(t ; \varepsilon \delta \mu) \tag{2.62}
\end{equation*}
$$

(see (2.32)). We rewrite the equation (2.62) in the integral form

$$
\Delta y(t)=\Delta y\left(t_{0}\right)+\int_{t_{0}}^{t}[a(\xi ; \varepsilon \delta \mu)+\varepsilon b(\xi ; \varepsilon \delta \mu)] d \xi
$$

Hence it follows that

$$
\begin{equation*}
|\Delta y(t)| \leq\left|\Delta y\left(t_{0}\right)\right|+a_{1}\left(t ; t_{0}, \varepsilon \delta \mu\right)+\varepsilon b_{1}\left(t_{0}, \varepsilon \delta \mu\right) . \tag{2.63}
\end{equation*}
$$

Let us prove the formula (2.60). We have

$$
\begin{equation*}
\Delta y\left(t_{0}\right)=y\left(t_{0} ; \mu_{0}+\varepsilon \delta \mu\right)-y_{0}\left(t_{0}\right)=x_{00}+\varepsilon \delta x_{0}-x_{00}-\int_{t_{00}}^{t_{0}} f_{0}\left(t, y_{0}(t), \varphi_{0}\left(t-\tau_{10}\right), \ldots, \varphi_{0}\left(t-\tau_{s 0}\right)\right) d t \tag{2.64}
\end{equation*}
$$

(see (2.61)). It is clear that if $t \in\left[t_{00}, t_{0}\right]$, then

$$
\lim _{\varepsilon \rightarrow 0}\left(t, y_{0}(t), \varphi_{0}\left(t-\tau_{10}\right), \ldots, \varphi\left(t-\tau_{s 0}\right)\right)=\lim _{t \rightarrow t_{00}+}\left(t, y_{0}(t), \varphi_{0}\left(t-\tau_{10}\right), \ldots, \varphi_{0}\left(t-\tau_{s 0}\right)\right)=w_{0}
$$

Consequently,

$$
\lim _{\varepsilon \rightarrow 0} \sup _{t \in\left[t_{00}, t_{0}\right]}\left|f_{0}\left(t, y_{0}(t), \varphi_{0}\left(t-\tau_{10}\right), \ldots, \varphi_{0}\left(t-\tau_{s 0}\right)\right)-f_{0}^{+}\right|=0 .
$$

This relation implies

$$
\begin{align*}
& \int_{t_{00}}^{t_{0}} f_{0}\left(t, y_{0}(t), \varphi_{0}\left(t-\tau_{10}\right), \ldots, \varphi_{0}\left(t-\tau_{s 0}\right)\right) d t \\
& \quad=-\varepsilon f_{0}^{+} \delta t_{0}+\int_{t_{00}}^{t_{0}}\left[f_{0}\left(t, y_{0}(t), \varphi_{0}\left(t-\tau_{10}\right), \ldots, \varphi_{0}\left(t-\tau_{s 0}\right)\right)-f_{0}^{+}\right] d t=-\varepsilon f_{0}^{+} \delta t_{0}+o(\varepsilon \delta \mu) . \tag{2.65}
\end{align*}
$$

From (2.64), by virtue of (2.65), we obtain (2.60).
Now let us prove the inequality (2.59). Let

$$
\rho_{i, 1}=\min \left\{t_{00}+\tau_{i}, t_{00}+\tau_{i 0}\right\}, \quad \rho_{i, 2}=\max \left\{t_{0}+\tau_{i}, t_{00}+\tau_{i 0}\right\}, \quad i=\overline{1, s} .
$$

It is easy to see that $\rho_{i, 2} \geq \rho_{i, 1}>t_{0}$ and $\rho_{i, 2}-\rho_{i, 1}=O(\varepsilon \delta \mu)$. Let ε_{2} be insomuch small that for arbitrary $(\varepsilon, \delta \mu) \in\left(0, \varepsilon_{2}\right) \times \Im_{+}^{(1)}$ the inequalities $\rho_{i, 1}<\rho_{i+1,1}, i=\overline{1, s-1}$, hold. We now estimate $a_{1}\left(t ; t_{0}, \varepsilon \delta \mu\right), t \in\left[t_{0}, r_{2}+\delta_{1}\right]$. Let $t \in\left[t_{0}, \rho_{1,1}\right]$. Obviously,

$$
\begin{equation*}
a_{1}\left(t ; t_{0}, \varepsilon \delta \mu\right) \leq \int_{t_{0}}^{t} L_{f_{0}, K_{1}}(\xi)|\Delta y(\xi)| d \xi+\sum_{i=1}^{s} a_{2 i}\left(t ; t_{0}, \varepsilon \delta \mu\right) \tag{2.66}
\end{equation*}
$$

(see (2.37)). It is clear that if $t \in\left[t_{0}, \rho_{1,1}\right)$, then for $\xi \in\left[t_{0}, t\right]$ and for any $i=\overline{1, s}$, we have $\xi-\tau_{i}<t_{0}$ and $\xi-\tau_{i 0}<t_{00}$, hence,

$$
\begin{aligned}
a_{2 i}\left(t ; t_{0}, \varepsilon \delta \mu\right) & =\int_{t_{0}}^{t} L_{f_{0}, K_{1}}(\xi)\left|\varphi\left(\xi-\tau_{i}\right)-\varphi_{0}\left(\xi-\tau_{i 0}\right)\right| d \xi \\
& \leq O(\varepsilon \delta \mu)+\int_{t_{0}}^{b} L_{f_{0}, K_{1}}(\xi)\left|\varphi_{0}\left(\xi-\tau_{i}\right)-\varphi_{0}\left(\xi-\tau_{i 0}\right)\right| d \xi, \quad i=\overline{1, s}
\end{aligned}
$$

From the boundedness of the function $\dot{\varphi}_{0}(t), t \in I_{1}$, follows

$$
\left|\varphi_{0}\left(\xi-\tau_{i}\right)-\varphi_{0}\left(\xi-\tau_{i 0}\right)\right|=\left|\int_{\xi-\tau_{i 0}}^{\xi-\tau_{i}} \dot{\varphi}_{0}(t) d t\right|=O(\varepsilon \delta \mu)
$$

Thus, for $t \in\left[t_{0}, \rho_{1,1}\right]$, we have

$$
a_{2 i}\left(t ; t_{0}, \varepsilon \delta \mu\right) \leq O(\varepsilon \delta \mu), \quad i=\overline{1, s}
$$

Consequently, for $t \in\left[t_{0}, \rho_{1,1}\right]$, we get

$$
\begin{equation*}
a_{1}\left(t ; t_{0}, \varepsilon \delta \mu\right) \leq O(\varepsilon \delta \mu)+\int_{t_{0}}^{t} L_{f_{0}, K_{1}}(\xi)|\Delta y(\xi)| d \xi \tag{2.67}
\end{equation*}
$$

Let $t \in\left[\rho_{1,1}, \rho_{1,2}\right]$, then $a_{1}\left(t ; t_{0}, \varepsilon \delta \mu\right)=a_{1}\left(\rho_{1,1} ; t_{0}, \varepsilon \delta \mu\right)+a_{1}\left(t ; \rho_{1,1}, \varepsilon \delta \mu\right)$. The function $|a(\xi ; \varepsilon \delta \mu)|$, $\xi \in\left[t_{0}, r_{2}+\delta_{1}\right]$, is bounded, i.e., $\left|a_{1}\left(t ; \rho_{1,1}, \varepsilon \delta \mu\right)\right| \leq O(\varepsilon \delta \mu), t \in\left[\rho_{1,1}, \rho_{1,2}\right]$. Therefore, for $t \in\left[\rho_{i, 1}, \rho_{i, 2}\right]$, we have

$$
\begin{aligned}
a_{1}\left(t ; t_{0}, \varepsilon \delta \mu\right) & \leq a_{1}\left(\rho_{1,1} ; t_{0}, \varepsilon \delta \mu\right)+O(\varepsilon \delta \mu) \\
& \leq O(\varepsilon \delta \mu)+\int_{t_{0}}^{\rho_{1,1}} L_{f_{0}, K_{1}}(\xi)|\Delta y(\xi)| d \xi \leq O(\varepsilon \delta \mu)+\int_{t_{0}}^{t} L_{f_{0}, K_{1}}(\xi)|\Delta y(\xi)| d \xi
\end{aligned}
$$

Thus, on the interval $\left[t_{0}, \rho_{1,2}\right]$, the formula (2.67) is valid. Let $t \in\left[\rho_{1,2}, \rho_{2,1}\right]$, then $t-\tau_{1}>t_{0}$, $t-\tau_{10}>t_{00}$ and $t-\tau_{i}<t_{0}, t-\tau_{i 0}<t_{00}, i=\overline{2, s}$.

For this case, we have

$$
\begin{aligned}
& a_{1}\left(t ; t_{0}, \varepsilon \delta \mu\right)=a_{1}\left(\rho_{1,2} ; t_{0}, \varepsilon \delta \mu\right)+a_{1}\left(t ; \rho_{1,2}, \varepsilon \delta \mu\right) \\
& \leq O(\varepsilon \delta \mu)+\int_{t_{0}}^{\rho_{1,2}} L_{f_{0}, K_{1}}(\xi)|\Delta y(\xi)| d \xi+\int_{\rho_{1,2}}^{t} L_{f_{0}, K_{1}}(\xi)|\Delta y(\xi)| d \xi+\int_{\rho_{1,2}}^{t} L_{f_{0}, K_{1}}(\xi)\left|\Delta y\left(\xi-\tau_{1}\right)\right| d \xi \\
& +\int_{\rho_{1,2}}^{t} L_{f_{0}, K_{1}}(\xi)\left|y_{0}\left(\xi-\tau_{1}\right)-y_{0}\left(\xi-\tau_{10}\right)\right| d \xi+\sum_{i=2}^{s} a_{2 i}\left(t ; \rho_{12}, \varepsilon \delta \mu\right) .
\end{aligned}
$$

It is clear that

$$
\left|y_{0}\left(\xi-\tau_{1}\right)-y_{0}\left(\xi-\tau_{10}\right)\right| \leq\left|\int_{\xi-\tau_{1}}^{\xi-\tau_{10}}\right| f_{0}\left(t_{00}, \tau_{10}, \ldots, \tau_{s 0}, y\right)(t)|d t| \leq O(\varepsilon \delta \mu)
$$

and

$$
\begin{aligned}
a_{2 i}\left(t ; \rho_{1,2}, \varepsilon \delta \mu\right)= & \int_{\rho_{1,2}}^{t} L_{f_{0}, K_{1}}(\xi)\left|\varphi\left(\xi-\tau_{i}\right)-\varphi_{0}\left(\xi-\tau_{i 0}\right)\right| d \xi \\
& \leq O(\varepsilon \delta \mu)+\int_{t_{00}}^{b} L_{f_{0}, K_{1}}(\xi)\left|\varphi_{0}\left(\xi-\tau_{i}\right)-\varphi_{0}\left(\xi-\tau_{i 0}\right)\right| d \xi \leq O(\varepsilon \delta \mu), \quad i=\overline{2, s}
\end{aligned}
$$

Thus, for $t \in\left[t_{0}, \rho_{2,1}\right]$,

$$
\begin{aligned}
a_{1}\left(t ; t_{0}, \varepsilon \delta \mu\right) \leq & O(\varepsilon \delta \mu)+\int_{t_{0}}^{t} L_{f_{0}, K_{1}}(\xi)|\Delta y(\xi)| d \xi+\int_{\rho_{1,2}-\tau_{1}}^{t-\tau_{1}} L_{f_{0}, K_{1}}\left(\xi+\tau_{1}\right)|\Delta y(\xi)| d \xi \\
& \leq O(\varepsilon \delta \mu)+\int_{t_{0}}^{t}\left[L_{f_{0}, K_{1}}(\xi)+\chi_{1}\left(\xi+\tau_{1}\right) L_{f_{0}, K_{1}}\left(\xi+\tau_{1}\right)\right]|\Delta y(\xi)| d \xi, \quad \rho_{1,2}-\tau_{1} \geq t_{0} .
\end{aligned}
$$

Continuing this process, we can prove that for $t \in\left[t_{0}, \rho_{s, 2}\right]$,

$$
\begin{equation*}
a_{1}\left(t ; t_{0}, \varepsilon \delta \mu\right) \leq O(\varepsilon \delta \mu)+\int_{t_{0}}^{t}\left[L_{f_{0}, K_{1}}(\xi)+\sum_{i=1}^{s-1}(s-i) \chi_{1}\left(\xi+\tau_{i}\right) L_{f_{0}, K_{1}}\left(\xi+\tau_{i}\right)\right]|\Delta y(\xi)| d \xi \tag{2.68}
\end{equation*}
$$

Let $t \in\left[\rho_{s, 2}, r_{2}+\delta_{1}\right]$, then

$$
\begin{aligned}
a_{1}\left(t ; t_{0}, \varepsilon \delta \mu\right)= & a_{1}\left(\rho_{s, 2} ; t_{0}, \varepsilon \delta \mu\right)+a_{1}\left(t ; \rho_{s, 2}, \varepsilon \delta \mu\right) \\
\leq & O(\varepsilon \delta \mu)+\int_{t_{0}}^{\rho_{s, 2}}\left[L_{f_{0}, K_{1}}(\xi)+\sum_{i=1}^{s-1}(s-i) \chi_{1}\left(\xi+\tau_{i}\right) L_{f_{0}, K_{1}}\left(\xi+\tau_{i}\right)\right]|\Delta y(\xi)| d \xi \\
& +\int_{\rho_{s, 2}}^{t} L_{f_{0}, K_{1}}(\xi)\left[|\Delta y(\xi)|+\sum_{i=1}^{s}\left|y_{0}\left(\xi-\tau_{i}\right)-y_{0}\left(\xi-\tau_{i 0}\right)\right|+\sum_{i=1}^{s}\left|\Delta y\left(\xi-\tau_{i}\right)\right| d \xi\right. \\
\leq & O(\varepsilon \delta \mu)+\int_{t_{0}}^{t} L_{f_{0}, K_{1}}(\xi)|\Delta y(\xi)| d \xi+\int_{t_{0}}^{t}\left[\sum_{i=1}^{s-1}(s-i) \chi_{1}\left(\xi+\tau_{i}\right) L_{f_{0}, K_{1}}\left(\xi+\tau_{i}\right)\right]|\Delta y(\xi)| d \xi \\
& +\sum_{i=1}^{s} \int_{\rho_{s, 2}-\tau_{i}}^{t-\tau_{i}} \chi_{1}\left(\xi+\tau_{i}\right) L_{f_{0}, K_{1}}\left(\xi+\tau_{i}\right)|\Delta y(\xi)| d \xi \\
\leq & O(\varepsilon \delta \mu)+\int_{t_{0}}^{t}\left[L_{f_{0}, K_{1}}(\xi)+\sum_{i=1}^{s}(s-i+1) \chi_{1}\left(\xi+\tau_{i}\right) L_{f_{0}, K_{1}}\left(\xi+\tau_{i}\right)\right]|\Delta y(\xi)| d \xi .
\end{aligned}
$$

Consequently, for $t \in\left[t_{0}, r_{2}+\delta_{1}\right]$, we have

$$
\begin{equation*}
a_{1}\left(t ; t_{0}, \varepsilon \delta \mu\right) \leq O(\varepsilon \delta \mu)+\int_{t_{0}}^{t}\left[L_{f_{0}, K_{1}}(\xi)+\sum_{i=1}^{s}(s-i+1) \chi_{1}\left(\xi+\tau_{i}\right) L_{f_{0}, K_{1}}\left(\xi+\tau_{i}\right)\right]|\Delta y(\xi)| d \xi \tag{2.69}
\end{equation*}
$$

(see (2.66) and (2.68)). Obviously,

$$
\begin{equation*}
b_{1}\left(t_{0}, \varepsilon \delta \mu\right) \leq \gamma \int_{t_{0}}^{r_{2}+\delta_{1}} \sum_{i=1}^{k}\left|\delta f_{i}\left(t_{0}, \tau_{1}, \ldots, \tau_{s}, y_{0}+\Delta y\right)(t)\right| d t \leq \gamma \sum_{i=1}^{k} \int_{I} m_{\delta f_{i}, K_{1}}(t) d t \tag{2.70}
\end{equation*}
$$

According to (2.60), (2.69) and (2.70), the inequality (2.63) directly implies
$|\Delta y(t)| \leq O(\varepsilon \delta \mu)+\int_{t_{0}}^{t}\left[L_{f_{0}, K_{1}}(\xi)+\sum_{i=1}^{s}(s-i+1) \chi_{1}\left(\xi+\tau_{i}\right) L_{f_{0}, K_{1}}\left(\xi+\tau_{i}\right)\right]|\Delta y(\xi)| d \xi, \quad t \in\left[t_{0}, r_{2}+\delta_{1}\right]$.
By the Gronwall-Bellman inequality, from the above we obtain (2.59).

2.6 Proof of Theorem 2.2

First of all, we note that $\delta \mu \in \Im_{+}^{(1)}$ i.e., $t_{00}<t_{0}$, therefore we have

$$
\Delta x(t)= \begin{cases}\varepsilon \delta \varphi(t) & \text { for } t \in\left[\widehat{\tau}, t_{00}\right) \\ \varphi(t)-y_{0}(t) & \text { for } t \in\left[t_{00}, t_{0}\right), \\ \Delta y(t) & \text { for } t \in\left[t_{0}, t_{10}+\delta_{1}\right]\end{cases}
$$

By Lemma 2.10, we get

$$
\begin{equation*}
|\Delta x(t)| \leq O(\varepsilon \delta \mu) \quad \forall(t, \varepsilon, \delta \mu) \in\left[t_{0}, t_{10}+\delta_{1}\right] \times\left(0, \varepsilon_{2}\right) \times \Im_{+}^{(1)} \tag{2.71}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta x\left(t_{0}\right)=\varepsilon\left[\delta x_{0}-f_{0}^{+} \delta t_{0}\right]+o(\varepsilon \delta \mu) . \tag{2.72}
\end{equation*}
$$

The function $\Delta x(t)$ satisfies the equation (2.44) on the interval $\left[t_{0}, t_{10}+\delta_{1}\right]$; therefore, by using the Cauchy formula, we can represent it in the form

$$
\begin{equation*}
\Delta x(t)=Y\left(t_{0} ; t\right) \Delta x\left(t_{0}\right)+\varepsilon \int_{t_{0}}^{t} Y(\xi ; t) \delta f[\xi] d \xi+\sum_{p=0}^{2} R_{p}\left(t ; t_{0}, \varepsilon \delta \mu\right), \quad t \in\left[t_{0}, t_{10}+\delta_{1}\right] \tag{2.73}
\end{equation*}
$$

(see (2.48)). Let $\varepsilon_{2} \in\left(0, \varepsilon_{1}\right)$ and $\delta_{2} \in\left(0, \delta_{1}\right)$ be insomuch small that the inequalities

$$
t_{0}+\tau_{i}<t_{10}-\delta_{2}, \quad i=\overline{1, s}, \quad t_{00}+\tau_{s 0}<t_{10}-\delta_{2}
$$

hold. The function $Y(\xi ; t)$ is continuous on the set $\left[t_{00}, t_{00}+\tau_{s 0}\right] \times\left[t_{10}-\delta_{2}, t_{10}+\delta_{2}\right] \subset \Pi$. Therefore,

$$
\begin{equation*}
Y\left(t_{0} ; t\right) \Delta x\left(t_{0}\right)=\varepsilon Y\left(t_{00} ; t\right)\left[\delta x_{0}-f_{0}^{+} \delta t_{0}\right]+o(t ; \varepsilon \delta \mu) \tag{2.74}
\end{equation*}
$$

(see (2.72)).
Let us transform $R\left(t ; t_{0}, \varepsilon \delta \mu\right)$. It is not difficult to see that

$$
\begin{align*}
R_{0}\left(t ; t_{0}, \varepsilon \delta \mu\right)= & \sum_{i=1}^{s} \int_{t_{0}-\tau_{i}}^{t_{0}} Y\left(\xi+\tau_{i 0} ; t\right) f_{0 x_{i}}\left[\xi+\tau_{i 0}\right] \Delta x(\xi) d \xi \\
= & \sum_{i=1}^{s}\left[\int_{t_{0}-\tau_{i 0}}^{t_{000}} Y\left(\xi+\tau_{i 0} ; t\right) f_{0 x_{i}}\left[\xi+\tau_{i 0}\right] \delta \varphi(\xi) d \xi+\int_{t_{00}}^{t_{0}} Y\left(\xi+\tau_{i 0} ; t\right) f_{0 x_{i}}\left[\xi+\tau_{i 0}\right] \Delta x(\xi) d \xi\right] \\
= & \varepsilon \sum_{i=1}^{s} \int_{t_{00}-\tau_{i 0}}^{t_{00}} Y\left(\xi+\tau_{i 0} ; t\right) f_{0 x_{i}}\left[\xi+\tau_{i 0}\right] \delta \varphi(\xi) d \xi \\
& \quad+\sum_{i=1}^{s} \int_{t_{00}+\tau_{i 0}}^{t_{0}+\tau_{i 0}} Y(\xi ; t) f_{0 x_{i}}[\xi] \Delta x\left(\xi-\tau_{i 0}\right) d \xi+o(t ; \varepsilon \delta \mu) . \tag{2.75}
\end{align*}
$$

In a similar way, with nonessential changes, one can prove

$$
\begin{align*}
R_{1}\left(t ; t_{0}, \varepsilon \delta \mu\right)= & -\varepsilon \sum_{i=1}^{s}\left[\int_{t_{0}}^{t} Y(\xi ; t) f_{0 x_{i}}[\xi] \dot{x}_{0}\left(\xi-\tau_{i 0}\right) d \xi\right] \delta \tau_{i} \\
& -\sum_{i=t_{00}}^{s} \int_{0+\tau_{i 0}}^{t_{0}+\tau_{i 0}} Y(\xi ; t) f_{0 x_{1}}[\xi] \Delta x\left(\xi-\tau_{i 0}\right) d \xi-\varepsilon \sum_{i=1}^{s} f_{i 0}\left(\delta t_{0}+\delta \tau_{i}\right)+o(t ; \varepsilon \delta \mu), \tag{2.76}\\
R_{2}\left(t ; t_{0}, \varepsilon \delta \mu\right)= & o(t ; \varepsilon \delta \mu) . \tag{2.77}
\end{align*}
$$

Finally, note that

$$
\begin{equation*}
\varepsilon \int_{t_{0}}^{t} Y(\xi ; t) \delta f[\xi] d \xi=\varepsilon \int_{t_{00}}^{t} Y(\xi ; t) \delta f[\xi] d \xi+o(t ; \varepsilon \delta \mu) \tag{2.78}
\end{equation*}
$$

From (2.73), by virtue of (2.74)-(2.78), we obtain (2.16), where

$$
\delta x(t ; \delta \mu)=-Y\left(t_{00} ; t\right) f_{0}^{+} \delta t_{0}+\beta(t ; \delta \mu)
$$

3 Variation formulas of solutions for equations with the continuous initial condition

3.1 Formulation of the main results

To each element

$$
\mu=\left(t_{0}, \tau_{1}, \ldots, \tau_{s}, \varphi, f\right) \in \Lambda^{(2)}=[a, b) \times\left[\theta_{11}, \theta_{12}\right] \times \cdots \times\left[\theta_{s 1}, \theta_{s 2}\right] \times \Phi_{2} \times E_{f}^{(1)}
$$

we assign the functional differential equation

$$
\begin{equation*}
\dot{x}(t)=f\left(t, x(t), x\left(t-\tau_{1}\right), \ldots, x\left(t-\tau_{s}\right)\right) \tag{3.1}
\end{equation*}
$$

with the continuous initial condition

$$
\begin{equation*}
x(t)=\varphi(t), \quad t \in\left[\widehat{\tau}, t_{0}\right] \tag{3.2}
\end{equation*}
$$

where $\Phi_{2}=\left\{\varphi \in C\left(I_{1}, \mathbb{R}^{n}\right): \varphi(t) \in O\right\}$.
Definition 3.1. Let $\mu=\left(t_{0}, \tau_{1}, \ldots, \tau_{s}, \varphi, f\right) \in \Lambda^{(2)}$. A function $x(t)=x(t ; \mu) \in O, t \in\left[\widehat{\tau}, t_{1}\right]$, $t_{1} \in\left(t_{0}, b\right]$, is called a solution of the equation (3.1) with the initial condition (3.2), or a solution corresponding to the element μ and defined on the interval $\left[\widehat{\tau}, t_{1}\right]$, if it satisfies the condition (3.2) and is absolutely continuous on the interval $\left[t_{0}, t_{1}\right]$ and satisfies the equation (3.1) a.e. on $\left[t_{0}, t_{1}\right]$.

Let $x_{0}(t)$ be a solution corresponding to a fixed element

$$
\mu_{0}=\left(t_{00}, \tau_{10}, \ldots, \tau_{s 0}, \varphi_{0}, f_{0}\right) \in \Lambda^{(2)}
$$

and defined on the interval $\left[\widehat{\tau}, t_{10}\right]$, where $t_{00}, t_{10} \in(a, b), t_{00}<t_{10}$, and $\tau_{i 0} \in\left(\theta_{1 i}, \theta_{2 i}\right), i=\overline{1, s}$.
In the space $E_{\delta \mu}^{(2)}=E_{\mu}^{(2)}-\mu_{0}$ with the elements $\delta \mu=\left(\delta t_{0}, \delta \tau_{1}, \ldots, \delta \tau_{s}, \delta \varphi, \delta f\right)$, where $E_{\mu}^{(2)}=$ $\mathbb{R} \times \mathbb{R} \times \cdots \times \mathbb{R} \times C\left(I_{1}, \mathbb{R}^{n}\right) \times E_{f}^{(2)}$, we introduce the set of variations

$$
\begin{align*}
& \Im^{(2)}=\left\{\delta \mu=\left(\delta t_{0}, \delta \tau_{1}, \ldots, \delta \tau_{s}, \delta \varphi, \delta f\right): \quad\left|\delta t_{0}\right| \leq \gamma, \quad\left|\delta \tau_{i}\right| \leq \gamma, \quad i=\overline{1, s},\right. \\
& \left.\delta \varphi=\sum_{i=1}^{k} \lambda_{i} \delta \varphi_{i}, \quad \delta f=\sum_{i=1}^{k} \lambda_{i} \delta f_{i}, \quad\left|\lambda_{i}\right| \leq \gamma, \quad i=\overline{1, k}\right\} \tag{3.3}
\end{align*}
$$

where $\delta \varphi_{i} \in \Phi_{2}-\varphi_{0}, \delta f_{i} \in E_{f}^{(2)}-f_{0}, i=\overline{1, k}$, are fixed functions; $\gamma>0$ is a fixed number.
There exist numbers $\delta_{1}>0$ and $\varepsilon_{1}>0$ such that for arbitrary $(\varepsilon, \delta \mu) \in\left(0, \varepsilon_{1}\right) \times \Im^{(2)}$, we have $\mu_{0}+\varepsilon \delta \mu \in \Lambda^{(2)}$, and to the element $\mu_{0}+\varepsilon \delta \mu$ there corresponds the solution $x\left(t ; \mu_{0}+\varepsilon \delta \mu\right)$ defined on the interval $\left[\widehat{\tau}, t_{10}+\delta_{1}\right] \subset I_{1}$.

Due to the uniqueness, the solution $x\left(t ; \mu_{0}\right)$ is a continuation of the solution $x_{0}(t)$ on the interval $\left[\widehat{\tau}, t_{10}+\delta_{1}\right]$. Therefore, in the sequel, the solution $x_{0}(t)$ is assumed to be defined on the interval $\left[\widehat{\tau}, t_{10}+\delta_{1}\right]$.

Let us define the increment of the solution $x_{0}(t)=x\left(t ; \mu_{0}\right)$:

$$
\begin{equation*}
\Delta x(t)=\Delta x(t ; \varepsilon \delta \mu)=x\left(t ; \mu_{0}+\varepsilon \delta \mu\right)-x_{0}(t) \forall(t, \varepsilon, \delta \mu) \in\left[\widehat{\tau}, t_{10}+\delta_{1}\right] \times\left(0, \varepsilon_{1}\right) \times \Im^{(2)} \tag{3.4}
\end{equation*}
$$

Theorem 3.1. Let the function $\varphi_{0}(t), t \in I_{1}$, be absolutely continuous. Let the functions $\dot{\varphi}_{0}(t)$ and $f_{0}(w), w=\left(t, x, x_{1}, \ldots, x_{s}\right) \in I \times O^{s+1}$ be bounded. Moreover, there exist the finite limits

$$
\dot{\varphi}_{0}^{-}=\dot{\varphi}_{0}\left(t_{00}-\right), \quad \lim _{w \rightarrow w_{0}} f_{0}(w)=f_{0}^{-}, \quad w \in\left(a, t_{00}\right] \times O^{s+1}
$$

where

$$
w_{0}=\left(t_{00}, \varphi_{0}\left(t_{00}\right), \varphi_{0}\left(t_{00}-\tau_{10}\right), \ldots, \varphi_{0}\left(t_{00}-\tau_{s 0}\right)\right)
$$

Then there exist the numbers $\varepsilon_{2} \in\left(0, \varepsilon_{1}\right)$ and $\delta_{2} \in\left(0, \delta_{1}\right)$ such that for arbitrary $(t, \varepsilon, \delta \mu) \in\left[t_{00}, t_{10}+\right.$ $\left.\delta_{2}\right] \times\left(0, \varepsilon_{2}\right) \times \Im_{-}^{(2)}$,

$$
\begin{equation*}
\Delta x(t ; \varepsilon \delta \mu)=\varepsilon \delta x(t ; \delta \mu)+o(t ; \varepsilon \delta \mu) \tag{3.5}
\end{equation*}
$$

where $\Im_{-}^{(2)}=\left\{\delta \mu \in \Im^{(2)}: \delta t_{0} \leq 0\right\}$ and

$$
\begin{align*}
\delta x(t ; \delta \mu)= & Y\left(t_{00} ; t\right)\left(\dot{\varphi}_{0}^{-}-f_{0}^{-}\right) \delta t_{0}+\beta(t ; \delta \mu) \tag{3.6}\\
\beta(t ; \delta \mu)= & Y\left(t_{00} ; t\right) \delta \varphi\left(t_{00}\right)+\sum_{i=1}^{s} \int_{t_{00}-\tau_{i 0}}^{t_{00}} Y\left(\xi+\tau_{i 0} ; t\right) f_{0 x_{i}}\left[\xi+\tau_{i 0}\right] \delta \varphi(\xi) d \xi \\
& -\int_{t_{00}}^{t} Y(\xi ; t)\left[\sum_{i=1}^{s} f_{0 x_{i}}[\xi] \dot{x}_{0}\left(\xi-\tau_{i 0}\right) \delta \tau_{i}\right] d \xi+\int_{t_{00}}^{t} Y(\xi ; t) \delta f[\xi] d \xi . \tag{3.7}
\end{align*}
$$

Here $Y(\xi ; t)$ is the $n \times n$-matrix function satisfying the equation

$$
\begin{equation*}
Y_{\xi}(\xi ; t)=-Y(\xi ; t) f_{0 x}[\xi]-\sum_{i=1}^{s} Y\left(\xi+\tau_{i 0} ; t\right) f_{0 x_{i}}\left[\xi+\tau_{i 0}\right], \quad \xi \in\left[t_{00}, t\right] \tag{3.8}
\end{equation*}
$$

and the condition

$$
\begin{equation*}
Y(t ; t)=\Upsilon, \quad Y(\xi ; t)=\Theta \tag{3.9}
\end{equation*}
$$

where

$$
\begin{aligned}
f_{0 x_{i}}[\xi] & =f_{0 x_{i}}\left(\xi, x_{0}(\xi), x_{0}\left(\xi-\tau_{10}\right), \ldots, x_{0}\left(\xi-\tau_{s 0}\right)\right), \\
\delta f[\xi] & =\delta f\left(\xi, x_{0}(\xi), x_{0}\left(\xi-\tau_{10}\right), \ldots, x_{0}\left(\xi-\tau_{s 0}\right)\right) .
\end{aligned}
$$

Some comments. On the basis of the Cauchy formula, we can conclude that the function

$$
\delta x(t)= \begin{cases}\delta \varphi(t), & t \in\left[\widehat{\tau}, t_{00}\right) \\ \delta x(t ; \delta \mu), & t \in\left[t_{00}, t_{10}+\delta_{2}\right]\end{cases}
$$

is a solution of the equation

$$
\dot{\delta} x(t)=f_{0 x}[t] \delta x(t)+\sum_{i=1}^{s} f_{0 x_{i}}[t] \delta x\left(t-\tau_{i 0}\right)-\sum_{i=1}^{s} f_{0 x_{i}}[t] \dot{x}_{0}\left(t-\tau_{i 0}\right) \delta \tau_{i}+\delta f[t]
$$

with the discontinuous initial condition

$$
\delta x(t)=\delta \varphi(t), \quad t \in\left[\widehat{\tau}, t_{00}\right), \quad \delta x\left(t_{00}\right)=\left(\dot{\varphi}_{0}^{-}-f_{0}^{-}\right) \delta t_{0}+\delta \varphi\left(t_{00}\right) .
$$

The addend

$$
-\int_{t_{00}}^{t} Y(\xi ; t)\left[\sum_{i=1}^{s} f_{0 x_{i}}[\xi] \dot{x}_{0}\left(\xi-\tau_{i 0}\right) \delta \tau_{i}\right] d \xi
$$

in the formula (3.7) is the effect of perturbations of the delays $\tau_{i 0}, i=\overline{1, s}$.

The expression

$$
Y\left(t_{00} ; t\right)\left(\dot{\varphi}_{0}^{-}-f_{0}^{-}\right) \delta t_{0}
$$

in the formula (3.6) is the effect of the continuous initial condition (3.2) and perturbation of the initial moment t_{00}.

The expression

$$
Y\left(t_{00} ; t\right) \delta \varphi\left(t_{00}\right)+\sum_{i=1}^{s} \int_{t_{00}-\tau_{i 0}}^{t_{00}} Y\left(s+\tau_{i 0} ; t\right) f_{0 x_{i}}\left[\xi+\tau_{i 0}\right] \delta \varphi(\xi) d \xi
$$

in the formula (3.7) is the effect of perturbation of the initial function $\varphi_{0}(t)$.
The addend

$$
\int_{t_{00}}^{t} Y(\xi ; t) \delta f[\xi] d \xi
$$

in (3.7) is the effect of perturbation of the right-hand side of equation

$$
\dot{x}(t)=f_{0}\left(t, x(t), x\left(t-\tau_{10}\right), \ldots, x\left(t-\tau_{s 0}\right)\right)
$$

Theorem 3.2. Let the function $\varphi_{0}(t), t \in I_{1}$, be absolutely continuous. Let the functions $\dot{\varphi}_{0}(t)$ and $f_{0}(w), w=\left(t, x, x_{1}, \ldots, x_{s}\right) \in I \times O^{s+1}$, be bounded. Moreover, there exist the finite limits

$$
\dot{\varphi}_{0}^{+}=\dot{\varphi}_{0}\left(t_{00}+\right), \quad \lim _{w \rightarrow w_{0}} f_{0}(w)=f_{0}^{+}, \quad w \in\left[t_{00}, b\right) \times O^{s+1}
$$

Then for each $\widehat{t_{0}} \in\left(t_{00}, t_{10}\right)$ there exist the numbers $\varepsilon_{2} \in\left(0, \varepsilon_{1}\right)$ and $\delta_{2} \in\left(0, \delta_{1}\right)$ such that for arbitrary $(t, \varepsilon, \delta \mu) \in\left[\widehat{t_{0}}, t_{10}+\delta_{2}\right] \times\left(0, \varepsilon_{2}\right) \times \Im_{+}^{(2)}$, where $\Im_{+}^{(2)}=\left\{\delta \mu \in \Im^{(2)}: \delta t_{0} \geq 0\right\}$, the formula (3.5) holds, where

$$
\begin{equation*}
\delta x(t ; \delta \mu)=Y\left(t_{00} ; t\right)\left(\dot{\varphi}_{0}^{+}-f_{0}^{+}\right) \delta t_{0}+\beta(t ; \delta \mu) . \tag{3.10}
\end{equation*}
$$

The following assertion is a corollary to Theorems 3.1 and 3.2.
Theorem 3.3. Let the assumptions of Theorems 3.1 and 3.2 be fulfilled. Moreover, $\dot{\varphi}_{0}^{-}-f_{0}^{-}=$ $\dot{\varphi}_{0}^{+}-f_{0}^{+}:=\widehat{f_{0}}$. Then, for each $\widehat{t_{0}} \in\left(t_{00}, t_{10}\right)$, there exist the numbers $\varepsilon_{2} \in\left(0, \varepsilon_{1}\right)$ and $\delta_{2} \in\left(0, \delta_{1}\right)$ such that for arbitrary $(t, \varepsilon, \delta \mu) \in\left[\widehat{t_{0}}, t_{10}+\delta_{2}\right] \times\left(0, \varepsilon_{2}\right) \times \Im^{(2)}$ the formula (3.5) holds, where

$$
\delta x(t ; \delta \mu)=Y\left(t_{00} ; t\right) \widehat{f}_{0} \delta t_{0}+\beta(t ; \delta \mu) .
$$

All the assumptions of Theorem 3.3 are satisfied if the function $f_{0}\left(t, x, x_{1}, \ldots, x_{s}\right)$ is continuous and bounded, and the function $\varphi_{0}(t)$ is continuously differentiable. Clearly, in this case,

$$
\widehat{f_{0}}=\dot{\varphi}_{0}\left(t_{00}\right)-f_{0}\left(t_{00}, \varphi_{0}\left(t_{00}\right), \varphi_{0}\left(t_{00}-\tau_{10}\right), \ldots, \varphi_{0}\left(t_{00}-\tau_{s 0}\right)\right)
$$

Theorems 3.1-3.3 correspond to the cases where there exist the left-sided, right-sided and two-sided variations of the initial moment t_{00}, respectively.

3.2 Lemma on estimation of the increment of a solution with respect to the variation set $\Im_{-}^{(2)}$

To each element $\mu=\left(t_{0}, \tau_{1}, \ldots, \tau_{s}, \varphi, f\right) \in \Lambda^{(2)}$ we assign the functional differential equation

$$
\begin{equation*}
\dot{y}(t)=f\left(t_{0}, \tau_{1}, \ldots, \tau_{s}, \varphi, y\right)(t) \tag{3.11}
\end{equation*}
$$

with the initial condition

$$
\begin{equation*}
y\left(t_{0}\right)=\varphi\left(t_{0}\right) \tag{3.12}
\end{equation*}
$$

(see (1.16)).

Definition 3.2. Let $\mu=\left(t_{0}, \tau_{1}, \ldots, \tau_{s}, \varphi, f\right) \in \Lambda^{(2)}$. An absolutely continuous function $y(t)=$ $y(t ; \mu) \in O, t \in\left[r_{1}, r_{2}\right] \subset I$, is called a solution of the equation (3.11) with the initial condition (3.12), or a solution corresponding to the element μ and defined on the interval $\left[r_{1}, r_{2}\right]$, if $t_{0} \in\left[r_{1}, r_{2}\right]$, $y\left(t_{0}\right)=\varphi\left(t_{0}\right)$ and the function $y(t)$ satisfies the equation (3.11) a.e. on $\left[r_{1}, r_{2}\right]$.

Remark 3.1. Let $y(t ; \mu), t \in\left[r_{1}, r_{2}\right]$, be a solution corresponding to the element $\mu=\left(t_{0}, \tau_{1}, \ldots, \tau_{s}\right.$, $\varphi, f) \in \Lambda^{(2)}$. Then the function

$$
\begin{equation*}
x(t ; \mu)=h\left(t_{0}, \varphi, y(\cdot ; \mu)\right)(t), \quad t \in\left[\widehat{\tau}, r_{2}\right], \tag{3.13}
\end{equation*}
$$

is a solution of the equation (3.11) with the initial condition (3.12) (see Definition 3.1 and (1.18)).
Lemma 3.1. Let $y_{0}(t)$ be a solution corresponding to the element $\mu_{0}=\left(t_{00}, \tau_{10}, \ldots, \tau_{s 0}, \varphi_{0}, f_{0}\right) \in \Lambda^{(2)}$ and defined on $\left[r_{1}, r_{2}\right] \subset(a, b)$; let $t_{00} \in\left[r_{1}, r_{2}\right), \tau_{i 0} \in\left(\theta_{i 1}, \theta_{i 2}\right), i=\overline{1, s}$, and let $K_{1} \subset O$ be a compact set containing a neighborhood of the set $\varphi_{0}\left(I_{1}\right) \cup y_{0}\left(\left[r_{1}, r_{2}\right]\right)$. Then there exist the numbers $\varepsilon_{1}>0$ and $\delta_{1}>0$ such that for any $(\varepsilon, \delta \mu) \in\left(0, \varepsilon_{1}\right) \times \Im^{(2)}$, we have $\mu_{0}+\varepsilon \delta \mu \in \Lambda^{(2)}$. In addition, to this element there corresponds a solution $y\left(t ; \mu_{0}+\varepsilon \delta \mu\right)$ defined on the interval $\left[r_{1}-\delta_{1}, r_{2}+\delta_{1}\right] \subset I$. Moreover,

$$
\begin{cases}\varphi(t):=\varphi_{0}(t)+\varepsilon \delta \varphi(t) \in K_{1}, & t \in I_{1}, \tag{3.14}\\ y\left(t ; \mu_{0}+\varepsilon \delta \mu\right) \in K_{1}, & t \in\left[r_{1}-\delta_{1}, r_{2}+\delta_{1}\right],\end{cases}
$$

and

$$
\lim _{\varepsilon \rightarrow 0} y\left(t ; \mu_{0}+\varepsilon \delta \mu\right)=y\left(t ; \mu_{0}\right)
$$

uniformly for $(t, \delta \mu) \in\left[r_{1}-\delta_{1}, r_{2}+\delta_{1}\right] \times \Im^{(2)}$.
This lemma is a consequence of Theorem 1.7.
Lemma 3.2. Let $x_{0}(t)$ be a solution corresponding to the element $\mu_{0}=\left(t_{00}, \tau_{10}, \ldots, \tau_{i s}, \varphi_{0}, f_{0}\right) \in \Lambda^{(2)}$ and defined on $\left[\widehat{\tau}, t_{10}\right]$ (see Definition 3.1), let $t_{00}, t_{10} \in(a, b), \tau_{i 0} \in\left(\theta_{i 1}, \theta_{i 2}\right), i=\overline{1, s}$, and let $K_{1} \subset O$ be a compact set containing a neighborhood of the set $\varphi_{0}\left(I_{1}\right) \cup x_{0}\left(\left[t_{00}, t_{10}\right]\right)$. Then there exist the numbers $\varepsilon_{1}>0$ and $\delta_{1}>0$ such that for any $(\varepsilon, \delta \mu) \in\left(0, \varepsilon_{1}\right) \times \Im^{(2)}$, we have $\mu_{0}+\varepsilon \delta \mu \in \Lambda^{(2)}$. In addition, to this element there corresponds a solution $x\left(t ; \mu_{0}+\varepsilon \delta \mu\right)$ defined on the interval $\left[\widehat{\tau}, t_{10}+\delta_{1}\right] \subset I_{1}$. Moreover,

$$
\begin{equation*}
x\left(t ; \mu_{0}+\varepsilon \delta \mu\right) \in K_{1}, \quad t \in\left[\widehat{\tau}, t_{10}+\delta_{1}\right] . \tag{3.15}
\end{equation*}
$$

It is easy to see that if in Lemma 3.1 one puts $r_{1}=t_{00}, r_{2}=t_{10}$, then $x_{0}(t)=y_{0}(t), t \in\left[t_{00}, t_{10}\right]$, and

$$
x\left(t ; \mu_{0}+\varepsilon \delta \mu\right)=h\left(t_{0}, \varphi, y\left(\cdot ; \mu_{0}+\varepsilon \delta \mu\right)\right)(t) \forall(t, \varepsilon, \delta \mu) \in\left[\widehat{\tau}, t_{10}+\delta_{1}\right] \times\left(0, \varepsilon_{1}\right) \times \Im^{(2)}
$$

(see (3.13)). Thus, Lemma 3.2 is a simple corollary of Lemma 3.1 (see (3.14)).
Due to the uniqueness, the solution $y\left(t ; \mu_{0}\right)$ on the interval $\left[r_{1}-\delta_{1}, r_{2}+\delta_{1}\right]$ is a continuation of the solution $y_{0}(t)$. Therefore, we can assume that the solution $y_{0}(t)$ is defined on the interval $\left[r_{1}-\delta_{1}, r_{2}+\delta_{1}\right]$.

Lemma 3.1 allows one to define the increment of the solution $y_{0}(t)=y\left(t ; \mu_{0}\right)$:

$$
\begin{equation*}
\Delta y(t)=\Delta y(t ; \varepsilon \delta \mu)=y\left(t ; \mu_{0}+\varepsilon \delta \mu\right)-y_{0}(t) \forall(t, \varepsilon, \delta \mu) \in\left[r_{1}-\delta_{1}, r_{2}+\delta_{1}\right] \times\left(0, \varepsilon_{1}\right) \times \Im^{(2)} \tag{3.16}
\end{equation*}
$$

Obviously,

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \Delta y(t ; \varepsilon \delta \mu)=0 \tag{3.17}
\end{equation*}
$$

uniformly with respect to $(t, \delta \mu) \in\left[r_{1}-\delta_{1}, r_{2}+\delta_{1}\right] \times \Im^{(2)}$ (see Lemma 3.1).
Lemma 3.3. Let the conditions of Theorem 3.1 hold. Then there exist the numbers $\varepsilon_{2} \in\left(0, \varepsilon_{1}\right)$ and $\delta_{2} \in\left(0, \delta_{1}\right)$ such that

$$
\begin{equation*}
\max _{t \in\left[t_{00}, r_{2}+\delta_{2}\right]}|\Delta y(t)| \leq O(\varepsilon \delta \mu) \tag{3.18}
\end{equation*}
$$

for arbitrary $(\varepsilon, \delta \mu) \in\left(0, \varepsilon_{2}\right) \times \Im_{-}^{(2)}$. Moreover,

$$
\begin{equation*}
\Delta y\left(t_{00}\right)=\varepsilon\left[\delta \varphi\left(t_{00}\right)+\left(\dot{\varphi}_{0}^{-}-f_{0}^{-}\right) \delta t_{0}\right]+o(\varepsilon \delta \mu) . \tag{3.19}
\end{equation*}
$$

Proof. Let $\varepsilon_{2}^{\prime} \in\left(0, \varepsilon_{1}\right)$ be insomuch small that for arbitrary $(\varepsilon, \delta \mu) \in\left(0, \varepsilon_{2}^{\prime}\right) \times \Im_{-}^{(2)}$ the following inequalities

$$
\begin{equation*}
t_{0}+\tau_{i}>t_{00}, \quad i=\overline{1, s}, \tag{3.20}
\end{equation*}
$$

hold, where $t_{0}=t_{00}+\varepsilon \delta t_{0}, \tau_{i}=\tau_{i 0}+\varepsilon \delta \tau_{i}$. On the interval $\left[t_{00}, r_{2}+\delta_{1}\right]$, the function $\Delta y(t)=y(t)-y_{0}(t)$, where $y(t)=y(t ; \mu+\varepsilon \delta \mu)$, satisfies the equation

$$
\begin{equation*}
\dot{\Delta} y(t)=a(t ; \varepsilon \delta \mu)+\varepsilon b(t ; \varepsilon \delta \mu) \tag{3.21}
\end{equation*}
$$

where

$$
\begin{align*}
a(t ; \varepsilon \delta \mu) & =f_{0}\left(t_{0}, \tau_{1}, \ldots, \tau_{s}, \varphi, y_{0}+\Delta y\right)(t)-f_{0}\left(t_{00}, \tau_{10}, \ldots, \tau_{s 0}, \varphi_{0}, y_{0}\right)(t) \tag{3.22}\\
b(t ; \varepsilon \delta \mu) & =\delta f\left(t_{0}, \tau_{1}, \ldots, \tau_{s}, \varphi, y_{0}+\Delta y\right)(t)
\end{align*}
$$

We rewrite the equation (3.21) in the integral form

$$
\Delta y(t)=\Delta y\left(t_{00}\right)+\int_{t_{00}}^{t}[a(\xi ; \varepsilon \delta \mu)+\varepsilon b(\xi ; \varepsilon \delta \mu)] d \xi
$$

Hence it follows that

$$
\begin{equation*}
|\Delta y(t)| \leq\left|\Delta y\left(t_{00}\right)\right|+a_{1}\left(t ; t_{00}, \varepsilon \delta \mu\right)+\varepsilon b_{1}\left(t_{00} ; \varepsilon \delta \mu\right), \tag{3.23}
\end{equation*}
$$

where

$$
a_{1}\left(t ; t_{00}, \varepsilon \delta \mu\right)=\int_{t_{00}}^{t}|a(\xi ; \varepsilon \delta \mu)| d \xi, \quad b_{1}\left(t_{00} ; \varepsilon \delta \mu\right)=\int_{t_{00}}^{r_{2}+\delta_{1}}|b(\xi ; \varepsilon \delta \mu)| d \xi
$$

Let us prove the formula (3.19). We have

$$
\begin{align*}
& \Delta y\left(t_{00}\right)=y\left(t_{00} ; \mu_{0}+\varepsilon \delta \mu\right)-y_{0}\left(t_{00}\right)=\varphi_{0}\left(t_{0}\right)+\varepsilon \delta \varphi\left(t_{0}\right) \\
&+\int_{t_{0}}^{t_{00}}\left[f_{0}\left(t, y_{0}(t)+\Delta y(t), \varphi\left(t-\tau_{1}\right), \ldots, \varphi\left(t-\tau_{s}\right)\right)+\varepsilon b(t ; \varepsilon \delta \mu)\right] d t-\varphi_{0}\left(t_{00}\right) \tag{3.24}
\end{align*}
$$

(see (3.20)). Since

$$
\int_{t_{00}}^{t_{0}} \dot{\varphi}_{0}(t) d t=\varepsilon \dot{\varphi}_{0}^{-} \delta t_{0}+o(\varepsilon \delta \mu)
$$

and

$$
\lim _{\varepsilon \rightarrow 0} \delta \varphi\left(t_{0}\right)=\delta \varphi\left(t_{00}\right) \text { uniformly with respect to } \delta \mu \in \Im_{-}^{(2)}
$$

(see (3.3)), we have

$$
\begin{align*}
\varphi_{0}\left(t_{0}\right)+\varepsilon \delta \varphi & \left(t_{0}\right)-\varphi_{0}\left(t_{00}\right) \\
& =\int_{t_{00}}^{t_{0}} \dot{\varphi}_{0}(t) d t+\varepsilon \delta \varphi\left(t_{00}\right)+\varepsilon\left[\delta \varphi\left(t_{0}\right)-\delta \varphi\left(t_{00}\right)\right]=\varepsilon\left[\dot{\varphi}_{0}^{-} \delta t_{0}+\delta \varphi\left(t_{00}\right)\right]+o(\varepsilon \delta \mu) . \tag{3.25}
\end{align*}
$$

It is clear that if $t \in\left[t_{0}, t_{00}\right]$, then

$$
\lim _{\varepsilon \rightarrow 0}\left(t, y_{0}(t)+\Delta y(t), \varphi\left(t-\tau_{1}\right), \ldots, \varphi\left(t-\tau_{s}\right)\right)=\lim _{t \rightarrow t_{00}-}\left(t, y_{0}(t), \varphi_{0}\left(t-\tau_{10}\right), \ldots, \varphi_{0}\left(t-\tau_{s 0}\right)\right)=w_{0}
$$

(see (3.17)). Consequently,

$$
\lim _{\varepsilon \rightarrow 0} \sup _{t \in\left[t_{0}, t_{00}\right]}\left|f_{0}\left(t, y_{0}(t)+\Delta y(t), \varphi\left(t-\tau_{1}\right), \ldots, \varphi\left(t-\tau_{s}\right)\right)-f_{0}^{-}\right|=0
$$

This relation implies that

$$
\begin{align*}
& \int_{t_{0}}^{t_{00}} f_{0}\left(t, y_{0}(t)+\Delta y(t), \varphi\left(t-\tau_{1}\right), \ldots, \varphi\left(t-\tau_{s}\right)\right) d t=-\varepsilon f_{0}^{-} \delta t_{0} \\
& \quad+\int_{t_{0}}^{t_{00}}\left[f_{0}\left(t, y_{0}(t)+\Delta y(t), \varphi\left(t-\tau_{1}\right), \ldots, \varphi\left(t-\tau_{s}\right)\right)-f_{0}^{-}\right] d t=-\varepsilon f_{0}^{-} \delta t_{0}+o(\varepsilon \delta \mu) . \tag{3.26}
\end{align*}
$$

Further, we have

$$
\begin{equation*}
\int_{t_{0}}^{t_{00}}|b(t ; \varepsilon \delta \mu)| d t \leq \int_{t_{0}}^{t_{00}} \sum_{i=1}^{k}\left|\lambda_{i}\right|\left|\delta f_{i}\left(t_{0}, \tau_{1}, \ldots, \tau_{s}, \varphi, y_{0}+\Delta y\right)(t)\right| d t \leq \gamma \sum_{i=1}^{k} \int_{t_{0}}^{t_{00}} m_{\delta f_{i}, K_{1}}(t) d t \tag{3.27}
\end{equation*}
$$

(see (3.16), (3.3) and (3.14)).
From (3.24), by virtue of (3.25)-(3.27), we obtain (3.19).
Let us now prove the inequality (3.18). Towards this end, we estimate $a_{1}\left(t ; t_{00}, \varepsilon \delta \mu\right), t \in\left[t_{00}, r_{2}+\right.$ δ_{1}]. Obviously,

$$
\begin{equation*}
a_{1}\left(t ; t_{00}, \varepsilon \delta \mu\right) \leq \int_{t_{00}}^{t} L_{f_{0}, K_{1}}(\xi)|\Delta y(\xi)| d \xi+\sum_{i=1}^{s} a_{2 i}\left(t ; t_{00}, \varepsilon \delta \mu\right) \tag{3.28}
\end{equation*}
$$

where

$$
a_{2 i}\left(t ; t_{00}, \varepsilon \delta \mu\right)=\int_{t_{00}}^{t} L_{f_{0}, K_{1}}(\xi)\left|h\left(t_{0}, \varphi, y_{0}+\Delta y\right)\left(\xi-\tau_{i}\right)-h\left(t_{00}, \varphi_{0}, y_{0}\right)\left(\xi-\tau_{i 0}\right)\right| d \xi
$$

(see (3.22)).
Let $t_{00}+\tau_{i 0} \leq r_{2}$ and let $\varepsilon_{2}{ }^{\prime}$ be insomuch small that $t_{00}+\tau_{i}<r_{2}+\delta_{1}$.
Furthermore, let

$$
\rho_{i 1}=\min \left\{t_{0}+\tau_{i}, t_{00}+\tau_{i 0}\right\}, \quad \rho_{i 2}=\max \left\{t_{00}+\tau_{i}, t_{00}+\tau_{i 0}\right\}
$$

It is easy to see that

$$
\rho_{i 2} \geq \rho_{i 1}>t_{00} \text { and } \rho_{i 2}-\rho_{i 1}=O(\varepsilon \delta \mu)
$$

Let $t \in\left[t_{00}, \rho_{i 1}\right)$, then for $\xi \in\left[t_{00}, t\right]$, we have $\xi-\tau_{i}<t_{0}$ and $\xi-\tau_{i 0}<t_{00}$, and hence,

$$
a_{2 i}\left(t ; t_{00}, \varepsilon \delta \mu\right)=\int_{t_{00}}^{t} L_{f_{0}, K_{1}}(\xi)\left|\varphi\left(\xi-\tau_{i}\right)-\varphi_{0}\left(\xi-\tau_{i 0}\right)\right| d \xi
$$

From the boundedness of the function $\dot{\varphi}_{0}(t), t \in I_{1}$, it follows that

$$
\begin{align*}
\left|\varphi\left(\xi-\tau_{i}\right)-\varphi_{0}\left(\xi-\tau_{i 0}\right)\right| & =\left|\varphi_{0}\left(\xi-\tau_{i}\right)+\varepsilon \delta \varphi\left(\xi-\tau_{i}\right)-\varphi_{0}\left(\xi-\tau_{i 0}\right)\right| \\
& =O(\varepsilon \delta \mu)+\left|\int_{\xi-\tau_{i 0}}^{\xi-\tau_{i}} \dot{\varphi}_{0}(t) d t\right|=O(\varepsilon \delta \mu) \tag{3.29}
\end{align*}
$$

Thus, for $t \in\left[t_{00}, \rho_{i 1}\right]$, we have

$$
\begin{equation*}
a_{2 i}\left(t ; t_{00}, \varepsilon \delta \mu\right) \leq O(\varepsilon \delta \mu), \quad i=\overline{1, s} . \tag{3.30}
\end{equation*}
$$

Let $t \in\left[\rho_{i 1}, \rho_{i 2}\right]$, then

$$
a_{2 i}\left(t ; t_{00}, \varepsilon \delta \mu\right) \leq a_{2 i}\left(\rho_{i 1} ; t_{00}, \varepsilon \delta \mu\right)+a_{2 i}\left(\rho_{i 2} ; \rho_{i 1}, \varepsilon \delta \mu\right) \leq O(\varepsilon \delta \mu)+a_{2 i}\left(\rho_{i 2} ; \rho_{i 1}, \varepsilon \delta \mu\right)
$$

Let $\rho_{i 1}=t_{0}+\tau_{i}$ and $\rho_{i 2}=t_{00}+\tau_{i}$, i.e., $t_{0}+\tau_{i}<t_{00}+\tau_{i 0}<t_{00}+\tau_{i}$. We have

$$
\begin{aligned}
& a_{2 i}\left(\rho_{i 2} ; \rho_{i 1}, \varepsilon \delta \mu\right) \leq \int_{t_{0}+\tau_{i}}^{t_{00}+\tau_{i 0}} L_{f_{0}, K_{1}}(\xi)\left|y\left(\xi-\tau_{i} ; \mu_{0}+\varepsilon \delta \mu\right)-\varphi_{0}\left(\xi-\tau_{i 0}\right)\right| d \xi \\
& +\int_{t_{00}+\tau_{i 0}}^{t_{00}+\tau_{i}} L_{f_{0}, K_{1}}(\xi)\left|y\left(\xi-\tau_{i} ; \mu_{0}+\varepsilon \delta \mu\right)-y_{0}\left(\xi-\tau_{i 0}\right)\right| d \xi \\
& \leq \int_{t_{0}+\tau_{i}}^{t_{00}+\tau_{i 0}} L_{f_{0}, K_{1}}(\xi)\left|y\left(\xi-\tau_{i} ; \mu_{0}+\varepsilon \delta \mu\right)-\varphi\left(\xi-\tau_{i}\right)\right| d \xi \\
& +\int_{t_{0}+\tau_{i}}^{t_{00}+\tau_{i 0}} L_{f_{0}, K_{1}}(\xi)\left|\varphi\left(\xi-\tau_{i}\right)-\varphi_{0}\left(\xi-\tau_{i 0}\right)\right| d \xi \\
& +\int_{t_{00}+\tau_{i 0}}^{t_{00}+\tau_{i}} L_{f_{0}, K_{1}}(\xi)\left|y\left(\xi-\tau_{i} ; \mu_{0}+\varepsilon \delta \mu\right)-\varphi\left(\xi-\tau_{i}\right)\right| d \xi \\
& +\int_{t_{00}+\tau_{i 0}}^{t_{00}+\tau_{i}} L_{f_{0}, K_{1}}(\xi)\left|\varphi\left(\xi-\tau_{i}\right)-\varphi_{0}\left(\xi-\tau_{i 0}\right)\right| d \xi \\
& +\int_{t_{00}+\tau_{i 0}}^{t_{00}+\tau_{i}} L_{f_{0}, K_{1}}(\xi)\left|\varphi_{0}\left(\xi-\tau_{i 0}\right)-y_{0}\left(\xi-\tau_{i 0}\right)\right| d \xi \\
& \leq o(\varepsilon \delta \mu)+\int_{t_{0}+\tau_{i}}^{t_{00}+\tau_{i}} L_{f_{0}, K_{1}}(\xi)\left|y\left(\xi-\tau_{i} ; \mu_{0}+\varepsilon \delta \mu\right)-\varphi\left(\xi-\tau_{i}\right)\right| d \xi \\
& +\int_{t_{00}+\tau_{i 0}}^{t_{00}+\tau_{i}} L_{f_{0}, K_{1}}(\xi)\left|\varphi_{0}\left(\xi-\tau_{i 0}\right)-y_{0}\left(\xi-\tau_{i 0}\right)\right| d \xi \\
& =o(\varepsilon \delta \mu)+\int_{t_{0}}^{t_{00}} L_{f_{0}, K_{1}}\left(\xi+\tau_{i}\right)\left|y\left(\xi ; \mu_{0}+\varepsilon \delta \mu\right)-\varphi(\xi)\right| d \xi \\
& +\int_{t_{00}}^{t_{00}+\tau_{i}-\tau_{i 0}} L_{f_{0}, K_{1}}\left(\xi+\tau_{i 0}\right)\left|\varphi_{0}(\xi)-y_{0}(\xi)\right| d \xi
\end{aligned}
$$

(see (3.29)). The functions $f_{0}\left(t, x, x_{1}, \ldots, x_{s}\right),\left(t, x, x_{1}, \ldots, x_{s}\right) \in I \times O^{1+s}$ and $\dot{\varphi}_{0}(t), t \in I_{1}$, are bounded; therefore,

$$
\begin{gather*}
\left|y\left(\xi ; \mu_{0}+\varepsilon \delta \mu\right)-\varphi(\xi)\right| \\
=\left|\varphi\left(t_{0}\right)+\int_{t_{0}}^{\xi}\left[f_{0}\left(t_{0}, \tau_{1}, \ldots, \tau_{s}, \varphi, y_{0}+\Delta y\right)(t)+b(t ; \varepsilon \delta \mu)\right] d t-\varphi(\xi)\right| \leq O(\varepsilon \delta \mu), \quad \xi \in\left[t_{0}, t_{00}\right], \tag{3.31}
\end{gather*}
$$

and

$$
\begin{array}{r}
\left|\varphi_{0}(\xi)-y_{0}(\xi)\right|=\left|\varphi_{0}(\xi)-\varphi_{0}\left(t_{00}\right)-\int_{t_{00}}^{\xi} f_{0}\left(t_{00}, \tau_{10}, \ldots, \tau_{s 0}, \varphi_{0}, y_{0}\right)(t) d t\right| \leq O(\varepsilon \delta \mu) \\
\xi \in\left[t_{00}, t_{00}+\tau_{i}-\tau_{i 0}\right] \quad\left(\tau_{i}>\tau_{i 0}\right)
\end{array}
$$

Thus,

$$
a_{2 i}\left(\rho_{i 2} ; \rho_{i 1}, \varepsilon \delta \mu\right)=o(\varepsilon \delta \mu) .
$$

Let $\rho_{i 1}=t_{0}+\tau_{i}$ and $\rho_{i 2}=t_{00}+\tau_{i 0}$, then

$$
a_{i 2}\left(\rho_{i 2} ; \rho_{i 1}, \varepsilon \delta \mu\right)=\int_{t_{0}+\tau_{i}}^{t_{00}+\tau_{i 0}} L_{f_{0}, K_{1}}(\xi)\left|y\left(\xi-\tau_{i} ; \mu_{0}+\varepsilon \delta \mu\right)-\varphi_{0}\left(\xi-\tau_{i 0}\right)\right| d \xi=o(\varepsilon \delta \mu) .
$$

Let $\rho_{i 1}=t_{00}+\tau_{i 0}$ and $\rho_{i 2}=t_{00}+\tau_{i}$, i.e., $t_{00}+\tau_{i 0}<t_{0}+\tau_{i}<t_{00}+\tau_{i}$. We have

$$
\begin{aligned}
a_{i 2}\left(\rho_{i 2} ; \rho_{i 1}, \varepsilon \delta \mu\right) \leq & \int_{t_{00}+\tau_{i 0}}^{t_{0}+\tau_{i}} L_{f_{0}, K_{1}}(\xi)\left|\varphi\left(\xi-\tau_{i}\right)-y_{0}\left(\xi-\tau_{i 0}\right)\right| d \xi \\
& +\int_{t_{0}+\tau_{i}}^{t_{00}+\tau_{i}} L_{f_{0}, K_{1}}(\xi)\left|y\left(\xi-\tau_{i} ; \mu_{0}+\varepsilon \delta \mu\right)-y_{0}\left(\xi-\tau_{i 0}\right)\right| d \xi=o(\varepsilon \delta \mu) .
\end{aligned}
$$

Consequently, for $t \in\left[t_{00}, \rho_{i 2}\right]$, the inequality (3.30) holds.
Let $t \in\left[\rho_{i 2}, r_{2}+\delta_{1}\right]$, then $t-\tau_{i} \geq t_{0}$ and $t-\tau_{i 0} \geq t_{00}$, therefore,

$$
\begin{aligned}
& a_{2 i}\left(t ; t_{00}, \varepsilon \delta \mu\right)=a_{2 i}\left(\rho_{i 2} ; t_{00}, \varepsilon \delta \mu\right)+\int_{\rho_{i 2}}^{t} L_{f_{0}, K_{1}}(\xi)\left|y_{0}\left(\xi-\tau_{i}\right)+\Delta y\left(\xi-\tau_{i}\right)-y_{0}\left(\xi-\tau_{i 0}\right)\right| d \xi \\
& \quad \leq O(\varepsilon \delta \mu)+\int_{\rho_{i 2}-\tau_{i}}^{t-\tau_{i}} L_{f_{0}, K_{1}}\left(\xi+\tau_{i}\right)|\Delta y(\xi)| d \xi+\int_{\rho_{i 2}}^{t} L_{f_{0}, K_{1}}(\xi)\left|y_{0}\left(\xi-\tau_{i}\right)-y_{0}\left(\xi-\tau_{i 0}\right)\right| d \xi \\
& \quad \leq O(\varepsilon \delta \mu)+\int_{t_{00}}^{t} \chi\left(\xi+\tau_{i}\right) L_{f_{0}, K_{1}}\left(\xi+\tau_{i}\right)|\Delta y(\xi)| d \xi+\int_{\rho_{i 2}}^{r_{2}+\delta_{1}} L_{f_{0}, K_{1}}(\xi)\left|y_{0}\left(\xi-\tau_{i}\right)-y_{0}\left(\xi-\tau_{i 0}\right)\right| d \xi
\end{aligned}
$$

Further, for $\xi \in\left[\rho_{i 2}, r_{2}+\delta_{1}\right]$,

$$
\left|y_{0}\left(\xi-\tau_{i}\right)-y_{0}\left(\xi-\tau_{i 0}\right)\right| \leq \int_{\xi-\tau_{i 0}}^{\xi-\tau_{I}}\left|f_{0}\left(t_{00}, \tau_{i 1}, \ldots, \tau_{i s}, y_{0}\right)(t)\right| d t \leq O(\varepsilon \delta \mu)
$$

Thus, for $t \in\left[t_{00}, r_{2}+\delta_{1}\right]$, we get

$$
\begin{equation*}
a_{2 i}\left(t ; t_{00}, \varepsilon \delta \mu\right) \leq O(\varepsilon \delta \mu)+\int_{t_{00}}^{t} \chi_{1}\left(\xi+\tau_{i}\right) L_{f_{0}, K_{1}}\left(\xi+\tau_{i}\right)|\Delta y(\xi)| d \xi \tag{3.32}
\end{equation*}
$$

We now consider the case where $t_{00}+\tau_{i 0}>r_{2}$. Let $\delta_{2} \in\left(0, \delta_{1}\right)$ and $\varepsilon_{2}^{\prime \prime} \in\left(0, \varepsilon_{1}\right)$ be insomuch small numbers that $t_{00}+\tau_{i 0}>r_{2}+\delta_{2}$ and $t_{0}+\tau_{i}>r_{2}+\delta_{2}$ for arbitrary $(\varepsilon, \delta \mu) \in\left(0, \varepsilon_{2}^{\prime \prime}\right) \times \Im_{-}^{(2)}$.

It is easy to see that

$$
a_{2 i}\left(t ; t_{00}, \varepsilon \delta \mu\right) \leq \int_{t_{00}}^{t} L_{f_{0}, K_{1}}(\xi)\left|\varphi\left(\xi-\tau_{i}\right)-\varphi_{0}\left(\xi-\tau_{i 0}\right)\right| d t \leq O(\varepsilon \delta \mu)
$$

Thus, for arbitrary $(t, \varepsilon, \delta \mu) \in\left[t_{00}, r_{2}+\delta_{2}\right] \times\left(0, \varepsilon_{2}\right) \times \Im_{-}^{(2)}$ and $i=\overline{1, s}$, where $\varepsilon_{2}=\min \left(\varepsilon_{2}^{\prime}, \varepsilon_{2}^{\prime \prime}\right)$, the inequality (3.32) holds.

Consequently, we have

$$
\begin{gather*}
a_{1}\left(t ; t_{00}, \varepsilon \delta \mu\right) \leq O(\varepsilon \delta \mu)+\int_{t_{00}}^{t}\left[L_{f, K_{1}}(\xi)+\sum_{i=1}^{s} \chi_{1}\left(\xi+\tau_{i}\right) L_{f, K_{1}}\left(\xi+\tau_{i}\right)\right]|\Delta y(\xi)| d \xi \tag{3.33}\\
t \in\left[t_{00}, r_{2}+\delta_{1}\right]
\end{gather*}
$$

(see (3.28)). Obviously,

$$
\begin{equation*}
b_{1}\left(t_{00}, \varepsilon \delta \mu\right) \leq \gamma \int_{t_{00}}^{r_{2}+\delta_{2}} \sum_{i=1}^{k}\left|\delta f_{i}\left(t_{0}, \tau_{1}, \ldots, \tau_{s}, y_{0}+\Delta y\right)(t)\right| d t \leq \gamma \sum_{i=1}^{k} \int_{I} m_{\delta f_{i}, K_{1}}(t) d t \tag{3.34}
\end{equation*}
$$

According to (3.19), (3.33) and (3.34), the inequality (3.23) directly implies

$$
|\Delta y(t)| \leq O(\varepsilon \delta \mu)+\int_{t_{00}}^{t}\left[L_{f, K_{1}}(\xi)+\sum_{i=1}^{s} \chi_{1}\left(\xi+\tau_{i}\right) L_{f, K_{1}}\left(\xi+\tau_{i}\right)\right]|\Delta y(\xi)| d \xi, \quad t \in\left[t_{00}, r_{2}+\delta_{2}\right] .
$$

By the Gronwall-Bellman inequality lemma, from the above we obtain (3.18).

3.3 Proof of Theorem 3.1

Let $r_{1}=t_{00}$ and $r_{2}=t_{10}$ as in Lemma 3.1, then

$$
x_{0}(t)= \begin{cases}\varphi_{0}(t), & t \in\left[\widehat{\tau}, t_{00}\right) \\ y_{0}(t), & t \in\left[t_{00}, t_{10}\right]\end{cases}
$$

and for arbitrary $(\varepsilon, \delta \mu) \in\left(0, \varepsilon_{1}\right) \times \Im_{-}^{(2)}$,

$$
x\left(t ; \mu_{0}+\varepsilon \delta \mu\right)= \begin{cases}\varphi(t), & t \in\left[\widehat{\tau}, t_{0}\right), \\ y\left(t ; \mu_{0}+\varepsilon \delta \mu\right), & t \in\left[t_{0}, t_{10}+\delta_{1}\right]\end{cases}
$$

(see (3.13)).
We note that $\delta \mu \in \Im_{-}^{(2)}$, i.e., $t_{0}<t_{00}$, therefore

$$
\Delta x(t)= \begin{cases}\varepsilon \delta \varphi(t) & \text { for } t \in\left[\widehat{\tau}, t_{0}\right) \\ y\left(t ; \mu_{0}+\varepsilon \delta \mu\right)-\varphi_{0}(t) & \text { for } t \in\left[t_{0}, t_{00}\right) \\ \Delta y(t) & \text { for } t \in\left[t_{00}, t_{10}+\delta_{1}\right]\end{cases}
$$

(see (3.4) and (3.16)).
By Lemma 3.3 and the relation

$$
\left|y\left(t ; \mu_{0}+\varepsilon \delta \mu\right)-\varphi_{0}(t)\right| \leq O(\varepsilon \delta \mu), \quad t \in\left[t_{0}, t_{00}\right]
$$

we have

$$
\begin{gather*}
|\Delta x(t)| \leq O(\varepsilon \delta \mu) \forall(t, \varepsilon, \delta \mu) \in\left[\widehat{\tau}, t_{10}+\delta_{2}\right] \times\left(0, \varepsilon_{2}\right) \times \Im_{-}^{(2)}, \tag{3.35}\\
\Delta x\left(t_{00}\right)=\varepsilon\left[\delta \varphi\left(t_{00}\right)+\left(\dot{\varphi}_{0}^{-}-f_{0}^{-}\right) \delta t_{0}\right]+o(\varepsilon \delta \mu) . \tag{3.36}
\end{gather*}
$$

The function $\Delta x(t)$ satisfies the equation

$$
\begin{align*}
\dot{\Delta} x(t) & =f_{0}\left[t, x_{0}+\Delta x\right]+\varepsilon \delta f\left[t, x_{0}+\Delta x\right]-f_{0}[t] \\
& =f_{0 x}[t] \Delta x(t)+\sum_{i=1}^{s} f_{0 x_{i}}[t] \Delta x\left(t-\tau_{i 0}\right)+\varepsilon \delta f[t]+\sum_{i=1}^{2} \vartheta_{i}(t ; \varepsilon \delta \mu) \tag{3.37}
\end{align*}
$$

on the interval $\left[t_{00}, t_{10}+\delta_{2}\right.$], where

$$
\begin{align*}
f_{0}\left[t, x_{0}+\Delta x\right] & =f_{0}\left(t, x_{0}(t)+\Delta x(t), x_{0}\left(t-\tau_{1}\right)+\Delta x\left(t-\tau_{1}\right), \ldots, x_{0}\left(t-\tau_{s}\right)+\Delta x\left(t-\tau_{s}\right)\right), \\
f_{0}[t] & =f_{0}\left(t, x_{0}(t), x_{0}\left(t-\tau_{10}\right), \ldots, x_{0}\left(t-\tau_{s 0}\right)\right) \\
\delta f\left[t, x_{0}+\Delta x\right] & =\delta f\left(t, x_{0}(t)+\Delta x(t), x_{0}\left(t-\tau_{1}\right)+\Delta x\left(t-\tau_{1}\right), \ldots, x_{0}\left(t-\tau_{s}\right)+\Delta x\left(t-\tau_{s}\right)\right), \\
\delta f[t] & =\delta f\left(t, x_{0}(t), x_{0}\left(t-\tau_{1}\right), \ldots, x_{0}\left(t-\tau_{s}\right)\right) \\
\vartheta_{1}(t ; \varepsilon \delta \mu) & =f_{0}\left[t, x_{0}+\Delta x\right]-f_{0}[t]-f_{0 x}[t] \Delta x(t)-\sum_{i=1}^{s} f_{0 x_{i}}[t] \Delta x\left(t-\tau_{i 0}\right), \tag{3.38}\\
\vartheta_{2}(t ; \varepsilon \delta \mu) & =\varepsilon\left[\delta f\left[t, x_{0}+\Delta x\right]-\delta f[t]\right] . \tag{3.39}
\end{align*}
$$

By using the Cauchy formula, one can represent the solution of the equation (3.37) in the form

$$
\begin{equation*}
\Delta x(t)=Y\left(t_{00} ; t\right) \Delta x\left(t_{00}\right)+\varepsilon \int_{t_{00}}^{t} Y(\xi ; t) \delta f[\xi] d \xi+\sum_{p=0}^{2} R_{p}\left(t ; t_{00}, \varepsilon \delta \mu\right), \quad t \in\left[t_{00}, t_{10}+\delta_{2}\right] \tag{3.40}
\end{equation*}
$$

where

$$
\left\{\begin{align*}
R_{0}\left(t ; t_{00}, \varepsilon \delta \mu\right) & =\sum_{i=1}^{s} R_{i 0}\left(t ; t_{00}, \varepsilon \delta \mu\right) \tag{3.41}\\
R_{i 0}\left(t ; t_{00}, \varepsilon \delta \mu\right) & =\int_{t_{00}-\tau_{i 0}}^{t_{00}} Y\left(\xi+\tau_{i 0} ; t\right) f_{0 x_{i}}\left[\xi+\tau_{i 0}\right] \Delta x(\xi) d \xi \\
R_{p}\left(t ; t_{00}, \varepsilon \delta \mu\right) & =\int_{t_{00}}^{t} Y(\xi ; t) \vartheta_{p}(\xi ; \varepsilon \delta \mu) d \xi, \quad p=1,2
\end{align*}\right.
$$

and $Y(\xi ; t)$ is the matrix function satisfying the equation (3.8) and the condition (3.9). The function $Y(\xi ; t)$ is continuous on the set

$$
\left[t_{00}-\delta_{2}, t_{00}\right] \times\left[t_{00}, t_{10}+\delta_{2}\right] \subset \Pi .
$$

Therefore,

$$
\begin{equation*}
Y\left(t_{00} ; t\right) \Delta x\left(t_{00}\right)=\varepsilon Y\left(t_{00} ; t\right)\left[\delta \varphi\left(t_{00}\right)+\left(\dot{\varphi}_{0}^{-}-f_{0}^{-}\right) \delta t_{0}\right]+o(t ; \varepsilon \delta \mu) \tag{3.42}
\end{equation*}
$$

(see (3.36)). One can readily see that

$$
\begin{aligned}
R_{i 0}\left(t ; t_{00}, \varepsilon \delta \mu\right) & =\varepsilon \int_{t_{00}-\tau_{i 0}}^{t_{0}} Y\left(\xi+\tau_{i 0} ; t\right) f_{0 x_{i}}\left[\xi+\tau_{i 0}\right] \delta \varphi(\xi) d \xi+\int_{t_{0}}^{t_{00}} Y\left(\xi+\tau_{i 0} ; t\right) f_{0 x_{i}}\left[\xi+\tau_{i 0}\right] \Delta x(\xi) d \xi \\
& =\varepsilon \int_{t_{00}-\tau_{i 0}}^{t_{00}} Y\left(\xi+\tau_{i 0} ; t\right) f_{0 x_{i}}\left[\xi+\tau_{i 0}\right] \delta \varphi(\xi) d \xi+o(t ; \varepsilon \delta \mu)
\end{aligned}
$$

(see (3.35)). Thus

$$
\begin{equation*}
R_{0}\left(t ; t_{00}, \varepsilon \delta \mu\right)=\varepsilon \sum_{i=1}^{s} \int_{t_{00}-\tau_{i 0}}^{t_{00}} Y\left(\xi+\tau_{i 0} ; t\right) f_{0 x_{i}}\left[\xi+\tau_{i 0}\right] \delta \varphi(\xi) d \xi+o(t ; \varepsilon \delta \mu) \tag{3.43}
\end{equation*}
$$

We introduce the notations:

$$
\begin{gathered}
f_{0}[t ; \theta, \varepsilon \delta \mu]=f_{0}\left(t, x_{0}(t)+\theta \Delta x(t), x_{0}\left(t-\tau_{10}\right)+\theta\left(x_{0}\left(t-\tau_{1}\right)-x_{0}\left(t-\tau_{10}\right)+\Delta x\left(t-\tau_{1}\right)\right), \ldots,\right. \\
\left.x_{0}\left(t-\tau_{s 0}\right)+\theta\left(x_{0}\left(t-\tau_{s}\right)-x_{0}\left(t-\tau_{s 0}\right)+\Delta x\left(t-\tau_{s}\right)\right)\right), \\
\sigma(t ; \theta, \varepsilon \delta \mu)=f_{0 x}[t ; \theta, \varepsilon \delta \mu]-f_{0 x}[t], \quad \varrho_{i}(t ; \theta, \varepsilon \delta \mu)=f_{0 x_{i}}[t ; \theta, \varepsilon \delta \mu]-f_{0 x_{i}}[t] .
\end{gathered}
$$

It is easy to see that

$$
\begin{aligned}
& f_{0}\left(\left[t, x_{0}+\Delta x\right]-f_{0}[t]=\int_{0}^{1} \frac{d}{d \theta} f_{0}[t ; \theta, \varepsilon \delta \mu] d \theta\right. \\
&= \int_{0}^{1}\left\{f_{0 x}[t ; \theta, \varepsilon \delta \mu] \Delta x(t)+\sum_{i=1}^{s} f_{0 x_{i}}[t ; \theta, \varepsilon \delta \mu]\left(x_{0}\left(t-\tau_{i}\right)-x_{0}\left(t-\tau_{i 0}\right)+\Delta x\left(t-\tau_{i}\right)\right)\right\} d \theta \\
&=\left[\int_{0}^{1} \sigma(t ; \theta, \varepsilon \delta \mu) d \theta\right] \Delta x(t)+\sum_{i=1}^{s}\left[\int_{0}^{1} \varrho_{i}(t ; \theta, \varepsilon \delta \mu) d \theta\right]\left(x_{0}\left(t-\tau_{i}\right)-x_{0}\left(t-\tau_{i 0}\right)+\Delta x\left(t-\tau_{i}\right)\right) \\
& \quad+f_{0 x}[t] \Delta x(t)+\sum_{i=1}^{s} f_{0 x_{i}}[t]\left(x_{0}\left(t-\tau_{i}\right)-x_{0}\left(t-\tau_{i 0}\right)+\Delta x\left(t-\tau_{i}\right)\right)
\end{aligned}
$$

Taking into account the last relation for $t \in\left[t_{00}, t_{10}+\delta_{2}\right]$, we have

$$
R_{1}\left(t ; t_{00}, \varepsilon \delta \mu\right)=\sum_{p=3}^{6} R_{p}\left(t ; t_{00}, \varepsilon \delta \mu\right),
$$

where

$$
\begin{gathered}
R_{3}\left(t ; t_{00}, \varepsilon \delta \mu\right)=\int_{t_{00}}^{t} Y(\xi ; t) \sigma_{1}(\xi ; \varepsilon \delta \mu) \Delta x(\xi) d \xi, \quad \sigma_{1}(\xi ; \varepsilon \delta \mu)=\int_{0}^{1} \sigma(\xi ; s, \varepsilon \delta \mu) d s, \\
R_{4}\left(t ; t_{00}, \varepsilon \delta \mu\right)=\sum_{i=1}^{s} \int_{t_{00}}^{t} Y(\xi ; t) \varrho_{i 2}(\xi ; \varepsilon \delta \mu)\left[x_{0}\left(\xi-\tau_{i}\right)-x_{0}\left(\xi-\tau_{i 0}\right)+\Delta x\left(\xi-\tau_{i}\right)\right] d \xi, \\
\varrho_{i 2}(\xi ; \varepsilon \delta \mu)=\int_{0}^{1} \varrho_{i 1}(\xi ; \theta, \varepsilon \delta \mu) d \theta \\
R_{5}\left(t ; t_{00}, \varepsilon \delta \mu\right)=\sum_{i=1}^{s} \int_{t_{00}}^{t} Y(\xi ; t) f_{0 x_{i}}[\xi]\left[x_{0}\left(\xi-\tau_{i}\right)-x_{0}\left(\xi-\tau_{i 0}\right)\right] d \xi \\
R_{6}\left(t ; t_{00}, \varepsilon \delta \mu\right)=\sum_{i=1}^{s} \int_{t_{00}}^{t} Y(\xi ; t) f_{0 x_{i}}[\xi]\left[\Delta x\left(\xi-\tau_{i}\right)-\Delta x\left(\xi-\tau_{i 0}\right)\right] d \xi
\end{gathered}
$$

(see (3.38)). The function $x_{0}(t), t \in\left[\widehat{\tau}, t_{10}+\delta_{2}\right]$, is absolutely continuous, and for each fixed Lebesgue point $\xi_{i} \in\left(t_{00}, t_{10}+\delta_{2}\right)$ of the function $\dot{x}_{0}\left(\xi-\tau_{i 0}\right)$ we get

$$
\begin{equation*}
x_{0}\left(\xi_{i}-\tau_{i}\right)-x_{0}\left(\xi_{i}-\tau_{i 0}\right)=\int_{\xi_{i}}^{\xi_{i}-\varepsilon \delta \tau_{i}} \dot{x}_{0}\left(\varsigma-\tau_{i 0}\right) d \varsigma=-\varepsilon \dot{x}_{0}\left(\xi_{i}-\tau_{i 0}\right) \delta \tau_{i}+\gamma_{i}\left(\xi_{i} ; \varepsilon \delta \mu\right) \tag{3.44}
\end{equation*}
$$

where

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \frac{\gamma_{i}\left(\xi_{i} ; \varepsilon \delta \mu\right)}{\varepsilon}=0 \text { uniformly for } \delta \mu \in \Im_{-}^{(2)} \tag{3.45}
\end{equation*}
$$

Thus (3.44) is valid for almost all points of the interval $\left(t_{00}, t_{10}+\delta_{2}\right)$. From (3.44), taking into account the boundedness of the function

$$
\dot{x}_{0}(t)= \begin{cases}\dot{\varphi}_{0}(t), & t \in\left[\widehat{\tau}, t_{00}\right] \\ f_{0}\left(t, x_{0}(t), x_{0}\left(t-\tau_{10}\right), \ldots, x_{0}\left(t-\tau_{s 0}\right)\right), & t \in\left(t_{00}, t_{10}+\delta_{2}\right]\end{cases}
$$

it follows that

$$
\begin{equation*}
\left|x_{0}\left(\xi_{i}-\tau_{i}\right)-x_{0}\left(\xi_{i}-\tau_{i 0}\right)\right| \leq O(\varepsilon \delta \mu) \text { and }\left|\frac{\gamma_{i}\left(\xi_{i} ; \varepsilon \delta \mu\right)}{\varepsilon}\right| \leq \text { const } \tag{3.46}
\end{equation*}
$$

It is clear that

$$
\left|\Delta x\left(\xi-\tau_{i}\right)-\Delta x\left(\xi-\tau_{i 0}\right)\right|= \begin{cases}o(\xi ; \varepsilon \delta \mu) & \text { for } \xi \in\left[t_{00}, \rho_{i 1}\right] \tag{3.47}\\ O(\xi ; \varepsilon \delta \mu) & \text { for } \xi \in\left[\rho_{i 1}, \rho_{i 2}\right]\end{cases}
$$

(see (3.35)).
Let $\xi \in\left[\rho_{i 2}, t_{10}+\delta_{1}\right]$, then $\xi-\tau_{i} \geq t_{00}, \xi-\tau_{i 0} \geq t_{00}$. Therefore,

$$
\begin{align*}
& \left|\Delta x\left(\xi-\tau_{i}\right)-\Delta x\left(\xi-\tau_{i 0}\right)\right| \leq \int_{\xi-\tau_{i 0}}^{\xi-\tau_{i}}|\dot{\Delta} x(s)| d s \\
& \leq \int_{\xi-\tau_{i 0}}^{\xi-\tau_{i}} L_{f_{0}, K_{1}}(\varsigma)\left[|\Delta x(\varsigma)|+\sum_{i=1}^{s}\left|x_{0}\left(\varsigma-\tau_{i}\right)-x_{0}\left(\varsigma-\tau_{i 0}\right)\right|+\left|\Delta x\left(\varsigma-\tau_{i}\right)\right|\right] d \varsigma \\
& \tag{3.48}\\
& \quad+\varepsilon \alpha \int_{\xi-\tau_{i 0}}^{\xi-\tau_{i}} \sum_{j=1}^{k} m_{\delta f_{j}, K_{1}}(\varsigma) d \varsigma=o(\xi ; \varepsilon \delta \mu)
\end{align*}
$$

(see (3.37), (3.15), (3.46) and (3.35)).
According to (3.35), (3.44) and (3.46)-(3.48), for the expressions $R_{p}\left(t ; t_{00}, \varepsilon \delta \mu\right), p=3,4,5$, we have

$$
\begin{aligned}
&\left|R_{3}\left(t ; t_{00}, \varepsilon \delta \mu\right)\right| \leq\|Y\| O(\varepsilon \delta \mu) \sigma_{2}(\varepsilon \delta \mu), \quad \sigma_{2}(\varepsilon \delta \mu)=\int_{t_{00}}^{t_{10}+\delta_{1}}\left|\sigma_{1}(\xi ; \varepsilon \delta \mu)\right| d \xi \\
&\left|R_{4}\left(t ; t_{00}, \varepsilon \delta \mu\right)\right| \leq\|Y\| O(\varepsilon \delta \mu) \sum_{i=1}^{s} \rho_{i 2}(\varepsilon \delta \mu), \quad \rho_{i 2}(\varepsilon \delta \mu)=\int_{t_{00}}^{t_{10}+\delta_{1}}\left|\rho_{i 1}(\xi ; \varepsilon \delta \mu)\right| d \xi, \\
& R_{5}\left(t ; t_{00}, \varepsilon \delta \mu\right)=-\varepsilon \sum_{i=1}^{s}\left[\int_{t_{00}}^{t} Y(\xi ; t) f_{0 x_{i}}[\xi] \dot{x}_{0}\left(\xi-\tau_{i 0}\right) d \xi\right] \delta \tau_{i}+\sum_{i=1}^{s} \gamma_{i 1}(t ; \varepsilon \delta \mu),
\end{aligned}
$$

where

$$
\|Y\|=\sup \{|Y(\xi ; t)|:(\xi, t) \in \Pi\}, \quad \gamma_{i 1}(t ; \varepsilon \delta \mu)=\int_{t_{00}}^{t} Y(\xi ; t) f_{0 x_{i}}[\xi] \gamma_{i}(\xi ; \varepsilon \delta \mu) d \xi
$$

Obviously,

$$
\left|\frac{\gamma_{i 1}(t ; \varepsilon \delta \mu)}{\varepsilon}\right| \leq\|Y\| \int_{t_{00}}^{t_{10}+\delta_{1}}\left|f_{0 x_{i}}[\xi]\right|\left|\frac{\gamma_{i}(\xi ; \varepsilon \delta \mu)}{\varepsilon}\right| d \xi
$$

By the Lebesgue theorem on the passage to the limit under the integral sign, we have

$$
\lim _{\varepsilon \rightarrow 0} \sigma_{2}(\varepsilon \delta \mu)=0, \quad \lim _{\varepsilon \rightarrow 0} \rho_{i 2}(\varepsilon \delta \mu)=0, \quad \lim _{\varepsilon \rightarrow 0}\left|\frac{\gamma_{i 1}(t ; \varepsilon \delta \mu)}{\varepsilon}\right|=0
$$

uniformly for $(t, \delta \mu) \in\left[t_{00}, t_{10}+\delta_{1}\right] \times \Im_{-}^{(2)}($ see (3.45)). Thus,

$$
\begin{align*}
& R_{p}\left(t ; t_{00}, \varepsilon \delta \mu\right)=o(t ; \varepsilon \delta \mu), \quad p=3,4 \tag{3.49}\\
& R_{5}\left(t ; t_{00}, \varepsilon \delta \mu\right)=-\varepsilon \sum_{i=1}^{s}\left[\int_{t_{00}}^{t} Y(\xi ; t) f_{0 x_{i}}[\xi] \dot{x}_{0}\left(\xi-\tau_{i 0}\right) d \xi\right] \delta \tau_{i}+o(t ; \varepsilon \delta \mu) . \tag{3.50}
\end{align*}
$$

Further,

$$
\begin{equation*}
\left|R_{6}\left(t ; t_{00}, \varepsilon \delta \mu\right)\right| \leq\|Y\| \int_{t_{00}}^{t_{10}+\delta_{1}} \sum_{i=1}^{s}\left|f_{0 x_{i}}[\xi]\right|\left|\Delta x\left(\xi-\tau_{i}\right)-\Delta x\left(\xi-\tau_{i 0}\right)\right| d \xi=o(\varepsilon \delta \mu) \tag{3.51}
\end{equation*}
$$

On the basis of (3.49)-(3.51), we obtain

$$
\begin{equation*}
R_{1}\left(t ; t_{00}, \varepsilon \delta \mu\right)=-\varepsilon \sum_{i}^{s}\left[\int_{t_{00}}^{t} Y(\xi ; t) f_{0 x_{i}}[\xi] \dot{x}_{0}\left(\xi-\tau_{i 0}\right) d \xi\right] \delta \tau_{i}+o(t ; \varepsilon \delta \mu) \tag{3.52}
\end{equation*}
$$

Next,

$$
\leq \varepsilon \gamma \int_{t_{00}}^{t_{10}+\delta_{1}} \sum_{j=1}^{k} L_{\delta f_{j}, K_{1}}(\xi)\left[|\Delta x(\xi)|+\sum_{i=1}^{s}\left(\left|x_{00}(\xi-\tau)-x_{0}\left(\xi-\tau_{0}\right)\right|+|\Delta x(\xi-\tau)|\right)\right] d \xi \leq o(\varepsilon \delta \mu)
$$

(see (3.39)).
From (3.40), by virtue of (3.42), (3.43), (3.52) and (3.53), we obtain (3.5), where $\delta x(t ; \delta \mu)$ has the form (3.6).

3.4 Lemma on estimation of the increment of a solution with respect to the variation set $\Im_{+}^{(2)}$

Lemma 3.4. Let the conditions of Theorem 3.2 hold. Then there exist the numbers $\varepsilon_{2} \in\left(0, \varepsilon_{1}\right)$ and $\delta_{2} \in\left(0, \delta_{1}\right)$ such that

$$
\begin{equation*}
\max _{t \in\left[t_{0}, r_{2}+\delta_{2}\right]}|\Delta y(t)| \leq O(\varepsilon \delta \mu) \tag{3.54}
\end{equation*}
$$

for arbitrary $(\varepsilon, \delta \mu) \in\left[0, \varepsilon_{2}\right] \times \Im_{+}^{(2)}$. Moreover,

$$
\begin{equation*}
\Delta y\left(t_{0}\right)=\varepsilon\left[\delta \varphi\left(t_{00}\right)+\left(\dot{\varphi}_{0}^{+}-f_{0}^{+}\right) \delta t_{0}\right]+o(\varepsilon \delta \mu) . \tag{3.55}
\end{equation*}
$$

Proof. Let a number $\varepsilon_{2}^{\prime} \in\left(0, \varepsilon_{1}\right)$ be insomuch small that for arbitrary $(\varepsilon, \delta \mu) \in\left(0, \varepsilon_{2}^{\prime}\right) \times \Im_{+}^{(2)}$, the inequalities

$$
\begin{equation*}
t_{00}+\tau_{i}>t_{0}, \quad t_{00}+\tau_{i 0}>t_{0}, \quad i=\overline{1, s} \tag{3.56}
\end{equation*}
$$

hold, where $t_{0}=t_{00}+\varepsilon \delta t_{0}$. On the interval $\left[t_{0}, r_{2}+\delta_{1}\right]$, the function $\Delta y(t)=y(t)-y_{0}(t)$ satisfies the equation

$$
\begin{equation*}
\dot{\Delta} y(t)=a(t ; \varepsilon \delta \mu)+\varepsilon b(t ; \varepsilon \delta \mu) \tag{3.57}
\end{equation*}
$$

(see (3.21)). We rewrite the equation (3.57) in the integral form

$$
\Delta y(t)=\Delta y\left(t_{0}\right)+\int_{t_{0}}^{t}[a(\xi ; \varepsilon \delta \mu)+\varepsilon b(\xi ; \varepsilon \delta \mu)] d \xi
$$

Hence it follows that

$$
\begin{equation*}
|\Delta y(t)| \leq\left|\Delta y\left(t_{0}\right)\right|+a_{1}\left(t ; t_{0}, \varepsilon \delta \mu\right)+\varepsilon b\left(t_{0}, \varepsilon \delta \mu\right) . \tag{3.58}
\end{equation*}
$$

Let us prove the formula (3.55). We have

$$
\begin{align*}
\Delta y\left(t_{0}\right) & =y\left(t_{0} ; \mu_{0}+\varepsilon \delta \mu\right)-y_{0}\left(t_{0}\right) \\
& =\varphi_{0}\left(t_{0}\right)+\varepsilon \delta \varphi\left(t_{0}\right)-\varphi_{0}\left(t_{00}\right)-\int_{t_{00}}^{t_{0}}\left[f_{0}\left(t, y_{0}(t), \varphi_{0}\left(t-\tau_{10}\right), \ldots, \varphi_{0}\left(t-\tau_{s 0}\right)\right)\right] d t \tag{3.59}
\end{align*}
$$

(see (3.56)). Since

$$
\int_{t_{00}}^{t_{0}} \dot{\varphi}_{0}(t) d t=\varepsilon \dot{\varphi}_{0}^{+} \delta t_{0}+o(\varepsilon \delta \mu)
$$

and

$$
\lim _{\varepsilon \rightarrow 0} \delta \varphi\left(t_{0}\right)=\delta \varphi\left(t_{00}\right) \text { uniformly with respect to } \delta \mu \in \Im_{+}^{(2)}
$$

(see (3.3)), we get

$$
\begin{align*}
& \varphi_{0}\left(t_{0}\right)+\varepsilon \delta \varphi\left(t_{0}\right)-\varphi_{0}\left(t_{00}\right) \\
&=\int_{t_{00}}^{t_{0}} \dot{\varphi}_{0}(t) d t+\varepsilon \delta \varphi\left(t_{00}\right)+\varepsilon\left[\delta \varphi\left(t_{0}\right)-\delta \varphi\left(t_{00}\right)\right]=\varepsilon\left[\dot{\varphi}_{0}^{+} \delta t_{0}+\delta \varphi\left(t_{00}\right)\right]+o(\varepsilon \delta \mu) \tag{3.60}
\end{align*}
$$

It is clear that if $t \in\left[t_{00}, t_{0}\right]$, then

$$
\lim _{\varepsilon \rightarrow 0}\left(t, y_{0}(t)+\Delta y(t), \varphi\left(t-\tau_{1}\right), \ldots, \varphi\left(t-\tau_{s}\right)\right)=\lim _{t \rightarrow t_{00}+}\left(t, y_{0}(t), \varphi_{0}\left(t-\tau_{10}\right), \ldots, \varphi_{0}\left(t-\tau_{s 0}\right)\right)=w_{0}
$$

(see (3.17)). Consequently,

$$
\lim _{\varepsilon \rightarrow 0} \sup _{t \in\left[t_{00}, t_{0}\right]}\left|f_{0}\left(t, y_{0}(t)+\Delta y(t), \varphi\left(t-\tau_{1}\right), \ldots, \varphi\left(t-\tau_{s}\right)\right)-f_{0}^{+}\right|=0
$$

This relation implies that

$$
\begin{align*}
& \int_{t_{0}}^{t_{00}} f_{0}\left(t, y_{0}(t)+\Delta y(t), \varphi\left(t-\tau_{1}\right), \ldots, \varphi\left(t-\tau_{s}\right)\right) d t \\
= & -\varepsilon f_{0}^{+} \delta t_{0}+\int_{t_{0}}^{t_{00}}\left[f_{0}\left(t, y_{0}(t)+\Delta y(t), \varphi\left(t-\tau_{1}\right), \ldots, \varphi\left(t-\tau_{s}\right)\right)-f_{0}^{+}\right] d t=-\varepsilon f_{0}^{+} \delta t_{0}+o(\varepsilon \delta \mu) . \tag{3.61}
\end{align*}
$$

From (3.59), by virtue of (3.60) and (3.61), we obtain (3.55).
In order to prove the inequality (3.54) we estimate $a_{1}\left(t ; t_{0}, \varepsilon \delta \mu\right), t \in\left[t_{0}, r_{2}+\delta_{1}\right]$. Obviously,

$$
\begin{equation*}
a_{1}\left(t ; t_{0}, \varepsilon \delta \mu\right) \leq \int_{t_{0}}^{t} L_{f_{0}, K_{1}}(\xi)|\Delta y(\xi)| d \xi+\sum_{i=1}^{s} a_{2 i}\left(t ; t_{0}, \varepsilon \delta \mu\right) \tag{3.62}
\end{equation*}
$$

(see (3.28)).
Let there exist $t_{00}+\tau_{i 0} \leq r_{2}$ and let $\varepsilon_{2}^{\prime} \in\left(0, \varepsilon_{1}\right)$ be insomuch small that $t_{0}+\tau_{i}<r_{2}+\delta_{1}$. Furthermore, let

$$
\rho_{i 1}=\min \left\{t_{00}+\tau_{i}, t_{00}+\tau_{i 0}\right\}, \quad \rho_{i 2}=\max \left\{t_{0}+\tau_{i}, t_{00}+\tau_{i 0}\right\}
$$

It is easy to see that

$$
\rho_{i 2} \geq \rho_{i 1}>t_{0}, \quad \rho_{i 2}-\rho_{i 1}=O(\varepsilon \delta \mu)
$$

Let $t \in\left[t_{0}, \rho_{i 1}\right)$, then for $\xi \in\left[t_{0}, t\right]$ we have $\xi-\tau_{i}<t_{0}$ and $\xi-\tau_{i 0}<t_{00}$. Therefore,

$$
a_{2 i}\left(t ; t_{0}, \varepsilon \delta \mu\right)=\int_{t_{0}}^{t} L_{f_{0}, K_{1}}(\xi) \mid \varphi\left(\xi-\tau_{i}\right)-\varphi_{0}\left(\xi-\tau_{i 0} \mid d \xi\right.
$$

From the boundedness of the function $\dot{\varphi}_{0}(t), t \in I_{1}$, follows

$$
\begin{align*}
\left|\varphi\left(\xi-\tau_{i}\right)-\varphi_{0}\left(\xi-\tau_{i 0}\right)\right|=\mid \varphi_{0}\left(\xi-\tau_{i}\right)+\varepsilon \delta \varphi & \left(\xi-\tau_{i}\right)-\varphi_{0}\left(\xi-\tau_{i 0}\right) \mid \\
& =O(\varepsilon \delta \mu)+\left|\int_{\xi-\tau_{i 0}}^{\xi-\tau_{i}} \dot{\varphi}_{0}(t) d t\right|=O(\varepsilon \delta \mu) . \tag{3.63}
\end{align*}
$$

Thus, for $t \in\left[t_{0}, \rho_{i 1}\right]$, we have

$$
\begin{equation*}
a_{2 i}\left(t ; t_{0}, \varepsilon \delta \mu\right) \leq O(\varepsilon \delta \mu), \quad i=\overline{1, s} \tag{3.64}
\end{equation*}
$$

Let $t \in\left[\rho_{i 1}, \rho_{i 2}\right]$, then

$$
a_{2 i}\left(t ; t_{0}, \varepsilon \delta \mu\right) \leq a_{2 i}\left(\rho_{i 1} ; t_{0}, \varepsilon \delta \mu\right)+a_{2 i}\left(\rho_{21} ; \rho_{i 1}, \varepsilon \delta \mu\right) \leq O(\varepsilon \delta \mu)+a_{2 i}\left(\rho_{21} ; \rho_{i 1}, \varepsilon \delta \mu\right)
$$

(see (3.64)).
Let $\rho_{i 1}=t_{00}+\tau_{i}$ and $\rho_{i 2}=t_{0}+\tau_{i}$, i.e., $t_{00}+\tau_{i}<t_{00}+\tau_{i 0}<t_{0}+\tau_{i}$. We have

$$
\begin{aligned}
a_{2 i}\left(\rho_{i 2} ; \rho_{i 1}, \varepsilon \delta \mu\right) \leq & \int_{t_{00}+\tau_{i}}^{t_{00}+\tau_{i 0}} L_{f_{0}, K_{1}}(\xi)\left|\varphi\left(\xi-\tau_{i}\right)-\varphi_{0}\left(\xi-\tau_{i 0}\right)\right| d \xi \\
& \quad+\int_{t_{00}+\tau_{i 0}}^{t_{0}+\tau_{i}} L_{f_{0}, K_{1}}(\xi)\left|\varphi\left(\xi-\tau_{i}\right)-y_{0}\left(\xi-\tau_{i 0}\right)\right| d \xi \leq o(\varepsilon \delta \mu)
\end{aligned}
$$

(see (3.63)). Consequently, for $t \in\left[t_{0}, \rho_{i 2}\right]$, the inequality (3.64) holds.
Let $t \in\left[\rho_{i 2}, r_{2}+\delta_{1}\right]$, then $t-\tau_{i} \geq t_{0}$ and $t-\tau_{i 0} \geq t_{00}$. Therefore

$$
\begin{aligned}
a_{2 i}\left(t ; t_{0}, \varepsilon \delta \mu\right) & =a_{2 i}\left(\rho_{i 2} ; t_{0}, \varepsilon \delta \mu\right)+\int_{\rho_{i 2}}^{t} L_{f_{0}, K_{1}}(\xi)\left|y_{0}\left(\xi-\tau_{i}\right)+\Delta y\left(\xi-\tau_{i}\right)-y_{0}\left(\xi-\tau_{i 0}\right)\right| d \xi \\
& \leq O(\varepsilon \delta \mu)+\int_{\rho_{i 2}-\tau_{i}}^{t-\tau_{i}} L_{f_{0}, K_{1}}\left(\xi+\tau_{i}\right)|\Delta y(\xi)| d \xi+\int_{\rho_{i 2}}^{t} L_{f_{0}, K_{1}}(\xi)\left|y_{0}\left(\xi-\tau_{i}\right)-y_{0}\left(\xi-\tau_{i 0}\right)\right| d \xi \\
& \leq O(\varepsilon \delta \mu)+\int_{t_{0}}^{t} \chi_{1}\left(\xi+\tau_{i}\right) L_{f_{0}, K_{1}}\left(\xi+\tau_{i}\right)|\Delta y(\xi)| d \xi
\end{aligned}
$$

Consequently, in this case we have

$$
\begin{equation*}
a_{1}\left(t ; t_{0}, \varepsilon \delta \mu\right) \leq O(\varepsilon \delta \mu)+\int_{t_{0}}^{t}\left[L_{f, K_{1}}(\xi)+\sum_{i=1}^{s} \chi_{1}\left(\xi+\tau_{i}\right) L_{f, K_{1}}\left(\xi+\tau_{i}\right)\right]|\Delta y(\xi)| d \xi, \quad t \in\left[t_{0}, r_{2}+\delta_{1}\right] \tag{3.65}
\end{equation*}
$$

(see (3.62)).
We now consider the case where $t_{00}+\tau_{i 0}>r_{2}$. Let the numbers $\delta_{2} \in\left(0, \delta_{1}\right)$ and $\varepsilon_{2}^{\prime \prime} \in\left(0, \varepsilon_{1}\right)$ be insomuch small that $t_{0}+\tau_{i}>r_{2}+\delta_{2}$ for arbitrary $(\varepsilon, \delta \mu) \in\left(0, \varepsilon_{2}^{\prime \prime}\right) \times \Im_{+}^{(2)}$. It is easy to see that

$$
a_{2 i}\left(t ; t_{0}, \varepsilon \delta \mu\right) \leq \int_{t_{0}}^{t} L_{f_{0}, K_{1}}(\xi)\left|\varphi\left(\xi-\tau_{i}\right)-\varphi_{0}\left(\xi-\tau_{i 0}\right)\right| d t \leq O(\varepsilon \delta \mu)
$$

Thus, for arbitrary $(t, \varepsilon, \delta \mu) \in\left[t_{00}, r_{2}+\delta_{2}\right] \times\left(0, \varepsilon_{2}\right) \times \Im_{+}^{(2)}$, where $\varepsilon_{2}=\min \left(\varepsilon_{2}^{\prime}, \varepsilon_{2}^{\prime \prime}\right)$, the inequality (3.65) holds.

Obviously,

$$
\begin{equation*}
b\left(t_{0}, \varepsilon \delta \mu\right) \leq \gamma \int_{t_{0}}^{r_{2}+\delta_{2}} \sum_{i=1}^{k}\left|\delta f_{i}\left(t_{0}, \tau_{1}, \ldots, \tau_{s}, y_{0}+\Delta y\right)(t)\right| d t \leq \gamma \sum_{i=1}^{k} \int_{I} m_{\delta f_{i}, K_{1}}(t) d t . \tag{3.66}
\end{equation*}
$$

According to (3.55), (3.65) and (3.66), the inequality (3.58) directly implies

$$
|\Delta y(t)| \leq O(\varepsilon \delta \mu)+\int_{t_{0}}^{t}\left[L_{f, K_{1}}(\xi)+\sum_{i=1}^{s} \chi_{1}\left(\xi+\tau_{i}\right) L_{f, K_{1}}\left(\xi+\tau_{i}\right)\right]|\Delta y(\xi)| d \xi, \quad t \in\left[t_{0}, r_{2}+\delta_{2}\right]
$$

By the Gronwall-Bellman inequality, from the above we obtain (3.54).

3.5 Proof of Theorem 3.2

First of all, we note that $\delta \mu \in \Im_{+}^{(2)}$ i.e., $t_{00}<t_{0}$, therefore we have

$$
\Delta x(t)= \begin{cases}\varepsilon \delta \varphi(t) & \text { for } t \in\left[\widehat{\tau}, t_{00}\right) \\ \varphi(t)-y_{0}(t) & \text { for } t \in\left[t_{00}, t_{0}\right) \\ \Delta y(t) & \text { for } t \in\left[t_{0}, t_{10}+\delta_{1}\right]\end{cases}
$$

In a similar way (see (3.31)), one can prove

$$
\left|\varphi(t)-y_{0}(t)\right|=O(t ; \varepsilon \delta \mu), \quad t \in\left[t_{00}, t_{0}\right]
$$

According to the last relation and Lemma 3.4, we have

$$
|\Delta x(t)| \leq O(\varepsilon \delta \mu) \quad \forall(t, \varepsilon, \delta \mu) \in\left[\widehat{\tau}, t_{10}+\delta_{2}\right] \times\left[0, \varepsilon_{2}\right] \times \Im_{+}^{(2)}
$$

and

$$
\Delta x\left(t_{0}\right)=\varepsilon\left[\delta \varphi\left(t_{00}\right)+\left(\dot{\varphi}_{0}^{+}-f_{0}^{+}\right)\right] \delta t_{0}+o(\varepsilon \delta \mu)
$$

Let $\widehat{t} \in\left(t_{00}, t_{10}\right)$ be a fixed point, and let $\varepsilon_{2} \in\left(0, \varepsilon_{1}\right)$ be insomuch small that $t_{0}<\widehat{t}$ for arbitrary $(\varepsilon, \delta \mu) \in\left(0, \varepsilon_{1}\right) \times \Im_{+}^{(2)}$. The function $\Delta x(t)$ satisfies the equation (3.37) on the interval $\left[t_{0}, t_{10}+\delta_{2}\right]$. Therefore, by using the Cauchy formula, we can represent it in the form

$$
\begin{equation*}
\Delta x(t)=Y\left(t_{0} ; t\right) \Delta x\left(t_{0}\right)+\varepsilon \int_{t_{0}}^{t} Y(\xi ; t) \delta f[\xi] d \xi+\sum_{i=0}^{2} R_{i}\left(t ; t_{0}, \varepsilon \delta \mu\right) \tag{3.67}
\end{equation*}
$$

where $Y(\xi ; t)$ is the matrix function satisfying the equation (3.8) and the condition (3.9). The matrix function $Y(\xi ; t)$ is continuous on $\left[t_{00}, \widehat{t}\right) \times\left[\widehat{t}, t_{10}+\delta_{2}\right]$, therefore

$$
\begin{equation*}
Y\left(t_{0} ; t\right) \Delta x\left(t_{0}\right)=\varepsilon Y\left(t_{00} ; t\right)\left[\delta \varphi\left(t_{00}\right)+\left(\dot{\varphi}_{0}^{+}-f_{0}^{+}\right)\right] \delta t_{0}+o(\varepsilon \delta \mu) \tag{3.68}
\end{equation*}
$$

Let us now transform

$$
R_{0}\left(t ; t_{0}, \varepsilon \delta \mu\right)=\sum_{i=1}^{s} R_{i 0}\left(t ; t_{0}, \varepsilon \delta \mu\right)
$$

It is not difficult to see that

$$
\begin{aligned}
R_{i 0}\left(t ; t_{0}, \varepsilon \delta \mu\right) & =\varepsilon \int_{t_{0}-\tau_{i 0}}^{t_{00}} Y\left(\xi+\tau_{i 0} ; t\right) f_{0 x_{i}}\left[\xi+\tau_{i 0}\right] \delta \varphi(\xi) d \xi+\int_{t_{00}}^{t_{0}} Y\left(\xi+\tau_{0} ; t\right) f_{0 x_{i}}\left[\xi+\tau_{i 0}\right] \Delta x(\xi) d \xi \\
& =\varepsilon \int_{t_{00}-\tau_{i 0}}^{t_{00}} Y\left(\xi+\tau_{i 0} ; t\right) f_{0 x_{i}}\left[\xi+\tau_{i 0}\right] \delta \varphi(\xi) d \xi+o(t ; \varepsilon \delta \mu)
\end{aligned}
$$

Thus,

$$
\begin{equation*}
R_{0}\left(t ; t_{0}, \varepsilon \delta \mu\right)=\varepsilon \sum_{i=1}^{s} \int_{t_{00}-\tau_{i 0}}^{t_{00}} Y\left(\xi+\tau_{i 0} ; t\right) f_{0 x_{i}}\left[\xi+\tau_{i 0}\right] \delta \varphi(\xi) d \xi+o(t ; \varepsilon \delta \mu) \tag{3.69}
\end{equation*}
$$

In a similar way, with nonessential changes, for $t \in\left[\widehat{t}, t_{10}+\delta_{2}\right]$, one can prove

$$
\begin{align*}
& R_{1}\left(t ; t_{0}, \varepsilon \delta \mu\right)=-\varepsilon \sum_{i=1}^{s} \int_{t_{00}}^{t} Y(\xi ; t)\left[f_{0 x_{i}}[\xi] \dot{x}_{0}\left(\xi-\tau_{i 0}\right) \delta \tau_{i}\right] d \xi+o(t ; \varepsilon \delta \mu), \tag{3.70}\\
& R_{2}\left(t ; t_{0}, \varepsilon \delta \mu\right)=o(t ; \varepsilon \delta \mu) . \tag{3.71}
\end{align*}
$$

Finally, we note that for $t \in\left[\widehat{t}, t_{10}+\delta_{2}\right]$,

$$
\begin{equation*}
\varepsilon \int_{t_{0}}^{t} Y(\xi ; t) \delta f[\xi] d \xi=\varepsilon \int_{t_{00}}^{t} Y(\xi ; t) \delta f[\xi] d \xi+o(t ; \varepsilon \delta \mu) \tag{3.72}
\end{equation*}
$$

Taking into account (3.68)-(3.72), from (3.67) we obtain (3.5), where $\delta x(t ; \varepsilon \delta \mu)$ has the form (3.10).

4 Optimal control problems and necessary conditions of optimality

4.1 Preliminaries and necessary criticality condition

In this subsection by E_{z} we will denote a vector space. The k-dimensional vector space E_{z}^{k} will be identified with the space \mathbb{R}^{k}. By the module of an element $z \in E_{z}^{k}$ we will mean the Euclidean module

$$
|z|^{2}=z^{\top} z=\sum_{i=1}^{k}\left(z^{i}\right)^{2} .
$$

In what follows, finite-dimensional vector spaces will be endowed with the Euclidean topology. Let $z_{i} \in E_{z}, i=\overline{1, k}$. The set

$$
L=\left\{z=\sum_{i=1}^{k} \lambda_{i} z_{i}: \quad \lambda_{i} \in \mathbb{R}, \quad i=\overline{1, k}\right\}
$$

is called the finite-dimensional linear manifold generated by the points $z_{i}, i=\overline{1, k}$. If $z_{0} \in L$, then we say that the manifold L passes through the point z_{0} and it will be denoted by $L_{z_{0}}$. In what follows, we will write the manifold $L_{z_{0}}$ in the equivalent form

$$
\begin{equation*}
L_{z_{0}}=\left\{z=z_{0}+\sum_{i=1}^{k} \lambda_{i} z_{i}: \quad \lambda_{i} \in \mathbb{R}, \quad i=\overline{1, k}\right\} . \tag{4.1}
\end{equation*}
$$

For each fixed $\alpha>0$, the set

$$
\begin{equation*}
\left\{\sum_{i=1}^{k} \lambda_{i} z_{i}: \quad\left|\lambda_{i}\right| \leq \alpha, \quad i=\overline{1, k}\right\} \tag{4.2}
\end{equation*}
$$

is a convex bounded neighborhood of zero in the space $L_{z_{0}}-z_{0}$.
Definition 4.1. We say that points $z_{i} \in E_{z}, i=\overline{0, k}$, are in a general position if the vectors $z_{i}-z_{0}$, $i=\overline{1, k}$, are linearly independent.

From this definition it follows that for any $z_{i}, i=\overline{1, k}$, the system of vectors $z_{0}-z_{i}, \ldots, z_{i-1}-$ $z_{i}, z_{i+1}-z_{i}, \ldots, z_{k}-z_{i}$ is linearly independent, as well.
Definition 4.2. Let the points $z_{i}, i=\overline{0, k}$, be in a general position. The convex hull of points z_{i}, $i=\overline{0, k}$, i.e., $\operatorname{co}\left(\left\{z_{0}, \ldots, z_{k}\right\}\right)$, is called a k-dimensional simplex.

Clearly, a k-dimensional simplex is a convex compact set in the linear finite dimensional manifold generated by the points $z_{i}, i=\overline{0, k}$. It is easy to note that

$$
\begin{align*}
\operatorname{co}\left(\left\{z_{0}, \ldots, z_{k}\right\}\right) & =z_{0}+\operatorname{co}\left(\left\{0, z_{1}-z_{0}, \ldots, z_{k}-z_{0}\right\}\right) \\
& =z_{0}+\left\{\sum_{i=1}^{k} \lambda_{i}\left(z_{i}-z_{0}\right): \quad \lambda_{i} \geq 0, \quad \sum_{i=1}^{k} \lambda_{i} \leq 1\right\} . \tag{4.3}
\end{align*}
$$

From the relations (4.2), (4.3) and Definition 4.2 follow Lemmas 4.1 and 4.2.
Lemma 4.1. The simplex $\operatorname{co}\left(\left\{z_{0}, \ldots, z_{k}\right\}\right)$ has a nonempty interior.
Lemma 4.2. Each point z of a simplex $\operatorname{co}\left(\left\{z_{0}, \ldots, z_{k}\right\}\right)$ can be uniquely represented in the form

$$
z=\sum_{i=0}^{k} \lambda_{i} z_{i}, \text { where } \lambda_{i} \geq 0, \quad i=\overline{0, k}, \quad \text { and } \sum_{i=0}^{k} \lambda_{i}=1 .
$$

Lemma 4.3. Let $M \subset E_{z}^{k}$ and, moreover, let $0 \in \operatorname{int} M$. Then in E_{z}^{k} there exists a k-dimensional simplex which is contained in M and contains $0 \in E_{z}^{k}$ as an interior point.
Proof. Let $\operatorname{co}\left(\left\{z_{0}, \ldots, z_{k}\right\}\right) \subset E_{z}^{k}$ be a k-dimensional simplex. By Lemma 4.1, there exists $\widehat{z} \in$ int $\operatorname{co}\left(\left\{z_{0}, \ldots, z_{k}\right\}\right)$ such that the k-dimensional simplex

$$
-\widehat{z}+\operatorname{co}\left(\left\{z_{0}, \ldots, z_{k}\right\}\right)=\operatorname{co}\left(\left\{z_{0}-\widehat{z}, \ldots, z_{k}-\widehat{z}\right\}\right)
$$

contains $0 \in E_{z}^{k}$ as an interior point. By assumption, there exists a convex neighborhood

$$
V=\left\{z \in E_{z}^{k}:|z|<\varepsilon_{0}\right\}, \quad \varepsilon_{0}>0
$$

of zero contained in M.
Let $\varepsilon>0$ be a number such that $\varepsilon\left(z_{i}-\widehat{z}\right) \in V, i=\overline{0, k}$. Hence the k-dimensional simplex $\varepsilon \operatorname{co}\left(\left\{z_{0}-\widehat{z}, \ldots, z_{k}-\widehat{z}\right\}\right)$ is contained in M and contains $0 \in E_{z}^{k}$ as an interior point.

Lemma 4.4. Let a linear mapping

$$
\begin{equation*}
g: E_{z} \rightarrow E_{g}^{k} \tag{4.4}
\end{equation*}
$$

and a k-dimensional simplex $\operatorname{co}\left(\left\{g_{0}, \ldots, g_{k}\right\}\right) \subset E_{g}^{k}$ be given. Let $z_{i}, i=\overline{0, k}$, be certain inverse images of the points $g_{i}, i=\overline{0, k}$, under the mapping (4.4), respectively. Then $\operatorname{co}\left(\left\{z_{0}, \ldots, z_{k}\right\}\right) \subset E_{z}$ is a k-dimensional simplex, and the restriction of the mapping

$$
\begin{equation*}
g: \operatorname{co}\left(\left\{z_{0}, \ldots, z_{k}\right\}\right) \longrightarrow \operatorname{co}\left(\left\{g_{0}, \ldots, g_{k}\right\}\right) \tag{4.5}
\end{equation*}
$$

is a homeomorphism.
Proof. Let there exist numbers $\lambda_{i}, i=\overline{1, k}$, such that

$$
\sum_{i=1}^{k} \lambda_{i}\left(z_{i}-z_{0}\right)=0, \quad \sum_{i=1}^{k}\left|\lambda_{i}\right| \neq 0
$$

Obviously,

$$
g\left(\sum_{i=1}^{k} \lambda_{i}\left(z_{i}-z_{0}\right)\right)=\sum_{i=1}^{k} \lambda_{i}\left(g_{i}-g_{0}\right)=0
$$

in turn, this contradicts the linear independence of the elements $g_{i}-g_{0}, i=\overline{1, k}$.
Therefore, $\operatorname{co}\left(\left\{z_{0}, \ldots, z_{k}\right\}\right)$ is a k-dimensional simplex. By Lemma 4.2, the mapping (4.5) is a homeomorphism.

Let the Hausdorff vector topology be given in E_{z}, which transforms E_{z} into a topological vector space.

Lemma 4.5. Let $W \subset E_{z}$ and let a mapping

$$
\begin{equation*}
P: W \rightarrow E_{p}^{k} \tag{4.6}
\end{equation*}
$$

continuous in the topology induced from E_{z}, be given. Further, let $K \subset W$ be a compact set. Then for any $\varepsilon>0$, there exists a neighborhood $V_{\varepsilon} \subset E_{z}$ of zero such that

$$
\left|P\left(z^{\prime}\right)-P\left(z^{\prime \prime}\right)\right| \leq \varepsilon \forall\left(z^{\prime}, z^{\prime \prime}\right) \in K \times W, \quad z^{\prime}-z^{\prime \prime} \in V_{\varepsilon}
$$

Proof. For each point $z^{\prime} \in K$, there exists a convex neighborhood $V\left(z^{\prime}\right) \subset E_{z}$ of zero such that

$$
\left|P\left(z^{\prime}\right)-P(z)\right| \leq \frac{\varepsilon}{3} \forall z \in\left(z^{\prime}+V\left(z^{\prime}\right)\right) \cap W
$$

The system of sets $\left\{z^{\prime}+V\left(z^{\prime}\right): z^{\prime} \in K\right\}$ composes an open covering of the compact set K. Hence there exists a finite subcovering $\left\{z_{i}^{\prime}+V\left(z_{i}^{\prime}\right): i=\overline{1, m}\right\}$ of the set K.

Clearly, for $z \in\left(z_{i}^{\prime}+V\left(z_{i}^{\prime}\right)\right) \cap W$,

$$
\begin{equation*}
\left|P\left(z_{i}^{\prime}\right)-P(z)\right| \leq \frac{\varepsilon}{3} \tag{4.7}
\end{equation*}
$$

By the continuity of the mapping (4.6), for $2 \varepsilon / 3$, there exist convex neighborhoods $V_{i} \supset V\left(z_{i}^{\prime}\right)$, $i=\overline{1, m}$, of zero such that

$$
\begin{equation*}
\left|P\left(z_{i}^{\prime}\right)-P(z)\right| \leq 2 \frac{\varepsilon}{3} \forall z \in\left(z_{i}^{\prime}+V_{i}\right) \cap W \tag{4.8}
\end{equation*}
$$

Obviously, the sets

$$
\widehat{V}_{i}=V_{i}-V\left(z_{i}^{\prime}\right)=V_{i}+(-1) V\left(z_{i}^{\prime}\right), \quad V_{\varepsilon}=\bigcap_{i=1}^{m} \widehat{V}_{i}
$$

are the neighborhoods of zero in E_{z}, and for an arbitrary point $z \in\left(z_{i}^{\prime}+V\left(z_{i}^{\prime}\right)+\widehat{V}_{i}\right) \cap W$, the inequality (4.8) holds.

Let $\left(z^{\prime}, z^{\prime \prime}\right) \in K \times W, z^{\prime}-z^{\prime \prime} \in V_{\varepsilon}$ and the point z^{\prime} belong to some of the sets $z_{k}^{\prime}+V\left(z_{k}^{\prime}\right)$, $1 \leq k \leq m$. Further,

$$
z^{\prime \prime}-z_{k}^{\prime}=z^{\prime \prime}-z^{\prime}+z^{\prime}-z_{k}^{\prime} \in V_{\varepsilon}+V\left(z_{k}^{\prime}\right) \subset \widehat{V}_{k}+V\left(z_{k}^{\prime}\right)=V_{k}
$$

Taking into account the inequalities (4.7) and (4.8), we have

$$
\left|P\left(z^{\prime}\right)-P\left(z^{\prime \prime}\right)\right| \leq\left|P\left(z^{\prime}\right)-P\left(z_{k}^{\prime}\right)\right|+\left|P\left(z_{k}^{\prime}\right)-P\left(z^{\prime \prime}\right)\right| \leq \frac{\varepsilon}{3}+\frac{2}{3} \varepsilon=\varepsilon
$$

Definition 4.3. The set Ψ of a subsets from E_{z} is called a filter if it satisfies the following conditions:
(a) if $A \in \Psi$ and $B \in \Psi$, then $A \cap B \in \Psi$;
(b) if $A \in \Psi$ and $B \supset A$, then $B \in \Psi$;
(c) $\varnothing \notin \Psi$.

The set of all neighborhoods of a fixed point of the space E_{z} serves as an example of a filter.
Definition 4.4. A set $\widehat{\Re}$ of a subset of E_{z} is called a basis of a filter if it has the following properties:
(a) for any $A \in \widehat{\Re}$ and $B \in \widehat{\Re}$, there exists $C \in \widehat{\Re}$ such that $C \subset A \cap B$;
(b) $\varnothing \notin \Re$.

The set Ψ of all subsets each of which contains a certain set from $\widehat{\Re}$ is the filter generated by the basis $\widehat{\Re}$.

Theorem 4.1 (Carathéodory). Let $M \subset E_{z}^{k}$. Then any point $z \in \operatorname{co}(M)$ can be represented in the form

$$
z=\sum_{i=0}^{k} \lambda_{i} z_{i}
$$

where $z_{i} \in M, \lambda_{i} \geq 0, i=\overline{0, k}$, and $\sum_{i=0}^{k} \lambda_{i}=1$.
Theorem 4.2 (Brouwer). Let $\operatorname{co}\left(\left\{z_{0}, \ldots, z_{k}\right\}\right) \subset E_{z}$ be a k-dimensional simplex. Then each continuous mapping

$$
g: \operatorname{co}\left(\left\{z_{0}, \ldots, z_{k}\right\}\right) \longrightarrow \operatorname{co}\left(\left\{z_{0}, \ldots, z_{k}\right\}\right)
$$

has a fixed point, i.e., there exists a point $z \in \operatorname{co}\left(\left\{z_{0}, \ldots, z_{k}\right\}\right)$ such that $g(z)=z$.
Theorem 4.3. Let $M \subset E_{z}^{k}$ be a convex set and $0 \in \partial M$. Then there exists a nonzero k-dimensional vector $\pi=\left(\pi_{1}, \ldots, \pi_{k}\right)$ such that

$$
\pi z=\sum_{i=1}^{k} \pi_{i} z^{i} \leq 0 \quad \forall z \in M
$$

Let $E_{z}=E_{x}^{k} \times E_{\varsigma}$ be a vector space of points $z=(x, \varsigma)$. Assume that $D \subset E_{z}$ is a certain set and a mapping

$$
\begin{equation*}
P: D \rightarrow E_{p}^{m} \tag{4.9}
\end{equation*}
$$

is given. Let Ψ be an arbitrary filter in E_{z}.
Definition 4.5. We say that the mapping (4.9) is defined on the filter Ψ if there exists an element $W \in \Psi$ such that $W \subset D$.

Definition 4.6. Let the mapping (4.9) be defined on the filter Ψ. The mapping (4.9) is said to be critical on the filter Ψ if for any point z_{0} belonging to all elements of the filter Ψ, there exists an element $W \subset \Psi$ such that $W \subset D$ and $P\left(z_{0}\right) \in \partial P(W)$.

Definition 4.7. We say that the mapping (4.9) defined on the filter Ψ is continuous on Ψ if there exists an element $W \in \Psi$ such that $W \subset D$ and the restriction

$$
P: W \rightarrow E_{p}^{m}
$$

of the mapping (4.9) is continuous in the topology induced from E_{z}.
Let $X \subset E_{z}^{k}$ be a locally convex topological subspace, i.e., for an arbitrary neighborhood $V_{x} \subset X$ of a point $x \in X$, there exists a convex neighborhood $\widehat{V}_{x} \subset X$ contained in V_{x}. The following lemma is easily proved.

Lemma 4.6. Let $\widehat{x} \in X$ be a fixed point. Further, let $V_{0} \subset X-\widehat{x}$ be a convex bounded neighborhood of zero, and let $V_{1} \subset X-\widehat{x}$ be a certain neighborhood of zero. Then there exists a number $\varepsilon_{0}>0$ such that

$$
\varepsilon V_{0} \subset V_{1} \forall \varepsilon \in\left(0, \varepsilon_{0}\right)
$$

Definition 4.8. A set $D \subset X \times E_{\varsigma}$ is said to be finitely locally convex if for an arbitrary point $z=(x, \varsigma) \in D$ and for arbitrary manifold $L_{\varsigma} \subset E_{\varsigma}$, there exist convex neighborhoods $V_{x} \subset X$ and $V_{\varsigma} \subset E_{\varsigma}$ of the points x and ς, respectively, such that

$$
V_{x} \times V_{\varsigma} \subset D
$$

Lemma 4.6 and Definition 4.8 directly imply the following lemma.
Lemma 4.7. Let D be a finitely locally convex set, and let $z_{0}=\left(x_{0}, \varsigma_{0}\right) \in D$. Further, let $V_{0} \subset X-x_{0}$ and $V \subset L_{\varsigma_{0}}-\varsigma_{0}$ be bounded convex neighborhoods of zero (see (4.2)). Then there exists a number $\varepsilon_{0}>0$ such that

$$
\begin{equation*}
z_{0}+\varepsilon \delta z \in D \quad \forall(\varepsilon, \delta z) \in\left(0, \varepsilon_{0}\right) \times V_{0} \times V, \quad \delta z=(\delta x, \delta \varsigma) \tag{4.10}
\end{equation*}
$$

Definition 4.9. We say that the mapping (4.9) has a differential at a point $z_{0}=\left(x_{0}, \varsigma_{0}\right) \in D$ if there exists a linear mapping

$$
\begin{equation*}
d P_{z_{0}}: E_{\delta z}=E_{z}-z_{0} \rightarrow E_{\delta p}^{m} \tag{4.11}
\end{equation*}
$$

such that for any manifold

$$
L_{\varsigma 0}=\left\{\varsigma_{0}+\sum_{i=1}^{k} \lambda_{i} \delta \varsigma_{i}: \quad \lambda_{i} \in \mathbb{R}, \quad i=\overline{1, k}\right\} \subset E_{\varsigma}
$$

(see (4.1)) the representation

$$
P\left(z_{0}+\varepsilon \delta z\right)-P\left(z_{0}\right)=\varepsilon d P_{z_{0}}(\delta z)+o(\varepsilon \delta z) \forall(\varepsilon, \delta z) \in\left(0, \varepsilon_{0}\right) \times V_{0} \times V
$$

holds, where $V_{0} \subset X-x_{0}$ and $V \subset L_{\varsigma_{0}}-\varsigma_{0}$ are bounded neighborhoods of zero; $\varepsilon_{0}>0$ is the number for which (4.10) holds;

$$
\lim _{\varepsilon \rightarrow 0} \frac{o(\varepsilon \delta z)}{\varepsilon}=0 \text { uniformly in } \delta z \in V_{0} \times V
$$

The mapping (4.11) is called the differential of the mapping (4.9) at the point z_{0}.
Definition 4.10 (Gamkrelidze). A filter Ψ in E_{z} is said to be quasiconvex if for any element $W \in \Psi$ and any natural number k, there exists an element $W_{1}=W_{1}(W, k) \in \Psi$ such that for arbitrary points $z_{i} \in W_{1}, i=\overline{0, k}$, and an arbitrary neighborhood of zero $V \subset E_{z}$, there exists a continuous mapping

$$
\begin{equation*}
\phi: \operatorname{co}\left(\left\{z_{0}, \ldots, z_{k}\right\}\right) \longrightarrow W \tag{4.12}
\end{equation*}
$$

satisfying the condition

$$
(z-\phi(z)) \in V \quad \forall z \in \operatorname{co}\left(\left\{z_{0}, \ldots, z_{k}\right\}\right)
$$

Obviously, in Definition 4.10, we can assume that $W_{1} \subset W$, since any element $W_{2} \subset W \cap W_{1}$ of the filter has the indicated property of the element W_{1}. Therefore, in what follows, we will assume that $W_{1} \subset W$.

Definition 4.11. A filter Ψ is said to be convex if there exists a basis of the filter consisting of convex sets.

Lemma 4.8. Every convex filter Ψ in E_{z} is quasiconvex.
Proof. For any element $W \in \Psi$, there exists a convex element $W_{2} \subset W$, which can be taken as W_{1}; as the mapping (4.12), it is necessary to take the identity mapping.

Let E_{z} be a topological vector space, $X \subset E_{x}^{k}$ be a locally convex topological space, and $D \subset X \times E_{\varsigma}$ be a finitely locally convex set.

Let a mapping

$$
\begin{equation*}
P: D \rightarrow E_{p}^{m} \tag{4.13}
\end{equation*}
$$

be given, and let Ψ be a filter in E_{z}.
By co $[\Psi]$ we denote the convex filter whose elements are the sets $\operatorname{co}(W)$, where W is an arbitrary element of the filter Ψ.

Theorem formulated below is an analogue of R. V. Gamkrelidze and G. L. Kharatishvili's Theorem on the necessary criticality condition to mappings defined on a finitely locally convex set. The proof of the following theorem is performed according to the scheme presented in [7-9] with only nonessential changes.

Theorem 4.4. Let the mapping (4.13) be continuous on $\mathrm{co}[\Psi]$ and critical on Ψ. Further, let the filter Ψ be quasiconvex. Then for any point $z_{0}=\left(x_{0}, \varsigma_{0}\right)$ belonging to all sets of the filter Ψ at which the mapping (4.13) has the differential (4.11), there exists an element $\widehat{W} \in \Psi$ such that zero of the space $E_{d p}^{m}$ is a boundary point of the set

$$
\begin{equation*}
d P_{z_{0}}\left(\operatorname{co}(\widehat{W})-z_{0}\right) \subset E_{d p}^{m} \tag{4.14}
\end{equation*}
$$

Proof. By the assumption, there exist elements $W_{i} \in \Psi, i=1,2$, such that $\operatorname{co}\left(W_{1}\right) \subset D, W_{2} \subset D$, and, moreover, the mapping

$$
\begin{equation*}
P: \operatorname{co}\left(W_{1}\right) \rightarrow E_{p}^{m} \tag{4.15}
\end{equation*}
$$

is continuous and $P\left(z_{0}\right) \in \partial P\left(W_{2}\right)$. Clearly, $W_{3}=W_{1} \cap W_{2} \in \Psi$ and $P\left(z_{0}\right) \in \partial P\left(W_{3}\right)$.
Let the conditions of the theorem hold, but for any $W \in \Psi$ lying in D, the point $0 \in E_{d p}^{m}$ is an interior point of the set

$$
d P_{z_{0}}\left(\operatorname{co}(W)-z_{0}\right) \subset E_{d p}^{m}
$$

Let us show that this contradicts the choice of the element W_{3}. Precisely, we prove the solvability of the following equation

$$
\begin{equation*}
P(z)=P\left(z_{0}\right)+p, \quad z \in W_{3}, \tag{4.16}
\end{equation*}
$$

with respect to z and for any vector $p \in E_{p}^{m}$ whose module is sufficiently small, and, therefore, we prove that $P\left(z_{0}\right)$ is an interior point of the set $P\left(W_{3}\right) \subset E_{p}^{m}$, which contradicts the choice of W_{3}. By $W_{4}=W_{4}\left(W_{3} ;(m+1)^{2}\right) \subset W_{3}$ we denote the element of the quasiconvex filter Ψ (see Definition 4.10) satisfying the following condition: for any neighborhood of zero $V \subset E_{z}$ and any $1+(m+1)^{2}$ points $z_{0}, \ldots, z_{(m+1)^{2}}$ from W_{4}, there exists a continuous mapping

$$
\begin{equation*}
\phi: \operatorname{co}\left(\left\{z_{0}, \ldots, z_{(m+1)^{2}}\right\}\right) \longrightarrow W_{3} \tag{4.17}
\end{equation*}
$$

satisfying the condition

$$
\begin{equation*}
(z-\phi(z)) \in V \quad \forall z \in \operatorname{co}\left(\left\{z_{0}, \ldots, z_{(m+1)^{2}}\right\}\right) . \tag{4.18}
\end{equation*}
$$

According to the assumption made, $0 \in E_{d p}^{m}$ is an interior point of the convex set

$$
\begin{equation*}
d P_{z_{0}}\left(\operatorname{co}\left(W_{4}\right)-z_{0}\right) \subset E_{d p}^{m} . \tag{4.19}
\end{equation*}
$$

Hence there exist $m+1$ points $d p_{i} \in d P_{z_{0}}\left(\operatorname{co}\left(W_{4}\right)-z_{0}\right)$ that are in general position, and, moreover, the m-dimensional simplex $\operatorname{co}\left(\left\{d p_{0}, \ldots, d p_{m}\right\}\right)$ containing $0 \in E_{d p}^{m}$ as an interior point (see Lemma 4.3).

By the linearity of the mapping (4.11),

$$
d P_{z_{0}}\left(\operatorname{co}\left(W_{4}\right)-z_{0}\right)=\operatorname{co}\left(d P_{z_{0}}\left(W_{4}-z_{0}\right)\right) .
$$

Each of the points

$$
d p_{i} \in \operatorname{co}\left(d P_{z_{0}}\left(W_{4}-z_{0}\right)\right), \quad i=\overline{0, m}
$$

is represented in the form

$$
d p_{i}=\sum_{j=0}^{m} \mu_{i j} d p_{i j}, \quad d p_{i j} \in d P_{z_{0}}\left(W_{4}-z_{0}\right), \quad \mu_{i j} \geq 0, \quad \sum_{j=0}^{m} \mu_{i j}=1
$$

(see Theorem 4.1). Let $\delta z_{i j} \in W_{4}-z_{0}$ be some inverse images of the points $d p_{i j}$ under the mapping

$$
d P_{z_{0}}: W_{4}-z_{0} \longrightarrow E_{d p}^{m}
$$

and let

$$
\begin{equation*}
\delta z_{i}=\sum_{j=0}^{m} \mu_{i j} \delta z_{i j}, \quad i=\overline{0, m} . \tag{4.20}
\end{equation*}
$$

Obviously,

$$
d P_{z_{0}}\left(\delta z_{i}\right)=d p_{i}, \quad i=\overline{0, m}
$$

By Lemma 4.4, the points $\delta z_{i}=\left(\delta x_{i}, \delta \varsigma_{i}\right), i=\overline{0, m}$, are in general position and the mapping

$$
\begin{equation*}
d P_{z_{0}}: \operatorname{co}\left(\left\{\delta z_{0}, \ldots, \delta z_{m}\right\}\right) \longrightarrow \operatorname{co}\left(\left\{d p_{0}, \ldots, d p_{m}\right\}\right) \tag{4.21}
\end{equation*}
$$

is a homeomorphism.

Let $z \in \operatorname{co}\left(\left\{z_{0}, z_{0}+\delta z_{0}, \ldots, z_{0}+\delta z_{m}\right\}\right)$. Then

$$
\begin{gathered}
z=z_{0}+\sum_{i=0}^{m} \lambda_{i} \delta z_{i}=z_{0}+\sum_{i=0}^{m} \sum_{j=0}^{k} \lambda_{i} \mu_{i j} \delta z_{i j}=\left(1-\sum_{i=0}^{m} \sum_{j=0}^{m} \lambda_{i} \mu_{i j}\right) z_{0}+\sum_{i=0}^{m} \sum_{j=0}^{m} \lambda_{i} \mu_{i j}\left(z_{0}+\delta z_{i j}\right), \\
\lambda_{i} \geq 0, \quad \sum_{i=0}^{m} \lambda_{i} \leq 1
\end{gathered}
$$

(see (4.3) and (4.20)). Hence

$$
\begin{equation*}
\operatorname{co}\left(\left\{z_{0}, z_{0}+\delta z_{0}, \ldots, z_{0}+\delta z_{m}\right\}\right) \subset \operatorname{co}\left(\left\{z_{0}, z_{0}+\delta z_{00}, \ldots, z_{0}+\delta z_{i j}, \ldots, z_{0}+\delta z_{m m}\right\}\right) \tag{4.22}
\end{equation*}
$$

Further, let us show that for $\varepsilon \in[0,1]$, the inclusion

$$
\begin{equation*}
z_{0}+\varepsilon \operatorname{co}\left(\left\{\delta z_{0}, \ldots, \delta z_{m}\right\}\right) \subset \operatorname{co}\left(\left\{z_{0}, z_{0}+\delta z_{0}, \ldots, z_{0}+\delta z_{m}\right\}\right) \tag{4.23}
\end{equation*}
$$

holds. Indeed, it is clear that every point $z_{0}+\varepsilon \operatorname{co}\left(\left\{\delta z_{0}, \ldots, \delta z_{m}\right\}\right)$ is represented in the form

$$
z=z_{0}+\varepsilon \sum_{i=0}^{m} \lambda_{i} \delta z_{i}=(1-\varepsilon) z_{0}+\varepsilon \sum_{i=0}^{m} \lambda_{i}\left(z_{0}+\delta z_{i}\right) \in \operatorname{co}\left(\left\{z_{0}, z_{0}+\delta z_{0}, \ldots, z_{0}+\delta z_{m}\right\}\right) .
$$

The inclusions (4.22) and (4.23) imply

$$
\begin{align*}
z_{0}+\varepsilon \operatorname{co}\left(\left\{\delta z_{0}, \ldots, \delta z_{m}\right\}\right) \subset \operatorname{co}\left(\left\{z_{0}, z_{0}+\delta z_{0}\right.\right. & \left.\left., \ldots, z_{0}+\delta z_{m}\right\}\right) \\
& \subset \operatorname{co}\left(W_{4}\right) \subset \operatorname{co}\left(W_{3}\right) \subset D \forall \varepsilon \in[0,1] . \tag{4.24}
\end{align*}
$$

Taking into account

$$
D-z_{0} \subset\left(X-x_{0}\right) \times\left(E_{\varsigma}-\varsigma_{0}\right),
$$

we see that the latter relation directly implies the inclusion

$$
\begin{equation*}
\varepsilon \operatorname{co}\left(\left\{\delta x_{0}, \ldots, \delta x_{m}\right\}\right) \subset\left(X-x_{0}\right), \quad \varepsilon \in[0,1] . \tag{4.25}
\end{equation*}
$$

Let $L_{\varsigma_{0}} \subset E_{\varsigma}$ be the manifold generated by the points $\varsigma_{0}, \delta \varsigma_{0}, \ldots, \delta \varsigma_{m}$:

$$
L_{\varsigma_{0}}=\left\{\varsigma_{0}+\sum_{i=0}^{m+1} \lambda_{i} \delta \varsigma_{i}: \quad \lambda_{i} \in \mathbb{R}, \quad i=\overline{0, m+1}\right\}, \quad \delta \varsigma_{m+1}=\varsigma_{0} .
$$

Obviously,

$$
\begin{equation*}
\varepsilon \operatorname{co}\left(\left\{\delta \varsigma_{0}, \ldots, \delta \varsigma_{m}\right\}\right) \subset L_{\varsigma_{0}}-\varsigma_{0} . \tag{4.26}
\end{equation*}
$$

Let $V_{0} \subset X-x_{0}$ and $V \subset L_{\varsigma_{0}}-\varsigma_{0}$ be convex bounded neighborhoods of zero. There exists a number $\varepsilon_{1} \in(0,1)$ such that

$$
\varepsilon_{1} \operatorname{co}\left(\left\{\delta x_{0}, \ldots, \delta x_{m}\right\}\right) \subset V_{0}, \quad \varepsilon_{1} \operatorname{co}\left(\left\{\delta \varsigma_{0}, \ldots, \delta \varsigma_{m}\right\}\right) \subset V
$$

(see (4.25) and (4.26)). Hence

$$
\begin{equation*}
\varepsilon_{1} \operatorname{co}\left(\left\{\delta z_{0}, \ldots, \delta z_{m}\right\}\right) \subset V_{0} \times V \tag{4.27}
\end{equation*}
$$

Let $w(\varepsilon)=\varepsilon \varepsilon_{1}, \varepsilon \in(0,1)$. Lemma 4.7 implies the existence of a number $\varepsilon_{2} \in(0,1)$ such that

$$
z_{0}+w(\varepsilon) \delta z \in D \quad \forall(\varepsilon, \delta z) \in\left(0, \varepsilon_{2}\right) \times V_{0} \times V
$$

Denote by $d>0$ the distance from the point $0 \in E_{d p}^{m}$ to the boundary of the simplex co $\left(\left\{d p_{0}, \ldots, d p_{m}\right\}\right)$.
The differentiability of the mapping (4.13) at the point z_{0} implies the existence of a number $\varepsilon_{3} \in\left(0, \varepsilon_{2}\right)$ such that

$$
\begin{equation*}
P\left(z_{0}+w(\varepsilon) \delta z\right)=P\left(z_{0}\right)+w(\varepsilon) d P_{z_{0}}(\delta z)+o(w(\varepsilon) \delta z) \forall(\varepsilon, \delta z) \in\left(0, \varepsilon_{3}\right) \times V_{0} \times V ; \tag{4.28}
\end{equation*}
$$

moreover,

$$
\begin{equation*}
\frac{|o(w(\varepsilon) \delta z)|}{w(\varepsilon)} \leq \frac{d}{3} \forall(\varepsilon, \delta z) \in\left(0, \varepsilon_{3}\right) \times V_{0} \times V . \tag{4.29}
\end{equation*}
$$

Obviously, on account of (4.27), the relations (4.28) and (4.29) hold for $(\varepsilon, \delta z) \in\left(0, \varepsilon_{3}\right) \times$ $\operatorname{co}\left(\left\{\delta z_{0}, \ldots, \delta z_{m}\right\}\right)$.

The mapping (4.15) is continuous on $\operatorname{co}\left(W_{3}\right)$ in the topology of the space $X \times L_{\varsigma_{0}}$. Therefore, $P\left(z_{0}+w(\varepsilon) \delta z\right)$ is continuous in $\delta z \in \operatorname{co}\left(\left\{\delta z_{0}, \ldots, \delta z_{m}\right\}\right)$ (see (4.24)). Using (4.28), we conclude from the above-said that for each $\varepsilon \in\left(0, \varepsilon_{3}\right)$, the function $o(w(\varepsilon) \delta z)$ is continuous on $\operatorname{co}\left(\left\{\delta x_{0}, \ldots, \delta x_{m}\right\}\right)$.

Further, the continuity of the mapping P on $\operatorname{co}\left(W_{3}\right)$ and the compactness of the set $z_{0}+w(\varepsilon) \operatorname{co}\left(\left\{\delta z_{0}, \ldots, \delta z_{k}\right\}\right) \subset \operatorname{co}\left(W_{3}\right)$ imply that for each $\varepsilon \in\left(0, \varepsilon_{3}\right)$, there exists a neighborhood of zero $V_{\varepsilon} \subset E_{z}$ such that for

$$
\begin{equation*}
z^{\prime} \in z_{0}+w(\varepsilon) \operatorname{co}\left(\left\{\delta x_{0}, \ldots, \delta x_{m}\right\}\right), \quad z^{\prime \prime} \in \operatorname{co}\left(W_{3}\right), \quad z^{\prime}-z^{\prime \prime} \in V_{\varepsilon} \tag{4.30}
\end{equation*}
$$

we have

$$
\begin{equation*}
\left|P\left(z^{\prime}\right)-P\left(z^{\prime \prime}\right)\right| \leq w(\varepsilon) \frac{d}{3} \tag{4.31}
\end{equation*}
$$

(see Lemma 4.5).
The conditions (4.17), (4.18) and the relation (4.22) directly imply the existence of a family of continuous mappings

$$
\phi_{\varepsilon}: \operatorname{co}\left(\left\{z_{0}, z_{0}+\delta z_{0}, \ldots, z_{0}+\delta z_{m}\right\}\right) \longrightarrow W_{4}
$$

depending on $\varepsilon \in\left(0, \varepsilon_{3}\right)$ and satisfying the condition

$$
z-\phi_{\varepsilon}(z) \in V_{\varepsilon} \forall z \in \operatorname{co}\left(\left\{z_{0}, z_{0}+\delta z_{0}, \ldots, z_{0}+\delta z_{m}\right\}\right)
$$

For $\varepsilon \in\left(0, \varepsilon_{3}\right)$, the simplex $z_{0}+w(\varepsilon) \operatorname{co}\left(\left\{\delta z_{0}, \ldots, \delta z_{m}\right\}\right)$ is contained in $\operatorname{co}\left(\left\{z_{0}, z_{0}+\delta z_{0}, \ldots, z_{0}+\delta z_{m}\right\}\right)$ (see (4.23), and, therefore,

$$
\begin{equation*}
z-\phi_{\varepsilon}(z) \in V_{\varepsilon} \forall z \in z_{0}+w(\varepsilon) \operatorname{co}\left(\left\{\delta z_{0}, \ldots, \delta z_{m}\right\}\right) \tag{4.32}
\end{equation*}
$$

Let us now show that the equation

$$
\begin{equation*}
P\left(\phi_{\varepsilon}(z)\right)=P\left(z_{0}\right)+w(\varepsilon) p, \quad z \in z_{0}+w(\varepsilon) \operatorname{co}\left(\left\{\delta z_{0}, \ldots, \delta z_{m}\right\}\right) \tag{4.33}
\end{equation*}
$$

is solvable in z for a sufficiently small ε and an arbitrary $p \in E_{p}^{m}$ satisfying the condition

$$
\begin{equation*}
|p| \leq \frac{d}{3} \tag{4.34}
\end{equation*}
$$

Indeed, we rewrite this equation in the form

$$
P(z)=P\left(z_{0}\right)+w(\varepsilon) p+P(z)-P\left(\phi_{\varepsilon}(z)\right), \quad z \in z_{0}+w(\varepsilon) \operatorname{co}\left(\left\{\delta z_{0}, \ldots, \delta z_{m}\right\}\right)
$$

or, using (4.28), in the form of the following equation in δz :

$$
\begin{equation*}
d P_{z_{0}}(\delta z)=p-\frac{o(w(\varepsilon) \delta z)}{w(\varepsilon)}+\frac{P\left(z_{0}+w(\varepsilon) \delta z\right)-P\left(\phi_{\varepsilon}\left(z_{0}+w(\varepsilon) \delta z\right)\right.}{w(\varepsilon))}, \quad \delta z \in \operatorname{co}\left(\left\{\delta z_{0}, \ldots, \delta z_{m}\right\}\right) . \tag{4.35}
\end{equation*}
$$

The relations (4.29)-(4.32) and (4.34) imply

$$
\left(p-\frac{o(w(\varepsilon) \delta z)}{w(\varepsilon)}+\frac{P\left(z_{0}+w(\varepsilon) \delta z\right)-P\left(\phi_{\varepsilon}\left(z_{0}+w(\varepsilon) \delta z\right)\right.}{w(\varepsilon))}\right) \in \operatorname{co}\left(\left\{\delta p_{0}, \ldots, \delta p_{m}\right\}\right)
$$

and hence the equation (4.35) is equivalent to the equation

$$
\begin{equation*}
\delta z=d P_{z_{0}}^{-1}\left(p-\frac{o(w(\varepsilon) \delta z)}{w(\varepsilon)}+\frac{P\left(z_{0}+w(\varepsilon) \delta z\right)-P\left(\phi_{\varepsilon}\left(z_{0}+w(\varepsilon) \delta z\right)\right.}{w(\varepsilon)}\right) \tag{4.36}
\end{equation*}
$$

where

$$
d P_{z_{0}}^{-1}: \operatorname{co}\left(\left\{d p_{0}, \ldots, d p_{m}\right\}\right) \longrightarrow \operatorname{co}\left(\left\{\delta z_{0}, \ldots, \delta z_{m}\right\}\right)
$$

is a continuous mapping, inverse to the mapping (4.21).
We can consider the right-hand side of the equation (4.36) as a continuous self-mapping of the simplex $\operatorname{co}\left(\left\{\delta z_{0}, \ldots, \delta z_{m}\right\}\right)$, and hence each fixed point of this mapping is a solution of the equation (4.36) (see Theorem 4.2). Thus, we have proved the solvability of the equation (4.33) for an arbitrary p satisfying (4.34) and, therefore, the solvability of the equation (4.16) for p whose modules are sufficiently small.

Theorem 4.5. Let the conditions of Theorem 4.4 hold. Then for any point z_{0} belonging to all sets Ψ at which the differential (4.11) exists, there exist an element $\widehat{W} \in \Psi$ and a vector $\pi=\left(\pi_{1}, \ldots, \pi_{m}\right) \neq 0$ such that

$$
\begin{equation*}
\pi d P_{z_{0}}(\delta z)=\sum_{i=1}^{m} \pi_{i} d P_{z_{0}}^{i}(\delta z) \leq 0 \quad \forall \in \operatorname{cone}\left(\cos (\widehat{W})-z_{0}\right), \tag{4.37}
\end{equation*}
$$

where cone (\widehat{W}) is the cone generated by the set \widehat{W}.
Proof. Set (4.14), being the image of a convex set under a linear mapping, is also convex. Since $0 \in E_{d p}^{m}$ is a boundary point of the convex set (4.14), by Theorem 4.3 , there exists a nonzero m-dimensional vector for which

$$
\pi d P_{z_{0}}(\delta z) \leq 0 \quad \forall \delta z \in \operatorname{co}\left(\widehat{W}-z_{0}\right)
$$

This implies (4.37).

4.2 Gamkrelidze's approximation lemma

Let $U_{0} \subset \mathbb{R}^{r}$ be an open set. Now let us consider the function $f\left(t, x, x_{1}, \ldots, x_{s}, u\right),\left(t, x, x_{1}, \ldots, x_{s}, u\right) \in$ $I \times O^{s+1} \times U_{0}$, satisfying the following conditions: for almost all $t \in I$, the function $f: I \times O^{s+1} \times U_{0} \rightarrow$ \mathbb{R}^{n} is continuous and continuously differentiable in $\left(x, x_{1}, \ldots, x_{s}\right) \in O^{s+1}$; for each $\left(x, x_{1}, \ldots, x_{s}, u\right) \in$ $O^{s+1} \times U_{0}$, the function $f\left(t, x, x_{1}, \ldots, x_{s}, u\right)$ and the matrices $f_{x}(t, x, \cdot), f_{x_{i}}(t, x, \cdot), i=\overline{1, s}$, are measurable on I; for any compact sets $K \subset O$ and $M \subset U_{0}$, there exists a function $m_{K, M}(t) \in$ $L_{1}\left(I, \mathbb{R}_{+}\right)$such that for any $\left(x, x_{1}, \ldots, x_{s}, u\right) \in K^{s+1} \times M$ and almost all $t \in I$,

$$
\left|f\left(t, x, x_{1}, \ldots, x_{s}, u\right)\right|+\left|f_{x}(t, x, \cdot)\right|+\sum_{i=1}^{s}\left|f_{x_{i}}(t, x, \cdot)\right| \leq m_{K, M}(t)
$$

Introduce the set

$$
F=\left\{f\left(t, x, x_{1}, \ldots, x_{s}\right)=f\left(t, x, x_{1}, \ldots, x_{s}, u(t)\right): u \in \Omega(I, U)\right\}
$$

where $U \subset U_{0}$ is a given set. The set F can be identified with a subset of the space $E_{f}^{(1)}$. A family of subintervals

$$
\sigma=\left\{I_{\beta}=\left[t_{\beta}, t_{\beta+1}\right]: \beta=\overline{1, m}\right\}
$$

where $a=t_{1}<t_{2}<\cdots<t_{m-1}<t_{m}=b$, is called a σ-partition of the interval I.
Let the points $f_{i}\left(t, x, x_{1}, \ldots, x_{s}\right)=f\left(t, x, x_{1}, \ldots, x_{s}, u_{i}(t)\right) \in F, i=\overline{1, k+1}$, and the σ-partition of the interval be given. Using these data, to each point λ of the k-dimensional simplex

$$
\Sigma=\left\{\lambda=\left(\lambda_{1}, \ldots, \lambda_{k+1}\right): \lambda_{i} \geq 0, \sum_{i=1}^{k+1} \lambda_{i}=1\right\}
$$

we can uniquely put in correspondence the subdivision of each intervals I_{β} into $k+1$ subintervals $I_{\beta_{i}}(\lambda), i=\overline{1, k+1}$, defined by the condition

$$
\begin{equation*}
\operatorname{mes} I_{\beta_{i}}(\lambda)=\lambda_{i} \operatorname{mes} I_{\beta}, \quad i=\overline{1, k+1} \tag{4.38}
\end{equation*}
$$

if $\lambda_{i}=0$, then the corresponding interval degenerates into a point. Define the mapping

$$
\begin{equation*}
\phi_{\sigma}: \Sigma \rightarrow F \tag{4.39}
\end{equation*}
$$

by the formula

$$
\phi_{\sigma}(\lambda)=f_{\lambda}\left(t, x, x_{1}, \ldots, x_{s}\right)=f\left(t, x, x_{1}, \ldots, x_{s}, u_{\lambda}(t)\right)
$$

where

$$
u_{\lambda}(t)=u_{i}(t), \quad t \in I_{\beta_{i}}(\lambda), \quad \beta=\overline{1, m}, \quad i=\overline{1, k+1}
$$

It is clear that

$$
\begin{gather*}
f_{\lambda}\left(t, x, x_{1}, \ldots, x_{s}\right)=f_{i}\left(t, x, x_{1}, \ldots, x_{s}\right), \quad t \in I_{\beta_{i}}(\lambda), \quad\left(x, x_{1}, \ldots, x_{s}\right) \in O^{s+1} \tag{4.40}\\
\beta=\overline{1, m}, \quad i=\overline{1, k+1}
\end{gather*}
$$

The relations (4.38) and (4.40) play principal role in proving the following
Lemma 4.9 (Gamkrelidze's approximation lemma $[6,7,10]$). For an arbitrary σ-partition, the mapping (4.39) is continuous, i.e., for an arbitrary point $\widehat{\lambda} \in \Sigma$ and an arbitrary neighborhood $V_{K, \varepsilon} \in \Re$, there exists a number $\delta>0$ such that

$$
\left(f_{\lambda}-f_{\widehat{\lambda}}\right) \in V_{K, \varepsilon} \forall \lambda \in\{\lambda \in \Sigma:|\lambda-\widehat{\lambda}|<\delta\}
$$

Moreover, for an arbitrary neighborhood $V_{K, \varepsilon} \in \Re$, there exists a σ-partition such that for $\forall \lambda \in \Sigma$, we have

$$
\left(\sum_{i=1}^{k+1} \lambda_{i} f_{i}-f_{\lambda}\right) \in V_{K, \varepsilon}
$$

i.e.,

$$
\begin{aligned}
\left|\int_{t^{\prime}}^{t^{\prime \prime}}\left[\sum_{i=0}^{s} \lambda_{i} f_{i}\left(t, x, x_{1}, \ldots, x_{s}\right)-f_{\lambda}\left(t, x, x_{1}, \ldots, x_{s}\right)\right] d t\right| & \leq \varepsilon \\
& \forall\left(t^{\prime}, t^{\prime \prime}, x, x_{1}, \ldots, x_{s}, \lambda\right) \in I^{2} \times K^{s+1} \times \Sigma
\end{aligned}
$$

Let $\theta_{\nu}>\cdots>\theta_{1}>0$ be the given numbers with $\theta_{i}=m_{i} h$, where $m_{i}, i=\overline{1, \nu}$, are natural numbers and $h>0$ is a real number. Let the function $f\left(t, x, x_{1}, \ldots, x_{s}, u, u_{1}, \ldots, u_{\nu}\right),\left(t, x, x_{1}, \ldots, x_{s}, u_{1}, \ldots, u_{\nu}\right) \in$ $I \times O^{s+1} \times U_{0}^{\nu+1}$, satisfy the following conditions: for almost all $t \in I$, the function $f: I \times$ $O^{s+1} \times U_{0}^{\nu+1} \rightarrow \mathbb{R}^{n}$ is continuous and continuously differentiable in $\left(x, x_{1}, \ldots, x_{s}\right) \in O^{s+1}$; for each $\left(x, x_{1}, \ldots, x_{s}, u, u_{1}, \ldots, u_{\nu}\right) \in O^{1+s} \times U_{0}^{\nu+1}$, the function $f\left(t, x, x_{1}, \ldots, x_{s}, u, u_{1}, \ldots, u_{\nu}\right)$ and the matrices $f_{x}(t, x, \cdot), f_{x_{i}}(t, x, \cdot), i=\overline{1, s}$, are measurable on I; for any compact sets $K \subset O$ and $M \subset U_{0}$, there exists a function $m_{K, M}(t) \in L_{1}\left(I, \mathbb{R}_{+}\right)$such that for any $\left(x, x_{1}, \ldots, x_{s}, u, u_{1}, \ldots, u_{\nu}\right) \in$ $K^{s+1} \times M^{\nu+1}$ and almost all $t \in I$,

$$
\left|f\left(t, x, x_{1}, \ldots, x_{s}, u, u_{1}, \ldots, u_{\nu}\right)\right|+\left|f_{x}(t, x, \cdot)\right|+\sum_{i=1}^{s}\left|f_{x_{i}}(t, x, \cdot)\right| \leq m_{K, M}(t)
$$

Introduce the set

$$
F_{1}=\left\{f\left(t, x, x_{1}, \ldots, x_{s}\right)=f\left(t, x, x_{1}, \ldots, x_{s}, u(t), u\left(t-\theta_{1}\right), \ldots, u\left(t-\theta_{\nu}\right)\right): u \in \Omega\left(I_{2}, U\right)\right\}
$$

where $I_{2}=\left[a-\theta_{\nu}, b\right], \Omega\left(I_{2}, U\right) \subset E_{u}\left(I_{2}\right)$.
Consider the functions $f_{i}\left(t, x, x_{1}, \ldots, x_{s}\right)=f\left(t, x, x_{1}, \ldots, x_{s}, u_{i}(t), u_{i}\left(t-\theta_{1}\right), \ldots, u_{i}\left(t-\theta_{\nu}\right)\right) \in F_{1}$, $i=\overline{0, s}$. In this case, we consider the $\widehat{\sigma}$-partition which means that we partition the interval $\left[a-\theta_{\nu}, b\right]$ in the following way. Let $\gamma>0$ be the minimum number satisfying the condition $b+\gamma-a+\theta_{n u}=l h$, where l is a natural number and let $I^{(\alpha)}, \alpha=\overline{1, l}$, be a system of intervals of length h adjacent to each other such that the left endpoint of the interval $I^{(1)}$ coincides with the point $a-\theta_{\nu}$, the right endpoint
of it coincides with the left endpoint of the subsequent interval $I^{(2)}$, etc., and the right endpoint of $I^{(l)}$ coincides with the endpoint $b+\gamma$. Next, we divide each of the intervals $I^{(\alpha)}$ by a partial interval $I_{\beta}^{(\alpha)}, \beta=\overline{1, m}$, in a unified way so that the right endpoint of one of the partial intervals $I_{\beta}^{(l)}$ coincides with the point b. To an arbitrary point $\lambda \in \Sigma$, we put in correspondence a subdivision into partial intervals $I_{\beta_{i}}^{(\alpha)}(\lambda)$ common for all $I_{\beta}^{(\alpha)}$ and defined by the condition (4.38).

Let the points $f_{i}\left(t, x, x_{1}, \ldots, x_{s}\right)=f\left(t, x, x_{1}, \ldots, x_{s}, u_{i}(t), u_{i}\left(t-\theta_{1}\right), \ldots, u_{i}\left(t-\theta_{\nu}\right)\right) \in F_{1}, i=\overline{0, s}$, and $\widehat{\sigma}$-partition of the interval be given.

Let us define the mapping

$$
\begin{equation*}
\phi_{\widehat{\sigma}}: \Sigma \rightarrow F_{1} \tag{4.41}
\end{equation*}
$$

by the formula

$$
\phi_{\widehat{\sigma}}(\lambda)=f_{\lambda}\left(t, x, x_{1}, \ldots, x_{s}\right)=f\left(t, x, x_{1}, \ldots, x_{s}, u_{\lambda}(t), u_{\lambda}\left(t-\theta_{1}\right), \ldots, u_{\lambda}\left(t-\theta_{\nu}\right)\right),
$$

where

$$
u_{\lambda}(t)=u_{i}(t), \quad t \in I_{\beta_{i}}^{(\alpha)}(\lambda), \quad \alpha=\overline{1, l}, \quad \beta=\overline{1, m}, \quad i=\overline{1, k+1} .
$$

It is clear that

$$
f_{\lambda}\left(t, x, x_{1}, \ldots, x_{s}\right)=f_{i}\left(t, x, x_{1}, \ldots, x_{s}\right), \quad t \in I_{\beta_{i}}^{(\alpha)}(\lambda)
$$

The latter relation allows one to prove generalization of Lemma 4.9.
Lemma 4.10. For an arbitrary $\widehat{\sigma}$-partition, the mapping (4.41) is continuous. Moreover, for an arbitrary neighborhood $V_{K, \varepsilon} \in \Re$, there exists a $\widehat{\sigma}$-partition such that for $\forall \lambda \in \Sigma$, we have

$$
\begin{equation*}
\left(\sum_{i=1}^{k+1} \lambda_{i} f_{i}-f_{\lambda}\right) \in V_{K, \varepsilon} \tag{4.42}
\end{equation*}
$$

Lemma 4.11 ($\left[20\right.$, p. 66]). Let $z_{i} \in E_{z}, i=\overline{1, k+1}$. There exist a subset $\Sigma_{0} \subset \Sigma$ and a function $\phi(z), z \in \operatorname{co}\left(\left\{z_{1}, \ldots, z_{k+1}\right\}\right)$, such that the mapping

$$
\begin{equation*}
\phi: \operatorname{co}\left(\left\{z_{1}, \ldots, z_{k+1}\right\}\right) \longrightarrow \Sigma_{0} \quad\left(z \longmapsto \lambda \in \Sigma_{0}\right) \tag{4.43}
\end{equation*}
$$

is a homeomorphism.
Lemma 4.12. Let $f_{i}\left(t, x, x_{1}, \ldots, x_{s}\right) \in F_{1}, i=\overline{1, k+1}$. Then for an arbitrary $V_{K, \varepsilon} \in \Re$, there exists a continuous mapping

$$
\begin{equation*}
\phi_{0}: \operatorname{co}\left(\left\{f_{1}, \ldots, f_{k+1}\right\}\right) \longrightarrow F_{1} \tag{4.44}
\end{equation*}
$$

satisfying the condition

$$
\begin{equation*}
\left(z-\phi_{0}(z) \in V_{K, \varepsilon} \forall z \in \operatorname{co}\left(\left\{f_{1}, \ldots, f_{k+1}\right\}\right)\right. \tag{4.45}
\end{equation*}
$$

Proof. On the set Σ_{0} we define the mapping (4.41), i.e., $\phi_{\widehat{\sigma}}(\lambda)=f_{\lambda} \in F_{1} \forall \lambda \in \Sigma_{0}$. By Lemma 4.10, the mapping (4.41) is continuous and (4.42) is valid. Define now the continuous mapping (4.44) by the formula $\phi_{0}(z)=\phi_{\widehat{\sigma}}(\phi(z)), z \in \operatorname{co}\left(\left\{f_{1}, \ldots, f_{k+1}\right\}\right)$, where

$$
z \longmapsto \phi(z)=\lambda \in \Sigma_{0} \text { and } \phi_{\widehat{\sigma}}(\phi(z))=f_{\phi(z)}=f_{\lambda} \in F_{1}
$$

(see (4.43)). The relation (4.42) implies (4.45).

4.3 Example of a quasiconvex filter

Let $f_{0}\left(t, x, x_{1}, \ldots, x_{s}\right)=f\left(t, x, x_{1}, \ldots, x_{s}, u_{0}(t), u_{0}\left(t-\theta_{1}\right), \ldots, u_{0}\left(t-\theta_{\nu}\right)\right) \in F_{1}$ be a fixed point. In F_{1}, let us define the filter Ψ using the basis

$$
\Re_{1}=\left\{W_{K, \delta}: K \subset O \text { is a compact set, } \delta>0 \text { is an arbitrary number }\right\},
$$

where

$$
W_{K, \delta}=\left\{f\left(t, x, x_{1}, \ldots, x_{s}\right)=f\left(t, x, x_{1}, \ldots, x_{s}, u(t), u\left(t-\theta_{1}\right), \ldots, u\left(t-\theta_{\nu}\right)\right) \in F_{1}: H_{1}\left(f-f_{0}: K\right) \leq \delta\right\}
$$

$$
H_{1}(f: K)=\int_{I}\left[\sup _{\left(x, x_{1}, \ldots, x_{s}\right) \in K^{s+1}}\left(\left|f\left(t, x, x_{1}, \ldots, x_{s}\right)+\left|f_{x}(t, x, \cdot)\right|+\sum_{i=1}^{s}\right| f_{x_{i}}(t, x, \cdot) \mid\right)\right] d t, \quad f \in E_{f}^{(1)},
$$

(see Lemma 2.1).
Lemma 4.13. The filter Ψ is quasiconvex.
Proof. Let an arbitrary element $W \in \Psi$ and an arbitrary natural number k be given. There exists an element $W_{K, \delta} \in \Re_{1}$ such that $W_{K, \delta} \subset W$. Let us show that as W_{1} in the definition of a quasiconvex filter, we can take $W_{K, \frac{\delta}{k+1}}$.

Assume that the points

$$
f_{i}\left(t, x, x_{1}, \ldots, x_{s}\right)=f\left(t, x, x_{1}, \ldots, x_{s}, u_{i}(t), u_{i}\left(t-\theta_{1}\right), \ldots, u_{i}\left(t-\theta_{\nu}\right)\right) \in W_{K, \frac{\delta}{k+1}}, \quad i=\overline{1, k+1}
$$

are such that

$$
\left.H_{1}\left(f_{i}-f_{0}\right) ; K\right) \leq \frac{\delta}{k+1}, \quad i=\overline{1, k+1}
$$

By Lemma 4.12, there exists a continuous mapping

$$
\phi_{0}: \operatorname{co}\left(\left\{f_{1}, \ldots, f_{k+1}\right\}\right) \longrightarrow F_{1}
$$

defined by the formula

$$
\phi_{0}=\phi_{\widehat{\sigma}}(\phi(z))=f_{\lambda}, \quad \lambda \in \Sigma_{0}
$$

and satisfying the condition

$$
\left(z-\phi_{0}(z)\right) \in V_{K, \varepsilon} \forall z \in \operatorname{co}\left(\left\{f_{1}, \ldots, f_{k+1}\right\}\right) .
$$

It remains to prove that $f_{\lambda} \in W_{K, \delta} \forall \lambda \in \Sigma_{0}$. For this purpose, let us estimate the quantity $H_{1}\left(f_{\lambda}-\right.$ $\left.f_{0} ; K\right)$. Owing to the specific character of the $\widehat{\sigma}$-partition, we have

$$
f_{\lambda}\left(t, x, x_{1}, \ldots, x_{s}\right)=f_{i}\left(t, x, x_{1}, \ldots, x_{s}\right), \quad t \in I_{\beta_{i}}^{(\alpha)}(\lambda) \cap I .
$$

Taking into account the latter assertion, we have

$$
\begin{aligned}
H_{1}\left(f_{\lambda}-f_{0} ; K\right)= & \sum_{\alpha=1}^{l} \int_{I^{(\alpha)} \cap I}\left[\operatorname { s u p } _ { (x , x _ { 1 } , \ldots , x _ { s }) \in K ^ { k } } \left(\left|f_{\lambda}(t, x, \cdot)-f_{0}(t, x, \cdot)\right|\right.\right. \\
& \left.\left.+\left|\frac{\partial}{\partial x} f_{\lambda}(t, x, \cdot)-\frac{\partial}{\partial x} f_{0}(t, x \cdot)\right|+\sum_{j=1}^{s}\left|\frac{\partial}{\partial x_{j}} f_{\lambda}(t, x, \cdot)-\frac{\partial}{\partial x_{j}} f_{0}(t, x, \cdot)\right|\right)\right] d t \\
\leq & \sum_{\alpha=1}^{l} \sum_{\beta=1}^{m} \sum_{i=1}^{k+1} \int_{I_{\beta_{i}}^{(\alpha)}(\lambda) \cap I}\left[\operatorname { s u p } _ { (x , x _ { 1 } , \ldots , x _ { s }) \in K ^ { k } } \left(\left|f_{i}(t, x, \cdot)-f_{0}(t, x, \cdot)\right|\right.\right. \\
& \left.\left.+\left|\frac{\partial}{\partial x} f_{i}(t, x, \cdot)-\frac{\partial}{\partial x} f_{0}(t, x, \cdot)\right|+\sum_{j=1}^{s}\left|\frac{\partial}{\partial x_{j}} f_{\lambda}(t, x, \cdot) \frac{\partial}{\partial x_{j}} f_{0}(t, x, \cdot)\right|\right)\right] d t \\
\leq & \sum_{i=1}^{k+1} H_{1}\left(f_{i}-f_{0} ; K\right) \leq \delta .
\end{aligned}
$$

Hence $\phi_{0}(z) \in W_{K, \delta}$.
Lemma 4.14. In the space $E_{f}^{(1)}$, let the set

$$
W^{(1)}=\left\{f \in E_{f}^{(1)}: \quad H_{1}\left(f-f_{0} ; K_{0}\right) \leq \delta_{0}\right\},
$$

where $\delta_{0}>0$ is a fixed number and $K_{0} \subset O$ is a compact set, be given. Then for an arbitrary $W \in \Psi$, the inclusion

$$
\begin{equation*}
\operatorname{cone}\left(\left[W^{(1)}\right]_{W}-f_{0}\right) \supset F_{1}-f_{0} \tag{4.46}
\end{equation*}
$$

holds. Here $[W]_{w^{(1)}}$ denotes the closure (with respect to $W^{(1)}$) of the set $W^{(1)} \cap W$ in the topology on $W^{(1)}$ induced by the topology on E_{f}.

Proof. Clearly, $W_{K_{0}, \delta_{0}} \subset W^{(1)}$ and there exists $W_{K_{1}, \delta_{1}}$ contained in W. Therefore,

$$
\begin{equation*}
W^{(1)} \cap W \supset W_{K_{1}, \delta_{1}} \cap W_{K_{0}, \delta_{0}} \supset W_{K_{2}, \delta_{2}} \tag{4.47}
\end{equation*}
$$

where $K_{2}=K_{0} \cup K_{1}, \delta_{2}=\min \left\{\delta_{1}, \delta_{0}\right\}$. To prove the inclusion (4.46), it suffices to show that

$$
\operatorname{cone}\left(\left[W^{(1)}\right]_{w_{K_{2}, \delta_{2}}}-f_{0}\right) \supset F_{1}-f_{0}
$$

(see (4.47)). Let $f-f_{0} \in F_{1}-f_{0}$ and $z_{\lambda}=(1-\lambda) f_{0}+\lambda f, \lambda \in[0,1]$; let $\left\{\varepsilon_{i}\right\}$ be a sequence converging to zero. By Lemma 4.12, we can construct a sequence of continuous mappings

$$
\phi_{0}^{(i)}: \operatorname{co}\left(\left\{f_{0}, f\right\}\right) \longrightarrow F_{1}, \quad i=1,2, \ldots
$$

such that

$$
\begin{equation*}
z_{\lambda}-\phi_{0}^{(i)}\left(z_{\lambda}\right) \in V_{K_{2}, \varepsilon_{i}}, \quad \lambda \in[0,1], \quad i=1,2, \ldots \tag{4.48}
\end{equation*}
$$

where

$$
\begin{aligned}
\phi_{0}^{(i)}\left(z_{\lambda}\right) & =f_{\lambda}\left(t, x, x_{1}, \ldots, x_{s}\right)=f\left(t, x, x_{1}, \ldots, x_{s}, u_{\lambda}(t), u_{\lambda}\left(t-\theta_{1}\right), \ldots, u_{\lambda}\left(t-\theta_{\nu}\right)\right), \\
u_{\lambda}(t) & =\left\{\begin{array}{ll}
u_{0}(t), & t \in I_{\beta_{1}}^{(\alpha)} \cap I_{2}, \\
u(t), & t \in I_{\beta_{2}}^{(\alpha)} \cap I_{2},
\end{array} \quad \alpha=\overline{1, l}, \quad \beta=\overline{1, m_{i}}, \quad m_{i}=m\left(\varepsilon_{i}\right) .\right.
\end{aligned}
$$

Let us now prove the existence of $\lambda_{0} \in(0,1)$ such that

$$
\begin{equation*}
\phi_{0}^{(i)}\left(z_{\lambda}\right) \in W_{K_{2}, \delta_{2}}, \quad i=1,2, \ldots, \quad \forall \lambda \in\left[0, \lambda_{0}\right] \tag{4.49}
\end{equation*}
$$

For the expression $H_{1}\left(f-f_{0} ; K_{2}\right)$, taking into account the relation $f_{\lambda}\left(t, x, x_{1}, \ldots, x_{s}\right)=$ $f_{0}\left(t, x, x_{1}, \ldots, x_{s}\right), t \in t \in I_{\beta_{1}}^{(\alpha)}(\lambda) \cap I$, we have

$$
\begin{aligned}
H_{1}\left(f_{\lambda}-f_{0} ; K_{2}\right)= & \sum_{\alpha=1}^{l} \int_{I_{2 i}^{(\alpha)}(\lambda)}\left[\operatorname { s u p } _ { (x , x _ { 1 } , \ldots , x _ { s }) \in K _ { 2 } ^ { 1 + s } } \left(\left|f(t, x, \cdot)-f_{0}(t, x, \cdot)\right|\right.\right. \\
& \left.\left.+\left|\frac{\partial}{\partial x} f(t, x, \cdot)-\frac{\partial}{\partial x} f_{0}(t, x, \cdot)\right|+\sum_{j=1}^{s}\left|\frac{\partial}{\partial x_{j}} f(t, x, \cdot)-\frac{\partial}{\partial x_{j}} f_{0}(t, x, \cdot)\right|\right)\right] d t
\end{aligned}
$$

where

$$
I_{2 i}^{(\alpha)}(\lambda)=\bigcup_{\beta=1}^{m_{i}}\left(I_{\beta_{2}}^{(\alpha)}(\lambda) \cap I\right)
$$

The specific character of the $\widehat{\sigma}$-partition implies

$$
\operatorname{mes}\left(\sum_{\alpha=1}^{l} I_{2 i}^{(\alpha)}(\lambda)\right) \longrightarrow \sum_{\alpha=1}^{l} \sum_{\beta=1}^{m_{1}} \operatorname{mes} I_{\beta_{2}}^{\alpha}(\lambda)=\lambda \sum_{\alpha=1}^{l} \sum_{\beta=1}^{m_{1}} \operatorname{mes} I_{\beta}^{\alpha} \leq \lambda \operatorname{mes} I_{2}
$$

Therefore,

$$
\operatorname{mes}\left(\sum_{\alpha=1}^{l} I_{2 i}^{(\alpha)}(\lambda)\right) \longrightarrow 0 \text { as } \lambda \rightarrow 0
$$

uniformly in $i=1,2, \ldots$. Hence there exists $\lambda_{0} \in(0,1)$ for which

$$
H_{1}\left(f_{\lambda}-f_{0} ; K_{2}\right) \leq \delta_{2}
$$

The inclusion (4.48) is proved. The condition (4.49) implies $\phi_{0}^{(i)}\left(z_{\lambda}\right) \rightarrow z_{\lambda}$ as $i \rightarrow \infty$. Therefore,

$$
z_{\lambda} \in\left[W^{(1)}\right]_{W_{K_{2}, \delta_{2}}} \text { for } \lambda \in\left[0, \lambda_{0}\right]
$$

and hence

$$
z_{\lambda}-f_{0} \in \operatorname{cone}\left(\left[W^{(1)}\right]_{W_{K_{2}, \delta_{2}}}\right), \quad \lambda \in\left[0, \lambda_{0}\right]
$$

but $z_{\lambda}-f_{0}=\lambda\left(f-f_{0}\right)$. Thus $f-f_{0} \in \operatorname{cone}\left(\left[W^{(1)}\right]_{W_{K_{2}}, \delta_{2}}\right)$.

4.4 The optimal control problem with the discontinuous initial condition

Consider the optimal control problem

$$
\begin{gather*}
\dot{x}(t)=f\left(t, x(t), x\left(t-\tau_{1}\right), \ldots, x\left(t-\tau_{s}\right), u(t), u\left(t-\theta_{1}\right), \ldots, u\left(t-\theta_{\nu}\right)\right), \tag{4.50}\\
t \in\left[t_{0}, t_{1}\right] \subset I, \quad u \in \Omega\left(I_{2}, U\right), \\
x(t)=\varphi(t), \quad t \in\left[\widehat{\tau}, t_{0}\right), \quad x\left(t_{0}\right)=x_{0}, \quad \varphi \in \Phi_{1}, \quad x_{0} \in X_{0}, \tag{4.51}\\
q^{i}\left(t_{0}, t_{1}, \tau_{1}, \ldots, \tau_{s}, x_{0}, x\left(t_{1}\right)\right)=0, \quad i=\overline{1, l}, \tag{4.52}\\
q^{0}\left(t_{0}, t_{1}, \tau_{1}, \ldots, \tau_{s}, x_{0}, x\left(t_{1}\right)\right) \longrightarrow \min , \tag{4.53}
\end{gather*}
$$

where $\theta_{\nu}>\cdots>\theta_{1}>0, \Phi_{2}=\left\{\varphi \in \mathrm{PC}\left(I_{2}, \mathbb{R}^{n}\right): \varphi(t) \in N\right\}, N \subset O$ is a convex set; $X_{0} \subset O$ is a convex compact set; the scalar-valued functions $q^{i}\left(t_{0}, t_{1}, \tau_{1}, \ldots, \tau_{s}, x_{0}, x_{1}\right), i=\overline{0, l}$, are continuously differentiable on $I^{2} \times\left[\theta_{11}, \theta_{12}\right] \times \cdots \times\left[\theta_{s 1}, \theta_{s 2}\right] \times O^{2}$.

The problem (4.50)-(4.53) is called an optimal control problem with the discontinuous initial condition.

Definition 4.12. Let $v=\left(t_{0}, t_{1}, \tau_{1}, \ldots, \tau_{s}, x_{0}, \varphi, u\right) \in A=(a, b) \times(a, b) \times\left(\theta_{11}, \theta_{12}\right) \times \cdots \times\left(\theta_{s 1}, \theta_{s 2}\right) \times$ $X_{0} \times \Phi_{2} \times \Omega(I, U)$. A function $x(t)=x(t ; v) \in O, t \in\left[\widehat{\tau}, t_{1}\right]$, is called a solution of the equation (4.50) with the discontinuous initial condition (4.51), or a solution corresponding to the element v and defined on the interval $\left[\widehat{\tau}, t_{1}\right]$, if it satisfies the condition (4.51) and is absolutely continuous on the interval $\left[t_{0}, t_{1}\right]$ and satisfies the equation (4.50) a.e. on $\left[t_{0}, t_{1}\right]$.

Definition 4.13. An element $v=\left(t_{0}, t_{1}, \tau_{1}, \ldots, \tau_{s}, x_{0}, \varphi, u\right) \in A$ is said to be admissible if the corresponding solution $x(t)=x(t ; v)$ satisfies the boundary conditions (4.52).

Denote by A_{0} the set of admissible elements.
Definition 4.14. An element $v_{0}=\left(t_{00}, t_{10}, \tau_{10}, \ldots, \tau_{s 0}, x_{00}, \varphi_{0}, u_{0}\right) \in A_{0}$ is said to be optimal if there exist a number $\delta_{0}>0$ and a compact set $K_{0} \subset O$ such that for an arbitrary element $v \in A_{0}$ satisfying the condition

$$
\left|t_{00}-t_{0}\right|+\left|t_{10}-t_{1}\right|+\sum_{i=1}^{s}\left|\tau_{i 0}-\tau_{i}\right|+\left|x_{00}-x_{0}\right|+\left\|\varphi_{0}-\varphi\right\|_{I_{1}}+H_{1}\left(f_{0}-f ; K_{0}\right) \leq \delta_{0}
$$

the inequality

$$
q^{0}\left(t_{00}, t_{10}, \tau_{10}, \ldots, \tau_{s 0}, x_{00}, x_{0}\left(t_{10}\right)\right) \leq q^{0}\left(t_{0}, t_{1}, \tau_{1}, \ldots, \tau_{s}, x_{0}, x\left(t_{1}\right)\right)
$$

holds. Here

$$
f_{0}=f_{0}\left(t, x, x_{1}, \ldots, x_{s}\right)=f\left(t, x, x_{1}, \ldots, x_{s}, u_{0}(t), u_{0}\left(t-\theta_{1}\right), \ldots, u_{0}\left(t-\theta_{k}\right)\right)
$$

and

$$
f=f\left(t, x, x_{1}, \ldots, x_{s}\right)=f\left(t, x, x_{1}, \ldots, x_{s}, u(t), u\left(t-\theta_{1}\right), \ldots, u\left(t-\theta_{k}\right)\right) .
$$

Theorem 4.6. Let v_{0} be an optimal element and let the following conditions hold:
4.1. $\tau_{s 0}>\cdots>\tau_{10}$ and $t_{00}+\tau_{s 0}<t_{10}$, with $\tau_{i 0} \in\left(\theta_{i 0}, \theta_{i+10}\right), i=\overline{1, s-1}$;
4.2. $\theta_{i}=m_{i} h, i=\overline{1, \nu}$, where $m_{i}, i=\overline{1, \nu}$, are natural numbers, $h>0$ is a real number;
4.3. the function $\varphi_{0}(t)$ is absolutely continuous and $\dot{\varphi}_{0}(t)$ is bounded;
4.4. the function $f_{0}(w), w=\left(t, x, x_{1}, \ldots, x_{s}\right) \in I \times O^{s+1}$, is bounded;
4.5. there exists the finite limit

$$
\lim _{w \rightarrow w_{0}} f_{0}(w)=f_{0}^{-}, \quad w \in\left(a, t_{00}\right] \times O^{s+1}
$$

where $w_{0}=\left(t_{00}, x_{00}, \varphi_{0}\left(t_{00}-\tau_{10}\right), \ldots, \varphi_{0}\left(t_{00}-\tau_{s 0}\right)\right) ;$
4.6. there exist the finite limits

$$
\lim _{\left(w_{1 i}, w_{2 i}\right) \rightarrow\left(w_{1 i}^{0}, w_{2 i}^{0}\right)}\left[f_{0}\left(w_{1 i}\right)-f_{0}\left(w_{2 i}\right)\right]=f_{0 i}
$$

where $w_{1 i}, w_{2 i} \in(a, b) \times O^{s+1}, i=\overline{1, s}$,

$$
\begin{gathered}
w_{1 i}^{0}=\left(t_{00}+\tau_{i 0}, x_{0}\left(t_{00}+\tau_{i 0}\right), x_{0}\left(t_{00}+\tau_{i 0}-\tau_{10}\right), \ldots, x_{0}\left(t_{00}+\tau_{i 0}-\tau_{i-10}\right)\right. \\
\left.x_{00}, x_{0}\left(t_{00}+\tau_{i 0}-\tau_{i+10}\right), \ldots, x_{0}\left(t_{00}+\tau_{i 0}-\tau_{s 0}\right)\right) \\
w_{2 i}^{0}=\left(t_{00}+\tau_{i 0}, x_{0}\left(t_{00}+\tau_{i 0}\right), x_{0}\left(t_{00}+\tau_{i 0}-\tau_{10}\right), \ldots, x_{0}\left(t_{00}+\tau_{i 0}-\tau_{i-10}\right)\right. \\
\left.\varphi_{0}\left(t_{00}\right), x_{0}\left(t_{00}+\tau_{i 0}-\tau_{i+10}\right), \ldots, x_{0}\left(t_{00}+\tau_{i 0}-\tau_{s 0}\right)\right)
\end{gathered}
$$

4.7. there exists the finite limit
$\lim _{w \rightarrow w_{s+1}} f_{0}(w)=f_{s+1}^{-}, \quad w \in\left(t_{00}, t_{10}\right] \times O^{s+1}, \quad w_{s+1}=\left(t_{10}, x_{0}\left(t_{10}\right), x_{0}\left(t_{10}-\tau_{10}\right), \ldots, x_{s}\left(t_{10}-\tau_{s 0}\right)\right)$.
Then there exist a vector $\pi=\left(\pi_{0}, \ldots, \pi_{l}\right) \neq 0$, with $\pi_{0} \leq 0$, and a solution $\psi(t)=\left(\psi_{1}(t), \ldots, \psi_{n}(t)\right)$ of the equation

$$
\begin{equation*}
\dot{\psi}(t)=-\psi(t) f_{0 x}[t]-\sum_{i=1}^{s} \psi\left(t+\tau_{i 0}\right) f_{0 x_{i}}\left[t+\tau_{i 0}\right], \quad t \in\left[t_{00}, t_{10}\right], \quad \psi(t)=0, \quad t>t_{10} \tag{4.54}
\end{equation*}
$$

such that the following conditions hold:
4.8. the conditions for the moments t_{00} and t_{10} :

$$
\pi Q_{0 t_{0}} \geq \psi\left(t_{00}\right) f_{0}^{-}+\sum_{i=1}^{s} \psi\left(t_{00}+\tau_{i 0}\right) f_{0 i}, \quad \pi Q_{0 t_{1}} \geq-\psi\left(t_{10}\right) f_{s+1}^{-}
$$

where

$$
Q_{0}=\left(q^{0}, \ldots, q^{l}\right)^{\top}, \quad Q_{0 t_{0}}=\frac{\partial}{\partial t_{0}} Q_{0}
$$

4.9. the conditions for the delays $\tau_{i 0}, i=\overline{1, s}$,

$$
\pi Q_{0 \tau_{i}}=\psi\left(t_{00}+\tau_{i 0}\right) f_{0 i}+\int_{t_{00}}^{t_{10}} \psi(t) f_{0 x_{i}}[t] \dot{x}_{0}\left(t-\tau_{i 0}\right) d t=0, \quad i=\overline{1, s}
$$

4.10. the condition of the vector x_{00},

$$
\left(\pi Q_{0 x_{0}}+\psi\left(t_{00}\right)\right) x_{00}=\max _{x_{0} \in X_{0}}\left(\pi Q_{0 x_{0}}+\psi\left(t_{00}\right)\right) x_{0}
$$

4.11. the integral maximum principle for the initial function $\varphi_{0}(t)$,

$$
\sum_{i=1}^{s} \int_{t_{00}-\tau_{i 0}}^{t_{00}} \psi\left(t+\tau_{i 0}\right) f_{0 x_{i}}\left[t+\tau_{i 0}\right] \varphi_{0}(t) d t=\max _{\varphi(t) \in \Phi_{1}} \sum_{i=1}^{s} \int_{t_{00}-\tau_{i 0}}^{t_{00}} \psi\left(t+\tau_{i 0}\right) f_{0 x_{i}}\left[t+\tau_{i 0}\right] \varphi(t) d t
$$

4.12. the integral maximum principle for the control function $u_{0}(t)$,

$$
\begin{aligned}
& \int_{t_{00}}^{t_{10}} \psi(t) f_{0}[t] d t \\
& =\max _{u(t) \in \Omega\left(I_{2}, U\right)} \int_{t_{00}}^{t_{10}} \psi(t) f\left(t, x_{0}(t), x_{0}\left(t-\tau_{10}\right), \ldots, x_{0}\left(t-\tau_{i 0}, u(t), u\left(t-\theta_{1}\right), \ldots, u\left(t-\theta_{\nu}\right)\right)\right) d t
\end{aligned}
$$

4.13. the condition for the function $\psi(t)$,

$$
\psi\left(t_{10}\right)=\pi Q_{0 x_{1}}
$$

Theorem 4.7. Let v_{0} be an optimal element and let the conditions 4.1-4.4 and 4.6 hold. Moreover, there exist the finite limits

$$
\begin{equation*}
\lim _{w \rightarrow w_{0}} f_{0}(w)=f_{0}^{+}, w \in\left[t_{00}, b\right) \times O^{s+1}, \quad \lim _{w \rightarrow w_{s+1}} f_{0}(w)=f_{s+1}^{+}, \quad w \in\left[t_{10}, b\right) \times O^{s+1} \tag{4.55}
\end{equation*}
$$

Then there exist a vector $\pi=\left(\pi_{0}, \ldots, \pi_{l}\right) \neq 0$, with $\pi_{0} \leq 0$, and a solution of the equation (4.54) such that the conditions 4.9-4.13 hold. Moreover,

$$
\pi Q_{0 t_{0}} \leq \psi\left(t_{00}\right) f_{0}^{-}+\sum_{i=1}^{s} \psi\left(t_{00}+\tau_{i 0}\right) f_{0 i}, \quad \pi Q_{0 t_{1}} \leq-\psi\left(t_{10}\right) f_{s+1}^{-}
$$

Theorem 4.8. Let v_{0} be an optimal element and let the conditions of Theorem 4.6 hold. Moreover, there exist the finite limits f_{0}^{+}, f_{s+1}^{+}, with $f_{0}^{-}=f_{0}^{+}:=\widehat{f}_{0}, f_{s+1}^{-}=f_{s+1}^{+}:=\widehat{f}_{s+1}$. Then there exist a vector $\pi=\left(\pi_{0}, \ldots, \pi_{l}\right) \neq 0$, with $\pi_{0} \leq 0$, and a solution of the equation (4.54) such that the conditions 4.9-4.13 hold. Moreover,

$$
\pi Q_{0 t_{0}}=\psi\left(t_{00}\right) \widehat{f}_{0}+\sum_{i=1}^{s} \psi\left(t_{00}+\tau_{i 0}\right) f_{0 i}, \quad \pi Q_{0 t_{1}}=-\psi\left(t_{10}\right) \widehat{f}_{s+1}
$$

Theorem 4.9. Let v_{0} be an optimal element and let the conditions 4.1-4.5 and 4.7 hold. Moreover, there exist the finite limits

$$
\lim _{\left(w_{1 i}, w_{2 i}\right) \rightarrow\left(w_{1 i}^{0}, w_{2 i}^{0}\right)}\left[f_{0}\left(w_{1 i}\right)-f_{0}\left(w_{2 i}\right)\right]=f_{0 i}^{-},
$$

where $w_{1 i}, w_{2 i} \in\left(a, t_{00}+\tau_{i 0}\right) \times O^{s+1}, i=\overline{1, s}$. Then there exist a vector $\pi=\left(\pi_{0}, \ldots, \pi_{l}\right) \neq 0$, with $\pi_{0} \leq 0$, and a solution of the equation (4.54) such that the conditions 4.8-4.13 hold. Moreover,

$$
\pi Q_{0 \tau_{i}} \geq \psi\left(t_{00}+\tau_{i 0}\right) f_{0 i}^{-}+\int_{t_{00}}^{t_{10}} \psi(t) f_{0 x_{i}}[t] \dot{x}_{0}\left(t-\tau_{i 0}\right) d t, \quad i=\overline{1, s}
$$

Theorem 4.10. Let v_{0} be an optimal element and let the conditions 4.1-4.5 and (4.55) hold. Moreover, there exist the finite limits

$$
\lim _{\left(w_{1 i}, w_{2 i}\right) \rightarrow\left(w_{1 i}^{0}, w_{2 i}^{0}\right)}\left[f_{0}\left(w_{1 i}\right)-f_{0}\left(w_{2 i}\right)\right]=f_{0 i}^{+}
$$

where $w_{1 i}, w_{2 i} \in\left[t_{00}+\tau_{i 0}, b\right) \times O^{s+1}, i=\overline{1, s}$. Then there exist a vector $\pi=\left(\pi_{0}, \ldots, \pi_{l}\right) \neq 0$, with $\pi_{0} \leq 0$, and a solution of the equation (4.54) such that the conditions 4.8-4.13 hold. Moreover,

$$
\pi Q_{0 \tau_{i}} \leq \psi\left(t_{00}+\tau_{i 0}\right) f_{0 i}^{+}+\int_{t_{00}}^{t_{10}} \psi(t) f_{0 x_{i}}[t] \dot{x}_{0}\left(t-\tau_{i 0}\right) d t, \quad i=\overline{1, s}
$$

4.5 Proof of Theorem 4.6

Auxiliary assertions. Let $K \subset O$ be a compact set and let $\alpha>0$ be a certain given number. In the spaces $E_{f}^{(1)}$ and E_{f}, we define, respectively, the sets

$$
\begin{aligned}
W_{K, \alpha} & =\left\{\delta f \in E_{f}^{(1)}: H_{1}(\delta f ; K) \leq \alpha\right\}, \\
W(K ; \alpha) & =\left\{\delta f \in E_{f}: \exists m_{\delta f, K}(t), L_{\delta f, K}(t) \in L_{1}\left(I, R_{+}\right), \int_{I}\left[m_{\delta f, K}(t)+L_{\delta f, K}(t)\right] d t \leq \alpha\right\} .
\end{aligned}
$$

Lemma 4.15. Let $K_{i} \subset O, i=1,2$, be compact sets, and, moreover, let $K_{1} \subset \operatorname{int} K_{2}$ and $\alpha_{1}>0$ be a certain number. Then there exists a number $\alpha_{2}>0$ such that

$$
\begin{equation*}
W_{K_{2}, \alpha_{1}} \subset W\left(K_{1} ; \alpha_{2}\right) \tag{4.56}
\end{equation*}
$$

Proof. Let $\delta f \in W_{K_{2}, \alpha_{1}}$. Hence

$$
\int_{I} \sup \left\{\left|\delta f\left(t, x, x_{1}, \ldots, x_{s}\right)\right|+\left|\delta f_{x}(t, x, \cdot)\right|+\sum_{i=1}^{s}\left|\delta f_{x_{i}}(t, x, \cdot)\right|:\left(x, x_{1}, \ldots, x_{s}\right) \in K_{2}^{s+1}\right\} d t \leq \alpha_{1}
$$

For a.e. $t \in I$ and every $\left(x^{\prime}, x_{1}^{\prime}, \ldots, x_{s}^{\prime}\right) \in K_{1}^{s+1},\left(x^{\prime}, x_{1}^{\prime}, \ldots, x_{s}^{\prime}\right) \in K_{1}^{s+1}$ the inequality

$$
\left|\delta f\left(t, x^{\prime}, x_{1}^{\prime}, \ldots, x_{s}^{\prime}\right)-\delta f\left(t, x^{\prime \prime}, x_{1}^{\prime \prime}, \ldots, x_{s}^{\prime \prime}\right)\right| \leq L_{\delta f, K_{1}}(t)\left[\left|x^{\prime}-x^{\prime \prime}\right|+\sum_{i=1}^{s}\left|x_{i}^{\prime}-x_{i}^{\prime \prime}\right|\right]
$$

holds, where

$$
\begin{aligned}
L_{\delta f, K_{1}}(t)= & n^{2} s\left(\alpha_{0}+1\right) \\
& \times \sup \left\{\left|\delta f\left(t, x, x_{1}, \ldots, x_{s}\right)\right|+\left|\delta f_{x}(t, x, \cdot)\right|+\sum_{i=1}^{s}\left|\delta f_{x_{i}}(t, x, \cdot)\right|:\left(x, x_{1}, \ldots, x_{s}\right) \in K_{2}\right\}
\end{aligned}
$$

(see Lemma 2.2).
On the other hand, it is obvious that for $\left(t, x, x_{1}, \ldots, x_{s}\right) \in I \times K_{1}^{s+1}$, we have

$$
\left|\delta f\left(t, x, x_{1}, \ldots, x_{s}\right)\right| \leq m_{\delta f, K_{1}}(t)=\sup \left\{\left|\delta f\left(t, x, x_{1}, \ldots, x_{s}\right)\right|:\left(x, x_{1}, \ldots, x_{s}\right) \in K_{1}^{s+1}\right\}
$$

Using the relations obtained above, we get

$$
\int_{I}\left[m_{\delta f, K_{1}}(t)+L_{\delta f, K_{1}}(t)\right] d t \leq \alpha_{1}\left[1+n^{2} s\left(\alpha_{0}+1\right)\right]:=\alpha_{2} .
$$

The inclusion (4.56) is proved.

To each element

$$
\kappa=\left(t_{0}, t_{1}, \tau_{1}, \ldots, \tau_{s}, x_{0}, \varphi, f\right) \in(a, b) \times(a, b) \times\left(\theta_{11}, \theta_{12}\right) \times \cdots \times\left(\theta_{s 1}, \theta_{s 2}\right) \times X_{0} \times \Phi_{1} \times E_{f}^{(1)}
$$

we put in correspondence the functional differential equation

$$
\dot{x}(t)=f\left(t, x(t), x\left(t-\tau_{1}\right), \ldots, x\left(t-\tau_{s}\right)\right), \quad t \in\left[t_{0}, t_{1}\right]
$$

with the initial condition

$$
x(t)=\varphi(t), \quad t \in\left[\widehat{\tau}, t_{0}\right), x\left(t_{0}\right)=x_{0} .
$$

Definition 4.15. The solution corresponding to an element $\kappa=\left(t_{0}, t_{1}, \tau_{1}, \ldots, \tau_{s}, x_{0}, \varphi, f\right)$ is called a solution $x(t ; \mu), \mu=\left(t_{0}, \tau_{1}, \ldots, \tau_{s}, x_{0}, \varphi, f\right)$, defined on $\left[\widehat{\tau}, t_{1}\right]$, and denoted by $x(t ; \kappa)$.

Therefore,

$$
\begin{equation*}
x_{0}(t)=x\left(t ; v_{0}\right)=x\left(t ; \kappa_{0}\right)=x\left(t ; \mu_{0}\right), \quad t \in\left[\widehat{\tau}, t_{10}\right], \tag{4.57}
\end{equation*}
$$

where

$$
\kappa_{0}=\left(t_{00}, t_{10}, \tau_{10}, \ldots, \tau_{s 0}, x_{00}, \varphi_{0}, f_{0}\right), \quad \mu_{0}=\left(t_{00}, \tau_{10}, \ldots, \tau_{s 0}, x_{00}, \varphi_{0}, f_{0}\right)
$$

The following lemma is a direct consequence of Theorem 1.2.
Lemma 4.16. Let $\alpha_{1}>0$ be a certain given number, and let $K_{1} \subset O$ be a compact set containing a certain neighborhood of the set $\operatorname{cl} \varphi_{0}\left(I_{1}\right) \cup x_{0}\left(\left[t_{00}, t_{10}\right]\right)$. Then there exists a number $\delta_{1}>0$ such that to each element

$$
\begin{aligned}
& \kappa \in V\left(\kappa_{0} ; K_{1}, \delta_{1}, \alpha_{1}\right)=\left(B\left(t_{00} ; \delta_{1}\right) \cap I\right) \times\left(B\left(t_{10} ; \delta_{1}\right) \cap I\right) \times\left(B\left(\tau_{10} ; \delta_{1}\right) \cap\left(\theta_{11}, \theta_{12}\right)\right) \times \cdots \\
& \quad \times\left(B\left(\tau_{s 0} ; \delta_{1}\right) \cap\left(\theta_{s 1}, \theta_{s 2}\right)\right) \times\left(B\left(x_{00}, \delta_{1}\right) \cap O\right) \times\left(B\left(\varphi_{0} ; \delta_{1}\right) \cap \Phi_{2}\right) \times\left[f_{0}+\left(W_{K_{1}, \alpha_{1}} \cap V_{K_{1}, \delta_{1}}\right)\right]
\end{aligned}
$$

there corresponds the solution $x(t ; \kappa) \in K_{1}, t \in\left[\widehat{\tau}, t_{1}\right]$. Moreover, for each $\varepsilon>0$, there exists a number $\delta=\delta(\varepsilon) \in\left(0, \delta_{1}\right)$ such that for an arbitrary $\kappa \in V\left(\kappa_{0} ; K_{1}, \delta_{1}, \alpha_{1}\right)$, the inequality

$$
\left|x\left(t_{10} ; \kappa_{0}\right)-x\left(t_{1} ; \kappa\right)\right| \leq \varepsilon
$$

holds.
Remark 4.1. Lemma 4.16 remains valid if we replace the set $V\left(\kappa_{0} ; K_{1}, \delta_{1}, \alpha_{1}\right)$ by the set

$$
\begin{aligned}
V\left(\kappa_{0} ; K_{1}, \delta_{1}\right)= & \left(B\left(t_{00} ; \delta_{1}\right) \cap I\right) \times\left(B\left(t_{10} ; \delta_{1}\right) \cap I\right) \times\left(B\left(\tau_{10} ; \delta_{1}\right) \cap\left(\theta_{11}, \theta_{12}\right)\right) \times \cdots \\
& \times\left(B\left(\tau_{s 0} ; \delta_{1}\right) \cap\left(\theta_{s 1}, \theta_{s 2}\right)\right) \times\left(B\left(x_{00}, \delta_{1}\right) \cap O\right) \times\left(B\left(\varphi_{0} ; \delta_{1}\right) \cap \Phi_{2}\right) \times\left[f_{0}+W_{K_{1}, \delta_{1}}\right] .
\end{aligned}
$$

Let us now consider the topological vector space

$$
E_{\kappa}=\mathbb{R}^{2+s+n} \times \operatorname{PC}\left(I_{1}, \mathbb{R}^{n}\right) \times E_{f}^{(1)}
$$

with the points $\kappa=(y, \varsigma)$, where $y=\left(t_{0}, t_{1}, \tau_{1}, \ldots, \tau_{s}, x_{0}\right)^{\top}, \varsigma=(\varphi, f)$.
The set

$$
X=\left[a, t_{00}\right] \times\left[t_{00}, t_{10}\right] \times\left[\theta_{11}, \theta_{12}\right] \times \cdots \times\left[\theta_{s 1}, \theta_{s 2}\right] \times O \subset \mathbb{R}^{2+s+n}
$$

is a locally convex subspace in the topology induced from \mathbb{R}^{2+s+n}.
By $D_{0} \subset E_{\kappa}$ we denote the set of elements $\kappa \in X \times \Phi_{2} \times E_{f}^{(1)}$ such that the solution $x(t ; \kappa)$ corresponds to each of them. The set D_{0} is nonempty, since $\kappa_{0} \in D_{0}$.

Lemma 4.17. The set D_{0} is finitely convex.
Proof. Let $\widehat{\kappa}=(\widehat{y}, \widehat{\varsigma}) \in D_{0}$ be an arbitrary fixed point, and $L_{\widehat{\varsigma}} \subset E_{\varsigma}$ be a linear manifold, i.e.,

$$
L_{\widehat{\varsigma}}=\left\{\widehat{\varsigma}+\delta \varsigma: \quad \delta \varsigma=\sum_{i=1}^{k} \lambda_{i} \delta \varsigma_{i}, \quad \lambda_{i} \in \mathbb{R}, \quad i=\overline{1, k}\right\}
$$

where $\delta \varsigma_{i} \in E_{\varsigma}, i=\overline{1, k}$, are fixed points. There exists a number $\delta_{1}>0$ such that with each element $\kappa \in V\left(\widehat{\kappa} ; K_{1}, \delta_{1}\right)$ we associate the solution $x(t ; \widehat{\varsigma}) \in K_{1}$ (see Remark 4.1).

Let a number $\delta \in\left(0, \delta_{1}\right)$ be insomuch small that the neighborhood of the point $\widehat{\varsigma}$

$$
V_{\widehat{\varsigma}}=\left\{\widehat{\varsigma}+\sum_{i=1}^{k} \lambda_{i} \delta \varsigma_{i}: \quad\left|\lambda_{i}\right| \leq \delta, \quad i=\overline{1, k}\right\}
$$

is contained in the set

$$
\left(B\left(\widehat{\varphi} ; \delta_{1}\right) \cap \Phi_{2}\right) \times\left[\widehat{f}+W_{K_{1}, \delta_{1}}\right]
$$

Therefore, there exist convex neighborhoods

$$
V_{\widehat{y}}=\left(B\left(\widehat{t_{0}} ; \delta\right) \cap\left(a, \widehat{t_{0}}\right)\right) \times\left(B\left(\widehat{t}_{1} ; \delta\right) \cap\left(\widehat{t_{0}}, \widehat{t}_{1}\right)\right) \times\left(B\left(\widehat{x}_{0} ; \delta_{1}\right) \cap O\right) \subset X, \quad V_{\widehat{\varsigma}} \subset L_{\widehat{\varsigma}}
$$

such that

$$
V_{\widehat{\jmath}} \times V_{\widehat{\varsigma}} \subset D_{0} .
$$

Hence the set D_{0} is finitely locally convex with respect to the space $X \times E_{\varsigma}$.
On the set D_{0}, let us define the mapping

$$
S: D_{0} \rightarrow \mathbb{R}^{n}
$$

by the formula

$$
S(\kappa)=x\left(t_{1} ; \kappa\right) .
$$

Lemma 4.18. The mapping S is differentiable at the point κ_{0} and

$$
\begin{equation*}
d S_{\kappa_{0}}(\delta \kappa)=\delta x\left(t_{10} ; \delta \kappa\right)+f_{s+1}^{-} \delta t_{1} \forall \delta \kappa=\left(\delta t_{0}, \delta t_{1}, \delta \tau_{1}, \ldots, \delta \tau_{s}, \delta x_{0}, \delta \varphi, \delta f\right) \in E_{\kappa}-\kappa_{0} \tag{4.58}
\end{equation*}
$$

where

$$
\begin{align*}
\delta x\left(t_{10} ; \delta \kappa\right) & =\delta x\left(t_{10} ; \delta \mu\right)=-\left[Y\left(t_{00} ; t\right) f_{0}^{-}+\sum_{i=1}^{s} Y\left(t_{00}+\tau_{i 0} ; t\right) f_{0 i}\right] \delta t_{0} \\
& -\sum_{i=1}^{s}\left[Y\left(t_{00}+\tau_{i 0} ; t\right) f_{0 i}+\int_{t_{00}}^{t} Y(\xi ; t) f_{0 x_{i}}[\xi] \dot{x}_{0}\left(\xi-\tau_{i 0}\right) d \xi\right] \delta \tau_{i}+Y\left(t_{00} ; t\right) \delta x_{0} \\
& +\sum_{i=1}^{s} \int_{t_{00}-\tau_{i 0}}^{t_{00}} Y\left(\xi+\tau_{i 0} ; t\right) f_{0 x_{i}}\left[\xi+\tau_{i 0}\right] \delta \varphi(\xi) d \xi+\int_{t_{00}}^{t} Y(\xi ; t) \delta f[\xi] d \xi \tag{4.59}
\end{align*}
$$

and $\delta \mu=\left(\delta t_{0}, \delta \tau_{1}, \ldots, \delta \tau_{s}, \delta x_{0}, \delta \varphi, \delta f\right) \in E_{\mu}^{(1)}-\mu_{0}$.
Proof. Let $L_{\varsigma_{0}} \subset E_{\varsigma}$ be a linear manifold, and let

$$
V_{0} \subset X-y_{0}, \quad V \subset L_{\varsigma_{0}}-\varsigma_{0}
$$

be bounded convex neighborhoods of zero, where $y_{0}=\left(t_{00}, t_{10}, \tau_{10}, \ldots, \tau_{s 0}, x_{00}\right)^{\top}$ and $\varsigma_{0}=\left(\varphi_{0}, f_{0}\right)$.
The finite local convexity of the set D_{0} implies the existence of a number $\varepsilon_{0}>0$ such that for an arbitrary $(\varepsilon, \delta \varsigma) \in\left(0, \varepsilon_{0}\right) \times V_{0} \times V, \varsigma_{0}+\varepsilon \delta \varsigma \in D_{0}$, and

$$
\begin{aligned}
x\left(t_{10}+\varepsilon \delta t_{1} ; \kappa_{0}+\varepsilon \delta \kappa\right)-x\left(t_{10}+\right. & \left.\varepsilon \delta t_{1} ; \kappa_{0}\right)=x\left(t_{10}+\varepsilon \delta t_{1} ; \mu_{0}+\varepsilon \delta \mu\right)-x\left(t_{10}+\varepsilon \delta t_{1} ; \mu_{0}\right) \\
& =\Delta x\left(t_{10}+\varepsilon \delta t_{1} ; \varepsilon \delta \mu\right)=\varepsilon \delta x\left(t_{10}+\varepsilon \delta t_{1} ; \delta \mu\right)+o\left(t_{10}+\varepsilon \delta t_{1} ; \varepsilon \delta \mu\right)
\end{aligned}
$$

where the variation $\delta x\left(t_{10}+\varepsilon \delta t_{1} ; \delta \mu\right)$ is calculated by the formula (2.7).
We have

$$
\begin{align*}
& S\left(\kappa_{0}+\varepsilon \delta \kappa\right)-S\left(\kappa_{0}\right)=x\left(t_{10}+\varepsilon \delta t_{1} ; \kappa_{0}+\varepsilon \delta \kappa\right)-x_{0}\left(t_{10}\right) \\
& =x\left(t_{10}+\varepsilon \delta t_{1} ; \kappa_{0}+\varepsilon \delta \kappa\right)-x_{0}\left(t_{10}+\varepsilon \delta t_{1}\right)+x_{0}\left(t_{10}+\varepsilon \delta t_{1}\right)-x_{0}\left(t_{10}\right) \\
& \quad=\varepsilon \delta x\left(t_{10}+\varepsilon \delta t_{1} ; \delta \mu\right)+o\left(t_{10}+\varepsilon \delta t_{1} ; \varepsilon \delta \mu\right)+\int_{t_{10}}^{t_{10}+\varepsilon \delta t_{1}} f_{0}[t] d t . \tag{4.60}
\end{align*}
$$

It is easy to note that

$$
\lim _{i \rightarrow 0} \delta x\left(t_{10}+\varepsilon \delta t_{1} ; \delta \mu\right)=\delta x\left(t_{10} ; \delta \mu\right)
$$

uniformly in $\delta \kappa \in V_{0} \times V$, (i.e., uniformly for the corresponding $\delta \mu$) and

$$
\int_{t_{10}}^{t_{10}+\varepsilon \delta t_{1}} f_{0}[t] d t=\varepsilon f_{s+1}^{-} \delta t_{1}+o(\varepsilon \delta \kappa)
$$

Taking into account these relations and the variation formula (2.7), from (4.60) we obtain

$$
\begin{equation*}
S\left(\kappa_{0}+\varepsilon \delta \kappa\right)-S\left(\kappa_{0}\right)=\varepsilon\left[\delta x\left(t_{10} ; \delta \kappa\right)+f_{s+1}^{-} \delta t_{1}\right]+o(\varepsilon \delta \kappa)=\varepsilon d S_{\kappa_{0}}(\delta \kappa)+o(\varepsilon \delta \kappa), \tag{4.61}
\end{equation*}
$$

where $\delta x\left(t_{10} ; \delta \kappa\right)$ has the form (2.59).

Differentiability of the mapping at the point z_{0}. Consider the vector space

$$
E_{z}=\mathbb{R} \times E_{\kappa}
$$

of points $z=(\xi, \kappa)$.
Introduce the sets

$$
X=\mathbb{R}_{+} \times X_{0}, \quad D=\mathbb{R}_{+} \times D_{0}
$$

The set is finitely locally convex in the subspace $X \times E_{\varsigma} \subset E_{z}$ (see Lemma 4.17).
On the set D, let us define the mapping

$$
P: D \rightarrow \mathbb{R}^{l+1}
$$

by the formula

$$
P(z)=Q\left(t_{0}, t_{1}, \tau_{1}, \ldots, \tau_{s}, x_{0}, S(\kappa)\right)+(\xi, 0, \ldots, 0)^{\top}
$$

where $Q=q^{0}, \ldots, q^{l}$ and $S(\kappa)=x\left(t_{1} ; \kappa\right)$.
Lemma 4.19. The mapping P is differentiable at the point $z_{0}=\left(0, \kappa_{0}\right)$ and

$$
\begin{align*}
d P_{z_{0}}(\delta z) & =\left\{Q_{0 t_{0}}-Q_{0 x_{1}} Y\left(t_{00} ; t_{10}\right) f_{0}^{-}-\sum_{i=1}^{s} Q_{0 x_{1}} Y\left(t_{00}+\tau_{i 0} ; t_{10}\right) f_{0 i}\right\} \delta t_{0}+\left\{Q_{0 t_{1}}+Q_{0 x_{1}} f_{s+1}^{-}\right\} \delta t_{1} \\
& +\sum_{i=1}^{s}\left\{Q_{0 \tau_{i}}-Q_{0 x_{1}} Y\left(t_{00}+\tau_{i 0} ; t_{10}\right) f_{0 i}-\int_{t_{00}}^{t_{10}} Q_{0 x_{1}} Y\left(t ; t_{10}\right) f_{0 x_{i}}[t] \dot{x}_{0}\left(t-\tau_{i 0}\right) d t\right\} \delta \tau_{i} \\
& +\left\{Q_{0 x_{0}}+Q_{0 x_{1}} Y\left(t_{00} ; t_{10}\right)\right\} \delta x_{0}+\sum_{i=1}^{s} \int_{t_{00}-\tau_{i 0}}^{t_{00}} Q_{0 x_{1}} Y\left(t+\tau_{i 0} ; t\right) f_{0 x_{i}}\left[t+\tau_{i 0}\right] \delta \varphi(t) d t \\
& +\int_{t_{00}}^{t_{10}} Q_{0 x_{1}} Y\left(t ; t_{10}\right) \delta f[t] d t+(\delta \xi, 0, \ldots, 0)^{\top}, \delta z=(\delta \xi, \delta \kappa) \in E_{z}-z_{0} . \tag{4.62}
\end{align*}
$$

Proof. Let $L_{\varsigma 0} \subset E_{\varsigma}$ be an arbitrary linear manifold and let

$$
V_{0} \subset X-\left(0, y_{0}\right)^{\top}, \quad V \subset L_{\varsigma_{0}}-\varsigma_{0}
$$

be arbitrary bounded convex neighborhoods of zero. There exists a number $\varepsilon_{0}>0$ such that for arbitrary $\varepsilon \in\left(0, \varepsilon_{0}\right)$ and $\delta z \in V_{0} \times V$,

$$
z_{0}+\varepsilon \delta z \in D
$$

and the formula (4.61) holds.
We have

$$
\begin{aligned}
P\left(z_{0}+\varepsilon \delta z\right)-P\left(z_{0}\right) & =Q\left(t_{00}+\varepsilon \delta t_{0}, t_{10}+\varepsilon \delta t_{1}, \tau_{10}+\varepsilon \delta \tau_{1}, \ldots, \tau_{s 0}+\varepsilon \delta \tau_{s}, x_{00}+\varepsilon \delta x_{0}, S\left(\kappa_{0}+\varepsilon \delta \kappa\right)\right) \\
& -Q\left(t_{00}, t_{10}, \tau_{10}, \ldots, \tau_{s 0}, x_{00}, S\left(\kappa_{0}\right)\right)+\varepsilon(\delta \xi, 0, \ldots, 0)^{\top} .
\end{aligned}
$$

Let a number $\varepsilon_{0}>0$ be insomuch small that

$$
S\left(\kappa_{0}\right)+t\left(S\left(\kappa_{0}+\varepsilon \delta \kappa\right)-S\left(\kappa_{0}\right)\right) \in O \quad \forall(t, \varepsilon) \in(0,1) \times\left(0, \varepsilon_{0}\right), \quad \forall \delta z \in V_{0} \times V,
$$

where $\delta z=(\delta \xi, \delta \kappa)$ (see Lemma 4.16).
Let us now transform the difference

$$
\begin{array}{r}
Q\left(t_{00}+\varepsilon \delta t_{0}, t_{10}+\varepsilon \delta t_{1}, \tau_{10}+\varepsilon \delta \tau_{1}, \ldots, \tau_{s 0}+\varepsilon \delta \tau_{s}, x_{00}+\varepsilon \delta x_{0}, S\left(\kappa_{0}+\varepsilon \delta \kappa\right)\right) \\
\quad-Q\left(t_{00}, t_{10}, \tau_{10}, \ldots, \tau_{s 0}, x_{00}, S\left(\kappa_{0}\right)\right) \\
=\int_{0}^{1} \frac{d}{d t} Q\left(t_{00}+\varepsilon t \delta t_{0}, t_{10}+\varepsilon t \delta t_{1}, \tau_{10}+\varepsilon t \delta \tau_{1}, \ldots,\right. \\
\left.\tau_{s 0}+\varepsilon t \delta \tau_{s}, x_{00}+\varepsilon t \delta x_{0}, S\left(\kappa_{0}\right)+t\left(S\left(\kappa_{0}+\varepsilon \delta \kappa\right)-S\left(\kappa_{0}\right)\right)\right) d t \\
=\varepsilon\left[Q_{0 t_{0}} \delta t_{0}+Q_{0 t_{1}} \delta t_{1}+\sum_{i=1}^{s} Q_{0 \tau_{i}} \delta \tau_{i}+Q_{0 x_{0}} \delta x_{0}+Q_{0 x_{1}} d S_{\kappa_{0}}(\delta \kappa)\right]+\alpha(\varepsilon \delta z),
\end{array}
$$

where

$$
\begin{aligned}
& \alpha(\varepsilon \delta z)= \varepsilon \int_{0}^{1}\left\{\left[Q_{0 t_{0}}[\varepsilon ; t]-Q_{0 t_{0}}\right] \delta t_{0}+\left[Q_{0 t_{1}}[\varepsilon ; t]-Q_{0 t_{1}}\right] \delta t_{1}+\sum_{i=1}^{s}\left[Q_{0 \tau_{i}}[\varepsilon ; t]-Q_{0 \tau_{i}}\right] \delta \tau_{i}\right. \\
&\left.+\left[Q_{0 x_{0}}[\varepsilon ; t]-Q_{0 x_{0}}\right] \delta x_{0}+\left[Q_{0 x_{1}}[\varepsilon ; t]-Q_{0 x_{1}}\right] S_{\kappa_{0}}(\delta \kappa)+Q_{0 x_{1}}[\varepsilon ; t] o(\varepsilon \delta \kappa)\right\} d t, \\
& Q_{0 t_{0}}[\varepsilon ; t]= Q_{t_{0}}\left(t_{00}+\varepsilon t \delta t_{0}, t_{10}+\varepsilon t \delta t_{1}, \tau_{10}+\varepsilon t \delta \tau_{1}, \ldots,\right. \\
&\left.\tau_{s 0}+\varepsilon t \delta \tau_{s}, x_{00}+\varepsilon t \delta x_{0}, S\left(\kappa_{0}\right)+t\left(S\left(\kappa_{0}+\varepsilon \delta \kappa\right)-S\left(\kappa_{0}\right)\right)\right) .
\end{aligned}
$$

It is easy to note that

$$
\begin{gathered}
\lim _{\varepsilon \rightarrow 0}\left[Q_{0 t_{i}}[\varepsilon ; t]-Q_{0 t_{i}}\right]=0, \quad i=1,2, \quad \lim _{\varepsilon \rightarrow 0}\left[Q_{0 \tau_{i}}[\varepsilon ; t]-Q_{0 \tau_{i}}\right]=0, \quad i=\overline{1, s}, \\
\lim _{\varepsilon \rightarrow 0}\left[Q_{0 x_{i}}[\varepsilon ; t]-Q_{0 x_{i}}\right]=0, \quad i=0,1 .
\end{gathered}
$$

Therefore, $\alpha(\varepsilon \delta z)=o(\varepsilon \delta z)$. Thus,

$$
P\left(z_{0}+\varepsilon \delta z\right)-P\left(z_{0}\right)=\varepsilon\left[Q_{0 t_{0}} \delta t_{0}+Q_{0 t_{1}} \delta t_{1}+\sum_{i=1}^{s} Q_{0 \tau_{i}} \delta \tau_{i}+Q_{0 x_{1}} d S_{\kappa_{0}}(\delta \kappa)+(\delta \xi, 0, \ldots, 0)^{\top}\right]+o(\varepsilon \delta z) .
$$

Due to the relations (4.58) and (4.59) from the above equality we get (4.62).

Quasiconvexity of the filter $\Psi_{z_{0}}$. Continuity of the mapping P on the filter $\operatorname{co}\left[\Psi_{z_{0}}\right]$. In the topological vector space E_{z}, let us define the filter $\Psi_{z_{0}}$ as the direct product

$$
\Psi_{z_{0}}=\Psi_{\widehat{y}_{0}} \times \Psi_{\varphi_{0}} \times \Psi
$$

of two filters $\Psi_{\widehat{y}_{0}}, \widehat{y}_{0}=\left(0, y_{0}\right)^{\top}$, and $\Psi_{\varphi_{0}}$ which are defined, respectively, by the convex bases

$$
\begin{aligned}
\left\{\left(B_{0} \cap \mathbb{R}_{+}\right) \times\right. & \left(B_{t_{00}} \cap\left(a, t_{00}\right]\right) \times\left(B_{t_{01}} \cap\left(a, t_{10}\right]\right) \times\left(B_{\tau_{10}} \cap\left(\theta_{11}, \theta_{12}\right)\right) \times \cdots \\
& \left.\times\left(B_{\tau_{s 0}} \cap\left(\theta_{s 1}, \theta_{s 2}\right)\right) \times\left(B_{x_{00}} \cap O\right): B_{0}, \ldots, B_{x_{00}} \text { are convex neighborhoods }\right\} \\
\left\{B_{\varphi_{0}} \cap \Phi_{1}:\right. & \left.B_{\varphi_{0}} \subset \operatorname{PC}\left(I_{1}, \mathbb{R}^{n}\right) \text { is a convex neighborhood }\right\} .
\end{aligned}
$$

The filter Ψ has been introduced in Subsection 4.3.
There exists a number $\delta_{1}>0$ such that the set

$$
\begin{aligned}
W=\mathbb{R}_{+} \times & \left(B\left(t_{00} ; \delta_{1}\right) \cap\left(a, t_{00}\right]\right) \times\left(B\left(t_{01} ; \delta_{1}\right) \cap\left(a, t_{10}\right]\right) \times\left(B\left(\tau_{10} ; \delta_{1}\right) \cap\left(\theta_{11}, \theta_{12}\right)\right) \times \cdots \\
& \left.\left.\left.\times B\left(\tau_{s 0} ; \delta_{1}\right) \cap\left(\theta_{s 1}, \theta_{s 2}\right)\right) \times\left(B\left(x_{00} ; \delta_{1}\right) \cap O\right)\right) \times\left(B\left(\varphi_{0} ; \delta_{1}\right) \cap \Phi_{1}\right)\right) \times W_{f_{0}}^{(1)}\left(K_{1}, \delta_{1}\right) \subset D
\end{aligned}
$$

and, moreover, the mapping

$$
P: W \rightarrow \mathbb{R}_{p}^{l+1}
$$

is continuous in the topology induced from E_{z}. Here

$$
W_{f_{0}}^{(1)}\left(K_{1}, \delta_{1}\right)=\left\{f \in E_{f}^{(1)}: \quad H_{1}\left(f-f_{0}: K_{1}\right) \leq \delta_{1}\right\} .
$$

The element $W_{K_{1}, \delta_{1}}$ of the filter Ψ is contained in the convex set $W_{f_{0}}^{(1)}\left(K_{1}, \delta_{1}\right)$. Therefore,

$$
\operatorname{co}\left(W_{z_{0}}\right) \subset W \subset D
$$

where

$$
\begin{aligned}
& W_{z_{0}}=\mathbb{R}_{+} \times\left(B\left(t_{00} ; \delta_{1}\right) \cap\left(a, t_{00}\right]\right) \times\left(B\left(t_{01} ; \delta_{1}\right) \cap\left(a, t_{10}\right]\right) \times\left(B\left(\tau_{10} ; \delta_{1}\right) \cap\left(\theta_{11}, \theta_{12}\right)\right) \times \cdots \\
&\left.\left.\left.\times B\left(\tau_{s 0} ; \delta_{1}\right) \cap\left(\theta_{s 1}, \theta_{s 2}\right)\right) \times\left(B\left(x_{00} ; \delta_{1}\right) \cap O\right)\right) \times\left(B\left(\varphi_{0} ; \delta_{1}\right) \cap \Phi_{1}\right)\right) \times W_{K_{1}, \delta_{1}} \in \Psi_{z_{0}}
\end{aligned}
$$

Hence there exists an element $W_{z_{0}} \in \Psi$ such that

$$
P: \operatorname{co}\left(W_{z_{0}}\right) \rightarrow \mathbb{R}^{l+1}
$$

is continuous. Therefore, the mapping P is defined and continuous on the filter $\operatorname{co}\left(\left[\Psi_{z_{0}}\right]\right)$.
Criticality of the mapping P on the filter $\Psi_{z_{0}}$. The point $z_{0}=\left(0, \kappa_{0}\right)$ belongs to all elements of the filter $\Psi_{z_{0}}$, and, moreover,

$$
P\left(z_{0}\right)=\left(q^{0}\left(t_{00}, t_{10}, \tau_{10}, \ldots, \tau_{s 0}, x_{00}, x_{0}\left(t_{10}\right)\right), 0, \ldots, 0\right)^{\top}
$$

Introduce the set

$$
\begin{array}{r}
\mho=\left\{\kappa=\left(t_{0}, t_{1}, \tau_{1}, \ldots, \tau_{s}, x_{0}, \varphi, f\right): f=f\left(t, x, x_{1}, \ldots, x_{s}, u(t), u\left(t-\theta_{1}\right), \ldots, u\left(t-\theta_{\nu}\right)\right)\right. \\
\left.w=\left(t_{0}, t_{1}, \tau_{1}, \ldots, \tau_{s}, x_{0}, \varphi, u\right) \in W_{0}\right\} .
\end{array}
$$

For an arbitrary element

$$
z=(\xi, \kappa) \in W_{z_{0}} \cap\left(\mathbb{R}_{+} \times \mho\right)
$$

where $W_{z_{0}} \in \Psi_{z_{0}}$, we have

$$
P(z)=\left(q^{0}\left(t_{0}, t_{1}, \tau_{1}, \ldots, \tau_{s}, x_{0}, x\left(t_{1}\right) ; \kappa\right), 0, \ldots, 0\right)^{\top}
$$

The element $w_{0} \in W_{0}$ is optimal; therefore, there exists an element $W_{z_{0}}\left(K_{2} ; \delta_{2}\right) \in \Psi_{z_{0}}$, where $\delta_{2} \in$ $(0, \widehat{\delta})$ and $K_{2} \subset O$ is a compact set containing \widehat{K} such that for an arbitrary element

$$
z \in W_{z_{0}}\left(K_{2} ; \delta_{2}\right) \cap\left(\mathbb{R}_{+} \times \mho\right)
$$

the inequality

$$
q^{0}\left(t_{00}, t_{10}, \tau_{10}, \ldots, \tau_{s 0}, x_{00}, x_{0}\left(t_{10}\right)\right) \leq q^{0}\left(t_{0}, t_{1}, \tau_{1}, \ldots, \tau_{s}, x_{0}, x\left(t_{1} ; \kappa\right)\right)+\xi
$$

holds. It is easy to see that

$$
P\left(W_{z_{0}} \cap\left(\mathbb{R}_{+} \times \mho\right)\right) \subset \mathbb{R}_{0}=\left\{\left(p^{1}, 0 \ldots, 0\right)^{\top} \in \mathbb{R}^{p+1}\right\}
$$

and the point $P\left(z_{0}\right)$ is a boundary point of the set $P\left(W_{z_{0}}\left(K_{2} ; \delta_{2}\right) \cap\left(\mathbb{R}_{+} \times \mho\right)\right)$ with respect to the space \mathbb{R}_{0}.

Therefore, $P\left(z_{0}\right) \in \partial\left(P\left(W_{z_{0}}\left(K_{2} ; \delta_{2}\right) \cap \mathbb{R}_{0}\right)\right)$, and, the more so, $P\left(z_{0}\right) \in \partial\left(P\left(W_{z_{0}}\left(K_{2} ; \delta_{2}\right)\right)\right.$.

Deduction of the necessary optimality conditions. All the conditions of Theorem 4.5 hold. Therefore, there exist a nonzero vector $\pi=\left(\pi_{0}, \ldots, \pi_{l}\right)$ and an element $\widehat{W}_{z_{0}} \in \Psi_{z_{0}}$ such that the inequality

$$
\begin{equation*}
\pi d P_{z_{0}}(\delta z) \leq 0 \quad \forall \delta z \in \operatorname{cone}\left(\widehat{W}_{z_{0}}-z_{0}\right) \tag{4.63}
\end{equation*}
$$

holds, where $d P_{z_{0}}(\delta z)$ has the form (4.62).
Introduce the function

$$
\begin{equation*}
\psi(t)=\pi Q_{0 x_{1}} Y\left(t: t_{10}\right) \tag{4.64}
\end{equation*}
$$

as is easily seen, it satisfies the equation (4.54) and the conditions

$$
\begin{equation*}
\psi\left(t_{10}\right)=\pi Q_{0 x_{1}}, \quad \psi(t)=0, t>t_{10} . \tag{4.65}
\end{equation*}
$$

Taking into account (4.62), (4.64) and (4.65), from the inequality (4.63) we obtain

$$
\begin{align*}
& \left\{\pi Q_{0 t_{0}}-\psi\left(t_{00}\right) f_{0}^{-}-\sum_{i=1}^{s} \psi\left(t_{00}+\tau_{i 0}\right) f_{0 i}\right\} \delta t_{0}+\left\{\pi Q_{0 t_{1}}+\psi\left(t_{10}\right) f_{s+1}^{-}\right\} \delta t_{1} \\
& \quad+\sum_{i=1}^{s}\left\{\pi Q_{0 \tau_{i}}-\psi\left(t_{00}+\tau_{i 0}\right) f_{0 i}-\int_{t_{00}}^{t_{10}} \psi(t) f_{0 x_{i}}[t] \dot{x}_{0}\left(t-\tau_{i 0}\right) d t\right\} \delta \tau_{i}+\left\{\pi Q_{0 x_{0}}+\psi\left(t_{00}\right)\right\} \delta x_{0} \\
& \quad+\sum_{i=1}^{s} \int_{t_{00}-\tau_{i 0}}^{t_{00}} \psi\left(t+\tau_{i 0}\right) f_{0 x_{i}}\left[t+\tau_{i 0}\right] \delta \varphi(t) d t+\int_{t_{00}}^{t_{10}} \psi(t) \delta f[t] d t+\pi_{0} \delta \xi, \quad \delta z \in \operatorname{cone}\left(\widehat{W}_{z_{0}}-z_{0}\right) . \tag{4.66}
\end{align*}
$$

The condition $\delta z \in \operatorname{cone}\left(\widehat{W}_{z_{0}}-z_{0}\right)$ is equivalent to the conditions

$$
\begin{gathered}
\delta \xi \in \mathbb{R}_{+}, \quad \delta t_{0} \in(-\infty, 0], \quad \delta t_{1} \in(-\infty, 0], \quad \delta \tau_{i} \in \mathbb{R}, \quad i=\overline{1, s}, \\
\delta x_{0} \in \operatorname{cone}\left(\widehat{W}_{x_{00}}-x_{00}\right), \quad \delta \varphi \in \operatorname{cone}\left(\widehat{W}_{\varphi_{0}}-\varphi_{0}\right), \quad \delta f \in \operatorname{cone}\left(\widehat{W}_{f_{0}}-f_{0}\right),
\end{gathered}
$$

where

$$
\widehat{W}_{x_{00}}=B_{x_{00}} \cap X_{0}, \quad \widehat{W}_{\varphi_{0}}=B_{\varphi_{0}} \cap \Phi_{1} \in \Psi_{\varphi_{0}}, \widehat{W}_{f_{0}} \in \Psi_{f_{0}}
$$

Let $\delta t_{0}=\delta t_{1}=\delta \tau_{1}=\cdots=\delta \tau_{i}=0$ and $\delta x_{0}=\delta \varphi=\delta f=0$ in (4.66), we obtain

$$
\pi_{0} \delta \xi \leq 0 \quad \forall \delta \xi \in \mathbb{R}_{+}
$$

This implies

$$
\pi_{0} \leq 0
$$

Setting $\delta \xi=\delta t_{0}=\delta \tau_{1}=\cdots=\delta \tau_{i}=0$, and $\delta x_{0}=\delta \varphi=\delta f=0$; then, taking into account the fact that $\delta t_{0} \in(-\infty, 0]$, from (4.66) for the initial moment t_{00} we obtain the following condition:

$$
\pi Q_{0 t_{0}} \geq \psi\left(t_{00}\right) f_{0}^{-}+\sum_{i=1}^{s} \psi\left(t_{00}+\tau_{i 0}\right) f_{0 i}
$$

If $\delta \xi=\delta t_{0}=\delta \tau_{1}=\cdots=\delta \tau_{i}=0$ and $\delta x_{0}=\delta \varphi=\delta f=0$ in the inequality (4.66), then for the final moment t_{10} we obtain the following condition:

$$
\pi Q_{0 t_{1}} \geq-\psi\left(t_{10}\right) f_{s+1}^{-}
$$

If $\delta \xi=\delta t_{0}=\delta t_{1}=0$ and $\delta x_{0}=\delta \varphi=\delta f=0$, we get

$$
\sum_{i=1}^{s}\left\{\pi Q_{0 \tau_{i}}-\psi\left(t_{00}+\tau_{i 0}\right) f_{0 i}-\int_{t_{00}}^{t_{10}} \psi(t) f_{0 x_{i}}[t] \dot{x}_{0}\left(t-\tau_{i 0}\right) d t\right\} \delta \tau_{i} \leq 0 \forall \delta \tau_{i} \in \mathbb{R}, \quad i=\overline{1, s}
$$

From the above follow the conditions for the delays $\tau_{i 0}, i=\overline{1, s}$:

$$
\pi Q_{0 \tau_{i}}=\psi\left(t_{00}+\tau_{i 0}\right) f_{0 i}+\int_{t_{00}}^{t_{10}} \psi(t) f_{0 x_{i}}[t] \dot{x}_{0}\left(t-\tau_{i 0}\right) d t, \quad i=\overline{1, s}
$$

Let $\delta \xi=\delta t_{0}=\delta t_{1}=\delta \tau_{1}=\cdots=\delta \tau_{i}=0$ and $\delta \varphi=\delta f=0$ in (4.66). Then

$$
\left\{\pi Q_{0 x_{0}}+\psi\left(t_{00}\right)\right\} \delta x_{0} \leq 0, \quad \delta x_{0} \in \operatorname{cone}\left(\left(B_{x_{00}} \cap X_{0}\right)-x_{00}\right)
$$

Let us prove the inclusion

$$
\operatorname{cone}\left(\left(B_{x_{00}} \cap X_{0}\right)-x_{00}\right) \supset X_{0}-x_{00}
$$

Indeed, let $x_{0} \in X_{0}$ be arbitrary point. The set x_{0} is convex, therefore, for an arbitrary $\varepsilon \in[0,1]$, the point $x_{\varepsilon}=x_{00}+\varepsilon\left(x_{0}-x_{00}\right) \in X_{0}$. On the other hand, for a sufficiently small $\varepsilon>0, x_{\varepsilon} \in B_{x_{00}}$. Hence $x_{\varepsilon}-x_{00}=\varepsilon\left(x_{0}-x_{00}\right) \in\left(B_{x_{00}} \cap X_{0}\right)-x_{00}$. This implies $x_{0}-x_{00} \in \operatorname{cone}\left(\left(B_{x_{00}} \cap X_{0}\right)-x_{00}\right)$. Thus,

$$
\left\{\pi Q_{0 x_{0}}+\psi\left(t_{00}\right)\right\} x_{00}=\max _{x_{0} \in X_{0}}\left\{\pi Q_{0 x_{0}}+\psi\left(t_{00}\right)\right\} x_{0}
$$

Let $\delta \xi=\delta t_{0}=\delta t_{1}=\delta \tau_{1}=\cdots=\delta \tau_{i}=0$ and $\delta x_{0}=\delta f=0$. We have

$$
\sum_{i=1}^{s} \int_{t_{00}-\tau_{i 0}}^{t_{00}} \psi\left(t+\tau_{i 0}\right) f_{0 x_{i}}\left[t+\tau_{i 0}\right] \delta \varphi(t) d t \leq 0 \quad \forall \delta \varphi \in \operatorname{cone}\left(\widehat{W}_{\varphi_{0}}-\varphi_{0}\right) .
$$

Analogously, we can prove

$$
\operatorname{cone}\left(\widehat{W}_{\varphi_{0}}-\varphi_{0}\right) \supset \Phi_{1}-\varphi_{0}
$$

Thus,

$$
\sum_{i=1}^{s} \int_{t_{00}-\tau_{i 0}}^{t_{00}} \psi\left(t+\tau_{i 0}\right) f_{0 x_{i}}\left[t+\tau_{i 0}\right] \varphi_{0}(t) d t=\max _{\varphi(t) \in \Phi_{1}} \sum_{i=1}^{s} \int_{t_{00}-\tau_{i 0}}^{t_{00}} \psi\left(t+\tau_{i 0}\right) f_{0 x_{i}}\left[t+\tau_{i 0}\right] \varphi(t) d t .
$$

We now consider the case where $\delta \xi=\delta t_{0}=\delta t_{1}=\delta \tau_{1}=\cdots=\delta \tau_{i}=0$ and $\delta x_{0}=\delta \varphi=0$. From (4.66) we obtain

$$
\int_{t_{00}}^{t_{10}} \psi(t) \delta f[t] d t \leq 0, \quad \delta f \in \operatorname{cone}\left(\widehat{W}_{f_{0}}-f_{0}\right)
$$

Now, using the last inequality, let us prove the integral maximum principle. For this purpose, we have to prove the continuity of the mapping

$$
\begin{equation*}
\delta f \longrightarrow \int_{t_{00}}^{t_{10}} \delta f[t] d t, \delta f[t]=\delta f\left(t, x_{0}(t), x_{0}\left(t-\tau_{10}\right), \ldots, x_{0}\left(t-\tau_{s 0}\right)\right) \tag{4.67}
\end{equation*}
$$

on the set $W^{(1)}\left(K_{1} ; \alpha\right)$ in the topology induced from $E_{f}^{(1)}$. Here $K_{1} \subset O$ is a compact set containing a certain neighborhood of the set $\varphi_{0}\left(I_{2}\right) \cup x_{0}\left(\left[t_{00}, t_{10}\right]\right)$ and $\alpha>0$ is a certain number.

Let $\delta f_{i} \in W^{(1)}\left(K_{1} ; \alpha\right), i=1,2, \ldots$, and $\lim _{i \rightarrow \infty} H_{0}\left(\delta f_{i} ; K_{1}\right)=0$. The mapping (4.67) is continuous if

$$
\begin{equation*}
\lim _{i \rightarrow \infty} \int_{t_{00}}^{t_{10}} \psi(t) \delta f_{i}[t] d t=0 \tag{4.68}
\end{equation*}
$$

Integration by parts yields

$$
\int_{t_{00}}^{t_{10}} \delta \psi(t) f_{i}[t] d t=\psi\left(t_{00}\right) \int_{t_{00}}^{t_{10}} \delta f_{i}[t] d t-\int_{t_{00}}^{t_{10}} \psi(t)\left(\int_{t_{00}}^{t} \delta f_{i}[\xi] d \xi\right) d t .
$$

By Lemma 1.5, we have

$$
\lim _{i \rightarrow \infty} \int_{t_{00}}^{t} \delta f_{i}[\xi] d \xi=0
$$

uniformly in $t \in\left[t_{00}, t_{10}\right]$.
Therefore, the relation (4.68) holds. The continuity of the mapping (4.67) allows us to strengthen inequality given above:

$$
\int_{t_{00}}^{t_{10}} \psi(t) \delta f[t] d t \leq 0, \quad \delta f \in \operatorname{cone}\left(\left[W^{(1)}\left(K_{1} ; \alpha\right)\right]_{\widehat{W}_{f_{0}}}-f_{0}\right)
$$

According to Lemma 4.14,

$$
\begin{equation*}
\operatorname{cone}\left(\left[W^{(1)}\left(K_{1} ; \alpha\right)\right]_{\widehat{W}_{f_{0}}}-f_{0}\right) \supset F_{1}-f_{0} \tag{4.69}
\end{equation*}
$$

From (4.69) it follows the integral maximum principle

$$
\int_{t_{00}}^{t_{10}} \psi(t) f_{0}[t] d t=\max _{u(t) \in \Omega(I, U)} \int_{t_{00}}^{t_{10}} \psi(t) f\left(t, x_{0}(t), x_{0}\left(t-\tau_{10}\right), \ldots, x_{0}\left(t-\tau_{s 0}\right), u(t), u\left(t-\theta_{1}, \ldots, u\left(t-\theta_{\nu}\right)\right)\right) d t
$$

Theorem 4.6 is proved.
To conclude this subsection, it should be noted that Theorems 4.7-4.10 are proved in a similar way by using the corresponding variation formulas of a solution.

4.6 The optimal control problem with the continuous initial condition

Consider the optimal control problem

$$
\begin{gather*}
\dot{x}(t)=f\left(t, x(t), x\left(t-\tau_{1}\right), \ldots, x\left(t-\tau_{s}\right), u(t), u\left(t-\theta_{1}\right), \ldots, u\left(t-\theta_{\nu}\right)\right), \tag{4.70}\\
t \in\left[t_{0}, t_{1}\right] \subset I, u \in \Omega\left(I_{2}, U\right), \\
x(t)=\varphi(t), t \in\left[\widehat{\tau}, t_{0}\right], \quad \varphi \in \Phi_{3}, \tag{4.71}\\
q^{i}\left(t_{0}, t_{1}, \tau_{1}, \ldots, \tau_{s}, \varphi\left(t_{0}\right), x\left(t_{1}\right)\right)=0, i=\overline{1, l}, \tag{4.72}\\
q^{0}\left(t_{0}, t_{1}, \tau_{1}, \ldots, \tau_{s}, \varphi\left(t_{0}\right), x\left(t_{1}\right)\right) \longrightarrow \min \tag{4.73}
\end{gather*}
$$

where $\Phi_{3}=\left\{\varphi \in C\left(I_{1}, \mathbb{R}^{n}\right): \varphi(t) \in N\right\}, N \subset O$ is a convex set.
The problem (4.70)-(4.73) is called an optimal control problem with the continuous initial condition.

Definition 4.16. Let $v=\left(t_{0}, t_{1}, \tau_{1}, \ldots, \tau_{s}, \varphi, u\right) \in A_{1}=(a, b) \times(a, b) \times\left(\theta_{11}, \theta_{12}\right) \times \cdots \times\left(\theta_{s 1}, \theta_{s 2}\right) \times$ $\left.\Phi_{3} \times \Omega(I, U)\right)$. A function $x(t)=x(t ; v) \in O, t \in\left[\widehat{\tau}, t_{1}\right]$, is called a solution of the equation (4.70) with the discontinuous initial condition (4.71), or a solution corresponding to the element v and defined on the interval $\left[\widehat{\tau}, t_{1}\right]$, if it satisfies the condition (4.71) and is absolutely continuous on the interval $\left[t_{0}, t_{1}\right]$ and satisfies the equation (4.70) a.e. on $\left[t_{0} . t_{1}\right]$.

Definition 4.17. An element $v=\left(t_{0}, t_{1}, \tau_{1}, \ldots, \tau_{s}, \varphi, u\right) \in A_{1}$ is said to be admissible if the corresponding solution $x(t)=x(t ; v)$ satisfies the boundary conditions (4.72).

Denote by A_{10} the set of admissible elements.
Definition 4.18. An element $v_{0}=\left(t_{00}, t_{10}, \tau_{10}, \ldots, \tau_{s 0}, \varphi_{0}, u_{0}\right) \in V_{10}$ is said to be optimal if there exist a number $\delta_{0}>0$ and a compact set $K_{0} \subset O$ such that for an arbitrary element $v \in A_{10}$ satisfying the condition

$$
\left|t_{00}-t_{0}\right|+\left|t_{10}-t_{1}\right|+\sum_{i=1}^{s}\left|\tau_{i 0}-\tau_{i}\right|+\left\|\varphi_{0}-\varphi\right\|_{I_{1}}+H_{1}\left(f_{0}-f ; K_{0}\right) \leq \delta_{0}
$$

the inequality

$$
q^{0}\left(t_{00}, t_{10}, \tau_{10}, \ldots, \tau_{s 0}, \varphi_{0}\left(t_{00}\right), x_{0}\left(t_{10}\right)\right) \leq q^{0}\left(t_{0}, t_{1}, \tau_{1}, \ldots, \tau_{s}, \varphi\left(t_{0}\right), x\left(t_{1}\right)\right)
$$

holds.
Theorem 4.11. Let v_{0} be an optimal element and let the following conditions hold:
4.14. $\tau_{s 0}>\cdots>\tau_{10}$ and with $\tau_{i 0} \in\left(\theta_{i 0}, \theta_{i+10}\right), i=\overline{1, s-1}$;
4.15. $\theta_{i}=m_{i} h, i=\overline{1, \nu}$, where $m_{i}, i=\overline{1, \nu}$, are natural numbers, $h>0$ is a real number;
4.16. the function $\varphi_{0}(t)$ is absolutely continuous and $\dot{\varphi}_{0}(t)$ is bounded;
4.17. the function $f_{0}(w), w=\left(t, x, x_{1}, \ldots, x_{s}\right) \in I \times O^{1+s}$, is bounded;
4.18. there exist the finite limits

$$
\lim _{t \rightarrow t_{00}-} \dot{\varphi}_{0}(t)=\dot{\varphi}_{0}^{-}, \quad \lim _{w \rightarrow w_{0}} f_{0}(w)=f_{0}^{-}, \quad w \in\left(a, t_{00}\right] \times O^{1+s},
$$

where $w_{0}=\left(t_{00}, \varphi_{0}\left(t_{00}\right), \varphi_{0}\left(t_{00}-\tau_{10}\right), \ldots, \varphi_{0}\left(t_{00}-\tau_{s 0}\right)\right)$;
4.19. there exists the finite limit

$$
\lim _{w \rightarrow w_{s+1}} f_{0}(w)=f_{s+1}^{-}, \quad w \in\left(t_{00}, t_{10}\right] \times O^{s+1}, \quad w_{s+1}=\left(t_{10}, x_{0}\left(t_{10}\right), x_{0}\left(t_{10}-\tau_{10}\right), \ldots, x_{s}\left(t_{10}-\tau_{s 0}\right)\right) .
$$

Then there exist a vector $\pi=\left(\pi_{0}, \ldots, \pi_{l}\right) \neq 0$ with $\pi_{0} \leq 0$, and a solution $\psi(t)=\left(\psi_{1}(t), \ldots, \psi_{n}(t)\right)$ of the equation

$$
\begin{gather*}
\dot{\psi}(t)=-\psi(t) f_{0 x}[t]-\sum_{i=1}^{s} \psi\left(t+\tau_{i 0}\right) f_{0 x_{i}}\left[t+\tau_{i 0}\right], \quad t \in\left[t_{00}, t_{10}\right] \\
\psi(t)=0, \quad t>t_{10} \tag{4.74}
\end{gather*}
$$

such that the following conditions hold:
4.20. the conditions for the moments t_{00} and t_{10} :

$$
\pi Q_{0 t_{0}} \geq \psi\left(t_{00}\right)\left[\dot{\varphi}_{0}^{-}-f_{0}^{-}\right], \pi Q_{0 t_{1}} \geq-\psi\left(t_{10}\right) f_{s+1}^{-}
$$

4.21. the conditions for the delays $\tau_{i 0}, i=\overline{1, s}$:

$$
\pi Q_{0 \tau_{i}}=\int_{t_{00}}^{t_{10}} \psi(t) f_{0 x_{i}}[t] \dot{x}_{0}\left(t-\tau_{i 0}\right) d t, \quad i=\overline{1, s} ;
$$

4.22. the maximum principle for the initial function $\varphi_{0}(t)$:

$$
\begin{aligned}
& {\left[Q_{0 x_{0}}+\psi\left(t_{00}\right)\right] \varphi_{0}\left(t_{00}\right)+\sum_{i=1}^{s} \int_{t_{00}-\tau_{i 0}}^{t_{00}} \psi\left(t+\tau_{i 0}\right) f_{0 x_{i}}\left[t+\tau_{i 0}\right] \varphi_{0}(t) d t, } \\
= & \max _{\varphi(t) \in \Phi_{2}}\left[Q_{0 x_{0}}+\psi\left(t_{00}\right)\right] \varphi\left(t_{00}\right)+\sum_{i=1}^{s} \int_{t_{00}-\tau_{i 0}}^{t_{00}} \psi\left(t+\tau_{i 0}\right) f_{0 x_{i}}\left[t+\tau_{i 0}\right] \varphi(t) d t ;
\end{aligned}
$$

4.23. the integral maximum principle for the control function $u_{0}(t)$:

$$
\begin{aligned}
& \int_{t_{00}}^{t_{10}} \psi(t) f_{0}[t] d t \\
& =\max _{u(t) \in \Omega\left(I_{2}, U\right)} \int_{t_{00}}^{t_{10}} \psi(t) f\left(t, x_{0}(t), x_{0}\left(t-\tau_{10}\right), \ldots, x_{0}\left(t-\tau_{i 0}, u(t), u\left(t-\theta_{1}\right), \ldots, u\left(t-\theta_{\nu}\right)\right)\right) d t
\end{aligned}
$$

4.24. the condition for the function $\psi(t)$

$$
\psi\left(t_{10}\right)=\pi Q_{0 x_{1}}
$$

Theorem 4.12. Let v_{0} be an optimal element and let the conditions 4.14-4.17 hold. Moreover, there exist the finite limits

$$
\begin{gathered}
\lim _{t \rightarrow t_{00}+} \dot{\varphi}(t)=\dot{\varphi}_{0}^{+}, \quad \lim _{w \rightarrow w_{0}} f_{0}(w)=f_{0}^{+}, \quad w \in\left[t_{00}, b\right) \times O^{1+s} \\
\lim _{w \rightarrow w_{s+1}} f_{0}(w)=f_{s+1}^{+}, \quad w \in\left[t_{10}, b\right) \times O^{s+1}
\end{gathered}
$$

Then there exist a vector $\pi=\left(\pi_{0}, \ldots, \pi_{l}\right) \neq 0$ with $\pi_{0} \leq 0$, and a solution of the equation (4.74) such that the conditions 4.21-4.24 hold. Moreover,

$$
\pi Q_{0 t_{0}} \leq \psi\left(t_{00}\right)\left[\dot{\varphi}_{0}^{+}-f_{0}^{+}\right], \quad \pi Q_{0 t_{1}} \leq-\psi\left(t_{10}\right) f_{s+1}^{+}
$$

Theorem 4.13. Let v_{0} be an optimal element and let the conditions of Theorems 4.11 and 4.12 hold. Moreover, $\dot{\varphi}_{0}^{-}-f_{0}^{-}=\dot{\varphi}_{0}^{+}-f_{0}^{+}:=\widehat{f_{0}}, f_{s+1}^{-}=f_{s+1}^{+}:=\widehat{f_{s+1}}$. Then there exist a vector $\pi=\left(\pi_{0}, \ldots, \pi_{l}\right) \neq 0$, with $\pi_{0} \leq 0$, and a solution of the equation (4.74) such that the conditions 4.21-4.24 hold. Moreover,

$$
\pi Q_{0 t_{0}}=\psi\left(t_{00}\right) \widehat{f}_{0}, \quad \pi Q_{0 t_{1}}=-\psi\left(t_{10}\right) \widehat{f}_{s+1}
$$

By variation formulas of a solution (see Section 3), Theorems 4.11-4.13 are proved by the analogous scheme.

References

[1] R. P. Agarwal, L. Berezansky, E. Braverman and A. Domoshnitsky, Nonoscillation theory of functional differential equations with applications. Springer Science \& Business Media, New York-Dordrecht-Heidelberg-London, 2012.
[2] N. V. Azbelev, V. P. Maksimov and L. F. Rakhmatullina, Introduction to the theory of functional differential equations: methods and applications. Contemporary Mathematics and Its Applications, 3. Hindawi Publishing Corporation, Cairo, 2007.
[3] R. Bellman and K. L. Cooke, Differential-difference equations. Academic Press, New York-London, 1963.
[4] R. D. Driver, Ordinary and delay differential equations. Applied Mathematical Sciences, Vol. 20. SpringerVerlag, New York-Heidelberg, 1977.
[5] R. Gabasov and F. Kirillova, The qualitative theory of optimal processes. (Russian) Monographs in Theoretical Foundations of Technical Cybernetics. Izdat. "Nauka", Moscow, 1971.
[6] R. V. Gamkrelidze, Principles of optimal control theory. Mathematical Concepts and Methods in Science and Engineering, Vol. 7. Plenum Press, New York-London, 1978.
[7] R. V. Gamkrelidze and G. L. Haratishvili, Extremal problems in linear topological spaces. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 33 (1969), 781-839.
[8] R. V. Gamkrelidze and G. L. Kharatishvili, Extremal problems in linear topological spaces. I. Math. Systems Theory 1 (1967), 229-256.
[9] R. V. Gamkrelidze, Necessary first order conditions, and the axiomatics of extremal problems. (Russian) Collection of articles dedicated to Academician Ivan Matveevich Vinogradov on his eightieth birthday, I. Trudy Mat. Inst. Steklov. 112 (1971), 152-180.
[10] R. V. Gamkrelidze, On some extremal problems in the theory of differential equations with applications to the theory of optimal control. J. Soc. Indust. Appl. Math. Ser. A Control 3 (1965) 106-128.
[11] R. V. Gamkrelidze, On sliding optimal states. (Russian) Dokl. Akad. Nauk SSSR 143 (1962), 1243-1245.
[12] A. Halanay, Differential equations: Stability, oscillations, time lags. Academic Press, New York-London, 1966.
[13] J. Hale, Theory of functional differential equations. Applied Mathematical Sciences, Vol. 3. SpringerVerlag, New York-Heidelberg, 1977.
[14] L. V. Kantorovich and G. P. Akilov, Functional analysis. (Russian) Izdat. "Nauka", Moscow, 1977.
[15] G. L. Kharatishvili, Optimal processes with delays. Metsniereba, Tbilisi, 1966.
[16] G. L. Kharatishvili, A maximum principle in extremal problems with delays. 1967 Mathematical Theory of Control (Proc. Conf., Los Angeles, Calif., 1967), pp. 26-34 Academic Press, New York.
[17] G. L. Kharatishvili, The maximum principle in the theory of optimal processes involving delay. (Russian) Dokl. Akad. Nauk SSSR 136 (1961), 39-42; translated in Soviet Math. Dokl. 2 (1961), 28-32.
[18] G. L. Kharatishvili, Z. A. Machaidze, N. I. Markozashvili and T. A. Tadumadze, Abstract variational theory and its application to optimal problems with lag. (Russian) Metsniereba, Tbilisi, 1973.
[19] G. Kharatishvili, T. Tadumadze and N. Gorgodze, Continuous dependence and differentiability of solution with respect to initial data and right-hand side for differential equations with deviating argument. Mem. Differential Equations Math. Phys. 19 (2000), 3-105.
[20] G. L. Kharatishvili and T. A. Tadumadze, Formulas for the variation of a solution and optimal control problems for differential equations with retarded arguments. (Russian) Sovrem. Mat. Prilozh. No. 25, Optimal. Upr. (2005), 3-166; translation in J. Math. Sci. (N.Y.) 140 (2007), no. 1, 1-175.
[21] I. T. Kiguradze, Boundary value problems for systems of ordinary differential equations. (Russian) Translated in J. Soviet Math. 43 (1988), no. 2, 2259-2339. Itogi Nauki i Tekhniki, Current problems in mathematics. Newest results, Vol. 30 (Russian), 3-103, 204, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1987.
[22] V. Kolmanovskii and A. Myshkis, Introduction to the theory and applications of functional differential equations. Kluwer Academic Publishers, 1999.
[23] M. A. Krasnosel skiǐ and S. G. Kreǐn, On the principle of averaging in nonlinear mechanics. (Russian) Uspehi Mat. Nauk (N.S.) 10 (1955), no. 3(65), 147-152.
[24] Ya. Kurcveйl and Z. Vorel, Continuous dependence of solutions of differential equations on a parameter. (Russian) Czechoslovak Math. J. 7 (82) (1957), 568-583.
[25] K. B. Mansimov, Singular controls in systems with delay. Elm, Baku, 1999.
[26] G. I. Marchuk, Mathematical modelling of immune response in infectious diseases. Mathematics and its Applications, 395. Kluwer Academic Publishers Group, Dordrecht, 1997.
[27] M. D. Mardanov, Certain problems of the mathematical theory of optimal processes with delay. Azerb. State Univ., Baku 1987.
[28] T. K. Melikov, Singular controls in hereditary systems. ELM, Baku, 2002.
[29] B. Sh. Mordukhovich, Approximation methods in problems of optimization and control. (Russian) "Nauka", Moscow, 1988.
[30] L. W. Neustadt, Optimization. A theory of necessary conditions. With a chapter by H. T. Banks. Princeton University Press, Princeton, N. J., 1976.
[31] N. M. Ogustoreli, Time-delay control systems. Academic Press, New York-London, 1966.
[32] A. P. Robertson and V. Dzh. Robertson, Topological vector spaces. (Russian) Izdat. "Mir", Moscow, 1967.
[33] A. M. Samoillenko, Investigation of differential equations with irregular right-hand side. (Russian) Abh. Deutsch. Akad. Wiss. Berlin Kl. Math. Phys. Tech. 1965 (1965), no. 1, 106-113.
[34] T. A. Tadumadze, Some problems in the qualitative theory of optimal control. (Russian) Tbilis. Gos. Univ., Tbilisi, 1983.
[35] T. Tadumadze, Continuous dependence of solutions of delay functional differential equations on the righthand side and initial data considering delay perturbations. Georgian Int. J. Sci. Technol. 6 (2014), no. 4, 353-369.
[36] T. Tadumadze, Local representations for the variation of solutions of delay differential equations. Mem. Differential Equathions Math. Phys. 21 (2000), 138-141.
[37] T. Tadumadze, Variation formulas of solution for a delay differential equation taking into account delay perturbation and the continuous initial condition. Georgian Math. J. 18 (2011), no. 2, 345-364.
[38] T. Tadumadze and A. Nachaoui, Variation formulas of solution for a controlled functional-differential equation considering delay perturbation. TWMS J. Appl. Eng. Math. 1 (2011), no. 1, 58-68.
[39] T. Tadumadze and N. Gorgodze, Variation formulas of a solution and initial data optimization problems for quasi-linear neutral functional differential equations with discontinuous initial condition. Mem. Differ. Equ. Math. Phys. 63 (2014), 1-77.
[40] T. Tadumadze and N. Gorgodze, Variation formulas of solution for a functional differential equation with delay function perturbation. Izv. Nats. Akad. Nauk Armenii Mat. 49 (2014), no. 2, 65-80; translation in J. Contemp. Math. Anal. 49 (2014), no. 2, 98-108.
[41] T. Tadumadze, Formulas of variation for solutions for some classes of functional differential equations and their applications. Nonlinear Anal. 71 (2009), no. 12, e706-e710.
[42] T. Tadumadze, Variation formulas for solution of delay differential equations with mixed initial condition and delay perturbation. Nel̄̄n̄̄̄ñ̄ Koliv. 17 (2014), no. 4, 503-532; translation in J. Math. Sci. (N.Y.) 212 (2016), no. 4, 442-475.
(Received 31.01.2016)

Author's address:

1. Department of Mathematics, Faculty Exact and Natural sciences, I. Javakhishvili Tbilisi State University, 13 University St. Tbilisi 0186, Georgia;
2. I. Vekua Institute of Applied Mathematics of I. Javakhishvili Tbilisi State University, 2 University St. Tbilisi 0186, Georgia.

E-mail: tamaz.tadumadze@tsu.ge; tamaz.tadumadze@gmail.com

