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Abstract. For nonlinear functional differential equations with several constant delays, the theorems
on the continuous dependence of solutions of the Cauchy problem on perturbations of the initial data
and on the right-hand side of the equation are proved. Under the initial data we mean the collection
of the initial moment, constant delays, initial vector and initial function. Perturbations of the initial
data and of the right-hand side of the equation are small in a standard norm and in an integral sense,
respectively. Variation formulas of a solution are derived for equations with a discontinuous initial
and continuous initial conditions. In the variation formulas, the effects of perturbations of the initial
moment and delays as well as the effects of continuous initial and discontinuous initial conditions are
revealed. For the optimal control problems with delays, general boundary conditions and functional,
the necessary conditions of optimality are obtained in the form of equality or inequality for the initial
and final moments, for delays and an initial vector and also in the form of the integral maximum
principle for the initial function and control.
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Introduction

As is known, real economical, biological, physical and majority of processes contain an information
about their behavior in the past, i.e., the processes that contain effects with delayed action and which
are described by functional differential equations with delays. To illustrate this, below we will consider
two simplest models of the economic growth and the immune response with several constant delays.

The economic growth model. Let N(t) be a quantity of a product produced at the moment ¢
expressed in money units. The fundamental principle of the economic growth is of the form

where C'(t) is the so-called apply function and Iy, (t) is a quantity induced investment. We consider
the case where the functions C(t) and I(t) have the form

C(t) = aoN(t), ap € (0,1), (0.2)

and

Linw(t) =Y aiN(t = 7)) + ag1N(t), 7>0, i=T,s. (0.3)
=1

Formula (0.3) shows that the value of investment at the moment ¢ depends on the quantity of money
at the moments ¢ —7;, ¢ = 1, s (in the past), and on the velocity (production current) at the moment ¢.
From the formulas (0.1)—(0.3) we get the equation with delays

N(t) = 2N =3 2Nt - 7).

Qs41 i1 Qs+l

The immune response Marchuk’s model [26]. A simple model about viruses attack on an
organism and its immune response is the following functional differential equation:

@1(t) = pr1(t) — pax1 (t)x3(t),

d(t) = Zmle(t — Ti)as(t — 7;) — peya(aa(t) — x3), (0.4)
F3(t) = Posrawa(t) — porszs(t) — pororr (£)z3(0),

where x1(t) is the viruses concentration at time ¢; x2(t) is the plasma cells concentration producing
antibodies. Plasma cells after a certain time period give the immune response which is characterized
S
by the summand Y p;yox1(t — 7;)x3(t — 73), where 7; > 0 are delays of immune reactions, i.e.,
i=1

this expression supports reproduction of antibodies; x3(t) is the antibodies concentration which kills
viruses. The first equation of system (0.4) describes changes of z(t), here the first term pyzq(t)
supports reproduction of viruses and the second term poxq(t)xs(t) characterizes the struggle between
viruses and antibodies and do not supports reproduction of viruses. x5 is the physiological level of
plasma cells, i.e., this concentration of plasma cells is always in the organism, and in the absence of
viruses in the organism, the plasma cells remain at a constant level. Finally, pi,ps,...,ps+6 are the
positive constants.

A great deal of works (including, for example, [1-4,12,13,19,22]) are devoted to the investigation
of functional differential equations with delay.

The present work consists of two parts, interconnected naturally in their meaning.

The first part considers the equation

i(t) = f(t,x@t),z(t —7),...,z(t — 7)) (0.5)
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with the discontinuous initial condition
z(t) = (t), t<to, z(to)= o. (0.6)

The condition (0.6) is called a discontinuous initial condition since, in general, z(tg) # ¢(to)-

In the same part we study the continuous dependence of solutions of the problem (0.5), (0.6) on
the initial data and on the right-hand side of the equation (0.5). Under the initial data we mean the
collection of initial moment ¢g, delays 7;, i = 1, s, initial vector xy and initial function ¢(t). Moreover,
we derive variation formulas of a solution (variation formulas) for the differential equation (0.5) with
the discontinuous initial condition (0.6) and the continuous initial condition

x(t) = p(t), t<to. (0.7)

The condition (0.7) is called a continuous initial condition since, always, z(t9) = ¢(to). The term
“variation formula of solution” has been introduced by R. V. Gamkrelidze and proved in [6] for the
ordinary differential equation.

In the second part, the optimization problems are investigated for the controlled equation

i(t) = f(t,z(t),z(t —11),...,2(t — 75),u(t)),

and the necessary optimality conditions are obtained.

In Section 1, we prove a theorem on the continuous dependence of a solution in the case where the
perturbation of f is small in the integral sense and initial data are small in the standard norm.
Theorems on the continuous dependence of solutions of the Cauchy problem and the boundary
value problems for various classes of ordinary differential equations and delay functional differen-
tial equations when perturbations of the right-hand side are small in the integral sense, are given
in [6,7,18-21,23,24,33-35, 39].

In Sections 2 and 3, we prove the variation formulas in which the effects of perturbations of the
initial moment and several delays and also the effects of discontinuous and continuous initial conditions
are detected. The variation formula of a solution plays a basic role in proving the necessary conditions
of optimality for sensitivity analysis of mathematical models. Moreover, the variation formula allows
one to get an approximate solution of the perturbed equation. The variation formulas for various
classes of differential equations are given in [6,7,18-20,36-42].

In Section 4, we extend the central result of the axiomatic theory of extremal problems (R. V. Gam-
krelidze and G. L. Kharatishvili’s theorem on the necessary criticality condition [7-9]) to the mappings
defined on a finitely locally convex set. This is stipulated by the fact that it is more convenient to
treat the optimal problems with delays as the problems of finding the mappings, defined and critical
on a finitely locally convex set and on a quasi-convex filter, respectively. The proof of the necessary
criticality condition given in Subsection 4.1, is performed according to the scheme presented in [7-9]
with nonessential changes.

In Subsection 4.3, we prove the quasiconvexity of the filter arising in the optimal control problem
with delays. The concept of quasiconvexity of a filter was introduced by R. V. Gamkrelidze, as a
result of studying slide modes [10, 11]. Of special interest is the finding of control systems with
a quasiconvex filter, since the necessary optimality conditions for these systems are deduced from
the necessary criticality condition. In Subsection 4.4, we consider optimal control problems with a
general functional and boundary conditions, the discontinuous initial condition and the continuous
condition. The necessary conditions are obtained: for the initial and final moments in the form of
inequalities and equalities, for delays in the form of inequalities and equalities, for the initial vector
in the form of equality, and for the initial function and control function in the form of integral
maximum principle. Optimal control problems for various classes of functional differential equations
are investigated in [5,15-18, 20, 25,27-31].
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1 Continuous dependence of solutions

1.1 Notation and auxiliary assertions

Let I = [a,b] be a finite interval and R be the n-dimensional vector space of points z = (z!,...,2")T

n . —_
with |z = 37 |2%|?, where T is the sign of transposition. Let 6; > 6;; > 0, i = 1, s, be the given
i=1
numbers; suppose that O C R" is an open set, and Fy is a set of functions f = (f?,.. ST
I x Ot1 — R™ satisfying the following conditions: for each fixed (x,z1,...,7,) € O°T!, the function

f(t,z,x1,...,xs) is measurable; for each f € Ey and compact set KX C O, there exist functions
my (), Ler(t) € Li(I,Ry), Ry =[0,00), such that for almost all t € I

lf(tz, 21,y xs)| <mpr(t) Y(z,z1,...,25) € K5

and
S
}f(t,l',l'l,...,xs) 7f(tay7y17"'ays)| S Lf,K(t)|:|x7y‘ +Z‘xl 7yl‘]
i=1
V(2 21,...,05) € K5 Y(y,y1,...,ys) € KL
Two functions fi, fo € Ey are said to be equivalent, if for every fixed (x,z1,...,25) € O™ and for

almost all t €
filt,x,x1,.. . xs) — fo(t,x, 21, ..., 25) = 0.

The equivalence classes of functions of the space Ey compose a vector space which is also denoted by
Ey; these classes are called the functions and denoted by f again. In what follows, under f € Ey it
is assumed any representative from the equivalence class of f.

Lemma 1.1 (6, p. 56]). Let f € Ey. Then the function

t/l
H(f;t/,t”,x,xl,...,xs) = ‘/f(t,$7$1,...,$s)dt
t/

is continuous in (t',t",x,x1,...,x5) € [? x O5T!

Lemma 1.2 ([6, p. 41]). Let Ko C O and K; C O be compact sets with Ko C int K;. Then there exist
a compact set Q C O**! and a continuously differentiable function x(z,x1,...,2s), (z,21,...,25) €
R” x --- x R" such that K§™ € Q C int K and

1 o xs) €Q,
71'3)_{, (.T,(Eh ,CL’) Q

T,T1,... =
x(@, 0, (z,z1,...,x5) &Kf“.

Lemma 1.3. Let f € Ef. Then the function

x(@,z1, .. x)f(t,z, @, ... x), tel, (z,xq,...,x,) € KT
I B B SR (1)
0, tel, (z,x1,...,25) € K",

satisfies for almost all t € I the following conditions:
lg(t,z, 1, ..., xs)| <myp g, () V(z,z1,...,25) ER" x--- x R" (1.3)
and
982,21, 25) = (991, - 90)| < Le®)[le = 91+ 3 [ — il (1.4)
i=1

V(z,21,...,25) ER" x -+ X R", V(y,y1,...,ys) ER" x -+ x R?,
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where
L¢(t) = Ly k, (t) + comy k, (1), (1.5)

S
Qg :sup{|xm(x,z1,...,xs)\ +Z|X$i(x,z1,...,xs)| s o(zyxy,. ., xs) ERT X XRn}.
i=1

Proof. The inequality (1.3) follows from the definition of the function g. Let
(z,21,...,25) € KiTh and (y,y1,...,ys) € KitH
then (see (1.2)) we have

‘g(taxaxla"'v‘xs) _g(t’y)ylw"vys)’
= |X($,.731,...7I3)f(t713,$17...,1’3) _X(yayh'"7y$)f(t’y7y17"'7ys)|

= }X(x?xla-~-7x8)<f<t7xa$17-~-axs)_f(t7y7yla"'7ys))

+ (X(xvxla"'wrs) _X(yvyla"'7ys))f(tay7y1a"'7ys)

§ Lf7K1 (t) |:|$ - y| + Z |xz - yz|i| + |X(’I’,SC1, S 73:8) - X(ya Yty - .- ,ys))|mf,K1 (t) (16)
i=1

It is not difficult to see that

|X(3§‘,1’1,...,Jf) yyla"'ays))|

‘/df (y+ & ),y1+§($1—y1)7-~-,ys+§(xs—ys))d§‘

1

/ X, (+ &z —y),y + & —y1), - ys +E(xs — vs) !Ix—y|+2|xm7 ) |2i — yi\] d¢

0

§a0[|x*y|+2|ﬂ%*yi|}-
i=1
Taking this relation into account, from (1.6) we obtain (1.4). Let
(z,21,...,0) € KT and (y,y1,...,ys) € KT,

then x(y,y1,-.-,9s) =0, i.e., g(y,y1,...,ys) = 0, therefore we have

|g(tax7$1a"'7xs)_g(t’yaylv"'7y$)|
:|g(t,$,’l}1,...,l's)|:|x(l‘ L1y-.-,Ts )7X(y7y17 "7ys ||ft T, T, .. :L's)|

< aomyx, (¢ >[|:c—y|+2|:cfyl|} < Lyt [|x—y|+2|xz—yl]

It is easily seen that the latter inequality also holds in the case
(z,21,...,0s) € KiT and (y,91,...,ys) € KiTh O

Let I; = [7,b], where T = a — max{62,...,0s}. By PC(I;,R™) we denote the space of piecewise-
continuous functions ¢ : I1y — R™ with finitely many discontinuities of the first kind equipped with
the norm ||¢||;, = sup{|e(t)|: t € 1}. By ® = {¢ € PC(I1,R™) : clp(l1) C O} we denote a set of
initial functions, where ¢(I1) = {o(t): t € I }.
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Let p; € ®, i =0, s, be fixed functions and let ¢, € (a,b), @ = 1,p, be discontinuity points of the
function ¥ (t) = (po(t), p1(t —T1),- .., s(t —Ts)), where 7; € [0;1,0i2], i = 1, 5, are the given numbers.
We now introduce the notation

0i(tj—1 —1i+), t=tj_1,
wij(t) = { @it — 1), te (tj—1,t5), (1.7)
pilt;—m—),  t=ty,

where i =0,s, j =1,p+1, to = a, t,41 = b, 79 = 0. Clearly, the function ;;(¢) is continuous on the
interval [t;_1,t;]. Next, let k be a fixed natural number,

. t;—tj-
w;(k;) = SUP{Z i (t) — i () ' t" € [tj—a,ty], [ =" < jle}
i=0
w(k;y) = sup {w;(k; ) : 1<j<p+1}.
Lemma 1.4. Let p; € ®, i = 0,5, and let p;(t) € K, where K C O is a compact set. Then for an
arbitrary f € Ey and a natural number k, the inequality

&2
/3—sup{‘/f(t,wo@),sal(t—n),...,m—u)) dt]: 6.6 ef}
&1

< w(k; ) / Ly (t)dt + k(p + 1) Ho(f: K)
I

holds, where
Ho(f; K) :sup{H(f;t',t”,x,xl,...,xs) s (Ut . xs) € T2 X K5+1}

(see Lemma 1.1).

Proof. There exist the numbers a1,b; € I such that

B = ‘ 7f(t,g00(t),<p1(t —71),. . st — 7)) dt‘.

Let a1 € [t—1,%) and by € [t4—1,t,) with 1 <1 < ¢ < p+ 1. Divide each of the intervals [aq, %],
ti_1,t;], i =1+1,q—1, [ty_1,b1], into k equal parts AL, AJ j=1+4+1,q—1, A, p =1, k, respec-
i=1:451 ] q pr Spr ] pr P

tively. Obviously,

q—1 q k
[ahbl] = [al,tl] U ( U [tjfl,tj}) U [tqfl,bl] = U U Ai)
j=l+1 j=lp=1

Using this relation and the notation (1.7), we obtain

q k
B<Y N
j=l p=1

/f(t7 ®0;(t), p15(t),- - -, @Sj(t)) dt"
Ay

Let th € A, j=1,q,p= 1, k, be arbitrary fixed points. Then

J=l

q k
B< ZZ/ ’f(two;'(t)wpu(t),.--,sosj(f)) — f(t, sooJ-(ti;),sou(ti;),-~,sosj(ti;))‘ dt
P=1Ag‘
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q k
2.2,

j=l p=1

/ (s ).y (0). - sle))
q k
SZZ [LfK Z\%g %3tJ)”dt—Fk(q—l—i—l)Ho(f;K)

q k
< Zij(k;w)/LﬁK(t) dt + k(p+ 1)Ho(f; K)

A
< uw(tiv) [ L) dt+ k(p+ DHo(f5 ) =
I

Lemma 1.5. Let ; € ®, i =0, s, and let p;(t) € K, where K C O is a compact set. Further, let the
sequence 0f; € Er, 1 =1,2,..., satisfy the conditions

/L(;fhK(t) dt <aj=const, i=1,2,..., and lim Hy(éf; K)=0.

1—> 00
T

Then lim B; = 0, where

1—00

&2
5 ZSUP{‘/5fi(t7<ﬁo(t)a<ﬂl(t—7'1),-~-,<Ps(t—7's)) dt\ L eLge I}.
&1

Proof. Let € > 0 be an arbitrary number. By Lemma 1.4, we have

B; < w(k;p) /Lz;fi,K(t) dt + k(p+ 1) Ho(6f5; K) < aqw(k; ¥) + k(p + 1) Ho (5 f;; K). (1.8)
I

The functions ;;(t), t € [t;_1,t;], are continuous. Therefore, hm w(k; ) = 0. There exist natural
k—o00

numbers kg and ig such that

"w(ko,ﬂ)) § and ko(p+ l)Ho((;fZ, ) , Z 2 io. (19)

N ™
m\m

Taking into account the relations (1.9) in (1.8), we obtain §; < ¢ for ¢ > ip. By the arbitrariness of ¢,
we can conclude that 8;— 0, as i — oo. O

Lemma 1.6 ([6, p. 68]). Let m(t) € Li(I,Ry). Then the formula

/m& dﬁl/m& ) déz - 71771& dﬁk—!(/tm(f)d§>k

holds.

Lemma 1.7. Let fi, fo € Ef be equivalent functions. Then for an arbitrary function ¢ € ®, the
relation

‘/f(t,ga(t),tp(t 7)ot — 7)) dt‘ =0 V&, 6el (1.10)

holds, where R
f, oz, .. xs) = filt,zyxe, .. xs) — falt,x, 21,0, ).
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Proof. Tt is clear that for almost all ¢ € I,

o~

ft,z,xq, ... ) =0 Y(z,21,...,2,) € OF.

Therefore R
Hy(f; K) =0, where K =clyo(I;) CO.

Using Lemma 1.3, for an arbitrary natural number k£ and &;,& € I, we get

&2
[ Rttt m) ] < wlis o) [ g o
&1

1

where ¥ (t) = (p(t), o(t — 71),...,ps(t —75)) and w(k; 1) — 0, as k — oo. Thus the relation (1.10) is
valid. O

Lemma 1.8. Let f € Ey. Then the mapping

w—%/f@w@%ﬂé—n%~wﬂ£—nﬂﬁ7@6@,

is uniquely defined (see Lemma 1.7).
Let X be a metric space, ¢ be a distance function on X, and let
F(i;p): X —=X (1.11)

be a family of mappings depending on the parameter ; € A, where A is a topological space. The
family of the mappings (1.11) is said to be uniformly contractive if there exists a number « € (0,1)
independent of i such that the inequality

o(F(y1; 1), F(y2; 1) < co(yr,y2) Vyi,y2 € X

holds for each p € A.
Define the iteration of the mapping (1.11):

Frysp) = F(FF Yy p)sp), k=1,2,..., FOly;p) =y.

Obviously,
FF(oip): X — X Yyue€A. (1.12)

Theorem 1.1 ([6, p. 61]; [14, p. 608]). Let X be a complete metric space. If a certain iteration (1.12)
is a uniformly contractive family, then for every u € A the mapping (1.11) has a unique fized point
Yu € X, d.e., F(yu; ) =y,. Moreover, if for fized g € A, a certain iteration F*(y,.; -): A — X is
continuous at the point ug, then the mapping y, : A — X is likewise continuous at the point ug.

1.2 Theorems on continuous dependence of solutions

To each element
p=(to,T1,...,7s, 20, ¢, f) € A=1[a,b) X [011,612] X -+ X [051,052]) X O x & x Ef
we assign the delay functional differential equation
i(t) = f(t,x@t),z(t —7),...,z(t — 7)) (1.13)

with the discontinuous initial condition

z(t) = (1), t €T t0), x(to) = o. (1.14)
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Definition 1.1. Let u = (to,71,...,7s, 20,0, f) € A. A function z(t) = z(t;u) € O, t € [T, t1],
t1 € (to,b], is called a solution of the equation (1.13) with the initial condition (1.14), or a solution
corresponding to the element p and defined on the interval [7,¢4], if it satisfies the condition (1.14)
and on the interval [to, t1] satisfies the integral equation

x(t) = zo + /f(f,x(@,m({ —7)y. ., 2(€— Ts)> dg
(see Lemma 1.7).

Obviously, the function x(¢; i), ¢ € [to, 1], is absolutely continuous and satisfies the equation (1.13)
almost everywhere on [tg, t1]. If t; —tg is sufficiently small, then there exists a solution corresponding
to u [3,13,22].

In the space Ey, we introduce a family of subsets

%:{VK,(;: K C O, 5>0}
Here, K C O is a compact set, § > 0 is an arbitrary number, and
Vi = {5f €Ly HQ((Sf;K) < (5}

The family R can be taken as a basis of neighborhoods of zero in the space Ey [32]. Hence it

defines a locally convex Hausdorff vector topology with which Ef becomes a topological vector space.

Everywhere in what follows, we will assume that the space E is endowed precisely with that topology.
We introduce the set

W(K;a) = {(5f €Ly ngf’K(t),L(;f’K(t) S Ll(I, R+), / [mgf’x(t) + Lgf’K(t)] dt < 04},

where K C O is a compact set and o > 0 is a fixed number independent of § f.
Let o = (too, 710, - - - s Ts0, 00, Y0, fo) € A be a fixed element,

B(too;é) = {to el: |t0 — t00| < 5}, B(Tio;é) = {Tl‘ S [92'1,01'2] : |Ti 7Ti0| < 5}, 7= 1,8,
B(xoo;(s) = {{EO €0: |{E0 — £C00| < 5}, B((po,é) = {(p cd: ||g0 — QD()HII < (5},

Theorem 1.2. Let xo(t) be a solution corresponding to po = (too, T10, - - - 5 Ts0s oo, ¥0, fo) € A and
defined on [T,t10], where t19 < b, and let K1 C O be a compact set containing a certain neighborhood
of the set Ky = clo(I1) U zo([too, t10]). Then the following conditions hold:

1.1. There exist numbers §; > 0, i = 0,1, such that to each element
B = (thTla s 7Tsax07907f0 + 5f) € V(N05K1750,04)
= B(too;éo) X B(Tlo;do) X+ X B(TSQ;(So) X B($00;60) X B(@O,éo)
X [fo + (W(Kl; oz) N VK1750)]

there corresponds the solution x(t; 1) defined on the interval [T,t10 + 01] C I and satisfying the
condition x(t; 1) € K.

1.2. For an arbitrary € > 0, there exists a number 02 = d2(c) € (0,0¢) such that the inequality
|x(t; ) — x(t; 1o)| < e Vit €[b,ti0+01], 0 =max{to,to0}
holds for any p € V(uo; K1, 92, ).
1.3. For an arbitrary € > 0, there exists a number ds = d3(¢) € (0,d0) such that the inequality

t10+01
|(t; ) — @(t; po)| dt < €

7

holds for any p € V(ug; K1, 03, ).
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Due to the uniqueness, the solution x(¢; po) is a continuation of the solution z((¢) on the interval
[?, ti0 + (51}

In the space Es, = E,, — po with the elements du = (6to,dm1,...,07s,020,00,0f), where E,, =
RxRx---xRxR"xPC(I;,R") x Ef, we introduce the set of variations

S = {5N = (8tg, 071, ...,0Ts, 020,00,0f) € Esy,

k
|6t0|S7? |6T1‘S77 Z:17S7 ‘5:E0‘S’Y7 ||5(P||[S’Y, 5f:Z)‘15f27 |AZ|S77 Z:17k}a

i=1
where v > 0 is a fixed number and 6 f; € Ef — fo, i = 1, k, are fixed functions.

Theorem 1.3. Let xq(t) be a solution corresponding to po = (too, T10,- - - » Ts0s €00, Y0, fo) € A and
defined on [T,t10] with too,ti0 € (a,b), 70 € (0i1,0;2), i = 1,8, and let K1 C O be a compact set
containing a certain neighborhood of the set Ky. Then the following conditions hold:

1.4. There exist numbers e1 > 0 and §1 > 0 such that for an arbitrary (e,0p) € [0,e1] X S, we have

to +edp € A and the solution x(t; po +edp) defined on the interval [T, t10+ 01] C Iy corresponds
to this element. Moreover, x(t; uo + edp) € K;.

1.5. The following relations hold:

gii% sup {|z(t;u0 +edu) —x(t;po)| : t€[0,t10+ 51]} =0,
ti0+d1
i [ lespo 4 20k) — 2 o)l =0
uniformly in dp € ¥, where = max{too, too + £0to}.
Theorem 1.2 is the corollary of Theorem 1.1.

Let E,(I) be the space of measurable functions u(t) € R", ¢t € I, satisfying the condition: clu(I)
is a compact set in R”. Let Uy C R" be an open set and Q(I,Up) = {u € E,(I): clu(I) C Up}.

To each element w = (to, 71,...,7s, Zo, 0, u) € Ay = [a,b) X [011,012] X -+ X [0s1,052] X O x X
Q(I,Uy) we assign the delay controlled functional differential equation

i(t) = p(t,x(t), x(t — 1), ..., 2(t — 75),u(t)) (1.15)

with the discontinuous initial condition (1.14). Here the function ¢(t,z,x1,...,2s,u) is defined on

I x O**! x Uy and satisfies the following conditions: for each fixed (z,z1,...,z,,u) € O5*! x Uy the

function ¢(-,x,x1,...,zs,u) : I — R™ is measurable; for each compact sets K C O and U C Uy there

exist the functions mg (t), Lx,v(t) € L1(I, Ry) such that for almost all ¢t € I,

lo(t, 2,1, ws,u)| S mgu(t) V(... e6u) € KT XU,

S

|¢(t7z7ajla"'ax8au1)_¢(t7y7yla"'?ys7u2)| §Lf7K(t){|x—y|—|—Z|x,—yz|—|—|u1—u2|
i=1

V(x,21,...,2s) € KT Y(y,y1,...,ys) € KT and V (uy,us) € U2,

Definition 1.2. Let w = (to,71,...,7s, To,,u) € Ay. A function z(t) = z(t;w) € O, t € [T,t1],
t1 € (to,b], is called a solution of the equation (1.15) with the initial condition (1.14), or a solution
corresponding to the element w and defined on the interval [7,¢1], if it satisfies the condition (1.14)
and is absolutely continuous on the interval [t, t1] and satisfies the equation (1.15) almost everywhere
(a.e.) on [tg, 1]

Theorem 1.4. Let xo(t) be a solution corresponding to wy = (too, T10, - - - » Ts0, 00, o, Uo) € A1 and
defined on [T, t10], with t19 < b, and let K1 C O be a compact set containing a certain neighborhood of
the set Ko = cloo(I1) Uxo([too, t1o]). Then the following conditions hold:
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1.6. There exist the numbers §; > 0, i = 0,1, such that to each element

W= (Lo, T1,-- -, Ts, L0, P, U) E ‘A/(wo;éo)
= B(foo;éo) X B(Tlo;(SQ) X - X B(TSO;(S()) X B(Jfoo;ao) X B((po;éo) X B(Uo;(S())

there corresponds a solution x(t;w) defined on the interval [T,t10 + 01] C I1 and satisfying the
condition x(t;w) € Ky; here B(ug; ) = {u € Q(I,Up) : ||Ju — ugllr < do}-

1.7. For an arbitrary € > 0, there exists a number d2 = d2(¢) € (0,00) such that the inequality
|x(t; w) — x(t;wo)| < e Vit e [0, tip+ 1], 0=max{to, o0},
holds for any w € V (wo; 8s).
1.8. For an arbitrary € > 0, there exists a number d3 = d3(¢) € (0,00) such that the inequality

ti0+61
|x(t; w) — x(t;wo)|dt < e

=)

holds for any w € 17(w0; d3).

Due to the uniqueness, the solution x(¢;wp) is a continuation of the solution x(¢) on the interval
[5'\, t10 + 61}

In the space Es, = Fy — wo with the elements dw = (tg, 071, ..., 75, 0x0, I, du), where E,, =
RXxRx--xRxR"xPC([;,R") x E,(I), we introduce the set of variations

% = {(m = (5to, 071, .., 074, 020, 6p, 6u) € Egy -

|5t0| <7 ‘57—2| <7, i=1s, |5$0| < ﬂa H&lel < ”6qu < 7}7

where v > 0 is a fixed number.

Theorem 1.5. Let xo(t) be a solution corresponding to wo = (too, T10, - - - » Ts0, 00, Po, Uo) € A1 and
defined on [T,t10] with too,t10 € (a,b), 70 € (031,0:2), i = 1,8, and let K1 C O be a compact set
containing a certain neighborhood of the set Ky. Then the following conditions hold:

1.9. There exist numbers €1 > 0 and &1 > 0 such that for an arbitrary (e,dw) € [0,e1] x F1 we
have wg + edw € Ay and the solution x(t;wy + edw) defined on the interval [7,t10 + 01] C Ih
corresponds to this element. Moreover, x(t; wo + edw) € K;.

1.10. The following relations hold:

lim sup {|x(t;wo +edw) —x(t;wo)| 1 t €0, t10+ 51}} =0,
e—0

t10+01
lim / |z (t; wo + edw) — x(t; wo)| dt =0

e—0
7

uniformly in dw € 1, where § = max{to, too + £dto}.

Theorem 1.5 is the corollary of Theorem 1.4.

Let I = [a,71], where 71 = b+ max{b12,...,0s2}. By ®; = {p € PC(I2,R") : clp(l2) C O} we
denote a set of initial functions for the functional differential equation with advanced arguments. To
each element

V= (t1,T1,...,Ts, T1,0, f) € Ao = (a,b] X [011,012] X -+ X [0s1,052] X O x &1 X Ef
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we assign the functional differential equation with the advanced argument
z(t) = f(t7 x(t),x(t+711),...,z(t+ 7'5))
with the discontinuous initial condition
x(t1) = x1, x(t) = (), t € (t1,71].

Definition 1.3. Let ¥ = (t1,71,...,7s, 21,9, f) € Ag. A function z(t) = z(t;9) € O, t € [to, 1],
to € [a,t1), is called a solution corresponding to the element ¥ and defined on the interval [tg, 7] if
it satisfies the initial condition and is absolutely continuous on the interval [to, ;] and satisfies the
integral equation

2(t) =z +/f(£7$(€)7$(£+71)7~-~7w(€+Ts)) dt.

Theorem 1.6. Let z((t) be a solution corresponding to U9 = (t10,T10,- - -, Ts0, T10, Y0, fo) € A2 and
defined on [too, 2], where tog > a, and let K1 C O be a compact set containing a certain neighborhood
of the set cl o (I2) U zo([too, t10]). Then the following conditions hold:

1.11. There exist numbers §; > 0, i = 0,1, such that to each element

V= (tlaTla"' 57-87:1317(10’]00 +6f) € V(ﬁO;Kla(SO?a)
= B(t10:60) X B(103 80) X - - - X B(7503 60) X B(210; 60) X B1(p0; o) X [ fo-+ (W (K15 ) Vi, 5,)]

there corresponds the solution x(t;9) defined on the interval [tog — 61, T2] C I and satisfying the
condition x(t;9) € K;.

1.12. For an arbitrary € > 0, there exists a number do = da3(€) € (0,d0) such that the inequality
|z(t;9) — z(t;90)] < e Vit € [too — 61,60], 6 =min{t1,t10}
holds for any 9 € V(99; K1, d2, ).
1.13. For an arbitrary € > 0, there exists a number 03 = d3(e) € (0,00) such that the inequality

T2
/ |x(t;9) — z(t;90) | dt < ¢
too—061
holds for any p € V(uo; K1, 93, ).
Here Bi(po;90) = {gp €Dy |l — ol < 6}.

Theorem 1.6 is proved analogously to Theorem 1.2.

1.3 Proof of Theorem 1.2 (on the continuous dependence of a solution for a class
of functional differential equations)

To each element p = (tg, 71,...,Ts, Lo, ©, f) € A we assign the functional differential equation

y(t) = f(thTla <oy Tsy %y)(t) = f(tvy(t)v h(t07 2 y)(t - Tl)a R h(th Q@,y)(t - TS)) (116)
with the initial condition
y(to) = Zo, (1.17)
where h: I x ® x C(I,R™) — PC(I1,R,,) is the operator given by the formula

p(t) for t e [T, tg),

y(t) fort € [to,b], (1.18)

h(to, »,y)(t) = {

and C'(I,R™) is the space of continuous function y : I — R™ equipped with the distance d(y1,y2) =
ly1 — vallr-
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Definition 1.4. An absolutely continuous function y(t) = y(t; ) € O, t € [r1,r2] C I, is called a
solution of the equation (1.16) with the initial condition (1.17), or a solution corresponding to the
element ;1 € A and defined on [rq,7g], if to € [r1,72], y(to) = zo and it satisfies the equation (1.16)
a.e. on the interval [ry, o).

Remark 1.1. Let y(t; ), t € [r1,72], 4 € A, be a solution of the equation (1.16) with the initial
condition (1.17). Then, as is easily seen, the function

x(t; ) = hito,,y( -5 ))(t), t € [T,m2],
is the solution of the equation (1.13) with the initial condition (1.14).

Theorem 1.7. Let yo(t) = y(t; o), to € A, be a solution defined on [r1,73] C (a,b), and let K1 C O
be a compact set containing a certain neighborhood of the set Ko = clpo(I1) Uyo([r1,72]). Then the
following conditions hold:

1.14. There exist the numbers 6; > 0,1 = 0,1, such that a solution y(t; 1) defined on [r1—d1,r9+61] C I
corresponds to each element

m= (t077-1a s 77-371‘10’@7]00 + 5f) € V(/‘LO;Kl?(SO?a)'

Moreover,
o(t) € K1, tel; y(t;p) € Ki, t€[r —01,m2+d1],

for arbitrary p € V(uo; Ky, 00, ).
1.15. For an arbitrary € > 0, there exists a number d3 = d2(e) € (0, do] such that the inequality
ly(t ) =yt po)l <& Vi€ [r1— 01,72+ 61] (1.19)
holds for any p € V(uo; K1, 92, ).
Proof. Let g > 0 be insomuch small that a closed eg-neighborhood of the set K
K(eo)={z eR": T € Ky, |z—7|<e}

lies in int K. By Lemma 1.2, there exist a compact set Q : K3 (g9) € Q C KT and a continuously
differentiable function x : R***1) — [0,1] of the form (1.1).
To each element p € A, we assign the functional differential equation

2(t) = g(to, T1s - Ts, 0, 2) (1) = g(t, 2(2), h(to, @, 2)(t — T1), ..., h(to, @, 2)(t — T5)) (1.20)

with the initial condition
Z(to) = Xy, (121)

where g = xf. The function g(t,x,z,z1,...,zs) satisfies the conditions (1.3) and (1.4).
The solution of the equation (1.20) with the initial condition (1.21) depends on the parameter

n e Ao = [a,b) X [911,912] X oo X [951,952] x O x ® x (f() + W(Kl,a)) C Eu.

The topology in Ag is inherited from the vector space E,,.
On the complete metric space C(I,R™) we introduce a family

F(-;p): C(I,R™) — C(I,R") (1.22)

of mapping depending on the parameter y by the formula

t
C(t) = ¢t 2 1) = w0 + / Gto 1, 7o, 2)(€) dE.
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Clearly, every fixed point z(¢; u), t € I, of the mapping (1.22) is a solution of the equation (1.20) with
the initial condition (1.21).
Define the kth iteration F*(z;u) by

t

Ck(t) = Ck(ta Z,/.L) =0 + /g(t077—1a s 77-8’()07Ck—1)(§) d§7 k= 172a ceey Co(t) = Z(t)

to

Let us now prove that for a sufficiently large k, the family of mappings F*(z; i) is uniformly contrac-
tive. For this purpose, we estimate the difference

IGR (1) = (O] =[Gt 2", 1) = CGult; 27, )]

t

< / ’9(th717 .. 'aTsaspﬂcl::—l)(f) - g(thTla s aTSagpaCl/c/—l)(f” df

a
t

< [ L@ [I61© = Ga©) + 3 Ihttoso )t =) = hltos G - 7l de (123)

a Jj=1

k=1,2,...

(see (1.4)), where the function L¢(€) is of the form (1.5). Here it is assumed that ¢}, = 2/(t) and
¢y = 2" (t). Tt follows from the definition of the operator h(-) (see (1.18)) that

h(th ' <I/§—1)(§ - T]) - h(tov P Clle/—l)(g - T]) = h(tovov <l/€—1 - /lcl—l)(ﬁ - T])
Hence, for £ € [a,ty + 7;), we have
h(to, 0, Ce—1 — Gi-1)(§ —75) = 0. (1.24)

Let to + 7; < b; then for £ € [ty + 7, b] we obtain

|h(t0, 0, Comr = Gi—1) (€ = 75)| = |Ga (6 = 75) = G (€ — 7))
<sup{|Goa(t =) = Glalt=m)| : telto+7,.6])
<sup{[ci () - (@] telagf (125

If to +7; > b, then (1.24) holds on the whole interval I. The relation (1.23), together with (1.24) and
(1.25), implies that

|Gk (1) = (O] < sup {[¢x(6) — G () = & € [ant]}

t

< (S—’_l)/Lf(gl)sup{Kllefl(g) - Ilclfl(f)| : 56 [avgl]}dglv k= L2,....

a

Therefore,
t 131
|G (t) = G ()] < (8+1)2/Lf(él)dfl/Lf(fz)sup{lCzé_z(ﬁ) — G2+ € € [a, &} do.

Continuing this procedure, we obtain
1Ge(8) = L)) < (s + D (B)]|2" = 2" |11,

where
& k1

ak(w=ij<§1)d51/L.f(£2>dfz~-- / Lf@k)dfk:,;(/tm(&)df)k

a a a



22 Tamaz Tadumadze

(see Lemma 1.6). Thus

k b k
A P 0) = 166 - 6l < S ([ Lp(@de) 1= 2l = w0 1

a

Let us prove the existence of a number ay > 0 such that

/Lf(t) dt <ap Yfe fot+W(Ka).
T

Indeed, let (z,z1,...,2,) € KT and f € fo + W (K;;a), then
[tz @, @) S mp g, (8) + Mg (E) == mypk, (1), tE€L
Further, let 2z}, 2", ;" € K1, i =1, s, then

‘f(t,l'/l‘ll,,.ﬁ;) - f(tvxllam/llw")xfs,)‘
< |f0(t,x',x’1,...,z;) - fg(t,m”,x’{,...,xg)| + }5f(t,x’,x’1,...,x;) —5f(t,x”,:z:’1',...,:17g)|

< (Lpaca () + Logaca (8) [J27 = 2|+ Jaf — /]
1=1

= Ly (8)]la' = 2| + Y [} — a7,
i=1

where Lf7K1 (t) = Lfo,Kl (t) + L5f,K1 (t)
By (1.5),

B0t = [ (Lo, @)+ aoms, )

I I

= [ [Egoac(®) + Logae(0)+ caolmp s, (1) + g, ()]
I

<alag+ 1)+ / (Lo, (1) + aomy, i, (8)] dt := as.
T

Taking into account this estimate, we obtain ax(b) < ((s + 1)ag)¥/k!. Consequently, there exists
a positive integer ki such that oy, (b) < 1. Therefore, the kist iteration of the family (1.22) is
contracting. By Theorem 1.1, the mapping (1.22) has a unique fixed point for each u. Hence it
follows that the equation (1.20) with the initial condition (1.21) has a unique solution z(t; p), t € I.

Let us prove that the mapping F*(z(-;uo); -) : Ag — C(I,R") is continuous at the point p =y

for an arbitrary £ = 1,2,.... Towards this end, it suffices to show that if the sequence u; =
(tois Tiis -+ Tsir Tois i, fi) € Ao, @ = 1,2,..., where f; = fo + dfi, converges to g =
(too, 10, - - - » Ts0, T00s 0, fo), i-e. if

Jim <|t0i — tool + Y 175 = Tjol + [woi — ool + Il — woll1, + Ho(8:; Kl)) =0,
j=1
then
Jim R (25 po); ) = F*(2(+ 3 o) o) = (5 o). (1.26)

We now prove the relation (1.26) by induction. Let & = 1, then we have

I¢3(t) = 20(t)| < |wos — ool

t t
+’/gi(touﬁu-~-,Tsi7<Pi,Zo)(f) df—/go(tooaﬁo,---77'507@0,20)(5) dé| < o} +ab(t), (1.27)
to; too

07
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where

Cit) = Gt 20, i)y 20(t) = 20(t; 10)s 90 = Xfi = go +3gi, go = XSo» 0gi = XOfi;

too

/|go(too,71oa---77507@0720)(5)‘df
toi

ali = |zo; — zoo| +

)

t
Oéé(t) = ‘/ [gi(touﬁu s Tsis iy 20)(§) *90(t007710,~~~aTs0,800,Zo)(f)] df‘-

toq

According to (1.3),

too

/ Mo, Ky (t) dt
toi

ai < |xoi — zoo| +

)

therefore, '
lim af =0. (1.28)
11— 00

After elementary transformation we obtain

t
ab(t) < ‘/[QO(tOiaTliw~'77—si7§0i720)(£) — 90(t00, T10, - - - » Ts0, ©0, 20) () ] df‘

toq

t
+ ‘ / [591(1501',7'11', ce s Tsis iy 20)(§) — 0gi(tois T, - - - ,Tsz"@o,zo)(f)] df’
to

t
+‘/6gi(t0ia7'1ia---sti7(P07zO)(§) dg

toi

<D (ay; + al;) +ah(h), (1.29)

=1
where

ab; = /Lfo(ﬁ)}h(tonwuzo)(ﬁ — 75i) — h(too, o, 20) (€ — Tj0) | d&,
7

af; = /Léf,i(f)’h(tOhQOhZO)(f — 7ji) — h(tos, o, 20) (€ — Tj0) | &,
T

t
ay(t) = ‘/5gi(t0i77'0i7~-~,7'si7@07250)(§) d¢|, 09i = gi — Yo
toi
We now estimate a;, ab; and oj(t). We have

ah; < /Lfo(ﬁ)}h(tou%,zo)(f — 75i) — h(toi, po, 20) (€ — 7j5) | d€
I

+ /Lfo ()| A(toi, po, 20) (€ — 75i) — h(too, Po, 20) (Tjo(t)) | d€
I

< /Lfo(f)}h(tomw — %0,0)(€ — 754)| dé
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+ /Lfo<£)’h(t0i75007zo)(§ — 7ji) — h(too, o, 20)(§ — 75i)| d€

T
+ /Lfo(§)|h(too,¢0,zo)(§ — 7ji) — h(too, vo, 20)(§ — Tjo)| d§
T
< ll¢i = oll1, /Lfo(f) d¢ + O‘%lj + aé2j'

T
Introduce the notation
&oji = min{too + 7ji toi + 75}, &1ji = max{too + Tji, toi + Tji}-
It is easy to see that
E1j4
aby; = / L, ()| h(tois pos 20) (€ — 7j5) — h(too, o, 20) (€ — T5i)| d€
Eoji
and
lim (€15; — &oji) = 0.
11— 00
Consequently, af;; — 0.
Introduce the notation

Voji = min{too + Tji, too + Tjo}, Viji = maX{too + Tjs, too + Tjo}.

For ab,;, we have
V1ji
o = / L5, ()] h(toos po, 20) (€ — 7j5) — h(too, ©o, 20) (€ — Tjo)| dé.
Yoji
Thus, aéQj — 0. Consequently,
a; — 0. (1.30)

Further,

af; < /Léfi(§)|(pi(§ —75i) — po(€ — 753)| d€ < llps — @oll1, /Léfi (§)d§¢ — 0. (1.31)
I I
We now estimate (). The function ¢o(€), € € I, is piecewise-continuous with a finite number

of discontinuity points of the first kind, i.e., there exist subintervals (6,,0,+1), p = 1,m, where the
function (&) is continuous, with

m—1

0=7, Omy1 =0, I = U [9p79p+1) U [9m=9m+1]'

p=1

On the interval I;, we define the continuous functions z;(£), ¢ = 1, m + 1, as follows:

_ _ _ Zo(a), 5 € [?7a)7
21(5)_@01(5)7"'72m(£)_SDOm(g)a Zm+1(f)— {20(5), §€I,

where
SDO(QP—’_)v 5 € [?7 9?]7
@0[)(5) = @O(f)a g€ (HpaHerl)a p=1m.
©0(0p+1—), & € [Opt1,0],
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One can readily see that o (t) satisfies the following estimation

[ 5916200, 2, (€ = 1) 2 € = ) dé‘

t

/5gl 5720 Zml(f_TIO)a-”ast(g_TsO)) df‘

m—+1 m+1

L) <
AO= D D

mi=1 mg=

m—+1 m+1

S E N max
—~ t’ ,t'el

m1:1
m—+1 m—+1
+ Zl" Z t’ntl’a"é(l /‘697, §7Z0 Zm1(£_Tli)>'--7zm5(€_7—si))
mi1= :

—09gi (67 20(€)s 2my (€ = T10)5 - -+ 5 2m, (€ — Tso)) ’ df‘

1"

/597: (5» 20(8)s 2m, (€ — T10)5 - -+ s 2 (€ — TsO)) d&‘

m—+1 m+1

IA
]
i
”;E
]

mi=1 m 1
m—+1 m—+1 s

+Y0 [ Laga @ 3 om (€ = 30 2 (€ o) e
mi=1 ms—l j=1

m+1 m—+1

< E .- max
— el

/6gz gazO Zml(f_TlO)a-~-azm§(§_TSO)) df‘

m1:1
m+1 m+1 s
+ Z Z 4 r?a;c’zm (S Tji)_ij(g_Tjo)’/Légi7K1(§)df~
mi=1 ms=1j=1 i
Obviously,
Hy(6g:; K1) = Ho(x0 fi; K1) < Ho(dfi; K1)

(see (1.1)). Since Hy(df;; K1) — 0, as i — oo, we have
lim H()((Sgi,Kl) =0.

i—00

This allows us to use Lemma 1.5 which, in its turn, implies that

t//
- ey Zm, (€ —

/ 51 (€, 20(E). 2ams (€ — T10),

t

lim max
i—socot/ t’el

Moreover, it is clear that
lim max|zm (75:(8)) = 2m, (T50(& | =0.

i—o0 teTl

(1.32)

T50)) d€| =0 Vmy € {I,m+1}, k=1s.

The right-hand side of the inequality (1.32) consists of finitely many summands and, therefore
(1.33)

lim o} (t) =0
71— 00

uniformly in ¢t € I.
The conditions (1.30), (1.31) and (1.33) yield

lim ab(t) =0
71— 00

uniformly in ¢ € I (see (1.29)).
Taking into account (1.28) and (1.34), we see that (1.27) implies

1€t — 2ollr = 0.

(1.34)



26 Tamaz Tadumadze

The relation (1.26) is proved for k = 1.
Let (1.26) hold for a certain k > 1; we will prove it for k + 1. Elementary transformations yield

[Chga () = 20(2)]

t t
<l|zo; — xoo| + ’ /gi(tOiaTliw~~a7-sia30iv<li)(§) dg — /gO(t0077_107"'7T50as00720)(£) df‘
] too

tOz
too
< |zoi — zoo| + /go(tomﬁm 3 Ts0, %05 20)(§) dﬁ’
to;

t
+ ' / [gi(touﬁu e Tsis Qi 20) (&) — go(too, T1o, - - - ,7307900,20)(5)} df‘
t

01
t
+\ /
toi

The quantities of and a4 (t) have been estimated previously, and it remains to estimate ;. We have

Gi(tois Tris - - - Toin i, C1) (&) — Gitoi, T4, - - - ,Tsi,%,zo)(f)‘ df’ = af + ah(t) + oy

e < [ La(@[Gh(e) = 20(€)] + 3 Ihttor. 0.6 = )€ ~ )] de
T j=1
< (s D¢ — 2lls / Ly, (€)de < (s + aallci — zollr-

I

Since
lim |G, = zollr =0,
1— 00
it follows that
lim af;, = 0. (1.35)

11— 00

According to (1.28), (1.34) and (1.35), we have
lim Gy — 20l =0.

The relation (1.26) is proved for every k =1,2,... .

Let the number §; > 0 be insomuch small that [r1 —d1, 72+ 1] C I and |z(¢; 1o) — 2(71; po)| < €0/2
for t € [ry — 01, 71] and |2(¢; po) — 2(re; po)| < €0/2 for t € [ro, ra + d1].

From the uniqueness of the solution z(¢; 19) we can conclude that z(¢; uo) = yo(t) for ¢ € [r1,72].
Taking into account the above inequalities, we have

(Z(t;lto)a h(too, 0, 2( -5 10)) (t = T10), - - -, h(too, o, 2( -5 o) ) (£ — Tso)) € K*t! (%) CQ,
te€[ry—d1,r2+ 6]
Hence
X(Zo(t)?h(t007§007z( 3 110)) (8 = T10)s - - -, h(too, o, 2( -3 o)) (t — Tso)) =1, tery— 01,72+ d1],
and the function z(t; po) satisfies the equation
y(t) = fo(t, 20(t), h(too, o, y)(t = T10)s - - -, h(too, . y)(t — T0)), t € [r1 — 61,72 + 61),

and the initial condition
Y(too) = oo-
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Therefore,
y(t; po) = 2(t; po), t € [r1 — 01,72 4 01].

According to the fixed point Theorem 1.1, for €¢/2 there exists a number dg € (0,e¢) such that a
solution z(¢; 1) satisfying the condition

€
|2t ) = 2(ts o) < 5 tET,

corresponds to each element p € V' (uo; K1, o, ).
Therefore, for t € [r1 — d1, 72 + 01],

z(t; ) € K(go) V€ V(po; Ki, o, ).

Taking into account that ¢(t) € K(gg), we can see that for ¢ € [r1 — 1,72 + 1],

X (26 1) hto, 9 2(3 ) (¢ = 7)o hlto 0,23 0) (E = 7)) = 1 ¥ p € V(105 Kb, ).
Hence the function z(¢; u) satisfies the equation (1.16) and the condition (1.17), i.e.,
y(t;p) = 2(t;p) € Ky, t€[ry — 01,72+ 1], € V(o K1,0d0,a). (1.36)

The first part of Theorem 1.7 is proved. By Theorem 1.1, for an arbitrary € > 0, there exists a
number §; = d2(g) € (0,0¢) such that for each pu € V(po; K1, 02, ),

2(t ) — 2(t;po)| < e, te,
whence, using (1.36), we obtain (1.19). O

Proof of Theorem 1.2. In Theorem 1.7, let 71 = too and ro = t19. Obviously, the solution xq(t) =
x(t; up) on the interval [too, t10] satisfies the following equation:

y(t) = fO(t[)a T10y -+ -5 Ts0, 9007y)(t)

Therefore, in Theorem 1.7, in the capacity of the solution yo(t) = y(¢; uo) we can take the function
$0(t), te [too,tlo].

By Theorem 1.7, there exist the numbers §; > 0, i = 0,1, and for an arbitrary € > 0 there exists a
number d; = da(e) € (0, dp] such that the solution y(¢; 1), t € [too — d1,t10 + 1], corresponds to each
€ V(ug; K1, 60, ). Moreover, the following conditions hold:

w(t) € Ky, tel; y(tp) € K,
ly(t:p) —y(t;po)| < e, t € [too — 1,t10 + 01, (1.37)
p € V(po; Ky, 02, ).

For an arbitrary u € V(uo; K1, 6o, @), the function
7 y(t;p), te€ [to,t1 + 01,

is the solution corresponding to u. Moreover, if ¢ € [0, t19 + 1], then x(¢; po) = y(¢; po) and z(t; p) =
y(t; u). Taking into account (1.37), we see that this implies 1.1 and 1.2. Tt is not difficult to note that
for an arbitrary p € V(uo; K1, d2, ), we have

t10+01 () 0 t10+01
ot 10—t o) de= [ i(t) = o(®) dt + [ lalts )=t o)+ [ la(ti ) ~a(ti o)
7 7 0o o
<ll¢ —wollr,(b —7) + Nlto — too| + max |o(t;u) — 2(t; pol((b —7),
telf,t10+01]

where 0y = min{to, too}, N = sup{|z’ —z"| : 2/, 2" € K1}.
By 1.1 and 1.2, this inequality implies 1.3. O
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1.4 Proof of Theorem 1.4

To each element w € A; we put in correspondence the functional differential equation

y(t) = ¢(t0a Py T1y- -5 Ts5 Y, U)(t) = (z)(ta y(t)7 h’(tOv 2 y)(t - Tl)? LR h‘(tOv 2 y)(t - TS)? U(t)) (138)
with the initial condition (1.17).

Theorem 1.8. Let yo(t) = y(t;wo), wo = (too, T10s - - - 5 Ts05 T00, P0s o) € A1 be defined on [ry,r3] C
(a,b) and let K1 C O be a compact set containing a certain neighborhood of the set cl po(I1)Uyo([r1,72]).
Then the following conditions hold:

1.16. There exist numbers §; > 0, 1 = 0,1, such that to each element
w = (t077—17 <oy Tsy L0y SO,U) € V(wo; 50)

= B(too;(S()) X V(Tlo;do) X e X B(Tso;(S()) X B(IQQ;(S()) X B(@O,CS()) X ‘/Q(UO,(SO)

there corresponds the solution y(t;w) defined on the interval [r1 — 81,72 + 61] C I and satisfying
the condition y(t; w) € K.

1.17. For an arbitrary € > 0, there exists a number 6o = da(€) € (0,00) such that the inequality
ly(t; w) —y(t;wo)| <& Vit € [r1— 01,72+ 61]
holds for any w € V(wo; d2).
Proof. We rewrite the equation (1.38) in the form

y(t) = ¢O(t07@a7—17 .- 'aTS7y)(t) =+ 5¢u(t0’(p77—1a s 7Tsay)(t)7

where

do(t,x,x1,...,xs) = O(t,x,x1,...,25,u0(t)) € Ey,
0ou(t,z,21,. .., 2s) = O(t,x, 21, ..., x5, u(t)) — do(t,z,21,...,25) € Ey.

Let 50 > 0 be a number insomuch small that B(uo, 50) C Q. There exists a compact set Uc Up such
that any function from the neighborhood B (uo; 50) takes its values in U.

Let K C O be a compact set. There exists a function Lg (¢) € Li(I,R;) such that for almost all
t € I, the inequality

S
|p(t, 2 @), ... @l u') — ot 2",y ... a2l u")| < Lg(t) {|x/ — 2"+ Z |y — x| + |u' — u"|

i=1
Va2 € K, Val, o/ €K, i=1,s VYu ' €U

79 3

holds. Hence

B¢ (t, 2,21, ..., 25)| < L (t)|u(t) — ug(t)] < SoLx(t) Va; € K, i=T1,s, Yue Blug;d),

|5¢u(t,x’,z’1,...,x;)—5¢u(t,z",x'1’,..., )|<2LK( [ ! ”|+Z|z 71'”}

Vo' 2" e K, Vai, 2! € K, izl,s.

29 ?

It is easy to see that the inclusions {d¢,(t,z,z1,...,25) : u € B(up;d)} € W(K;«a) and
{0pu(t,z,21,...,25) : u€ Blug;d)} CVy 5, hold for 6 € (0, o], where

a=(2+§0)/LK(t)dt, 5 :6/Lf(t)dt
I

1

We can now apply Theorem 1.7 which, in its turn, proves Theorem 1.8. O
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Proof of Theorem 1.4. In Theorem 1.8, let 11 = top and 19 = #19. Obviously, the solution z¢(t) =
x(t; wo) satisfies on the interval [tog, t10] the following equation:

9(t) = é(too, T10s - - - s Ts0, L0, Y, o) (t)-

Therefore, in Theorem 1.8, we can take the function xy(t), t € [too, t10] as the solution yo(t) = y(t; wp).
Then the proof of the theorem completely coincides with that of Theorem 1.2; for this purpose, it
suffices to replace everywhere the element p by the element w and the set V(ug; K1, g, @) by the set
‘7(11)0; 50) O

2 Variation formulas of solutions for equations with the
discontinuous initial condition

2.1 Auxiliary assertions

Consider the set of functions f = (f!,...,f™)" : I x O°t! — R" satisfying the following con-
ditions: for almost all t € I, the function f(¢,-) : O**!1 — R" is continuously differentiable;
for every (z,71,...,25) € O°T! the functions f(t,z,x1,...,2s), fo(t, -), fu,(t, -), i = 1,5, where
r=(x',...,2") ", z; = (x},...,2") T, are measurable on I; for any such function f and any compact

779

set K C O, there exists a function my x(t) € L1(I,R;) such that for any (z,z1,...,25) € K*T! and
for almost all t € I,

The classes of such equivalent functions compose a vector space, which will be denoted by Ej(cl); these
classes are also called the functions and they will likewise be denoted by f.

Lemma 2.1 ([6, p. 80]). Let K C O be a compact set and let f € E](cl), Then

Sup{lf(t,$,$1,...7 )|+‘fw |+Z‘fwz . : J].’El,...7.'I/'S)€KS+1}ELl(I,R+)-

Lemma 2.2. The inclusion
B ¢ By (2.1)
holds.

Proof. Let f € E;l) and let Ky C O be an arbitrary compact set. To prove the inclusion (2.1), it
suffices to show that there exists a function Ly g, (¢t) € L1(I,R4) such that for almost all ¢ € I,

S
|t @, ) = f(t a2, al)| < Lf7KO(t){|m’ — 2| + Z |z — m;’|}
i=1
Va' 2" € Ko, Va2 € Ky, i=

M) =xf =S xf™) 7T (see (1.1) and

Introduce the function g = (¢!, ...
(z,21,...,25) ¢ KT we have

1.2)). Clearly, for

lgz(t, 21, . .. 2 |—|—Z|gzl I =0, i=1,s. (2.2)

Let (x,21,...,7,) € K;T'. Tt is not difficult to see that the relations

n

el = | Z ) < 3 |

k,j=1 k,j=1

)

n

—[Z ] < 3 [t

K3
k,j=1 k,j=1

|9e,

)
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where 5
ey _ 9 k
are valid. We have

O ) | S TP L L < LA T el < g (8) (@ + 1),
[OCF*) L S TP T LS T < TP T el < mpge (a0 +1), i =T)s,

where
ap :sup{\xm(m,xl,...,ws)| +zs:|xr()| co(x, @, .., ms) ERT X X R"},
m e, (0) = sup {If(t, w21, + L, |+fol i @z € K
(see (2.1)). Thus, for ¥V (t,z,x1,...,75) € I x KiT! we get
|9 (t, 2,21, -, |—|—Z|gh N <mgk, (t), i=T1,s, (2.3)
where

Mg K, (t) = 77,2(8 + 1)(040 + l)mf,Kl (t)

It is clear that (2.3) is valid for (¢,z,21,...,25) € T X R™ x --- x R" as well (see (2.2)). Let
(z/ 2, ...,2%) and (2", 2, ..., x") be arbitrary points in K3**. Then (see (1.1)) we have

r s

’f(tvxlyxlla--'ax;) _f(t ' m/1/7.'.,xgl)’ = |g(t,.17/,£13/1,...,5€;) _g(t’x//,xlll7...7x;/)|

: ‘/ g(t, 2" +0(a" —a”), 2y + 02} —a),..., 2l + 0, — ) dG‘
0
1
/ {|gw (t, 2" +6(2' — "), 2 +0(z) —aY),.... 20 +0(z, — 2)))| |2’ — 2"
0

S
+ Z ’gzi (t, 2+ 0" — 2", 2 + 0z —2Y),... 2 + 0 — x;’))| |z — 2 } do
i=1

S
< e (o' ="+ 3l = o]
=1

Therefore, as Ly g, (t) we can take my k, (t). O

Consider now the linear delay functional differential equation
i(t) = +ZA ()i (t —73) + f(t) (2.4)

with the discontinuous initial condition
x(t) = ¢(t), t € [T,t), z(to) = zo. (2.5)

Here, A(t), A;(t), i = 1,s, are the integrable matrix functions of dimension n x n; ty € [a,b),
€ [0;1,0:2], i = 1, s, are fixed numbers; ¢ € PC(I1,R") is a fixed initial function and zy € R" is a
fixed initial vector.
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The equation (2.4) with the initial condition (2.5) has a unique solution z(t) defined on [7,b] (see
Definition 1.1).

For every t € (a,b], on the interval [a, t], let us consider the following matrix functional differential
equation with the advanced arguments:

Ye(§5t) = =Y (§1)A(E) — Zy(f + 7)A€+ ), €€ at, (2.6)

with the initial condition
Y(t:;t) =T, Y(§t) =0, £ (], (2.7)
where T is the identity matrix and © is the zero matrix.
For every t € (a,b], the equation (2.6) with the discontinuous initial condition (2.7) has a unique
solution Y (§;t) defined on [a, 71| (see Definition 1.3).

Lemma 2.3 (Cauchy formula). The solution of the equation (2.4) with the initial condition (2.5) can
be represented on the interval [to,b] by the following formula:

o0 =Yt +Y. [ ViEermanp@d+ [YEns©d, @9
=127 to

where Y (&;t) is a solution of the equation (2.6) with the initial condition (2.7).
Proof. On the interval [tg,t], where & € (9, b], consider the equation

() = AQw(§) + Y A©)wil§ = ) + f(8) (2:9)

with the initial condition
z(§) = ¢(£), § €T to), z(to) = zo.
Multiplying the equation (2.9) by the matrix function Y (§;¢) and integrating in & € [to, t], we obtain

[Y@oi©dc= [Yen[a©a© + S ateue-mds+ [Yens@d. (210

The integration by pats on the left-hand side of (2.10) with regard for Y (¢;¢) = Y yields

[ Y€0(€) de = a(t) ~ ¥ (tai than - [ Ye(€itha(©) . (2.11)
Further,
/ Y (€ ) Ai()a(€ — 7i) dé = / V(€470 A + 7)(E) de
= [ Yermnaierme@de+ [YiE+ninAe+ e de (212)
(see (2.7)). Taking into accouﬁt (2.11) and (2.12), from (2.10) we find that
z(t) =Y (to;t)mo + Z / Y€+ 755t) A (E+ 73)(€) dE
+ / [Ye(60) + A©2(©) + V(€ + 7)A€ +7)]al€) de + / Y (€0 £(€)de.

Y (&;t) satisfies the equation (2.6) and, therefore, the latter relation implies the formula (2.8). O



32 Tamaz Tadumadze

Lemma 2.4 (Gronwall-Bellman’s inequality). Let v(t) > 0,t € [to,b], be a continuous scalar-valued
function, m(t) € L1(I,Ry), and let the inequality

t

o(t) < e+ / m(€)v(€) d,

to

where ¢ > 0, hold. Then

v(t) < cexp </tm(§) d&), t € [to,b].

Lemma 2.5. Let t' € (a,b]. For an arbitrary € > 0, there exists § > 0 such that the inequality
Y (&) = Y(&t) <e VEE [at],
holds for arbitrary t" € [t' — 6, + 0] N I, where t = min{t’,¢"}.
Lemma 2.5 is a simple consequence of Theorem 1.6.
Lemma 2.6. The matriz function Y (§;t) is continuous on the set Il = {(£,t) : a <& <t, t € (a,b)}.

Proof. Let (&,t) € II be a fixed point. There exists §; > 0 such that £ + A& < min{t + At, ¢t} and
t+ At < bfor |AE] < 61, |At < 61, Le., (€ + A&, ¢+ At) € I1L

Using Lemma 2.5, we see that for each € > 0, there exists d; € (0,d1) such that for arbitrary A¢
and At satisfying the conditions |A¢| < d5 and |At| < g, the inequality

V(€ + A&+ At) = Y(E+ A& t)| < %
holds.

On the other hand, the function Y (¢;¢) is continuous with respect to ¢ € [a, t], i.e., there exists a
number d3 € (0,471) such that

Y +AsH) -Y(ED| <5, |Ag <.
Hence, for |A¢| < 6, |At| < 6, 6 = {02,063}, we have
[V (€+ A&+ AL) = V(&)
<|Y(E+ AL+ AL —Y(E+ A& + [Y(E+ AL — Y (&) < e O

2.2 Formulation of main results
To each element
= (to,T1,...,Ts,To, 0, f) € AL = [a,b) x [011,012] X -+« X [0s1,0s2] X O x & X Ej(cl)
we assign the delay functional differential equation
i(t) = f(t,xt),z(t —7),...,zx(t — 7)) (2.13)
with the discontinuous initial condition
x(t) = o(t), t€[7,t), z(to) = xo. (2.14)

Definition 2.1. Let pu = (to,71,...,7s, 2o, @, f) € AD. A function z(t) = z(t; ) € O, t € [7,t1],
t1 € (to,b], is called a solution of the equation (2.13) with the initial condition (2.14), or a solution
corresponding to the element p and defined on the interval [7,¢], if it satisfies the condition (2.14)
and is absolutely continuous on the interval [to,¢1] and satisfies the equation (2.13) a.e. on [to, t1].
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Let 2(t) be the solution corresponding to the element g = (to0, 710, - - -  Ts0, T0, 20, fo) € A1) and
defined on the interval [7/:, tlo], where too, t10 € (a, b), too < t1g and T € (911', 921’)7 1=1,s.
In the space Eéll) = E,(Ll) — 1o with the elements ou = (dtg, 671, ..., 075, 0xg, 0, d f), where El(tl) =

RXxRx---xRxR"xPC(I,R") x Ej(cl), we introduce the set of variations

%(1) = {5ﬂ = (5t07671a .. '767576$0a5¢’6f) € ESL) : |6t0| S e |6Ti‘ S Y, 1= 1757

k
6ol <7, 0¢llr <7, 6F =D Ndfi, [N| <, i= Lk},
i=1

where v > 0 is a fixed number and 6 f; € Ef — fo, i = 1, k, are fixed functions.

There exist numbers §; > 0 and &; > 0 such that for arbitrary (e,0u) € (0,e1) x S, to the
element po+edu there corresponds the solution x(t; g + €dp) defined on the interval [7,¢10+ 1] C Iy
(see Lemma 2.8).

Due to the uniqueness, the solution z(t; ) is a continuation of the solution z((¢) on the interval
[T,t10 + 61]. Therefore, in the sequel, the solution zy(t) is assumed to be defined on the interval
[T,t10 + 01].

Let us define the increment of the solution xo(t) = x(t; po):

Az(t) = Ax(t;edp) = x(t; po + €0p) — o(t) Y (t,€,0p) € [F,t10 + 61] x (0,e1) x W), (2.15)
Theorem 2.1. Let the following conditions hold:
2.1. T > -+ > 710 and too + Tso < t1o;
2.2. the function po(t) is absolutely continuous and po(t) is bounded;
2.3. the function fo(w), w = (t,z,21,...,75) € I x O is bounded;
2.4. there exists the finite limit

lim fo(w) = fi, w € (a,too] X ot

w—rwWo

where wo = (too, Too, Po(too — T10)s - - - » Po(too — Ts0));

2.5. there exist the finite limits

lim [fo(wii) — fo(wa2s)] = fos,

(wis,was) = (wl,,ws,)

where wy;, wo; € (a,b) x O3 i =15,

w); = (too + 70, Zo(too + Tio), Zo(too + Tio — T10)s - - -, Zo(too + Tio — Ti—10),
%00, To(too + Tio — Ti+10); - - - » To(too + Tio — Tso)),

wy; = (too + Tio, o (too + Tio), o(too + Tio — T10)s - - - » To(too + Tio — Ti—10),
wo(too), zo(too + Tio — Tix10), - - - > To(too + Tio — Tso)).

Then there exist numbers 9 € (0,e1) and 62 € (0,01), with t19 — 02 > too + Ts0, such that for arbitrary
(t,e,0p) € [tip — 02,110 + 02] X (0,€2) X 3 where M = {6 e W : 6ty < 0}, we have

Ax(t;edp) = edx(t; o) + o(t; edp). (2.16)

Here
dx(t; 0p) = =Y (too; ) fo dto + B(t; 0p) (2.17)
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and

S

B(t;0p) =Y (too; t)dxo — {Zy(too + Ti0§t)f0i}5t0

i=1

S

-2 {Y(too + Tios t) foi + /Y(f%t)fOzi [€]20(§ — Tio) df} o

i=1 too

B / Y (€ 4+ 7i0: 1) fom, [€ + TaolS0(E d€+/Y€t5f€]d£,
i= 1too Ti0

where it is assumed that

t too+Tio
/ Y (€:8) fou, (€0 (€ — 720) dE = / Y€ ) fou, [€30(€ — o) dé + / Y€1) fon [E)0(€ — o) de.
too too+Tio

Neat, Y (&;t) is the n X n-matriz function satisfying the equation

Y};“(f;t) = *Y(fv fOz ZY €+7_207 )me [54’7—10] 5 € [t()Oa ]7 (218)

and the condition
Yl =T, Y(ED) =6, > (2.19)
where

fOﬂCi, [ﬂ = fOxi (gvxo(g)axo(f - 7'10)5 s ’xo(f - 7’30))7
6.}0[&'} = 6f(€7x0(€)7x0(§ - 7_10)3 s 7330(5 - 7_50))'

Some comments. The expression (2.17) is called the variation formula of the solution.
The addend

- [Y(too; f5 + > Y (too + Tio; t)fm} dto
i=1
in the formula (2.17) is the effect of the discontinuous initial condition (2.14) and perturbation of the
initial moment tgg.

The addend

s t

-3 [Y(too + Tio; t) foi + /Y(f;t)fom [€]#0(€ — Tio) d&] ot

1=1 too

in the formula (2.17) is the effect of perturbations of the delays 7,9, i = 1, s. The expression

too

Y (too;t 5$0+Z / Y (€4 7o t) fow, [€ + Tio]0p(€) d€

=1
too—Tio

in the formula (2.17) is the effect of perturbations of the initial vector zgg and the initial function

wol(t).
The addend
t

/ Y (€: )5 1€ d

too
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in the formula (2.17) is the effect of perturbation of the right-hand side of the equation

z(t) = fo (t, x(t),x(t — 110),...,x(t — 7'30))-

Next, it is clear that
ox(t; 6p) = dxo(t; 6p) — Zax (t;0p), t € [tip — 02, t10 + 0a],

where

51’0(t; 5,u) = Y(too; t)[51‘0 — fo_(st()] + Z / Y(g + T30 t)fogci [§ + Tio](S(p(f) d§

=1
too—Tio

t S
+ [ Y@= 3 fonlliolé — r)ons + 8716]] .
i=1
§$l(t, (S,U,) = Y(too —+ Ti05 t)fol(§t0 —+ (57'1)
On the basis of the Cauchy formula (see Lemma 2.3), the function

S0 (t) = 5(t), t € [7,t00),
dxo(t, o), t € [too,t10 + 02,

is a solution of the equation
dx(t) = fout] +Zf09:1 [(62(t = 75) = fow, [€]E0(€ = Ti0)07s + 3 f[¢]
i=1 i=1

with the initial condition

dx(t) = dp(t), t € [T,ton), dx(too) = dzo — folt]dto,

and the function

0, t € [T, too + Tio),
Y (too + Tio; t) foi(6to + 073), t € [too + Tio, tio + d2],

is a solution of the equation

() fUm +Zf011 (5(E t_Tz)

with the initial condition
dx(t) =0, te[T,too+ Tio), dx(too + Tio) = foi(dto + 075).

Theorem 2.2. Let the conditions 2.1-2.3 and 2.5 of Theorem 2.1 hold. Moreover, there ezists the
finite limit
lim fo(w) = fi", w € [too,b) x O°FL. (2.20)

w—rwo

Then there exist numbers eo € (0,e1) and 62 € (0, (51) with t19 — 02 > too + Tso such that for arbitrary
(t,e,0u) € [t10 — d2,t10 + d2] X (0,e2) X %i , where ) = {6u € W ¢ 5ty > 0}, the formula (2.16)
holds. Here,

5z(t; 6p) = =Y (too; ) fo St + B(t; 0p).
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Theorem 2.3. Let the conditions 2.1-2.5 of Theorem 2.1 and the condition (2.20) hold. Moreover,
fo = fi := fo. Then there exist numbers g3 € (0,£1) and 82 € (0,61), with tig — 62 > too + Ts0, such
that for arbitrary (t,e,0p) € [tio — 02, t10 + d2] x (0,€2) x W), the formula (2.16) holds, where

S (t; 1) = —Y (too: t) fodto + B(t; op).

Theorem 2.3 is a corollary to Theorems 2.1 and 2.2.

Theorem 2.4. Let the conditions 2.1-2.4 of Theorem 2.1 hold. Moreover, there exist the finite limits

lim [fo(wii) — fo(wai)] = fo;, w15, w25 € (a,too + Ti0] x O°T!, i =15,
(wli,wgi)ﬁ(w?,i,wg

Then there exist numbers o € (0,e1) and d2 € (0,071), with t19 — Jg > L‘oo + Tso, such that for arbitrary
(t,a,éu) S [tlo — §o,t10 + (52] X (0782) X %91, where & ( L= {5/1, SN : 0tg <0, 01; <0, i = ﬁ},
the formula (2.16) holds. Here

S

6x(t;0p) = —|Y (toos ) fo + Zy(too + Tio;t)f&}&o = [Y(too + 7i0s 1) fo; |67 + Ba(t; 6p),

i=1 i=1
where

S

Bultsdv) = ¥ (toni )50~ 3 | / O, i€~ 7 e o7

i=1

too
too t
+Zl [ v+ rustisonle + maldo© de + [ Yigoriede.
= too Ti0 tOO

Theorem 2.4 can be proved by analogy to Theorem 2.1.

Theorem 2.5. Let the conditions 2.1-2.3 of Theorem 2.1 and the condition (2.20) hold. Moreover,
there exist the finite limits

( %mt 0 ) [fo(wu) - fo(wzi)] = f&» W14, Wi € [too + Tio, b) X OS+17 1=1,s,
W14, W24)—>(Wy,;, Wy,

Then there exist the numbers ea € (0,e1) and 02 € (0,071), witht10—02 > too+Ts0, such that for arbitrary
(t,E,(S/J) S [tlo — (52,t10 + (52] X (0,52) X %53, where %EBF = {5M € %(1) : 5t0 > O7 (5Ti > 0, = H},
the formula (2.16) holds. Here

S

Jx(t; (;,U,) = — |:Y(t00; t)fg_ + Z Y(too + T30 t>f0t} (;to — Z [Y(too + T30 t)fo—ﬂ (57’1' + 51 (t; (;,U,)

=1 i=1

Theorem 2.5 can be proved by analogy to Theorem 2.2.

2.3 Lemma on estimation of the increment of a solution with respect
to the variation set S

To each element p = (tg,71,...,Ts, 2o, @, f) € A, we assign the functional differential equation
y(t) = f(tO,Tl,-.-,Ts,Qﬂ,y)(t) (221)

with the initial condition
y(to) = zo (2.22)

(see (1.16)).
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Definition 2.2. Let u = (to,71,...,7s, %0, 9, f) € A, An absolutely continuous function y(t) =
y(t;n) € O, t € [r1,r2] C 1, is called a solution of the equation (2.21) with the initial condition
(2.22), or a solution corresponding to the element x and defined on the interval [ri, 79, if tg € [r1,72],
y(to) = xo, and the function y(t) satisfies the equation (2.21) a.e. on [rq,rs].

Remark 2.1. Let y(t;u), t € [r1,72], be a solution corresponding to the element p = (tg,71,...,7s,
zo,, f) € A1), Then the function

(t; p) = h(to, o, y(-5p)(t), t € [T, (2.23)
is a solution of the equation (2.13) with the initial condition (2.14) (see Definition 2.1 and (1.18)).

Lemma 2.7. Let yo(t) be a solution corresponding to the element po = (too, T10, - - - , Ts0s L0, 0, fo) €
AY and defined on [ry,r5] C (a,b); let tog € [r1,72),Tio € (0i1,0i2), @ = 1,5, and let Ky C O be
a compact set containing a neighborhood of the set ¢o(I1) U yo([r1,72]). Then there exist numbers
e1 > 0 and 61 > 0 such that for any (g,6p) € (0,e1) x S, we have pg + eop € AV, In addition, to
this element there corresponds a solution y(t; o + o) defined on the interval [ry — 61,72 + 61) C I.
Moreover,

o(t) := @o(t) +edp(t) € K1, tel, (2.20)
y(t; po + edp) € Ky, t € [ry— 01,72 + 1],
and
lim y(t; po + edp1) = y(t; o)
e—0
uniformly for (t,0p) € [r1 — 61,70 4+ 61] x M.
This lemma is a consequence of Theorem 1.7.
Lemma 2.8. Let z¢(t) be a solution corresponding to the element po = (too, T10, - - -, Ts0, 0, Y0, fo) €

A and defined on [7,t10] (see Definition 1.1), let too,t10 € (a,b), Tio € (051,02), i = 1,5, and let
K, C O be a compact set containing a neighborhood of the set wo(I1) U xo([too,t10]). Then there
exist numbers €1 > 0 and 6, > 0 such that for any (e,6p) € (0,e1) x M, we have o + edp €
A In addition, to this element there corresponds a solution x(t; o + €dp) defined on the interval
[T,t10 + 01]) C ;. Moreover,

x(t; o +edp) € K1, ¢ € [T,t10 + 01 (2.25)

It is easy to see that if in Lemma 2.7 one puts r1 = tgo, 72 = t10, then zo(t) = yo(¢), t € [too, t10],
and

w(t; po + £6p) = h(to, ,y( -5 po +£0p)) (1), (t,e,6) € [F,t10 + 61] % (0,1) x SO
(see (2.23)). Thus, Lemma 2.8 is a simple corollary of Lemma 2.6 (see (2.24)).

Due to the uniqueness, the solution y(¢; o) on the interval [r; — 61,79 + 01] is a continuation
of the solution yo(t). Therefore, we can assume that the solution yg(t) is defined on the interval
[r1 — 61,72 + 01].

Lemma 2.7 allows one to define the increment of the solution yo(t) = y(¢; to):

Ay(t) = Ay(tedp) = y(t; po + 6p) — y(t; po)
= y(t) — yo(t) V(t,s,éu) € [7”1 — 61,7‘2 + (51} X (0,51) X C\}(l) (226)

Obviously,
lim Ay(t;edp) =0 (2.27)
e—0

uniformly with respect to (¢,6u) € [r1 — 81,72 + 61] x I (see Lemma 2.7).
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Lemma 2.9. Let 750 > -+ > 119 and tog + 750 < 2. Moreover, the conditions 2.2-2.4 of Theorem 2.1
hold. Then there exists a number es € (0,e1) such that

max  |Ay(t)| < O(edp) (2.28)

tE[too,r2+01]

(€0)

Ay(too) = e[dxo — fo dto] + o(edp). (2.29)
(1)

for arbitrary (,6u) € (0,e2) x S, Moreover,

Proof. Let e5 € (0,¢1) be insomuch small that for arbitrary (¢,0u) € (0,e2) x S’ the inequalities

to+ 7 >tog, t=1,s, (230)

hold, where tg = tgo + €dto, 71 = 0 + €67;. On the interval [tgg, 2 + 1], the function Ay(t) =
y(t) — yo(t), where y(t) = y(t; po + edp), satisfies the equation

Ay(t) = a(t; edp) + eb(t; edp), (2.31)
where
a(t; 55/1') = fO(th Tly-++5Ts, P, Y0 + Ay)(t) - fO(tOOa T105 - -+ 5 Ts05 L0, yO)(t)v (2 32)
b(ta&?(sﬂ) :5f(t0,71,...,73,50,y0+Ay)(t)- .
We rewrite the equation (2.31) in the integral form
t
Ay(t) = Ay(too) +/ [a(&;edp) + eb(&;e0p)] dE.
too
Hence it follows that
|Ay(t)] < [Ay(too)| + a1 (t;too, ep) + €bi(too; €dp), (2.33)
where
t 2401
nltitan. <o) = [ lolesedu)lde, ltonieon) = [ [o(es o)l
too too
Let us prove the formula (2.29). We have
Ay(too) = y(too: o + i) — yo(too)
too
= xgp + €620 + / [fo(t, yo(t) + Ay(t), o(t — 1), ..., 0(t — 75)) + eb(t;edp)] dt — zo (2.34)
to

(see (2.30)). It is clear that if ¢ € [tg, top], then
lim (£, y0(t) + Ay(t), ot —71),..., 0t = 75)) = lLm (¢, 90(t), po(t — T10);-- -, ot — Ts0)) = wo
e—0 t—too—

(see (2.27)). Consequently,

lim sup [ fo(t,yo(t) + Ay(t), ot = 71),...,0(t = 7)) = fo | = 0.

€0 teto,too]
This relation implies that

too

fo(t,yo(t) + Ay(t), p(t —71),...,0(t — 75)) dt

= —€f<f5to + / [fO(t7y0<t) + Ay(t>7 Lp(t - 7-1)7 ) (p(t - Ts)) - f(;] dt = —Ef(;éto + 0(56”’)' (235)

to
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Further, we have

too too p. i too
/Ib(t;eéu)ldt < /Zw 16 fi(to, 71+ Ta 30 + Ay) (£)] di < vZ/m(sfi,m(t) dt.  (2.36)
to to =1 i:lto

From (2.34), by virtue of (2.35), (2.36), we obtain (2.29).
Let us now prove the inequality (2.28). Let

pi1 = min{to + 7i, too + Tio},  pi2 = max{too + 7, too + Tio}, ¢ =1,s.

It is easy to see that
pi2 > pig > too and pio — pi1 = O(edp).

3(1)

Let €5 be insomuch small that for arbitrary (,0u) € (0,e2) X the inequalities

pi1 < pit1,1, t=1,5—1, pso <1401
hold. Now we estimate ay(¢; too,e0u), t € [too, T2 + 1]. Let t € [too, p1,1]. Obviously,

t S

al(t; t00, 55/‘) < / Lfo,Kl (5)‘Ay(§)| dg + Z az; (t; too, 55#)) (237)

0o i=1

where
t
azi(t;too, 6p) = /Lfo,Kl ()| (to, £, 90 + Ay)(€ = 7i) — hltoo, o, y0) (€ — Tio)| dE
too

(see Lemma 2.2). It is clear that if ¢ € [too,p11), then for € € [tgo,t] and any i = 1,s, we have
& —T1; <tgand & — ;0 < tog, therefore,

t
az;(t;too, 0p) = /Lfo,Kl (©)](€ —7i) — o€ — 7o) | d€

t
b

< O(edp) + /Lf07Kl(£)|SOO(£ —Ti) —wo(€ — 7—1'0)| ¢, 1=1,s.

too

The boundedness of the function ¢g(t), t € I, yields

lpo(§ = 7i) — po(§ — Tio)| = ‘ / o(t) dt‘ = O(edp).

§—Tio

Thus, for t € [too, p1,1], we have

a9 (t; too, edp) < O(edp), i=1,s.

Consequently, for t € [too, p1,1], we get

t

st <80) < OCeB) + [ Ly, (©1Bw()] de (2.38)

too

Let t € [p1,17p1,2]~ Then

a1 (t;too, €0p) = a1(p1,1;too, €0p) + ai(t; p1,1,€0 ).



40 Tamaz Tadumadze

By the condition of Theorem 2.1, the function |a(&;edp)|, € € [too, 2 + 1], is bounded, i.e.,
|ay(t; p11,e0p)| < O(edp), t € [pra,p12)-
Therefore, for ¢ € [p1,1, p1,2], we have

a1 (t;too, €0p) < air(p1,1;too, €0p) + O(dp)
P1,1 t

< O(ebu) + / Lo ser ()| Ay(€)] de < O(e6p1) + / Lo 100 (6)] Ay(€)] de.

too too

Thus on the interval [too, p1,2], the formula (2.38) is valid. o
Let t € [pl,g,pgyl], thent — 7 > tg, t — 119 > tgo and t — 7; < tg, t — Ty < too, ¢ = 2, 5. For this
case we have

a1 (t;too, €0p) = a1(p1,2;too, €0p) + ai(t; p1,2,€0p)

P1,2 t t
< O + / Lo s (6)| Ay(€)] dé + / Lo (6)| Ay(€)] dé + / Lo ()| Ay(€ — 7)) de
too P1,2 P1,2

t S
4 [ L@l — 70) = ol — 7o) e+ Y it pras <o)

p1, =2

(see (2.37)). It is clear that
5_7—10

[y0(€ = 71) = yo(€ — T10)| S‘ / | fo(too, 10, - -, Ts0, yo) ()| dE| < O(ebp)

5—7'1
and

t

ag;(t; p1,2, €00 = / Lok, (&)]0(€ = 1) — @o(& — mi0)| dE

P1,2

b
< O(edp) + /Lfo,Kl(f)’sﬂo(ﬁ —7i) — o€ — o) | dE < O(edp), i=2,s.

t

Thus, for t € [too, p2.1],

t t—71
ax (t; oo, 1) < O(edp) + / Loser (6)| Ay(€)] de + / Lo sy (€ + 70)| Ay (6)] de
too p1,2—T1

t
S O(sélu) + / |:Lf07K1 (6) + X1 (5 +71)Lfo,K1 ({ + Tl):| |Ay(§)| df, ,01,2 —T1 2 tOOa

too

where x, (§) is the characteristic function of the interval I. Continuing this process for ¢ € [too, ps,2],
we can prove that

s—1

ax (¢ oo, £0p1) < O(=dp) + / (Lot (€ + 3005 = i (€ + 7)1y (€ 70)] |Ap(©)] de. (2.39)

too =1
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Let t € [ps,2,72 + 01], then

a1(t;too, e0p) = a1(ps,2; too,e0p) + a1 (t; ps,2, €01t)

Ps,2 s—1
<O + [ (L (€)+ 30 = 10, (€4 )L (€ + 7] |Ay(©)] de
oo i=1

t S

+ / L.k, (6) [|Ay(5>\ +> " |wo(€ = ) — yo(& — 7o) +Z|Ay<sfn)|ds}

Ps,2 i=1 i=1
t s—1

< O(€5M) +/Lfo,K1(£)|Ay |d§ +/|:Z s—1 X1 £+7—Z Ly,, K1(£+Tl)} |Ay(€)|d£
i=1

too too

Yy / 3o (€ 7 Lo e (€ + ) | Ay (6)]
i=1 .

t

<0G + [ [Laei(€)+ 305 = i+ 1, (€4 )L (64 )] 18y(©) e

oo i=1
Consequently, for t € [tgo, r2 + 1], we have
t S
(t too,E(S/.L < O 66:“‘ +/ Lfo Kl (8_7’+1)X1(£+TZ)Lf0,K1(€+Ti):| |Ay(§)|d€ (240)
=1
(see (2.39)). Obviously,
rat+01 k
bl(tOandu’) S’Y / Z|6fl(t057-17aTb7yO+Ay)(t)|dt SVZ/méqul(t) dt. (241)
oo i=1 =17

According to (2.29), (2.40) and (2.41), the inequality (2.33) directly implies

[Ay(t)] < O(edp)

+ / |:Lf0,K1 (g) + Z(S —i+ l)Xl (f + Ti)Lf07K1 (§ + Ti) |Ay(£)| dga te [t007 ro + 51]

too =1

By the Gronwall-Bellman inequality, from the above we obtain (2.28). O

2.4 Proof of Theorem 2.1

Let ry = tgp and ro = t1g in Lemma 2.8, then

rolt) = {Wo(t)v € 7. too),

yo(t), t € [too, t1o];
and for arbitrary (e,0u) € (0,e1) x I/,

o(t) == @o(t) + edp(t), t €T, to),

x(t; o +e0p) =
(ko ) {y(t5ﬂo+€5ﬂ)» t € [to, t10 + 61
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(see (2.23)). Note that du € W ., to < too, therefore we have

edp(t) for t € [T, 1),
Ax(t) = < y(t; o +edp) — @o(t) for t € [to,too),
Ay(t) for t € [too, tio + 51]

(see (2.15) and (2.26)). By Lemma 2.9, we have

|A.’E(t)| < 0(55/1‘) V(t,{f, 6:“) € [t007t10 + 61] X (0,52) X %(—1)7 (242)
A.T(too) = 6[(5I0 - fo_(sto] + O(&‘(S,U,) (243)

The function Az(t) satisfies the equation

Ax(t) = folt, zo + Az] + €0 f[t, xo + Ax] — folt]
= foe[t]Az(t) + Z fou (1 A2(t — Ti0) + 0 f[t] + > Di(t;€0p) (2.44)

on the interval [tog,t10 + d1], where

folt,xo + Az] = fy (t,mo(t) + Ax(t),zo(t — 1) + Azx(t —711), ..., 20t — 75) + Ax(t — TS)),
(t,l‘o(t), (t—Tl()), ,l‘o(t—Tso)),
)

Sf[t,xo + Ax] = 5f(t,a:0(t)+Ax()xo(t—ﬁ +Ax(t—n),...,x0(t—73)+Ax(t—75)),
Sf[t] = 0f(t,xo(t),zo(t —T1),... 2ot — 7)),
D1 (t;e6p) = folt, mo + Az] — folt] — foult] Zfon JAz(t — 7o), (2.45)
Vo (t;e0p) = [ f([t, zo + Az]) — 5 f[t]]. (2.46)

By using the Cauchy formula, one can represent the solution of the equation (2.44) in the form

Al‘(t) (too, )Al‘(too —|—€/Y &; t (5f df—f— ZR t too,&'tslu) te [t007t10 +51L (247)

too p=0
where )
Ro(t; o0, £) = Y Rio(t: too, €0ps),
¢:1t00
Rio(t;too,e0p) = / Y (€ + Tio; t) fox, [€ + Tio] Az (€) dE, (2.48)
too—Tio
Ryt too,200) = [ ¥ (€:0)0,(6:20u) de. p=12,
too

and Y (§;t) is the matrix function satisfying the equation (2.18) and the condition (2.19). Let dy €
(0,01) be insomuch small that the inequalities

too — 92 > a, too+ Ts0 < tip — d2

hold. The function Y (&;¢) is continuous on the set {(£,t) : & € [too—0I2, too], t € [t10—02,t10+02]} C I,
by Lemma 2.6. Therefore,

Y(too; t)Al‘(too) = EY(too; t)[éxo — fa&to] + O(t; E(Su) (249)
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(see (2.29)). One can readily see that

Ruo(t: too, e0y1) = ¢ / Y€ + T3 £) fom [€ + Tiol0p(€) dé + / Y€+ 7105 1) fom [€ + Tio) Az (€) de

too—Tio

/ Y (€ + 05 ) fou, [€ + Tl (€) dE +

too+Tio

Y(§§ t)wai [E]Af(f — Tio)df—i-o(t; 85/1).

too—Tio to+Tio
Thus
too
Ro(t;too, edp) = 52 / Y (€ + 7io3 ) foa, [€ + Tio]0p(E) dE
= 11500 Tio
too+Tio
+ Z ) fou, [E) Ax(€ — Ti0) dE + o(t; €6p1). (2.50)

i= 1t0+TLO

Let
0;,1 = min{to + 7i,te0 + 7o}, 0i2 = max{to + 7, too + Tio}, ¢ =1,5,
and let a number €5 € (0,¢1) be insomuch small that
too < 01,1, Qi2 < Qiy1,1, ¢t =1,5—1, 052 <tio— d2.

For t € [t19 — 02, t1p + d2], we have

Rl (t, t007 56”’) = w; (ta 56/1“)3

i=0
where
too+T10 too+Ti+10
wo(t;edp) = V11(&5t,e0p) dS,  wi(t;edp) = V11(&5t,e0p)ds,  i=1,5—1,
too too+Tio
t
wi(tizsn) = [ OnlGteon)ds, (€t edu) =Y (& 006 <0)

too+Tso0

(see (2.45)). Let p1,1 = to + 71 and tp + 71 < to + 710, then we have

wo(t;edp) = wor(t; edp) + woz(t; €6p).

Here,

to+T71

wOl(t;E(S/.t) = / ﬂll(f;taeél’[’) d§7
too
too+710

woz(t;e6p) = Y (& t){fol¢, zo + Ax] -
to+T71

too+T10

V(&) forle]

to+71

€]} dé

) + Z fou: [E]1A2(E — Ti0) | d€
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to+710 too+T10
- / Y (&) fow, (€] Az (€ — T10) d€ — / V(&) for, [E]A(§ — T10) dE.
to+T71 to+Ti0

We introduce the notations:

fol&:0,edu] = fo (&xo(f) + 0Az(E), 20(€ — T10) + 0 (20 (€ — 1) — 0(§ — T10) + Az(E — 7)), .. .,

#0(€ = 7i0) + 0(w0(€ — 72) — 0(€ — e0) + Ax(€ ~ 7)),
0(&:0,e6n) = foul&;0,e01] — foul8],  0i(&:0,601) = foa, €0, €60] — fox,[€].

It is easy to see that

fol&:0,e0p] db

1
folé, w0 + Ax] — fol€] :/d%
0

1 S
/{an: [£;0,e0p]Ax(E) + Zfom €0, e6p] (z0(€ — T) — 20(§ — 7o) + Am(§ — Ti))}dg
0

i=1

= 01(&e0p)Ax(E) + ZUM(E;E(SM) (z0(§ — 7i) — wo(€ — Tio) + Az (€ — 7))

i=1

+ fou €] +Zf0x (& —7) = z0(& — Tio) + Az (€ — 7)),

where
1 1
o1 (€5 26p) = / o (€0, e00) b, (& o) — / (€50, 25) do.
0 0

Taking into account the last relation for ¢ € [t19 — d2, 10 + J2], we have

wo1(t;e0p) = Zw(p) (t;edu),

where

to+T71

wb (et = [ Y (Et)01(6 o) An(€) e,

:0 to+T71

wgy (tedp) =y / Y (& )03 (&5 20) [0 (€ — 75) — w0 (€ — Ti0) + Aw(€ — 7)) dE
i=1 too

s totm

= / Y (& t)0i1(&5€00) [po(€ — Ti) — wo(€ — Tio) + edp(§ — 74)] dE,
WS (t;e6p) = > / Y (&) for [€] [20(€ = 72) — w0 (€ — 7i0)] dE

- / (&50) fou 6] [90(€ — 72) — o€ — o)) d,
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s totm
Wt = Y / Y (€:8) fou, [€] [A(E — 72) — Ax(€ — m0)] de
=1 too
s totm
=Y [ YDl [Be(€ - 1) - S(€ ~ )] de.
=1 too

The function ¢g(§), £ € I; is absolutely continuous, therefore for each fixed Lebesgue point £ €
(too, th + 52) of function gpo(f - TiO) we get

£—edm;
®o(§ — i) — po(€ — Tio) = / $o(s — Tio) ds = —epo(§ — Ti0)OT; + vi(§;e0p), (2.51)
13
where
Eli_r}ré M = 0 uniformly for dp € W, (2.52)

Thus, (2.51) is valid for almost all points of the interval (tgo, t10+d2). From (2.51), taking into account
the boundedness of the function ¢g(€), we have

vi(&;edp)

lo(& —7i) — @o(§ — Tio)| < O(edp) and -

’ < const. (2.53)

According to (2.42) and (2.51), for the expression w((ﬁ) (t;edu), p= 1,4, we have

gy (£ 261)| < V][ O(op)or (o), wl? (tse0m)] < Y |O(edp) Y oia (26p),

i=1
s to+T1
wgy (t; edp) = Z [%1(75;55%0 - 5( / Y (&) foz, [€]60(€ — Tio) d§> 5%}7
=1 too
s totm
b (6 <0] < o5V S [ o€ de.
=1 0
Here
too+T1i0 too+T10
et = [ logeonlds, oaon) = [ lonlgiom]de
too too
t
IY]| =sup {|YE&t] 2 (&t) €M}, yir(tiedp) = /Y(f;t)foh [€]7i(&; €0p) dé.
too
Obviously,
5 too+T10 (5 5#)
Y1 (t; €0 Vil§; €
BN <y [ 1l [ e
too
By the Lebesgue theorem on the passage to the limit under the integral sign, we have

vi1 (t; €0p)
&

lim oq(edp) =0, lim o;y(edpu) =0, lim ’ =0
e—=0 e—0

e—0
uniformly for (¢,du) € [too, too + T10] X g (see (2.52) and (2.53)). Thus,

w(()ll) (t;edp) = w(()21) (t;edp) = w((ﬁ) (t;edp) = o(t;edp),

to+T71

w(()1 (t;edp) = —ez [ / (&;t) fou: [€]@ (f—Tio)d§:| 0t + o(t;edp).

too

(2.54)
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Further,
too+T10
€ / Y (&;t) for, [§l$o(§ — Tio)dE = o(t;edp), @0(§ — Tio) = Po(€ — Tio), & € [too, too + Tio),
to+71
therefore,
too+T10
wll) (t:26m) = —ez [ | Y&t mliote — o ds] 573 + ot <0p) (2.55)
too

On the basis of (2.54) and (2.55), we obtain

too+T10

wor (t;0) = —52{ / Y (&;t) for, [€]% (E—Tio)df} 67i + o(t; edp).

00

Let us now transform wgs(¢;e6u). We have

too+T10 too+T10
woz (t;edp) = / (& ) { fol&, mo+Az]— fol¢]} dE— / Y (&t) fo [§]Az(§—T10) dE+o0(t; €0 1).
to+71 to+710

Since for & € [tg + 71, too + T10],

|Az(£)] < O(edp), [Ax(§ —7i)| = eldp(§ —Ti)l, 20§ —7i) = ol —7), i=2,s,

and
2o(§—71)+Ax(§—m1)=2(§—71; po+edp) =y(§—71; po+edp) =yo(§—71) +Ay(§ =715 €0p),
we get
lim (&, 20(€) + Az(8), wo(€ = 1) + Az(§ = 71),-- -, @0(§ = 7o) + Ax( = 7))
= &t(}iffﬁr (& 20(£),y0(& — T10), 20 (€ = T10)s - - -, o (€ — To0)) = Wi,
gﬁt(}(i]rfmf (& 0(),20(6 = T10), - -+, 20 (€ — T0)) = w0,
ie.

lim sup [fol€, zo + Az] — fol€]] = for-

€0 E€[to+T1,t00+T10]

Moreover, the function Y (&;t) is continuous at the set [too, too + T10] X [too — T2, t10 + d2] C II. Thus,

too+T10

Y (&; t){fo [€, 20 + Az] — fo[f]} d€ = —eY (too + T10;t) f10(0to + d71) + o(t;€dp).

to+71

The expression —&Y (too + T10;t) f10(dto + d71) is the effect of discontinuity. Consequently,

too+T10
t €5M :—EZ / f t f()z [5] (6_7-1'0) df (STZ‘—EY(t()o+T10;t)f10(5t0+(57’1)
too
too+T10
= [ Y&t onleAa(e - mode + ofts ). (256)

to+T710
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Let 01,1 = to + 71 again and ¢y + 719 < to + 71, then we have

2

wo (t;edp) :Z k(t;edp),

where
to+T10
o1 = / Y (&)1 (€ 20p) de,
:(())17'1 too+T10
Woa = / Y (&6){ fol& w0 + Ax] — fo[€]} dE + / Y (& 6){ fol& wo + Ax] — fol€]} dé
to+T10 to+711
too+T10
- [ v {fulgaee + Z o [E1A(E — 7o)} de
.
= [ Y0500 - mo)de.
to+T10

For this case the formula (2.56) is valid and can be proved by the scheme described above.
Let 01,1 = too + Ti0, i.e., too + 710 < to + 7. In this case, by analogous transformations can be
proved the formula

too+T10
o(t;edp) :—52{ / Y (&) fou: [§]E0(§ — Ti0) €| 67
too+T10 "
= [ V(&0 A0l o) d + ofts )

to+T10

without discontinuity effect —e fo1 (6o + 071). We notice that this effect appears under transformation
of the addend w1 (¢;edp). For Ry(t;too,edp), after transformations of w;(t;edu), i = 1, s, we obtain

too+Tio

Ry (t;to0,e6p) = — EZ [/Y &t) foa, [§l0(§ — TzO)d£:| e / Y (&) foa, [§]A2 (€ — Tio) d€
=1 S50 =1y fr50
— £ Z Y(t()o + Ti0; t)fio((sto + (57’2) + O(t; E(S/L). (257)
i=1
Finally, let us estimate Ra(t;t00,e0u). We have
|Ra(t; o, €6p)| < eyv(edp),
where
t10+02 s
v(edp) = / E(t){\Aﬂf(tﬂ + Y [lwot — 1) — zo(t — io)| + |Ax(t — 7)]] } dt,
£ i=1

L(t) =" Lss,.x,(t)
j=1
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(see (2.46)). It is clear that

t10+02
v(e8) < O(ebp) / Dty / Vleo(t — ) — polt — )| + eld(t — )] de
too i= 11500

—1—2 / |m0 t—TZ)—xo(t—710)|+|A£U(t—T1)H dt

s too+Tio

N Z / t) [Jwo(t — 73) — zo(t — 7i0)| + O(edp)] dt

Further,

-~

—T;

eo(t — i) — po(t — Tio) = / $o(§) dE,

t—Tj,[)
t—T1; t—T;
xo(t—n)—xo(t—no)z xo(f)dfz fO[g] dg
t—l@ t_‘7/110

Taking into account the boundedness of the functions ¢o(€) and fo[£], we obtain

|<P0(t —T7i) — olt — Ti0)| = O(edp), |Jﬂo(f — 1) — xo(t — Tz'o)| = O(edp).
Moreover,
’iﬂo(f — 1) — ot — 7—7,'0)‘ + Azt —7)|, t€[oi1,0:2],

is bounded. From these relations it follows that

c}l_I)I(l) v(edu) =0

uniformly for du € W, Thus,
R (t;t00,e0p) = o(t;ed). (2.58)

From (2.47), by virtue of (2.50), (2.57) and (2.58), we obtain (2.16), where dz(t;dp) has the form
(2.17).

2.5 Lemma on the estimation of the increment of a solution with respect

to the variation set & C‘( )

Lemma 2.10. Let 159 > -+ > 119 and tog+7s0 < ro. Moreover, the conditions 2.2-2.3 of Theorem 2.1
and the condition (2.20) hold. Then there exists a number eo € (0,e1) such that

max |Ay(t)] < O(edp) (2.59)
tEfto,m2+01]

for arbitrary (e,6p) € (0,e3) X %S_l). Moreover,

Ay(to) = e[dzo — fof oto] + o(edp). (2.60)

(1)

Proof. Let €2 € (0,€1) be insomuch small that for arbitrary (e,du) € (0,e2) x S’ the inequalities

too + T > to, too + Tio > to, T =1,s, (2.61)
hold. On the interval [to,r2 4 d1], the function Ay(t) = y(t) — yo(t) satisfies the equation

Ay(t) = a(t; edp) + eb(t; edp) (2.62)
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(see (2.32)). We rewrite the equation (2.62) in the integral form

t

Ay(t) = Ay(to) + / [a(€; £611) + eb(&; o)) de.

to

Hence it follows that
|Ay(@)] < |Ay(to)| + ax(t;to,edp) + ebi(to, edp). (2.63)

Let us prove the formula (2.60). We have

to
Ay(to) = y(to; po+edp)—yo(to) = xoo+€5$o*ﬂfoo*/fo (t,90(t), po(t—T10), - - -, po(t—Ts0)) dt (2.64)

too

(see (2.61)). It is clear that if ¢ € [to, to], then
;1_1)1’(1) (ta yO(t)a SDO(t - 7_10)7 ceey Qo(t - TsO)) = tiltﬂJr (ta yO(t)v @O(t - 7—10); SR (PO(t - TsO)) = Wo-

Consequently,

lim sup |f0(tay0(t)7(p0(t_7—10)7"'3‘)00@_7—50)) _f(;L| =0.
€0 ¢€[to0,to)

This relation implies

/fo(t,yo(t),(po(t - 7'10)7 .. .,gOo(t - Tso)) dt

to

= —¢cfi oto +/ [fo(t, yo(t), po(t — T10),- .-, po(t — Ts0)) — fo | dt = —e fof 6to + o(edp).  (2.65)

too

From (2.64), by virtue of (2.65), we obtain (2.60).
Now let us prove the inequality (2.59). Let

pi1 = min{too + 7, to0 + Tio},  pie = max{ty + 7, oo + Tio}, 1 =1,s.

It is easy to see that p; o > p;1 > to and p; 2 — pi1 = O(edp). Let €2 be insomuch small that for
arbitrary (e,0u) € (0,e2) X %(j) the inequalities p; 1 < piy11, ¢ = 1,5 — 1, hold. We now estimate
a1 (t;to,edp), t € [to,m2 + 61]. Let t € [to, p1,1]. Obviously,

t

ax (t; o, £01) < / Ly s, ()1 A0(E) dE + 3 ani(t: o, 070) (2.66)
1=1

to
(see (2.37)). It is clear that if ¢ € [tg, p1.1), then for £ € [to,t] and for any ¢ = 1,5, we have £ — 7; < tg
and & — 7,0 < top, hence,

t

ag;(t;to,e6p) = /Lfo,K1 ©)]e(& —7) — o€ —Tio)| dE

to

b
<00 + [ L @10l — 7) = ool€ ~ )] s, i =To5
to
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From the boundedness of the function ¢y(t), t € I, follows
§—Ti
[po(& —7:) — po(€ —Tio)| = ’ / Po(t) dt’ = O(edp).

§—Tio

Thus, for t € [to, p1.1], we have

agi(t;to,eopn) < O(edp), i=1,s.

Consequently, for ¢ € [tg, p1,1], we get

t

ax (t; o, £81) < O(cdp) + / Lo ser (6)| Ay (€)] de. (2.67)

to

Let t € [p11,p1.2], then a1(t;t0,e01) = a1(p11;t0,e01) + a1(t; p1,1,e0p). The function |a(&;edp),
€ € [to, 72+ 01], is bounded, i.e., |a1(¢; p1,1,0u)| < O(edu), t € [p1,1, p1,2). Therefore, for t € [p; 1, pi2l,
we have

a1 (t;to,edp) < ai(pr,1;to,edp) + O(edpu)

P1,1 t
< O(edp) + / Lok, (§)|Ay(§)] d§ < O(eéu)+/Lfo,f<1(£)\Ay(£)ld£-
to tO

Thus, on the interval [tg, p1,2], the formula (2.67) is valid. Let ¢ € [p1,2,p21], then ¢t — 7 > o,
t —Ti0 > top and t — 7; <tg,t— Tio <t00,i=ﬁ.
For this case, we have

a1 (t; to, £0p) = a1(p1,2; to, €0p) + a1 (t; p1,2,€0p)
P1,2 t t

<00 + [ Lo @8v(©1d + [ Lo @IAu©Ide + [ Ly, ©1An(e — m)]de

to P1,2 P1,2

=2

¢ S
+ / Ly, (©)lyo(€ = 1) = 90§ — 710) [ dE + D ani(t; pr2, £0p).

p1,

It is clear that

£—T10
[yo(€ — 1) — yo(§ — T10)| < ‘ / | fo(too, T10, - - - Ts0, ) (1)] dt‘ < O(edp)

§—11
and

t

az;i(t; p1,2,€0p) = / Lok, (&)]0(€ — 1) — @o(& — 7o) | dE

pP1,2

b
< O(eop) + / Losen (©)]0(€ — ) — 0o(€ — 70)| dé < O(edps), i = 5.

t

Thus, for t € [to, p2,1],
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t t—11
a1 (t; to, e6p) < O(edp) + /Lfo,Kl (©]Ay(§)|ds + / L, i, (€4 1) Ay(§)| d€
to P1,2—T1

t

< 0(55/1‘) + / [Lf07K1 (f) +Xu (g + Tl)Lf07K1 (5 + Tl)] ‘Ay(§)| dg, P12 — 71 = to.

to

Continuing this process, we can prove that for ¢ € [to, ps.2],

t s—1
ax (t; to, £6p) < O(edp) +/ [L 0,5, (€) + D (s = X, (€ +70) Ly 1, (€ + 1) | |Ay(E) dE. (2.68)
to i=1

Let t € [ps,2,72 + 01], then

a1 (t;to, e0p) = ar(ps,2;to, e0p) + a1(t; ps,2,€0 1)

t

+ [ Ly ©18te \+Zyyo € —m) —wole —mio)| + D0 1Al — 7| de

Ps,2 i=1
t o1
<O+ [La @IAUOId+ [ [ 3 (5=, (€ 47 L (€47)] 180(6)] de
to to i=1

—T;

+Z / €+TZ)LJ‘0 K1(§+7—1)|Ay( )|d€

ps2 Ti

t

< 0(66/’4) + / |:Lfo,K1 (6) + Z(S —i+ 1)X1 (5 + Ti)LfoJﬁ (§ + Ti) |Ay(€)‘ df

to
Consequently, for ¢ € [tg, r9 + 01], we have

t s

a0, =60 < O(eom) + [ (L (€ + 305 =i+ 1, (64 7L (€4 7] |Aw(©)]de - (26

i i=1
(see (2.66) and (2.68)). Obviously,

r2+61
b1 (to,edp) <= / Z|(5fZ Lo, T1y -+ Tsy Yo + Ay) (¢ |dt<’yZ/m5fl K, (t) dt. (2.70)

to =1

According to (2.60), (2.69) and (2.70), the inequality (2.63) directly implies

t

890 < O + [ [Ligser(€)+ Do =i+ D (€4 Lo (€ +72)] IAY(E) ds ¢ € [t ra+ 3]

to i=1

By the Gronwall-Bellman inequality, from the above we obtain (2.59). O
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2.6 Proof of Theorem 2.2

First of all, we note that du € & “( ) ie. , tog < tg, therefore we have

e6p(t) for t € [T,t00),
A:Z?(t) = Lp(t) — yo(t) for t € [too,to),
Ay(t) for t e [to,tlo + 51}.
By Lemma 2.10, we get
|Az(t)] < O(edu) Y (t,¢,01) € [to, tro + 61] X (0,£5) x SV (2.71)
and
Ax(ty) = e[dxo — fi Sto] + o(edp). (2.72)

The function Az(t) satisfies the equation (2.44) on the interval [to,t19 + d1]; therefore, by using the
Cauchy formula, we can represent it in the form

t

Aa(t) =Y (toi)Aalta) + [ YGOSIEdE+ D Roltitoset). € ftotuo 48] (273

to p=0

(see (2.48)). Let €5 € (0,e1) and d2 € (0,071) be insomuch small that the inequalities

to+ 7 <t — 02, i=1,s, too+ Tso < t1o— G2
hold. The function Y (&;t) is continuous on the set [too, too + Tso] X [t10 — 02, t10 + d2] C II. Therefore,
Y (to; t)Ax(ty) = €Y (too; t)[0z0 — fo Oto] + o(t; edpu) (2.74)

(see (2.72)).
Let us transform R(¢;tg,edp). It is not difficult to see that

s tg
Ro(t; to,e01) = Y / Y (€ + 7o t) foa, [§ + Tio] Ax(§) d€
izlio*ﬂ'
too to
- Z [s [ Y (€m0 fon [l €) et [¥ (647010 o 6+ malA(€) de
to—Tio too

too

ey [ Y€+ most)on e + moldiole) de

= 1too Tio
to+Tio

S / Y (€ 6) fou, [ A2(€ — 7i0) dE + olt: £61). (2.75)

= 1t00+7—1,0

In a similar way, with nonessential changes, one can prove

Ry (t;to,e0p) = —az U (&:1) fou, [€]2 (g_no)dg] o7y

s totTio

-3 / (&51) fou, [ Az (E—7i0) dé— stw Sto+0m)+o(t;edp),  (2.76)

=lootri0 =1
Ry (t;t0,e0u) = o(t;edu). (2.77)
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Finally, note that

: / Y (€ )5 7(€)dé = e / Y (€:0)3 FIEJdE + oft: cbp). (2.78)

to too

From (2.73), by virtue of (2.74)—(2.78), we obtain (2.16), where

Sx(t;0p) = =Y (too; t) fof Sto + B(t; du).

3 Variation formulas of solutions for equations with the
continuous initial condition

3.1 Formulation of the main results

To each element
p=(to,m1,. . o0, f) € AP =[a,b) x [011,012) % -+ X [1,052) x @ x BV
we assign the functional differential equation
i(t) = f(t,x@t),z(t —7),...,z(t — 7)) (3.1)
with the continuous initial condition
x(t) = (), t [T, tol, (3.2)
where &3 = {p € C(I1,R") : ¢(t) € O}.

Definition 3.1. Let u = (to,71,...,7s, ¢, f) € A® . A function z(t) = z(t;u) € O, t € [7,t1],
t1 € (to,b], is called a solution of the equation (3.1) with the initial condition (3.2), or a solution
corresponding to the element p and defined on the interval [T, ¢1], if it satisfies the condition (3.2) and
is absolutely continuous on the interval [to,¢1] and satisfies the equation (3.1) a.e. on [to, t1].

Let xo(t) be a solution corresponding to a fixed element

Lo = (too,’rlo, -+ Ts0, P05 fO) € A(Q)

and defined on the interval [T, ¢19], where tgo, 10 € (a,b), too < t10, and 7o € (614,02;), i = 1, 5.
In the space Egi) = ,32) — pp with the elements dp = (dtg,d71,...,07s,0p,0f), where E,(f) =
RxRx---xRxC(I1,R") x EJ(E), we introduce the set of variations

s@):{mz(5t0,571,...,573,5¢,5f): 6to] <, |07 <7, i=1,s,

k k
S =Y Ndgi, 6f = _Ndfi, [Nl <, izl,k}7 (3.3)

=1 i=1

where dp; € ®o — g, 0f; € Ej(cz) — fo, i = 1, k, are fixed functions; v > 0 is a fixed number.

There exist numbers §; > 0 and ; > 0 such that for arbitrary (g,51) € (0,e1) x S?), we have
o +edp € A and to the element g 4 edu there corresponds the solution x(; jug 4 £6p) defined on
the interval [T, t19 + 01] C I4.

Due to the uniqueness, the solution z(¢; o) is a continuation of the solution z((t) on the interval
[T,t10 + 61]. Therefore, in the sequel, the solution zy(t) is assumed to be defined on the interval
[?7 tio + 51}.

Let us define the increment of the solution xo(t) = x(¢; f0):

Ax(t) = Ax(t; edp) = x(t; po + €0p) — xo(t) Y (L, e,0p) € [F,t10 + 61] x (0,1) x 2, (3.4)
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Theorem 3.1. Let the function po(t), t € I, be absolutely continuous. Let the functions ¢o(t) and

folw), w= (t,x,x1,...,15) € I x O°FL be bounded. Moreover, there exist the finite limits

¢o = @o(too—), lim fo(w) = f5, w € (a,to] x O°,

w—wo

where
wo = (too, o (too), Po(too — T10), - - - o (oo — Ts0))-

Then there exist the numbers €5 € (0,e1) and 2 € (0,91) such that for arbitrary (t,e,0u) € [too, t10 +

8] % (0,e2) x S,
Ax(t;edp) = edz(t; o) + o(t; edp)

where §? = {6 e IP) . 5ty <0} and

ox(t; o) =Y (too; 1) (2o — fo )oto + B(E; 0p),

too

B(t; 6p) =Y (too; )5 (too) + Y / Y (€ + Tioi t) foa, [§ + Ti0]00(€) d€

=1 too—Tio
t t

- [y [ foal€fiofe - mo)or] de + [ o as

too tOO

Here Y (&;t) is the n X n-matriz function satisfying the equation

Ye(&5t) = =Y (&1) foul€] = Y V(€ + 703 ) fow, [€ + Tio), € € [too, 1],
i=1

and the condition
Y(t;t) =T, Y(&t) =0,
where

foz: (€] = fox: (& 20(£), 20(€ — T10), - - -, 0 (€ — Ts0)),
6f[ﬂ = 5f(§71'0(§),1'0(§ - 7-10)7 cee 7x0(€ - 7_80))'

Some comments. On the basis of the Cauchy formula, we can conclude that the function

5a(t) = Sp(t), t € [7,to0),
ox(t;0p), t € [too,t10 + O2],

is a solution of the equation
0x(t) = fou[t)6x(t) + > fou, [110x(t — 7i0) = D fou, [t (t — Tio)d7i + 6 f[1]
i=1 i=1

with the discontinuous initial condition
6x(t) = dp(t), t € [T,t00), 0x(ton) = (¢g — fo )0to + dp(too).
The addend

= [ V&0 3 fonlelio(e — ro)or] de
too i=1

in the formula (3.7) is the effect of perturbations of the delays 7;9, i = 1, s.

(3.5)

(3.6)

(3.9)
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The expression
Y (too; 1) (g — fo )dto

in the formula (3.6) is the effect of the continuous initial condition (3.2) and perturbation of the initial
moment tgg.
The expression

too

S
Y (tooi)3plton) +3° [ Y5+ mioit) on, € + malbo(€) de
=100 "m0
in the formula (3.7) is the effect of perturbation of the initial function ¢o(t).
The addend

t

/ Y (€: )8 (€] de

in (3.7) is the effect of perturbation of the right-hand side of equation
z(t) = fo (t, x(t), x(t — 110),...,x(t — Tso)).

Theorem 3.2. Let the function po(t), t € I, be absolutely continuous. Let the functions ¢o(t) and
fo(w), w= (t,x,21,...,15) € I x O be bounded. Moreover, there exist the finite limits

803 = SbO(tOO"_)v wli{ri})() fO(w) = f(;ra w e [t007b) X OS+1'

Then for each ty € (too,t10) there exist the numbers g3 € (0,€1) and 6y € (0,8,) such that for arbitrary
(t,e,0p) € [to,t10 + 82] x (0,2) x %f), where %(f) = {6pu € @) : 5ty >0}, the formula (3.5) holds,
where

d(t;0p1) =Y (too; ) (25 — fo)dto + B(t;0p). (3.10)

The following assertion is a corollary to Theorems 3.1 and 3.2.

Theorem 3.3. Let the assumptions of Theorems 3.1 and 3.2 be fulfilled. Moreover, ¢, — f, =
o8 — fo == fo. Then, for each ty € (too,t10), there exist the numbers e3 € (0,1) and 5y € (0,6;)
such that for arbitrary (t,e,0u) € [to, t1o + d2] x (0,€2) x I the formula (3.5) holds, where

Sa(t; ) = Y (too: t) fodto + B(t: dp).

All the assumptions of Theorem 3.3 are satisfied if the function fo(t,x,21,...,zs) is continuous
and bounded, and the function ¢g(t) is continuously differentiable. Clearly, in this case,

o = po(too) — fo(t00s v0(too), po(too — T10), - - -» o (too — Ts0))-
Theorems 3.1-3.3 correspond to the cases where there exist the left-sided, right-sided and two-sided

variations of the initial moment ¢qg, respectively.

3.2 Lemma on estimation of the increment of a solution with respect
to the variation set 3

To each element pu = (tg, 71,...,7s, 0, f) € A®) we assign the functional differential equation

y(t) :f(t()lea"-staQDvy)(t) (311)

with the initial condition
y(to) = ¢(to) (3.12)
(see (1.16)).
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Definition 3.2. Let u = (to,71,...,7s, 0, f) € A®) . An absolutely continuous function y(t) =
y(t;u) € O, t € [r1,r2] C 1, is called a solution of the equation (3.11) with the initial condition
(3.12), or a solution corresponding to the element x and defined on the interval [ri, 79, if tg € [r1,72],
y(to) = ¢(to) and the function y(t) satisfies the equation (3.11) a.e. on [rq,r2].

Remark 3.1. Let y(t;u), t € [r1,72], be a solution corresponding to the element p = (tg,71,...,7s,
@, f) € A®). Then the function

x(t,u) = h(t0a§07y(mu))(t)7 te [?aTQ]’ (313)
is a solution of the equation (3.11) with the initial condition (3.12) (see Definition 3.1 and (1.18)).

Lemma 3.1. Let yo(t) be a solution corresponding to the element g = (too, T10, - - - s Ts05 P05 Jo) € A2
and defined on [r1,72] C (a,b); let tog € [r1,72), Tio € (0i1,0:2), i = 1,5, and let K1 C O be a compact
set containing a neighborhood of the set wo(I1) Uyo([r1,r2]). Then there exist the numbers e > 0 and
81 > 0 such that for any (,0p) € (0,e1) x I, we have g +edp € AP, In addition, to this element
there corresponds a solution y(t; po + €du) defined on the interval [r1 — 01,72 + 61] C I. Moreover,

o(t) := @o(t) +edp(t) € Ky, te€ I, (3.14)
y(t; po +edp) € Ky, t € r1— 01,72 + 01,
and
lim y(t; po + €0p) = y(t; o)
e—0
uniformly for (t,8u) € [r1 — 01,79 + 61] x I3,
This lemma is a consequence of Theorem 1.7.
Lemma 3.2. Let 2(t) be a solution corresponding to the element g = (too, T10, - - - » Tis, ©0, fo) € A?)

and defined on [T,t10] (see Definition 3.1), let too, t10 € (a,b), Tio € (0i1,0:2), i =1,s, and let K1 C O
be a compact set containing a neighborhood of the set o (I1)Uxo([too, t10]). Then there exist the numbers
g1 > 0 and 6, > 0 such that for any (¢,6p) € (0,61) x P, we have po +edp € A2 . In addition,
to this element there corresponds a solution x(t; o + edp) defined on the interval [T,t19 + 61] C I1.
Moreover,

:L’(t; Mo + 65#) e Ky, te [?,tlo + 51] (315)

It is easy to see that if in Lemma 3.1 one puts r1 = tgo, 72 = t10, then zo(t) = yo(t), t € [too, t10],
and
w(t; po + ) = h(to, ,y( -5 po +£6p)) (1) ¥ (t,2,6p) € [T, t10 + 61] x (0,1) x 2

(see (3.13)). Thus, Lemma 3.2 is a simple corollary of Lemma 3.1 (see (3.14)).

Due to the uniqueness, the solution y(t; o) on the interval [r; — d1,72 + 6] is a continuation
of the solution yo(t). Therefore, we can assume that the solution yg(t) is defined on the interval
[7’1 — 51,7”2 + 61]

Lemma 3.1 allows one to define the increment of the solution yo(t) = y(¢; to):

Ay(t) = Ay(t;edp) = y(t; po + £0p) — yo(t) ¥ (t,e,0p) € [r1 — 61,72 + 61 x (0,61) x S, (3.16)

Obviously,
lim Ay(t;edu) =0 (3.17)
e—0

uniformly with respect to (t,du) € [r1 — 81,72 + 61] x 32 (see Lemma 3.1).

Lemma 3.3. Let the conditions of Theorem 3.1 hold. Then there exist the numbers g2 € (0,€1) and
d2 € (0,61) such that
max  |Ay(t)| < O(edp) (3.18)
t€[too,r2+02]

for arbitrary (e,0p) € (0,e2) X 3@ Moreover,

Ay(too) = e[dp(too) + (Do — fo )dto] + o(edp). (3.19)
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@ the following

Proof. Let €, € (0,e1) be insomuch small that for arbitrary (e,du) € (0,€5) x
inequalities

to+ 7 > toog, t=1,s, (320)

hold, where tg = tgo+¢edto, 7; = Ti0+ed7;. On the interval [tog, 72+3d1], the function Ay(t) = y(¢)—yo(t),
where y(t) = y(t; u + edp), satisfies the equation

Ay(t) = a(t; edp) + eb(t; edp), (3.21)
where
CL(t; 55#) = fO(th iy Tsy P, Yo + Ay)(t) - fO(tOOa T105 - -+, Ts05 L0 yO)(t)a <3 22)
b(t,e’;‘éﬂ) :6f(t0a7-17"'a7-37(pay0+Ay)(t)' .
We rewrite the equation (3.21) in the integral form
t
Buy(t) = Bylton) + [ [aéseon) + <b(é; o] de.
too
Hence it follows that
|Ay(t)] < [Ay(too)| + a1 (t; too, €6p) + ebi(too; 0p), (3.23)
where
t ro+9d,
nltitan. <o) = [ lolesedulde, mltonieon) = [ [o(es o)l
too tO(J
Let us prove the formula (3.19). We have
Ay(too) = y(too; o + €6p) — yo(too) = wo(to) + edp(to)
too
+ / o (t:0(t) + Ay(t), olt = 71), .. p(t = 7)) + eb(t: edm) | dt = woltoo)  (3.24)
to
(see (3.20)). Since
to
[ ott)dt = i st + ofzs)
too
and
lin%) dp(to) = dp(too) uniformly with respect to du € 3@
e—
(see (3.3)), we have
vo(to) +edp(to) — ¢oltoo)
to
= /cpo(t) dt + 6 (too) + €[6p(to) — S(too)] = ldg Sto + dp(too)] + o(edp).  (3.25)
too

It is clear that if ¢ € [tg, too], then

gig(l) (t,yo(t)+Ay(t), e(t—71),...,0(t—75)) = lim (¢, 50(t), po(t—T10),-- -, Po(t—Ts0)) =wo

t—too—

(see (3.17)). Consequently,

lim sup |f0(t7y0(t)+Ay(t)790(t77_1)5a@(tf’rs)) 7.f0_| =0.

=0 tE[to,too]
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This relation implies that

/fo(t,yo(t) + Ay(t), ot —71),...,0(t — 75)) dt = —efy dto
[ [Folts006) + By(0). 900 =7, iplt = 7)) = fi | e =~y Gt + oled).(326)

Further, we have

too too 4 L too
to i, =1 =1

(see (3.16), (3.3) and (3.14)).

From (3.24), by virtue of (3.25)—(3.27), we obtain (3.19).

Let us now prove the inequality (3.18). Towards this end, we estimate a; (¢; too,01), t € [too,r2 +
91]. Obviously,

t S
a1 (t; too, €6p) < /Lfo,K1 (©)IAY(E)|dE + Y asi(t; too, 6p1), (3.28)
too i=1
where
t
az;(t; too, e0p) = /Lfo,Kl (&)]h(to, 2, yo + Ay) (€ — 75) — h(too, o, Yo) (§ — Tio)| d€
too
(see (3.22)).
Let tog 4+ Ti0 < 7o and let €9’ be insomuch small that tgg + 75 < 79 + 1.
Furthermore, let

pi1 = min{to + 7, too + Tio}, pi2 = max{too + i, too + Tio}-

It is easy to see that
piz > pi1 > too and piz — pin = O(edp).
Let t € [too, pi1), then for £ € [tgo, t], we have £ — 7; < tg and £ — 70 < g0, and hence,
t
azi(t; too, 0p) = /Lfo,K1 (&)]e(€ = 7i) — o(& — 7o) | dE.
too
From the boundedness of the function ¢g(t), ¢ € Iy, it follows that
(& —7i) — wo(€ — Tio)| = |po(€ — Ti) + €60(€ — 7i) — @o(€ — Tio)|
£
= O(edp) + ’ / Po(t) dt’ = O(edp). (3.29)
§—Tio

Thus, for ¢ € [teo, pi1], we have

a2 (t; too, edp) < O(edp), i=1,s. (3.30)
Let t € [pil,pig], then

a2; (t; too, €dp) < agi(pit;too, €0p) + azi(piz; pir,€6p) < O(e0p) + azi(piz; pit, €0pt).



Variation Formulas of Solutions for FDE with Several Constant Delays and Their Applications in OCPs 59

Let pj1 = to + 7; and pjo = tog + 75, i-€., to + 7 < too + Tio < too + 7;- We have

too+Tio

azi(piz; pir, €6p) < / Lyy.x,(§)|y(€ — 735 po + €0p) — 0o (€ — mi0) | d€
to+T;
too+Ti
+ / Lok, (€)|y(€ — 735 po + €611) — yo (€ — 7o) | d€
to0+Tio
to0+Tio
< Lo, 1,(©)]y(& = 7is pro + £8p) — (& — i) | d
to+T;
too+Tio
+ [ L ©lele — ) — ool — o) de
to+T7;
too+Ti
b [ L Olule — mi o+ <) — ol — 7| de
too+Tio
too+Ti
+ [ L ©lele —7) - ool — o) de
too+Tio
too+Ti
+ / Lo, (€)]0(€ = Tio) — yo(§ — Tio) | d€
too+Tio
too+Ti
<oledm)+ [ Ligaci Iyl — 7o + =) — (¢ )] de
to+T;
too+Ti
+ / Lo, ()| 0(€ = Tio) — yo (€ — 7o) | d€
too+Tio
too
—ofedh) + [ Liae (64 mlu€ o + 261) = 0(6)] de
to

too+T7i—Tio

n / Lo i, (€ + 70) | 00(€) — yo(€)| de

too

see (3.29)). The functions fo(t,z,z1,...,2s),(t, 2, 21,...,2s) € I x O and po(t), t € I, are
bounded; therefore,

|y(&; 1o + €dp) — (€)|

3
= ‘@(to) Jr/ [fo(tosT1,. .., Ts, 0,50 + Ay)(t) + b(t;edp)] dt — 90(5)’ < O(edp), €€ [to,tool, (3.31)

to
and
1
lo(€) — Yo (&) = |vo(§) — wo(too) — /fO(t0077—107 <5 Ts0, %0, Y0) (1) dt‘ < O(edp),
too

€ € [too, too + Ti — Tio] (T > Tio)-
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Thus,
azi(piz; pi1,e6p) = o(edp).
Let Pi1 = to + 7 and pPi2 = too + Ti0, then
too+Tio

aiz(piz; pir, €6p) = / Ly 1, (§)|y(€ — 735 po + €0p) — 0o (€ — 7o) | d€ = o(edp).
to+Ti

Let pj1 = too + Tio and pio = too + 73, i-€., too + Tio < to + 7 < too + 7;. We have

to+T;

a;2(piz; pir,€6p) < / Ly, Kk, (§)|<p(§ — 1) —yo(§ — Tio){ d¢
too+Tio
too+Ti
+ / Lo, 1,(€)]y(€ — 735 pro + €8p1) — yo (€ — Tio)| d€ = o(edp).
to+Ti

Consequently, for ¢ € [too, pi2], the inequality (3.30) holds.
Let t € [pia,r2 + 61], then t — 7, > to and t — 70 > to, therefore,

t

azi(t; too, €dp) = azi(paz; too, €0pt) + / Lo i, (O |yo(€ — 7) + Ay(& — 73) — yo(€ — 7o) | d€

o Pi2 )
<O+ [ Ly €+ mIAUEN &+ [ Ly, Olin(€ ~ 1) (€ — 7o) de
Pi2— T4 Pi2
t ro+01
<O + [ X6+ TLppr €+ WAYONdE+ [ Lo (©lonl€ — 7~ vo(€ — )|
too Pi2
Further, for & € [pi2, 72 + 1],
E—1r1
|0 (& — 75) — yo(€ — Tio)| < / | fo(too, Tits - - -, Tis, o) (£)| dt < O(edp).
&—Tio
Thus, for ¢ € [tgo, r2 + d1], we get
t
az;(t;too, e6p) < O(edp) + /X1(€ +7i) Lgo 5, (§ + 7i) |Ay(€) ] dE. (3.32)
too

We now consider the case where tog + 70 > 72. Let 62 € (0,81) and € € (0,£1) be insomuch small
numbers that tog + Tip > r2 + d2 and to + 7; > ro + 02 for arbitrary (g,0p) € (0,£5) x 3@,
It is easy to see that

t

ag;(t; too, £6p) < /Lfo,Kl (©)]e(€ — 1) — wo(€ — Ti0)| dt < O(edp).

too

Thus, for arbitrary (¢,e,du) € [too, 72 + d2] X (0,e2) X 3? and i = 1, s, where 5 = min(eh, &5), the
inequality (3.32) holds.
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Consequently, we have

o0, =50) < 0(e0m) + [ [Ly1,(€) 4 Y€+ Ly (€4 7] |Aw(©)] de

too =1
t € [too, 72 + 01,
(see (3.28)). Obviously,

ro+02 g

k
by (too, edp) <y / Z|5fi(to,71,-~,Ts,y0+Ay)(t)|dtS’YZ/méfi,Kl(t)dt-
=17

too =1

According to (3.19), (3.33) and (3.34), the inequality (3.23) directly implies

t

(3.33)

(3.34)

|Ay(t)] < O(edp) +/ [Lf,Kl O+ x(E+m) Lk, 6+ Ti)] |Ay ()] dE, t € [too, T2 + da].

too i=1

By the Gronwall-Bellman inequality lemma, from the above we obtain (3.18).

3.3 Proof of Theorem 3.1

Let 71 = tgg and ro = t1¢ as in Lemma 3.1, then

yo(t), t€ [too,tio)s

%m:{%w,taamx

and for arbitrary (e,0p) € (0,e1) X 3@,
e(t), te 7 to),

x(t; po +e0p) =
( Mo ,LL) {y(t’ I + 55/_1/)’ te [t07t10 + 61]

(see (3.13)).
We note that du € %9), i.e., tg < too, therefore

edp(t) for t € [T, o),
Ax(t) = < y(t; o +edp) — po(t) for t € [to, too),
Ay(t) for t e [too, ti0 + 51]

(see (3.4) and (3.16)).
By Lemma 3.3 and the relation

|y(t; o + €611) — o(t)] < O(edp), t € [to, tool,
we have
|Az(t)] < O(edp) Y (t,e,01) € [Fyt10 + 62] x (0,2) x P,
Ax(too) = e[dp(too) + (o — fo )dto] + o(edp).
The function Az(t) satisfies the equation

Az(t) = folt,xo + Az] + ed f[t,x0 + Az] — fo[t]

= fou[t|Ax(t) + Z Joa, [t]Az(t — T30) 4 €0 f[t] + Zﬁi(t;eéu)

i=1 i=1

(3.37)
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on the interval [too, t10 + 2], where
foltswo + Aa) = fo (£ () + A(t), wo(t = m) + Ax(t = 11), ... wo(t = 7,) + Aa(t — 7)),
= fo(t, xo(t), xo(t — T10), - -, To(t — Tx0)),
= 0f (tao(t) + Aa(t),zo(t = 11) + At = 71),... wolt = 7,) + Aa(t - 7)),
5f[t] = 6f(t,zo(t), zo(t —71),...,xo(t — 7s)),
U (t;6p) = folt, mo + Az] — folt] — fou[t]A Zfon [t]Az(t — Tio), (3.38)

=1

Vo (t;e6p) = e[6f[t, xo + Az] — S f[t]]. (3.39)

By using the Cauchy formula, one can represent the solution of the equation (3.37) in the form

Ax(t) (too, )Aw(too -l-E/Y f t (5f d§—|— ZR t; t0075(5,u) te [too,tw +(52}, (340)

too p=0

where i
Ro(t;too, €012) = Y _ Rio(t; too, e0p),
22100
Rio(t;too,e6p) = / Y(&+ Tioi t) fox, [§ + Tio] Az(€) dE, (3.41)

t00—Tio

Ry (t; oo, 6p) =/Y(£;t)19p(§;65u) ¢, p=12,

too

and Y'(;¢) is the matrix function satisfying the equation (3.8) and the condition (3.9). The function
Y (&;t) is continuous on the set

[too — 02, too] X [too,t10 + 2] CII

Therefore,
Y (too; t) Az (too) = €Y (too; t) [d(too) + (9o — fo )dto] + o(t;e0p) (3.42)
(see (3.36)). One can readily see that

Rio(t;too, e0p) =€ / Y (& + Tios t) fow, [§ + Tio]dp(§ d§+/Y £+ Tios t) fox, [§ + Tio] Ax(€) d€

too—Tio
too
= [ V(€ Tt fon € + moldo(€)dE + ot o)
too—Tio
(see (3.35)). Thus
too
Ro(t; too, e0p) = EZ / Y(§ + 7io; 1) foa, [€ + Tiol0p(€) d€ + oft; €p). (3.43)

= 1t00 Ti0

We introduce the notations:
folt; 0,e6p] = fo (t, xo(t) + 0Ax(t), xzo(t — T10) + O(zo(t — 71) — 2o(t — T10) + Az(t — 11)),. ..,
Bo(t = 70) + 0o (t = ) = wo(t — 7o) + Axlt — 7)) ),
o(t;0,e6p) = foult; 0,e0u] — foult],  0i(t;0,200) = fou,[t;0,200] — fou, [t]-
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It is easy to see that
/ d
fo(lt, o + Az] — fo[t] = /@fo[t;ﬂ,eéu] do
0

{fOz [t;0,e6u]Ax(t) + Z Jow, [t:0,€0) (z0(t — 75) — wo(t — Ti0) + Ax(t —73)) } dO

i=1

r—to\
-

[/o— (t;0,e0p) dﬁ] Az(t) + 1 [/IQZ t:0,e61) dG] (zo(t — 73) — wo(t — Tio) + Az(t — 7))

i=

+fO.L +Zf0m Zo t_Tz) _xO(t_TzO)+A$(t_Tz))

Taking into account the last relation for ¢ € [tog, t19 + d2], we have

6
Ry (t;too,e0p) = Z R,(t;t00,€01),

p=3

where

1
Ra(t: too, 61) = / Y (€ )0 (€ c0p)Ax(€) de, o (€ e8p) = / o(&:5,0u)d
0

too
t

Ry(t;too, e0p) = Z/Y(f;t)gz‘z(ﬁ;ﬂ;u) [20(& — 73) — 0(& — o) + Ax(E — 73)] dE,

lzltoo

1
0i2(&;€01) :/Qi1(5;9,55u) de,
0

R (t: oo, 20y1) = Z/Yg, ) fowa[€] [20(6 — ) — mo(€ — m0)] e,

i= ltoo

s t

Rotito0,0m) = 3 [ Y(6:0)for,[€) [Aa(€ — 7) - Aalg — )] de

i:lto0

(see (3.38)). The function xo(t), t € [T, 110+ J2], is absolutely continuous, and for each fixed Lebesgue
point &; € (too, t10 + d2) of the function &¢(£ — 7;0) we get

51-—867—1'
xo(& — 1) — 20(& — Tio) = / @o(s — 7o) ds = —ed0(& — Tio)0Ti + Yi(&i; €01), (3.44)
&i
where 5
lin’(l) 2il&iie0m) _ = 0 uniformly for du € S 3. (3.45)
e £

Thus (3.44) is valid for almost all points of the interval (oo, t10+02). From (3.44), taking into account
the boundedness of the function

folt) = {¢o(t)7 t € [7. oo

fo(t,zo(t), mo(t — T10), ..., ot — Ts0)), t € (too, 10 + d2],



64

Tamaz Tadumadze

it follows that

‘1‘0(&' —7i) — xo(& — Tio)| < O(ebp) and M‘ < const. (3.46)
It is clear that
|Az (¢ = 7i) — Az(€ — Tig)| = o(8;e0u) - for € € lfoo, pa, (3.47)
O(&;e6p)  for € € [pi1, piz]
(see (3.35)).
Let € € [pig,tu) + (51], then & — 7; > tgo, £ — Tip > tog- Therefore,
§—Ti
}Aaz(f —1;) — Ax(€ — T¢0)| < / |Ax(5)\ ds
§—Tio
-7 s
< [ Lo @800 + 3 fools = ) = (s - 7o) + | Aa(s - )] ds
E—Tio =1
e h
+ca / Zméfj,Kl (s)ds = o(&;edp) (3.48)
E—Tio J=1

(see (3.37), (3.15), (3.46) and (3.35)).

According to (3.35), (3.44) and (3.46)—(3.48), for the expressions R, (t;too,e0p), p = 3,4,5, we

have
t10+61
|R3(t; too, edp)| < [[Y[|O(edp)o2(edp), o2(edp) = / o1 (& edp)| dE,
too
s ti0+01
| Ra(t; too, £0p)| < Y [O(0p) Y pia(e6ps), pia(edp) = / lpin (& eop)| d€,
i=1 o
S t S
Rs(t;too, €0p) = —€ [/Y(f;t)fom [€]2o0(€ — TiO)d€:| O+ Y vir(t€0m),
i=1 L i1
where .
Y] =sup {|Y(&t)]: (&,t) € I}, vir(t;edp) = /Y(f;t)fom [€]7i(&; ) dE.
too
Obviously,
1 (t:260) e (€5 200)
WG <y [ o | 2 e
too

By the Lebesgue theorem on the passage to the limit under the integral sign, we have

yi1 (t;€0p)
13

lim og(edp) =0, lim pa(edp) =0, lim ‘ =0
e—0 e—0

e—0
uniformly for (¢,0u) € [too, t10 + 01] X 3@ (see (3.45)). Thus,

Rp(t; tOO? 56:“‘) = O(t; 55#)3 p= 37 47
t

Ry (ttoo, 201) = —= 3 [ [ V€0 fanlginle — 7 d&} 5ri + ol 26p).

i=1 too

(3.49)

(3.50)
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Further,
ti0+61
Roltston. 26| < IV [ 3 on €]l |Aale = ) — Al —mo)| de = ofed). (351
too i=1

On the basis of (3.49)—(3.51), we obtain

s t
Ra(tton, o) = —< 3 [ / V(&8 fou, [0 (€ — 7i0) dg] 57i + olt: £61). (3.52)
Next,
|R2(t; too,&‘(sp,)‘
t104+61 4, s
<ey / >~ Ligy i (O [[Ax(©)1+ Y (J20(6—7)—z0(§—10) |+ Aa(§~r)[) | d <olcon)  (3.53)
o J=1 i=1

(see (3.39)).
From (3.40), by virtue of (3.42), (3.43), (3.52) and (3.53), we obtain (3.5), where dz(¢; 6u) has the
form (3.6).

3.4 Lemma on estimation of the increment of a solution with respect

to the variation set %f)

Lemma 3.4. Let the conditions of Theorem 3.2 hold. Then there exist the numbers e € (0,€1) and
d2 € (0,01) such that

max  |Ay(t)| < O(edp) (3.54)

te(to,r2+02]

for arbitrary (g,6p) € [0,£2] X %(f). Moreover,
Ay(to) = [dp(too) + (¢5 — fo )dto] + o(edp). (3.55)

Proof. Let a number &, € (0,£1) be insomuch small that for arbitrary (e,dp) € (0,g5) X 39)7 the
inequalities

too + 7i > to, too + Tio > to, 1 =1,s, (3.56)

hold, where tg = tgp +€dtg. On the interval [tg, 72 + d1], the function Ay(t) = y(t) — yo(t) satisfies the
equation .
Ay(t) = a(t;edp) + b(t; edp) (3.57)

(see (3.21)). We rewrite the equation (3.57) in the integral form

Ay(t) = Ay(to) + / [a(€; €81) + eb(&; e6p0)] de.

Hence it follows that
|Ay(t)| < [Ay(to)| + a1 (t;to, edp) + b(to, edp). (3.58)

Let us prove the formula (3.55). We have

Ay(to) = y(tos po + o) — yo(to)

to

= o (to) +dp(to) — ¢o(too) — / [fo(t,90(t), 0t = T10), - - po(t — Ts0))] dt (3.59)

too
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(see (3.56)). Since

to
[ ott)dt = et + ofs)

too

and

lin% 0p(to) = dp(top) uniformly with respect to dp € %f)
e—

(see (3.3)), we get

wo(to) +€0p(to) — wo(too)

= /@o(t) dt 4 £6¢(too) + e[0p(to) — S (tan)] = e[&d 6to + S (tao)] + o(edp).  (3.60)

too

It is clear that if t € [tgo, to], then

sh—r}%) (t7y0(t)+Ay(t)7 Qp(t - T1)7 ceey Sa(t - TS)) = t—l)itrg;-i- (ta y()(t), (po(t - 7—10)7 EER QDO(t - TSO)) = Wo

(see (3.17)). Consequently,

Hm  sup | fol(t,yo(t) + Ay(t), ot —71),..., 0t — 7)) — f| = 0.
=0 tE€too,to]

This relation implies that

too

fO(tvyO(t) + Ay(t)v L)O(t - 7-1)’ te @(t - Ts)) dt

to

too

= —¢fy dto +/ [fo(t,yo(t) + Ay(t), ot — 11),...,0(t —75)) — [ ] dt = —efy 0to + o(edp).  (3.61)

to

From (3.59), by virtue of (3.60) and (3.61), we obtain (3.55).
In order to prove the inequality (3.54) we estimate aq(t;to, 1), t € [to, 72 + 01]. Obviously,

t

ax (¢ to, £3p) < / Ly, (O1AY(E) dE + 3 as(tito, 20p) (3.62)
=1

to

(see (3.28)).
Let there exist tog + 70 < 72 and let e’ € (0,e1) be insomuch small that tg + 7; < ro + 4.
Furthermore, let

pin = min{too + 7i, too + Tio}, piz = max{to + 7i,too + Tio}-
It is easy to see that
pi2 = pi1 > to, pi2 — pi1 = O(edp).
Let t € [to, pi1), then for & € [to,t] we have £ — 7; < tg and £ — 70 < tgp. Therefore,

t

ag;(t;to,edp) = /Lfo,K1 (&)](€ —75) — wo(& — Tio| dE.

to

From the boundedness of the function ¢g(t), t € I, follows
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lo(€ = 75) — po(€ — Tio)| = |po(€ — i) + €dp(& — 7)) — o(€ — Tio)|

§—Ti
= O(edp) + ‘ / o(t) dt‘ = O(edp). (3.63)
§—Tio
Thus, for t € [tg, pi1], we have
ag;i(t;to,e0pn) < O(edp), i=1,s. (3.64)

Let t € [Pilapiﬂ, then

azi(t;to,e0p) < azi(pir;to, €0p) + azi(par; pin,edp) < O(edp) + agi(par; pit, 61t

(see (3.64)).
Let p;1 = too + 7 and pio = tg + 7, i.e., tog + 7 < too + Tio < to + 7;. We have

too+Tio
azi(piz; pi1,e6p) < / Ly i, (§)|0(€ — 1) — pol(€ — Ti0)| dé
too+Ti
to+T;
+ / Ly i, (©)|0(€ = 1) — o€ — Tio){ d¢ < o(edp)
too+Tio

(see (3.63)). Consequently, for ¢ € [to, pi2], the inequality (3.64) holds.
Let t € [pia, 2 + 01], then t — 7; > tg and t — 7,0 > tog. Therefore

t
agi(t;to,€0p) = agi(piz; to, €0p) + /Lmel (O|yo(€ = 7i) + Ay(€ — 1) — yo(€ — Tio)| d€

o Pi2 )
< O(edp) + / Ly, i, (€ + 1) |Ay(§)] d€ + /Lfo,Kl (©)]yo(€ = 7i) — yo(§ — Tio)| d€
Pi2—Tq Pi2

t
<Ot + [ X, (€4 70) Ly (€ + 7)|Ay()] de
to
Consequently, in this case we have

t

ay(t;to,e0p) < O(€5M)+/ [Lf,Kl(§)+ZX1(€+Ti)Lf,K1(§+Ti)} |Ay (&) dE, t € [to,r2a+01], (3.65)

i i=1

(see (3.62)).
We now consider the case where tog + 70 > r2. Let the numbers d, € (0,6;) and €5 € (0,e1) be

insomuch small that ¢o + 7 > ro + o for arbitrary (¢,0u) € (0,e5) x %5_2). It is easy to see that

t

azi(t;to,edp) < /Lfo,Kl (©)|e(€ = 7i) = o€ — Tio) | dt < O(ebp).

to

Thus, for arbitrary (¢,e,0u) € [too, 2 + d2] X (0,e2) X %f), where g2 = min(eh, )), the inequality
(3.65) holds.

Obviously,
ro+02 k k
b(to,201) < 4 / Z’5fi(to,7'1,...,Ts,yo—&-Ay)(t)’dt§72/m5fi,;<l(t)dt. (3.66)
to =1 =1 T
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According to (3.55), (3.65) and (3.66), the inequality (3.58) directly implies

t

Ay(b)] < O(ed) + / (L1 (©) + 3 X6+ )Ly s (€ +70)] 1Aw(©)] e, 1 € [t 2 +52]

to i=1

By the Gronwall-Bellman inequality, from the above we obtain (3.54). O

3.5 Proof of Theorem 3.2

First of all, we note that du € Sf) i.e., tgg < to, therefore we have

65(,0(75) for t e [7/'\, too),
Az(t) = ¢ o(t) —yo(t) for t € [too, to),
Ay(t) for t € [to, th + 51}

In a similar way (see (3.31)), one can prove
lp(t) — yo(t)| = O(t;edp), t € [too to]-
According to the last relation and Lemma 3.4, we have
|Az(t)] < O(edp) ¥ (L,&,0p) € [7,t10 + 82 x [0,25] x S

and
Ax(to) = e[dp(too) + (g — fo')]6to + o(edp).

Let 7 € (too,t10) be a fixed point, and let g5 € (0,e;) be insomuch small that ¢, < t for arbitrary
(e,0p) € (0,e1) x %3_2). The function Axz(t) satisfies the equation (3.37) on the interval [to,f19 + d2].
Therefore, by using the Cauchy formula, we can represent it in the form

t 2
Bat) = ¥ (tost) Ax(to) + = [ V(&0 + D Riltito, o), (3.67)
b i=0

where Y (§;¢) is the matrix function satisfying the equation (3.8) and the condition (3.9). The matrix
function Y (&;t) is continuous on [tog,t) X [t, t1p + d2], therefore

Y (to; t)Ax(to) = Y (too; t) [0 (too) + (5 — fo)]dto + o(edp). (3.68)

Let us now transform

Ry (t;to,edp) = Z Rio(t:to, e0p).

i=1
It is not difficult to see that
too to
Rio(t;to,e0p) =€ / Y (€ + Tio;t) fow, [€ + Tio]0p(€) dE + /Y(g + 70; ) fou, [€ + Tio] Az(€) dE
to—Tio too
too
=€ / Y (€ + 7i0;t) fox, [€ + Tio]dp(§) A€ + o(t;ed ).
too—Tio
Thus,
s too
Ry(t;tg,e0u) =€ Z / Y (€ + Ti0; 1) fou, [€ + Tio]00(€) dE + o(t; €0 p). (3.69)

=1
too—Tio



Variation Formulas of Solutions for FDE with Several Constant Delays and Their Applications in OCPs 69

In a similar way, with nonessential changes, for t € E, t10 + d2], one can prove

s t

Rl (t, to, E(S/J) = —£ Z / Y(f, t) [fgz7 [f]xo(f — 710)57'1-] df + O(t; 55#), (370)
7;:1t00

Ry (t;tg,e0p) = o(t;edpu). (3.71)

Finally, we note that for ¢ € E, ti0 + d2],
t t
: / Y (€ 1)5[¢] de = < / Y (€:1)5F1€] dé + olt; 201, (3.72)
to too

Taking into account (3.68)—(3.72), from (3.67) we obtain (3.5), where dx(t;edu) has the form
(3.10).

4 Optimal control problems and necessary conditions
of optimality

4.1 Preliminaries and necessary criticality condition

In this subsection by E. we will denote a vector space. The k-dimensional vector space E¥ will be
identified with the space R*. By the module of an element z € E* we will mean the Euclidean module

k

|22 =2T2= 2(21)2

In what follows, finite-dimensional vector spaces will be endowed with the Euclidean topology. Let
zi € E., i =1 k. The set

L:{zzzk:/\izi: i €R, z:1,7k}
i=1

is called the finite-dimensional linear manifold generated by the points z;, i = 1, k. If 2y € L, then we
say that the manifold L passes through the point zp and it will be denoted by L.,. In what follows,
we will write the manifold L, in the equivalent form

k
Lo={s=20+Y Nz: \eR i=TFk}. (4.1)
i=1

For each fixed a > 0, the set

{zk:mi: N <a, i= 1,k} (4.2)
=1

is a convex bounded neighborhood of zero in the space L,, — 2.

Definition 4.1. We say that points z; € E,, i = 0, k, are in a general position if the vectors z; — 2o,
i = 1, k, are linearly independent.

From this definition it follows that for any z;, i = 1, k, the system of vectors zp — 2, ..., 2zi—1 —
Ziy Zigl — Ziy - -5 2k — 2; is linearly independent, as well.

Definition 4.2. Let the points z;, i = 0, %, be in a general position. The convex hull of points z;,
i=0,k, ie., co({z0,...,21}), is called a k-dimensional simplex.
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Clearly, a k-dimensional simplex is a convex compact set in the linear finite dimensional manifold
generated by the points z;, ¢ = 0, k. It is easy to note that

co({zoy...,2k}) = 20+ co({0,21 — 20, ..., 2k — 20})
k k
=Zo+{z>\¢(zz’—20)i Ai >0, Z)\iﬁl} (4.3)
i=1 i=1

From the relations (4.2), (4.3) and Definition 4.2 follow Lemmas 4.1 and 4.2.

Lemma 4.1. The simplex co({zo,...,2r}) has a nonempty interior.
Lemma 4.2. Each point z of a simplex co({zo,...,2r}) can be uniquely represented in the form
k . k
z= Z/\izi’ where \; >0, i=0,k, and Z)‘i =1.
i=0 i=0

Lemma 4.3. Let M C E* and, moreover, let 0 € int M. Then in E* there exists a k-dimensional
simplex which is contained in M and contains 0 € E¥ as an interior point.

Proof. Let co({z0,...,2x}) C E¥* be a k-dimensional simplex. By Lemma 4.1, there exists Z €
int co({#p, ..., zx}) such that the k-dimensional simplex
—Z+co({z0,...,2x}) =co({z0 — Z,..., 2k — Z})

contains 0 € E* as an interior point. By assumption, there exists a convex neighborhood
V={z€eEf: |z|<eo}, 0 >0,

of zero contained in M. o
Let € > 0 be a number such that e(z; — 2) € V, ¢ = 0,k. Hence the k-dimensional simplex
eco({z0 — Z,..., 2 — 2}) is contained in M and contains 0 € E¥ as an interior point. O

Lemma 4.4. Let a linear mapping
9:E. - E} (4.4)

and a k-dimensional simplex co({go,...,gr}) C E;“ be given. Let z;, i = 0,k, be certain inverse

images of the points g;, i = 0, k, under the mapping (4.4), respectively. Then co({zo,...,zr}) C E, is
a k-dimensional simplex, and the restriction of the mapping

g:co({zo,...,2x}) — co({g0,---,9k}) (4.5)
s a homeomorphism.

Proof. Let there exist numbers \;, i = 1, k, such that

k

k
Z)\i(zi—ZQ):O, Z|/\Z| 750
i=1

i=1

Obviously,
k k
g(z Ai(zi — ZO)) = Xilgi — g0) = 0;
i=1 i=1

in turn, this contradicts the linear independence of the elements ¢; — go, i = 1, k.
Therefore, co({z,...,2xr}) is a k-dimensional simplex. By Lemma 4.2, the mapping (4.5) is a
homeomorphism. O

Let the Hausdorff vector topology be given in E,, which transforms F, into a topological vector
space.
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Lemma 4.5. Let W C E, and let a mapping
. k
P:W — Ej, (4.6)

continuous in the topology induced from E,, be given. Further, let K C W be a compact set. Then
for any € > 0, there exists a neighborhood V. C E. of zero such that

|P(z") = P:")| <e V(Z,2"Ye KxW, 2/ -2"€V..
Proof. For each point 2z’ € K, there exists a convex neighborhood V' (2) C E, of zero such that

|P(z') = P(2)| <= Vze (Z+V()NW.

€
3
The system of sets {2z’ + V(2') : 2’ € K} composes an open covering of the compact set K. Hence
there exists a finite subcovering {z; + V' (z}) : i = 1,m} of the set K.

Clearly, for z € (2} + V(z})) N W,

|P(z;) — P(2)] <

K3

. (4.7)

Wl ™

By the continuity of the mapping (4.6), for 2e/3, there exist convex neighborhoods V; D V(z}),
i = 1, m, of zero such that

IP(2)) — P(2)| < 2% Vze (Z+Vi)NW. (4.8)

Obviously, the sets

)

Vi=Vi— V() =Vi+ (-)V(]), Vo=V
1=1

are the neighborhoods of zero in E,, and for an arbitrary point z € (2] +V (z}) —HZ) NW, the inequality
(4.8) holds.

Let (2/,2") € K x W, 2/ — 2" € V. and the point 2’ belong to some of the sets z, + V(z}),
1 < k < m. Further,

=2 = 4 — 2 e Vet VI(z) C Ve + V(2) = Vi
Taking into account the inequalities (4.7) and (4.8), we have

[P(') ~ P(")| < |P()) = P +P(h) ~ P")| < S+ 2e = O

Definition 4.3. The set U of a subsets from E, is called a filter if it satisfies the following conditions:
(a) if Ac ¥ and B € ¥, then ANB € U;
(b) if A€ ¥ and B D A, then B € ¥;
(c) ¢ 0.
The set of all neighborhoods of a fixed point of the space E, serves as an example of a filter.
Definition 4.4. A set R of a subset of E, is called a basis of a filter if it has the following properties:
(a) for any A € R and B € R, there exists C' € R such that C C AN B;
(b) @ &R

The set ¥ of all subsets each of which contains a certain set from R is the filter generated by the
basis R.
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Theorem 4.1 (Carathéodory). Let M C E¥. Then any point z € co(M) can be represented in the
form

k
2= Nz,
=0
k

where z; € M, A; >0,i=0,k, and > \; = 1.
i=0

Theorem 4.2 (Brouwer). Let co({zo,...,2r}) C E. be a k-dimensional simplex. Then each contin-
UoUS Mmapping

g:co({z0,...,2k}) — co({z0,---,2K})
has a fized point, i.e., there exists a point z € co({zo, ..., 2x}) such that g(z) = z.

Theorem 4.3. Let M C Ef be a convex set and 0 € OM. Then there exists a nonzero k-dimensional
vector m = (my,...,m) such that

k
Wz:ZmzigO Vze M.

i=1

Let E, = E¥ x E_ be a vector space of points z = (z,5). Assume that D C E, is a certain set and
a mapping
P:D— E} (4.9)
is given. Let ¥ be an arbitrary filter in F,.

Definition 4.5. We say that the mapping (4.9) is defined on the filter ¥ if there exists an element
W € ¥ such that W C D.

Definition 4.6. Let the mapping (4.9) be defined on the filter ¥. The mapping (4.9) is said to be
critical on the filter ¥ if for any point zy belonging to all elements of the filter ¥, there exists an
element W C ¥ such that W C D and P(zy) € OP(W).

Definition 4.7. We say that the mapping (4.9) defined on the filter ¥ is continuous on ¥ if there
exists an element W € ¥ such that W C D and the restriction

P:W — E}
of the mapping (4.9) is continuous in the topology induced from FE.,.

Let X C E* be a locally convex topological subspace, i.e., for an arbitrary neighborhood V, C X
of a point x € X, there exists a convex neighborhood V, C X contained in V.. The following lemma
is easily proved.

Lemma 4.6. Let T € X be a fized point. Further, let Vo C X — X be a convex bounded neighborhood
of zero, and let Vi C X —Z be a certain neighborhood of zero. Then there exists a number g9 > 0 such
that

eVoCVp Vee (0,50).

Definition 4.8. A set D C X x E¢ is said to be finitely locally convex if for an arbitrary point
z = (x,¢) € D and for arbitrary manifold L. C E, there exist convex neighborhoods V,, C X and
V. C E; of the points x and ¢, respectively, such that

Ve x Vo CD.
Lemma 4.6 and Definition 4.8 directly imply the following lemma.

Lemma 4.7. Let D be a finitely locally convex set, and let zo = (xo,<0) € D. Further, let Vo C X —xg
and V. C L¢, — so be bounded convex neighborhoods of zero (see (4.2)). Then there exists a number
€g > 0 such that

20 +¢edz €D V(e 0z) € (0,e0) X Vo x V, bz = (dx,09). (4.10)
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Definition 4.9. We say that the mapping (4.9) has a differential at a point zo = (x0,<p) € D if there
exists a linear mapping
dP., : Es. = E. — z) — EJl (4.11)

such that for any manifold

k
Lo={0+Y Nds: \eR, i=TF}CE
i=1

(see (4.1)) the representation
P(zp +€dz) — P(z0) = €dPy,(0z) + 0(e0z) V(e,0z) € (0,e0) x Vo x V

holds, where Vo C X —z¢ and V C L, — o are bounded neighborhoods of zero; ¢g > 0 is the number
for which (4.10) holds;
. o(edz)
lim —=

=0 uniformly in 6z € V5 x V.
e—0 £

The mapping (4.11) is called the differential of the mapping (4.9) at the point z.

Definition 4.10 (Gamkrelidze). A filter ¥ in F, is said to be quasiconvex if for any element W € ¥
and any natural number k, there exists an element Wy = W1 (W, k) € ¥ such that for arbitrary points
z; € W1, i =0,k, and an arbitrary neighborhood of zero V' C E,, there exists a continuous mapping

¢ :co({z0,...,2k}) — W. (4.12)

satisfying the condition
(z—¢(2)) €V Vzeco{z0,...,2k}).

Obviously, in Definition 4.10, we can assume that W7 C W, since any element Wy C W N Wy of
the filter has the indicated property of the element W;. Therefore, in what follows, we will assume
that Wy C W.

Definition 4.11. A filter ¥ is said to be convex if there exists a basis of the filter consisting of convex
sets.

Lemma 4.8. Every convex filter ¥ in E, is quasiconvex.

Proof. For any element W € U, there exists a convex element Wy C W, which can be taken as Wi;
as the mapping (4.12), it is necessary to take the identity mapping. O

Let E, be a topological vector space, X C EF be a locally convex topological space, and D C X x E
be a finitely locally convex set.
Let a mapping
P:D— E (4.13)

be given, and let ¥ be a filter in E,.

By co[¥] we denote the convex filter whose elements are the sets co(W'), where W is an arbitrary
element of the filter .

Theorem formulated below is an analogue of R. V. Gamkrelidze and G. L. Kharatishvili’s Theorem
on the necessary criticality condition to mappings defined on a finitely locally convex set. The proof of
the following theorem is performed according to the scheme presented in [7-9] with only nonessential
changes.

Theorem 4.4. Let the mapping (4.13) be continuous on co[¥] and critical on U. Further, let the
filter ¥ be quasiconvexr. Then for any point zo = (xo,s0) belonging to all sets of the filter U at which

the mapping (4.13) has the differential (4.11), there exists an element W € W such that zero of the
space Ey is a boundary point of the set

dP,, (co(/W) —29) C Egp. (4.14)
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Proof. By the assumption, there exist elements W; € ¥, i = 1,2, such that co(Wy) C D, Wy C D,
and, moreover, the mapping
P:co(Wy) — B (4.15)

is continuous and P(zy) € OP(Ws). Clearly, Wy = Wi, N Wy € ¥ and P(z) € 0P(Ws).
Let the conditions of the theorem hold, but for any W € ¥ lying in D, the point 0 € Ej} is an
interior point of the set
dP,,(co(W) — z0) C By,

Let us show that this contradicts the choice of the element W3. Precisely, we prove the solvability
of the following equation
P(z) = P(z) +p, z € Ws, (4.16)

with respect to z and for any vector p € E}" whose module is sufficiently small, and, therefore, we
prove that P(zo) is an interior point of the set P(W3) C E}*, which contradicts the choice of W3. By
Wy = Wy(Ws; (m+1)?) C W3 we denote the element of the quasiconvex filter ¥ (see Definition 4.10)
satisfying the following condition: for any neighborhood of zero V' C E, and any 1 + (m + 1)? points
205+ -5 Z(m41)2 from Wy, there exists a continuous mapping

¢ :co({z0, -y Z(mt1)2}) — W3 (4.17)

satisfying the condition
(z—¢(2) €V Vzeco({z0,.--,2m+1)2})- (4.18)

According to the assumption made, 0 € Eg’;; is an interior point of the convex set
dP;,(co(Wy) — z0) C Eg,. (4.19)

Hence there exist m+1 points dp; € dP,,(co(Wy4)—zp) that are in general position, and, moreover, the
m-dimensional simplex co({dpo, ..., dpm}) containing 0 € Ej} as an interior point (see Lemma 4.3).
By the linearity of the mapping (4.11),

dPZO (CO(W4) — Zo) = (?O(dsz0 (W4 - ZQ))

Each of the points

dp; € co(dP,,(Wy — 2p)), i =0,m,
is represented in the form
m m
dp; = Z,Uijdpija dpij € dP,y(Wy — z0), pij >0, Z,Uz’j =1
7=0 =0
(see Theorem 4.1). Let 0z;; € Wy — 2o be some inverse images of the points dp;; under the mapping
dPZO ZW4—Z()—)E3;,

and let

m
6Zi = Zuijézij, 1= O,m. (420)
7=0

Obviously,

dP,,(6z;) = dp;, i=0,m.

By Lemma 4.4, the points 6z, = (dz;, ds;), © = 0,m, are in general position and the mapping
dP,, : co({dz0,...,0zm}) — co({dpo,...,dpm}) (4.21)

is a homeomorphism.
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Let z € co({z0,20 + 020,...,20 + 0zm }). Then

m m k m m m m
zZ =29+ Z /\1521 =2z9+ Z Z /\i,uijézij = (1 — Z Z /\iﬂij>ZO + Z Z )\i,uij(zo + 5zij),
i=0 i=0 j=0 i=0 j=0 i=0 j=0
m
A >0, ZM <1
i=0
(see (4.3) and (4.20)). Hence
co ({zo, 20 +020,...,20 + 6zm}) C co ({zo7 20 + 0200, - - -, 20 + 0Zij, ..., 20 + 6zmm}). (4.22)
Further, let us show that for e € [0, 1], the inclusion
zo +eco({dz0,...,02zm}) C co ({zo, 20+ 020,...,20 + 6zm}) (4.23)
holds. Indeed, it is clear that every point zg 4+ € co({dz0,...,dzm}) is represented in the form

Z=2z9+ EZ)\i(SZi =(1—g)z + EZ)‘i(’ZO +dz;) € co ({zo,zo +020,...,20+ (5zm}).
i=0 i=0

The inclusions (4.22) and (4.23) imply
z0 +eco({dz0,...,92zm}) C co ({zo, 20 +020,...,20 + 5zm})
C co(Wy) C co(W3) C DVe €[0,1]. (4.24)

Taking into account
D—Zo C (X—.’I}Q) X (Eg—go),

we see that the latter relation directly implies the inclusion
eco({dxg,...,0zm}) C (X — ), €€]0,1]. (4.25)
Let L., C E. be the manifold generated by the points gy, 65, . . . , 0G:
m—+1

Lo ={0+ Y Nds: NeR i=0m+1}, doni1=c.
=0

Obviously,
eco({dso,---,9sm}) C Ley — S0- (4.26)

Let Vo C X —2p and V C L, — ¢y be convex bounded neighborhoods of zero. There exists a number
e1 € (0,1) such that

g1 co({6zo,...,0zm}) C Vo, e1co({dso,...,06m}) CV

(see (4.25) and (4.26)). Hence
e1co({0zp,...,0zm}) C Vo x V. (4.27)

Let w(e) = eeq, € € (0,1). Lemma 4.7 implies the existence of a number 2 € (0, 1) such that
zo +w(e)dz € D V(g,02) € (0,e2) x Vo x V.

Denote by d > 0 the distance from the point 0 € £} to the boundary of the simplex co({dpo, . . . , dpy. }).
The differentiability of the mapping (4.13) at the point zp implies the existence of a number
€3 € (0,e2) such that

P(z0 +w(e)dz) = P(z0) + w(e)dP,, (dz) + o(w(e)dz) V(e,0z) € (0,e3) x Vo x V; (4.28)
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moreover,
o(w(e)dz d
|(w((€)))| <5 V(e02) € (0,65) X Vo x V. (4.29)
Obviously, on account of (4.27), the relations (4.28) and (4.29) hold for (g,0z) € (0,e3) X

co({0z0,...,0zm}).

The mapping (4.15) is continuous on co(W3) in the topology of the space X x L.,. Therefore,
P(zp +w(e)dz) is continuous in 6z € co({dzp,...,0zm}) (see (4.24)). Using (4.28), we conclude from
the above-said that for each € € (0,¢€3), the function o(w(g)dz) is continuous on co({dxo, ..., 0xm}).

Further, the continuity of the mapping P on co(W3) and the compactness of the set
zo +w(e) co({dzp,...,02r}) C co(W3) imply that for each £ € (0,e3), there exists a neighborhood of
zero V. C E, such that for

2 € 2o +w(e) co{dxq,...,0zm}), 2" €co(Ws), 2/ —2" €V, (4.30)

we have
|P(2") = P(z")| < w(e)

(4.31)

Wl

(see Lemma 4.5).
The conditions (4.17), (4.18) and the relation (4.22) directly imply the existence of a family of
continuous mappings
@ : cO ({zo, 20 +020,...,20 + 6zm}) — Wy,

depending on ¢ € (0,e3) and satisfying the condition
z—¢(2) €V, Yz Eco ({zo,zo +620,...,20 + 6zm}).

For € € (0,e3), the simplex zp+w(e) co({dz0, ..., 0zn}) is contained in co({zo, 20 + 020, ..., 20+ 02m })
(see (4.23), and, therefore,

z— ¢ (2) €V. Vz € zg+w(e)co({dz0,...,02m}). (4.32)
Let us now show that the equation
P(¢e(2)) = P(z0) + w(e)p, z € 2o +w(e)co({dz0,...,0zm}) (4.33)

is solvable in z for a sufficiently small € and an arbitrary p € E}" satisfying the condition

d
Ip| < 3" (4.34)

Indeed, we rewrite this equation in the form
P(z) = P(20) + w(e)p+ P(z) — P(¢:(2)), z € z0+ w(e)co({dzq,...,02m}),
or, using (4.28), in the form of the following equation in dz:

o(w(e)dz) n P(z0 +w(e)dz) — P(¢pe(z0 + w(e)dz)

) (@)

, 0z € co({dz0,...,0zm}). (4.35)

The relations (4.29)—(4.32) and (4.34) imply

( o(w(e)dz) | P(zo +w(e)dz) — P(¢e(20 + w(e)d2)

- +
w(e) w(e))

and hence the equation (4.35) is equivalent to the equation

o(w(e)dz) n P(z0 +w(e)dz) — P(pe(z0 + w(e)éz))
w(e) w(e) ’

) € co({6po; - - -, 0pm})

6z =dP.! (p - (4.36)
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where
dP;;" : co({dpo, ..., dpm}) — co({8z0,...,62m})

is a continuous mapping, inverse to the mapping (4.21).

We can consider the right-hand side of the equation (4.36) as a continuous self-mapping of the
simplex co({0zg,-..,0zm}), and hence each fixed point of this mapping is a solution of the equation
(4.36) (see Theorem 4.2). Thus, we have proved the solvability of the equation (4.33) for an arbitrary
p satisfying (4.34) and, therefore, the solvability of the equation (4.16) for p whose modules are
sufficiently small. O

Theorem 4.5. Let the conditions of Theorem 4.4 hold. Then for any point zy belonging to all sets ¥
at which the differential (4.11) exists, there exist an element W € ¥ and a vector m = (m1,...,7m) # 0
such that

wdP,,(0z) ZmdPl ) <0 Ve cone(co(W) —20), (4.37)

where cone(ﬁ/\) is the cone generated by the set W.

Proof. Set (4.14), being the image of a convex set under a linear mapping, is also convex. Since 0 € EZ,
is a boundary point of the convex set (4.14), by Theorem 4.3, there exists a nonzero m-dimensional
vector for which .

wdP,,(0z) <0 Viz € coW — zp).

This implies (4.37). O

4.2 Gamkrelidze’s approximation lemma

Let Uy C R” be an open set. Now let us consider the function f (¢, z, x1,...,2s,u), (¢, z,21,...,2s,u) €
I x Ot x Uy, satisfying the following conditions: for almost all ¢ € I, the function f : I x Ot x Uy —
R” is continuous and continuously differentiable in (z,z1,...,zs) € O**!; for each (z,z1,...,24,u) €
Ot x Uy, the function f(¢t,z,z1,...,7s,u) and the matrices f.(t,z, -), fo,(t,x, ), i = 1,s, are

measurable on I; for any compact sets K C O and M C Uy, there exists a function mg p(t) €
Ly(I,R,) such that for any (z,m1,...,2s,u) € K5t x M and almost all ¢ € I,

|f(taxaxla"'7xsv )‘+|fxt$ : |+Z|f$1 tl’ : |<mK7M(t)'

Introduce the set

F= {f(t,x,xl,...,xs) = f(t,z,x1,...,x5,u(t)) : u€ Q(I,U)},

where U C Uy is a given set. The set F' can be identified with a subset of the space E}l). A family of
subintervals

o= {IB = [tg,tg_,_l] : B= 1,m},
where a = t1 <tg < -+ <ty_1 < t, =0b, is called a o-partition of the interval I.
Let the points f;(t,z,x1,...,25) = f(t,x,21,...,25,u;(t)) € F, i =1,k+ 1, and the o-partition
of the interval be given. Using these data, to each point A of the k-dimensional simplex

k+1
E:{/\:(Al,...,)\k+1): A >0, ;)\il}

we can uniquely put in correspondence the subdivision of each intervals Ig into k + 1 subintervals
Ip, (M), i =1,k + 1, defined by the condition

mesIp,(A) = \jmeslg, i=1,k+1, (4.38)
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if \; =0, then the corresponding interval degenerates into a point. Define the mapping
G55 — F (4.39)

by the formula
¢0()\) = f)\(t?x?‘rlﬁ cee 7938) = f(taxaxla cee 7IS7U>\(t))7

where

ux(t) =wi(t), telg(N), B=1m, i=1k+1.
It is clear that

itz e, xs) = filt,z, 21, .., xs), €I (N), (z,21,...,25) € Ot (4.40)
B=Tm, i=1k+1

The relations (4.38) and (4.40) play principal role in proving the following

Lemma 4.9 (Gamkrelidze’s approximation lemma [6,7,10]). For an arbitrary o-partition, the mapping

(4.39) is continuous, i.e., for an arbitrary point NeX and an arbitrary neighborhood Vi . € R, there
exists a number 6 > 0 such that

(fx—f5) €Vike YA {AeS: A=A <4}
Moreover, for an arbitrary neighborhood Vi . € R, there exists a o-partition such that for VA € X, we

have
k+1

(Z)\ifi - f,\) € Vke,
i=1
i.e.,

"

'/ [E )\ifi(t75€7$17...71's)_f)\(t,l',xl,...,zs)} dt‘ <e
t =0
V(t’,t//’m,xl’...,x&)\) eI?x K5t x 3.

Let 6, > --- > 0; > 0 be the given numbers with 6; = m;h, where m;, i = 1, v, are natural numbers

and h > 0is a real number. Let the function f(t,x, 21, .., T, U1, .. Uy ), (E, T, L1, ..., TgyU1, ... Uy) €
I x Ot x UY +1 satisfy the following conditions: for almost all ¢ € I, the function f : I x
Ot x UOV'H — R™ is continuous and continuously differentiable in (z,z1,...,7s) € O°T1; for
each (z,21,...,T5, U, u1,...,u,) € OIS x Ué’“, the function f(¢,z,x1,...,xs,u,u,...,u,) and the
matrices f(t,x, -), fu,(t,x, ), i = 1,s, are measurable on I; for any compact sets K C O and
M C Uy, there exists a function mg a(t) € L1 (I,Ry) such that for any (z,z1,...,Ts, U, U1, ...,U,) €

K5+t x M¥*! and almost all t € T,
|f(t,:r,a?1,...,xs,u,ul,...,uy)} + |f”ﬂ(tﬂx7 )| +Z|f”£1(t7x7 )| < meM(t)
i=1

Introduce the set
F = {f(t,z,xl,...,xs) = f(t,z:,:z:l,...,xs,u(t),u(t—01),...,u(t—ﬂu)) cu € Q(IQ,U)},

where Iy = [a — 0,,b],Q(I3,U) C E,(I2).

Consider the functions f;(¢t,z,x1,...,xs) = f(t,z, 21, ..., s, u;(t),u;(t —01),...,u;(t —0,)) € Fy,
i =0, s. In this case, we consider the -partition which means that we partition the interval [a — 0, b]
in the following way. Let v > 0 be the minimum number satisfying the condition b+ —a + 6,,, = lh,
where [ is a natural number and let I(®), o = 1,1, be a system of intervals of length h adjacent to each
other such that the left endpoint of the interval I(") coincides with the point a —6,,, the right endpoint
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of it coincides with the left endpoint of the subsequent interval I?), etc., and the right endpoint of
I® coincides with the endpoint b+ ~. Next, we divide each of the intervals I(® by a partial interval
I éa), B =1, m, in a unified way so that the right endpoint of one of the partial intervals I él) coincides

with the point b. To an arbitrary point A € ¥, we put in correspondence a subdivision into partial
intervals [ é‘:‘) (\) common for all T éa) and defined by the condition (4.38).

Let the points f;(t, z,z1,...,25) = f(t,z, 21, ..., T, u;(t),u;(t —01),...,u;(t — 6,)) € F1,i=0,s,
and g-partition of the interval be given.

Let us define the mapping

b5 % — F (4.41)
by the formula
d)&\()\) = f)\(tvxaxla s 7xs) = f(taxaxla s 7xs>u>\(t)7u)\(t - 01)3 v ,U)\(t - 01/))7

where

ur(t) = wi(t), te I\, a=11, f=Tm, i=1k+1.

It is clear that
Oz xy, .. xs) = filt,z,21,...,25), tE Igj‘)()\).

The latter relation allows one to prove generalization of Lemma 4.9.

Lemma 4.10. For an arbitrary c-partition, the mapping (4.41) is continuous. Moreover, for an
arbitrary neighborhood Vi . € R, there exists a &-partition such that for VA € ¥, we have

k+1

(Z Aifi — f,\> € Vipe. (4.42)
i=1

Lemma 4.11 ( [20, p. 66]). Let z; € E,, i = 1,k + 1. There exist a subset g C X and a function
#(2), z € co{z1,--,2k4+1}), such that the mapping

¢:co{z1,.. ., 2641}) — Lo (z— A€ Xy) (4.43)
is a homeomorphism.

Lemma 4.12. Let f;(t,z,z1,...,25) € F1, i =1,k + 1. Then for an arbitrary Vi . € R, there exists
a continuous mapping

do i co({f1,-, frr1}) — F1 (4.44)

satisfying the condition
(Z — (Z)Q(Z) S VK75 Vze CO({fl7 . fk+1})- (445)

Proof. On the set ¥y we define the mapping (4.41), i.e., ¢5(\) = fr € F1 V) € Xg. By Lemma 4.10,
the mapping (4.41) is continuous and (4.42) is valid. Define now the continuous mapping (4.44) by

the formula go(2) = $5(9(2)), 2 € cO({fr,..-, fes1}), where
2 ¢(2) =X € Xg and ¢5(d(2)) = fyz) = o € F1

(see (4.43)). The relation (4.42) implies (4.45). O

4.3 Example of a quasiconvex filter

Let fo(t,z,x1,...,25) = f(t,x,21,...,2s,u0(t),uo(t — 01),...,uo(t — 0,)) € Fy be a fixed point. In
Fy, let us define the filter ¥ using the basis

Ry = {WK’(; : K C O is acompact set, 6 >0 is an arbitrary number}7

where

WK,(;:{f(t,m,xl,...,xs):f(t,a:,xl,...,xs,u(t),u(t—ﬁl),...,u(t—@,,))EFl Hi(f—fo: K)S(S},
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/ (@1,. ,ﬁs)eKe+1(|f(t,a?,$1,..., xs)+ | fu(t, x, - H—Zlfw )} dt, fEE(l
T

(see Lemma 2.1).
Lemma 4.13. The filter ¥ is quasiconvexz.

Proof. Let an arbitrary element W € ¥ and an arbitrary natural number k be given. There exists an
element Wg 5 € $; such that Wi s C W. Let us show that as W in the definition of a quasiconvex
filter, we can take WK7 o

Assume that the points

filt,x,xp, ... x5) = f(t,a:,xl,...,xs,ui(t),ui(t— 01),...,u;(t—06 ))

are SuCh ”la‘
H(?z_H)'K)<7
’ k"‘].’

By Lemma 4.12, there exists a continuous mapping

d)o : CO({fl7 ey fk—i—l}) — F1

defined by the formula
b0 = ¢3(d(2)) = fr, A€ o,

and satisfying the condition

(z—¢o(2) € Ve YzEcO{f1,---, frg1})-

It remains to prove that fy € Wik s VA € Eg. For this purpose, let us estimate the quantity H(f) —
fo; K). Owing to the specific character of the g-partition, we have

Hhtx,xy,...,x5) = filt,x,21,...,Ts), tel(’?) ANl
Bi

Taking into account the latter assertion, we have

Hl(f,\*fo;K):zl: / [ sup (|fx(tvxv ) = folt,z, -)|

(z,x1,...,x5)EKF

a=lr@)ng
9 o
b
l m k+1
<> / [ sup (\fi(t,x,-)—fo(t,x,-)!
a=1p=11i=1 () (I,:El 7777 IS)GK,C
5 ()n1
9 )
j
k+1
<> Hi(fi — fo; K)
i=1
Hence ¢o(z) € Wk 5. O

Lemma 4.14. In the space E( ) let the set

WO = {fe B Hi(f - fo; Ko) < b},
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where 69 > 0 is a fized number and Ky C O is a compact set, be given. Then for an arbitrary W € U,

the inclusion
cone ((WW]y — fo) D F1 — fo (4.46)

holds. Here [W],,a) denotes the closure (with respect to W) of the set W) MW in the topology on
W) induced by the topology on Ey.

Proof. Clearly, W, 5, C W) and there exists W, s, contained in W. Therefore,
WO AW > Wk, 5, N Wiy 50 D Wity 50 (4.47)
where Ky = Ko U K1, 02 = min{d1,do}. To prove the inclusion (4.46), it suffices to show that
cone ([W(l)]wl@é2 —fo) D Fi—fo
(see (4.47)). Let f—fo € Fi — foand zx = (1 =N fo+Af, A €0, 1]; let {e;} be a sequence converging
to zero. By Lemma 4.12, we can construct a sequence of continuous mappings

& col{fo, f}) — F1, i=1,2,...,

such that ‘
ox— 08 (20) € Viyer, AE[0,1], i=1,2,..., (4.48)

where
¢g)(z,\) = Az, z1,...,25) = f(t,x,xl,...,xs,u,\(t),u,\(t —91),...,u,\(t—9u)),

w (t) - UO(t), te Ié?) N IQ,
A u(t), tel i,

a=11l B=1,m; m;=mlg).

Let us now prove the existence of Ag € (0,1) such that
O (20) € Wiys,, i=1,2,..., YA€E[0,\o]. (4.49)

For the expression H;(f — fo;K>2), taking into account the relation fi(¢,z,z1,...,25) =
folt,z,x1,...,x5), t €L E Igf)()\) N I, we have

l

AT T SE | s ([fta ) ot )]
S J Leaeoeri

+ !a%fu,x, )= %fou,x, )| +;‘aijf“’x’ '>‘8ijf0<t’x’ ')M "

where .
5oy = P nn.
B=1

The specific character of the o-partition implies
! I ma I my
mes ( Z IQ(?)()\)) — Z Z mes I§, (\) = A Z Z mes [5 < Ames I5.
a=1 a=1 =1 a=1 =1
Therefore,

!
mes (ZI;?)()\)) —0as A—=0
a=1
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uniformly in ¢ = 1,2,.... Hence there exists A\g € (0, 1) for which
Hy(fx — fo; K2) < 2.
The inclusion (4.48) is proved. The condition (4.49) implies qﬁéi)(zA) — 2z as i — 0o. Therefore,
23 € Wy, .. for A€ [0, Ao,

and hence
zx — fo € cone ([W(l)]wsz), A € [0, Ao,

but zx — fo = A(f — fo). Thus f — fo € cone([W ]y, ). O

4.4 The optimal control problem with the discontinuous initial condition

Consider the optimal control problem

i(t) = f(t,x(t),z(t —7), ..., 2t — 75),u(t), u(t — 61),...,u(t —6,)), (4.50)
t € [to,t1] C I, ueQ2,U),

x(t) = @(t), t€[T,to), x(to) =mzo, ¥ € Py, x9 € Xo, (4.51)

q'(tost1, 71, 7o, o, 2(t1)) =0, i=1,1, (4.52)

qo(to,tl,n,...,Ts,xo,x(tl)) — min, (4.53)

where 0, > --- > 01 > 0, &3 = {p € PC(I5,R") : o(t) € N}, N C O is a convex set; Xg C O is a
convex compact set; the scalar-valued functions ¢*(tg,t1, 71, ..., 7s, o, 1), i = 0,1, are continuously
differentiable on I? x [011,012] x - -+ X [041,0,2] x O2.

The problem (4.50)—(4.53) is called an optimal control problem with the discontinuous initial
condition.

Definition 4.12. Let v = (to,t1,71,...,7s, Zo, p,u) € A = (a,b) X (a,b) X (011,012) X - -+ X (041, 052) X
Xo x @3 x Q(I,U). A function z(t) = z(t;v) € O, t € [T,t1], is called a solution of the equation
(4.50) with the discontinuous initial condition (4.51), or a solution corresponding to the element v
and defined on the interval [T, t1], if it satisfies the condition (4.51) and is absolutely continuous on
the interval [to, t1] and satisfies the equation (4.50) a.e. on [tg, t1].

Definition 4.13. An element v = (to,t1,71,...,7s,To,p,u) € A is said to be admissible if the
corresponding solution z(t) = x(¢;v) satisfies the boundary conditions (4.52).

Denote by Ag the set of admissible elements.

Definition 4.14. An element vy = (to0, t10, 710, - - - 5 Ts05 £00, L0, Uo) € Ap is said to be optimal if there
exist a number §y > 0 and a compact set Ky C O such that for an arbitrary element v € A satisfying
the condition

[too — tol + [t10 — 1] + Y [7i0 = 7l + w00 — @o| + 00 — ¢l + Hi(fo — f; Ko) < bo,

i=1
the inequality
qo(too,t10,7'107~-~,7'so,$007300(t10)) < qo(t07t177-17--~7Tsa$07$(t1))
holds. Here
fo=folt,z,x1,...,25) = f(hx,xl, cos sy ug(t),up(t — 01), ... u(t — Hk))
and

f=ftzx,... x5 = f(t,x,xl,...,xs,u(t),u(t—91),...,u(t—9k)).
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Theorem 4.6. Let vy be an optimal element and let the following conditions hold:

4.1,
4.2.
4.3.
4.4,

4.5.

4.6.

4.7.

Tso >+ > T10 and too + Ts0 < th; with Ti0 € (01‘0,91'_;'_10), 7= ].,S - 1,‘

0; = m;h, i = 1,v, where m;, i = 1,v, are natural numbers, h > 0 is a real number;

the function po(t) is absolutely continuous and o (t) is bounded;

the function fo(w),w = (t,x,x1,...,15) € I x O is bounded;

there exists the finite limit

lim fo(w) = f5, w € (a,to] x O,
w—rwWo
where wo = (too, o0, Yo(too — T10), - - - Po(too — Ts0));
there exist the finite limits
lim [fo(wii) — fo(w2i)] = fois
(wis,was) = (wl,,ws,)
where wy;, we; € (a,b) x O3 i =15,
0 _
wy; = (too + 70, Zo(too + Tio), To(too + Tio — T10), - - -, To(too + Tio — Ti—10),
o0, Zo(too + Tio — Ti+10); - - - To(too + Tio — TsO))a
0 _
Wy, = (too + 7i0, o (too + Tio), To(too + Tio — T10); - - -, To(too + Tio — Ti—10),
©o(too), zo(too + Tio — Tit10)s - - - To(too + Tio — Tso));
there exists the finite limit
w_l)lgl . folw) = fr1, w e (too, t10] xO° T, w1 =(t10,z0(t10), To(ti0—Ti0), - - -, Ts(t10—Ts0))-
s+
Then there exist a vector T = (mg,...,m) # 0, with mg < 0, and a solution (t) = (Y1(t), ..., ¥n(t))
of the equation
S
¥(t) = —¥(t) fout] — Zd’(t + 7i0) foz, [t + Tiol, T € [too, tro], P(t) =0, t > to, (4.54)

=1

such that the following conditions hold:

4.8.

4.9.

the conditions for the moments tog and tig:

TQot, > Y (too)fy + Z%b(too + 7i0) foi, ™Qot, > =V (t10)fei1,

i=1

where

0

_ (4,0 INT _
QO—((] 7"'aq) ) QOtO_@tO

Qo;

the conditions for the delays T;0, i = 1, s,

7Qor, = Y(too + Tio) foi + /T/J(t)wai [tlo(t — T0)dt =0, i

too

I
[t
)
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4.10. the condition of the vector xp,

(mQozo + ¥(too)) oo = xf(}lea%io(WQom + 9(too))o;

4.11. the integral mazimum principle for the initial function @o(t),

too tOO
Z / Y(t + Ti0) fow, [t + Tiolpo(t) dt = 1?)%{; Z / Y(t + Tio) fox, [t + Tiolep(t) dt;
1.
= 11‘/00 Ti0 =1 too—Tio

4.12. the integral mazimum principle for the control function ug(t),

tio

/wwhmw

too

tio

— max /w(t)f(t,xo(t),xo(t o). ot — T, u(t) ult — 00). .. u(t —6,)) ) d:

u(t)eQ(I2,U)
too

4.13. the condition for the function (t),
¢(t10) = 7TC20I1'

Theorem 4.7. Let vy be an optimal element and let the conditions 4.1-4.4 and 4.6 hold. Moreover,
there exist the finite limits

lim fo(w) = fi7, w€ [too,b) x O°T',  lim fo(w) = fF,, w € [tio,b) x O°T. (4.55)
w—wo W—Ws41
Then there exist a vector m = (mg,...,m) # 0, with 7o < 0, and a solution of the equation (4.54) such

that the conditions 4.9-4.13 hold. Moreover,

TQot, < ¢(too)fo + Y _ ¥(too + 7o) foir  TQor, < —t(t10)fei1-

=1

Theorem 4.8. Let vy be an optzmal element and let the_conditions of Theorem 4.6 hold. Moreover,
there exist the finite limits fy S-‘rl’ with fo = ff = fo, Jfor1 = fs+1 = f5+1 Then there exist a
vector m = (m, ..., m) # 0, with mg < 0, and a solution of the equation (4.54) such that the conditions
4.9-4.13 hold. Moreover,

mQoto = (too)fo + O ¥(too + 7o) foir  TQoty = —(t10) fasr.
i=1

Theorem 4.9. Let vy be an optimal element and let the conditions 4.1-4.5 and 4.7 hold. Moreover,
there exist the finite limits

lim [fo(wii) — fo(w2s)] = fo;,

(w14 »w2i)‘>(w11 “’21)

where wy;, wo; € (a,too + Tig) X O5FL, i

1= . Then there exist a vector m = (mg,...,m) # 0, with
mo <0, and a solution of the equation (4.54

such that the conditions 4.8-4.13 hold. Moreover,

tio
7Qor, > Y(too + Tio) fo; + /w(t)fom [t]Zo(t — Ti0) dt, i=1,s.

too
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Theorem 4.10. Let vy be an optimal element and let the conditions 4.1-4.5 and (4.55) hold. Moreover,
there exist the finite limits

lim [fo(wu) - fo(w%)] = fo»

(wl,;,w2,;)~>(wh wzl)

where wi;, wa; € [too + Tio,b) X O*FL i =1 s. Then there exist a vector m = (mo,...,m) # 0, with
mo < 0, and a solution of the equation (4.54) such that the conditions 4.8-4.13 hold. Moreover,

tio
TQor, < 1/)(t00 + Tio)fg; + /d}(t)fO:cl [t]i‘o(t - T,L'()) dt, i=1,s.

too

4.5 Proof of Theorem 4.6

Auxiliary assertions. Let K C O be a compact set and let a > 0 be a certain given number. In
the spaces E}l) and Ey, we define, respectively, the sets

Wi.a=1{0f € B\ : Hi(6f;K) < a},

W(K;Ot) = {§f € Ef : Em(;f’K(t),Lgf’K(t) S Ll(l, R+), / [mgva(t) +L5f7K(t)] dt < a}.
I

Lemma 4.15. Let K; C O, i = 1,2, be compact sets, and, moreover, let K1 C int Ky and oy > 0 be
a certain number. Then there exists a number ag > 0 such that

WKQ,Oél - W(Kl;OQ)' (456)

Proof. Let §f € Wi, o, Hence

/sup{|(5f(t,x,x1,... D+ 10 (t,z, - |+Z|5le toa, )| (x,xl,...,xs)€K§+1}dt§a1.

T
For a.e. t € I and every (2, 2},...,2%) € Kith (2 2),...,2)) € Ki™! the inequality
S
6£(t, 2 2, al) = 6f (b a2l 2| < Lop (1) [|x' — |+ el - x}
holds, where
L(Sf,Kl (t) = TLZS(O{O + 1)

xsup{\éf(t,x,xl,..., $)|+0fe(t,x, - |+Z|(5fmltx I (x,xl,...,xs)ng}

(see Lemma 2.2).
On the other hand, it is obvious that for (¢,x,21,...,25) € I X Kf“, we have

[0f(t,z,21,...,25)|] <msp i, () = Sup{\éf(t,x,xl,...,zsﬂ D (my 2y, xs) € K‘f'H}.

Using the relations obtained above, we get

/ [messx, (t) + Log i, ()] dt < aq [1+ n?s(ag + D] = as.
7

The inclusion (4.56) is proved. O
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To each element
R = (to,tl,Tl, ce ,Ts,l‘o,(p,f) S (a, b) X (a,b) X (911,012) X oo X (981,052) X XO X (I)l X E]([l)
we put in correspondence the functional differential equation

i(t) = f(t,x(t),z(t —7),...,2x(t — 7)), t€ [to, t1],

with the initial condition
x(t) = ¢(t), t€[T,t0), z(to) = zo.

Definition 4.15. The solution corresponding to an element x = (to, t1, 71, .., 7s, Zo, ®, f) is called a
solution z(t; u), u = (to, 71, .,7s,Zo, ¥, f), defined on [T, 1], and denoted by x(¢; k).

Therefore,
xo(t) = x(t;v9) = x(t; ko) = x(t; po), t € [T, t10], (4.57)

where
ko = (00,1105 T10, - - - » Ts05 005 0, fo), o = (too, T10 - - - » Ts0, 00, P05 f0)-

The following lemma is a direct consequence of Theorem 1.2.

Lemma 4.16. Let oy > 0 be a certain given number, and let K1 C O be a compact set containing a
certain neighborhood of the set clpg(I1) Uxo([teo, t10]). Then there exists a number 61 > 0 such that
to each element

K € V(/{O;Kl,&l,al) = (B(too;(sl) OI) X (B(t10;51) ﬂI) X (B(T10;51) n (9117(912)) X oeee
X (B(Tso;51) N (951,952)) X (B(.%‘oo,(sl) N O) X (B((p0;§1) N @2) X [fo + (VVKI,O‘1 N VKl,él)]

there corresponds the solution x(t; k) € K1, t € [T,t1]. Moreover, for each e > 0, there exists a number
d =46(e) € (0,01) such that for an arbitrary k € V(ko; K1,01, 1), the inequality

|[2(t10; ko) — 2(t1; k)| < e
holds.
Remark 4.1. Lemma 4.16 remains valid if we replace the set V(ko; K1, 01, 1) by the set
V(ko; K1,61) = (B(too;01) N I) x (B(t10;01) N 1) x (B(110;01) N (011,012)) X - -+
X (B(Ts0;01) N (0s1,052)) X (B(z00,91) N O) x (B(po;01) N P2) x [fo + Wk, 5]
Let us now consider the topological vector space

E, = R**™" x PC(I},R") x EY)

with the points x = (y,5), where y = (to,t1,71,.--,7s,Z0) |, ¢ = (0, f).
The set
X = [a,too] X [too,t10] X [011,012] X -+ X [0s1,052] x O C RZFsHn

is a locally convex subspace in the topology induced from RZtstn,

By Dy C E, we denote the set of elements Kk € X x ®y x E](cl) such that the solution z(t; k)
corresponds to each of them. The set Dy is nonempty, since kg € Dy.

Lemma 4.17. The set Dy is finitely convez.

Proof. Let k = (y,<) € Dy be an arbitrary fixed point, and Le C E¢ be a linear manifold, i.e.,

k
Lg:{€+5§: 5§:Z)\¢5§i, Ai €R, izﬁ},
i=1
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where dg; € E., i = 1, k, are fixed points. There exists a number J; > 0 such that with each element
Kk € V(R; K1, 61) we associate the solution z(t;<) € K (see Remark 4.1).
Let a number ¢ € (0,d1) be insomuch small that the neighborhood of the point ¢

k
= {§+i_zl>\i5§ii |Ail <6, Z:Lk}

is contained in the set N
(B(@ 51) N ‘1)2) X [f + WK1,51}'

Therefore, there exist convex neighborhoods
Vg = (B(t0;0) N (a,%0)) x (B(t1;0) N (to, 1)) x (B(Z0;61) N O) C X, VaC Le

such that
Vg X V%‘ C Dy.

Hence the set Dy is finitely locally convex with respect to the space X x E.. O

On the set Dy, let us define the mapping
S DO — R"

by the formula
S(k) = x(t1; k).

Lemma 4.18. The mapping S is differentiable at the point ko and
dSk, (0Kk) = dx(t10;0k) + fo 10t1 YOk = (Oto,0t1,071,...,0Ts, 020,00,0f) € Ex — Ko, (4.58)
where
8 (t10; k) = dx(tro; Opt) = — [Y(too; 5+ Y(too + 7io; t)fol} 5to
i=1

S

t
- {Y(foo + Tio3 ) foi + / Y (&t) foa, [€]E0(§ — Tio) dS] 7i + Y (too; t)dxo

=1 t
too t
5 | Y€t rait)fonle + maldete) e + [ i) ag (459)
= 11500 Tio too

and Sy = (Sto, 071, . .., 07, 0m0,00,6f) € B — po.
Proof. Let Lo, C E¢ be a linear manifold, and let
VoCXfyo, VCLgofgo

be bounded convex neighborhoods of zero, where yo = (t00, t10, T10, - - - s 7505 xoo)T and o = (o, fo)-
The finite local convexity of the set Dy implies the existence of a number g9 > 0 such that for an
arbitrary (e,ds) € (0,e0) X Vo X V', g9 + €ds € Dy, and

x(t10 + e6t1; ko + 0k) — x(t1g + €0t1; ko) = @(t1g + €0t1; o + dp) — x(t1o + €0ty o)
= Ax(tio + edt1;e0p) = edx(tig + £dt1;0p) + o(t1p + £0t1;d),

where the variation dz(t19 + €dt1; ) is calculated by the formula (2.7).
We have
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S(ko +edk) — S(ko) = x(t10 + €dt1; Ko + €dK) — xo(t10)
= x(t10 + £dt1; ko + €0K) — xo(t10 + £0t1) + o (t10 + €0t1) — xo(t10)
tio+edty
= e0x(t1o + €0t1;0p) + o(tio + €0ty;€0u) + / folt]dt. (4.60)

tio

It is easy to note that
hH(l) 0x(t10 + €0ty; 0p) = dx(t10; O )
11—

uniformly in 6k € Vy x V, (i.e., uniformly for the corresponding oy ) and

tio+edty
Jolt]dt = ef, 10t1 + o(edk).

tio

Taking into account these relations and the variation formula (2.7), from (4.60) we obtain
S(ko + €6k) — S(ko) = €[0x(ti0; 6r) + fo10t1] + o(e6k) = edS, (6k) + 0(€0K), (4.61)

where dx(t10; k) has the form (2.59). O

Differentiability of the mapping at the point z;. Consider the vector space
E,=RxEFE,

of points z = (§, k).
Introduce the sets
X =Ry x Xy, D=Ry x Dy.

The set is finitely locally convex in the subspace X x E. C E, (see Lemma 4.17).
On the set D, let us define the mapping

P:D — RH!

by the formula
P(Z) = Q(tmtl,ﬁ, e ,TS,.’E(),S(H)) + (6,07. .. ,O)T,

where Q = ¢°,...,¢' and S(k) = x(t1; k).

Lemma 4.19. The mapping P is differentiable at the point zg = (0, ko) and

dP.,(6z) = {QOtD —Qoz, Y (toos t10) fo —Z Qoz, Y (too+Tio; t10)f0i}5to+ {Qot, +Qoay 11 }6t1
i=1

s tio
+Y° {Qon — Qoz, Y (too + Tioi t1o) foi — /QO@:ly(t§t10)f0zi [t)Eo(t — Ti0) dt}5Ti
i=1 too

s too
+ { Qoo + Qoz, Y (too; t10) } o0 + Z / Qox, Y (t + Tios t) fou, [t + Tio]0(t) dt
i=1t0077—i0
tio

+ /QOIIY(t;tw)ch[t] dt + (5€,0,...,0)7, 6z = (6¢,6K) € E, — 2. (4.62)

too
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Proof. Let Lo, C E¢ be an arbitrary linear manifold and let
Vb CX- (OvyO)Ta VC Lco — <0

be arbitrary bounded convex neighborhoods of zero. There exists a number g9 > 0 such that for
arbitrary € € (0,&9) and dz € Vp x V,
zo+ebz € D,

and the formula (4.61) holds.
We have

P(ZO —+ 652) — P(Zo) = Q(t00+€6t07 th +€5t1, 7'10+€5T1, e ,T80+55TS, I00+65I0, S(H0+€6H))
— Q(too, t10, T10, - - - Ts0, Z00, S (ko)) +2(8¢,0,...,0)".

Let a number 5 > 0 be insomuch small that
S(ko) + t(S(ko +e0k) — S(ko)) € O V(t,e) € (0,1) x (0,£0), Yoz e Vo xV,

where 0z = (0§, 0k) (see Lemma 4.16).
Let us now transform the difference

Q(too -+ 65t0,t10 + E(stl,’l'lo + 557’1, ..., Tso T 6(57'5, Zoo + 55170, S(K?o + 65&))
— Q(t00,t10: 7105 - - - » Ts0, Zo0, S (ko))
/1
0

Q(too + Etéto,tlo + 8t§t1,7‘10 + €t5T1, ey

SR

Ts0 + €t0Ts, Too + etdxo, S(Ko) + t(S(ko + edk) — S(HO))) dt
=¢ [Q0t05t0 + Qor, 0t1 + Z Qo7 0T; + Qozy 020 + Qoz, dSk, (511)] + a(edz),
i=1

where

aedz)

{ Qoto €3] — Qoto | 6to + [Qor, [:] — Qor, | 6t1 + Z [Qor, [e51] — Qor, |67

i=1

O\H

+ [Qowo 3 t] = Qowe|0z0 + [Qoas [€5] — Qo | Sio (0K) + Qo [€; t]o(z—:é/{)} dt,
QOto [6; t] = Qto (too + etdtg, t10 + etdty, T10 + 0T, . . .,

Ts0 + €675, Too + etdmo, S(ko) + t(S(ko + €0K) — S(KJO))).

It is easy to note that

511—I>I%) [QOti [E;t] - QOti] = 07 1= 1727 ah—% [QOT,; [Eat] QOTJ = 7 1= 1787
gll}%) [QOwl [€7t] - QOI@] =0, :=0,L

Therefore, a(edz) = o(£dz). Thus,

Plzg+e62)—P(z)=¢ [Q%(stﬁQohatl +3 " Qor 67+ Quy dSg (65) + (5E,0, .. ,o)T} +o(e62).

i=1

Due to the relations (4.58) and (4.59) from the above equality we get (4.62). O
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Quasiconvexity of the filter ¥, . Continuity of the mapping P on the filter co[¥,]. In
the topological vector space E,, let us define the filter ¥, as the direct product

U,y = Vg, X Uy X ¥

of two filters ¥5,, o = (0,y0) ", and W,,, which are defined, respectively, by the convex bases

{(Bo NRy) X (Btg, N (a,too]) X (Biy, N (a;t10]) X (Bryy N (011, 012)) x -
X (Bry N (0s1,052)) X (Bgoy NO) : By, ..., By, areconvex neighborhoods},

Ts0

{Bw0 N®,: By, C PC(I;,R") is a convex neighborhood}.

The filter ¥ has been introduced in Subsection 4.3.
There exists a number §; > 0 such that the set

W = R+ X (B(too;(sl) n (a,too]) X (B(t01;51) n (CL, t10]) X (B(T10;51) n (911,912)) Xoeee
% B(740;61) N (051, 052)) x (B(woo; 01) N O)) x (B(ipo381) N 1)) x Wi (K1,81) € D

and, moreover, the mapping
P:W — RO

is continuous in the topology induced from E,. Here
WKy, 6) = {f € BY - Hi(f ~ fo: K1) <1},
The element Wi, 5, of the filter ¥ is contained in the convex set W;:)(K 1,01). Therefore,
co(W,,) C W C D,

where

Wzo = R+ X (B(t00;51) N (a,too]) X (B(t01;(51) N (a,tlo]) X (B(T10;51) N (911,012)) Xoeee
X B(Tso;(sl) N (9517932)) X (B(J?oo;(sl) N O)) X (B(Lpo;(sl) N (I)l)) X WK1,51 S \I/ZO.

Hence there exists an element W,, € ¥ such that

P :co(W,,) — R

0

is continuous. Therefore, the mapping P is defined and continuous on the filter co([¥,,]).

Criticality of the mapping P on the filter ¥,,. The point zy = (0, ko) belongs to all elements
of the filter ¥, , and, moreover,

-
P(20) = (4" (too: t105 10, - - - - Ts0» To0, To(t10)), 0, ..., 0) .
Introduce the set
C= {KJ: (t07t177—1a~~'77—87‘r07807f> : f = f(t7x,x17...,xs,u(t),u(t—91),...,u(t—9,,)),
w = (t07t177—17 s 77—57550790,“) € WO}

For an arbitrary element
z=(& k) € Wy N (R4 x V),

where W, € ¥, we have

T
P(z) = (qo(to,tl,n,...,Ts,xo,x(tl);/i),O,...,O) .
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The element wy € Wy is optimal; therefore, there exists an element W, (K2;d2) € V., where d2 €
(0,0) and Ko C O is a compact set containing K such that for an arbitrary element

z € W, (Ka2;02) N (R4 x U)
the inequality
qo(t007t10,710, C o Ts0, 200, To(t10)) < qo(to,tl,ﬁ, o Tes @0, (t15K)) + €
holds. It is easy to see that
P(W., N (R4 x U)) C Ry = {(p',0...,0)T e RPT'}

and the point P(zp) is a boundary point of the set P(W,,(K2;d2) N (Ry x U)) with respect to the
space Rg.
Therefore, P(z) € O(P(W,,(K2;92) NRy)), and, the more so, P(zg) € O(P(W,,(Kz;d2)).

Deduction of the necessary optimality conditions. All the conditions of Theorem 4.5 hold.
Therefore, there exist a nonzero vector m = (m,...,m) and an element WZO € ¥, such that the
inequality
wdP,, (dz) <0 Viz € cone(WZ0 — 2p) (4.63)
holds, where dP,,(6z) has the form (4.62).
Introduce the function

Y(t) = mQoa, Y (T : t10); (4.64)
as is easily seen, it satisfies the equation (4.54) and the conditions
Y(tio) = TQoszys ¥(t) =0,t > tio. (4.65)

Taking into account (4.62), (4.64) and (4.65), from the inequality (4.63) we obtain

{WQOto —¥(too)fo — Z¢(foo + TiO)fOi}5tO +{7mQot, + ¥ (tw0) for1 }ota
i=1

+ Z {WQon — Y (too + Tio) foi — /Tﬂ(t)fom [t]Zo(t — Tio) dt}ch + {7Qoz, + ¥ (too) } 60
i=1 too

s too tio
+ Z; / Yt + Ti0) fow, [t + Tio]0p(t) dt + /1/J(t)5f[t] dt + mgd€, 6z € cone(/VVZ0 —20). (4.66)
= too—Tio too

o~

The condition 6z € cone(W,, — zy) is equivalent to the conditions

6 € R4, Oty € (—O0,0], 0ty € (—O0,0], o € R, izﬁ,

dxg € cone(Wy,, — Zoo), Op € cone(wg,0 — o), 0f € Cone(ﬁ/\fo — fo)s

where

= Bugy N Xo, Wy = By, N1 € Uy, Wy, € Uy,

Let dtg = 0ty =01y = -+ =07, = 0 and dxg = dp = 6f = 0 in (4.66), we obtain

—~
WIOO Z00

To6E < 0 V8¢ € Ry

This implies
™0 S 0.
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Setting 0§ = 0tg = o171 = --- = d7; = 0, and dxg = dp = df = 0; then, taking into account the fact
that dtg € (—00, 0], from (4.66) for the initial moment oy we obtain the following condition:

mQote = P(too)fo + D ¥(too + Tio) foi-

i=1
If 6¢ = 6ty = 671 = -+- = 01; = 0 and dzg = ¢ = 6f = 0 in the inequality (4.66), then for the final

moment t19 we obtain the following condition:

7Qot, > —(t10) feys-
If 06 = 6ty = d0t1 =0 and dzg = dp = df =0, we get

s tio

Z {WQon — (too + Tio) foi — /¢(t)f0mi [tlEo(t — Tio)dt}5Ti <0 VimeR, i=1,s.

i=1

too

From the above follow the conditions for the delays 7;9, ¢ = 1, s:

tio
7Qor, = Y (too + Tio) foi + /w(t)fo@ [tlo(t — Ti0) dt, i=1,s.

too

Let 5§ = Jto = 6t1 = 67’1 == 57’1‘ =0 and 5(p = (Sf =0in (466) Then
{ﬂQon + Zb(too)}(sxo < 0, 6330 S COHG((B$OO N Xo) — IL’O()).

Let us prove the inclusion
cone((Byo, N Xo) — Zoo) D Xo — Zoo-

Indeed, let 2o € X be arbitrary point. The set xg is convex, therefore, for an arbitrary e € [0, 1], the
point . = xgo+<(xo —o0) € Xo. On the other hand, for a sufficiently small € > 0, z. € By,,. Hence
e — oo = (g — Zop) € (Brgo N Xo) — Zoo. This implies 29 — zgp € cone((Byy, N Xo) — Zgp). Thus,

{mQoxo + ¥ (too) }zo0 = Irglea%(O{WQOxo + ¢ (too) }o.

Let 66 = 6tg =0ty =6, =--- =01, =0 and dxg = df = 0. We have

s too

Z / Wt + Tio) fow, [t + Tio]0p(t) dt <0 Vdp € cone(wqJO — o).

Pt
= too—Tio

Analogously, we can prove
cone(Wy, — o) D ®1 — ¢o.

Thus,
s too s too
> / Y (t + Tio) foz, [t + Tiolpo(t) dt = max / U(t + Tio) foz, [t + Tiole(t) di.
- 2 17
lzltoo—ﬂo lzltoo—‘rz‘o
We now consider the case where §§ = 0ty = dt; = dmy = -+ = 67, = 0 and dzp = dp = 0. From (4.66)
we obtain

/w(t)af[t] dt <0, &f € cone(Wy, — fo).

too
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Now, using the last inequality, let us prove the integral maximum principle. For this purpose, we have
to prove the continuity of the mapping

5f —s /6f[t]dt, 5110 = 6£(t, 20(t), 2ot — T10)s ., 20(t — T20)) (4.67)

too

on the set W(l)(Kl; «) in the topology induced from E](cl). Here K3 C O is a compact set containing
a certain neighborhood of the set ¢q(I2) U xo([teo, t10]) and « > 0 is a certain number.
Let 6f; € W (Ky;a),i=1,2,...,and lim Ho(df;; K1) = 0. The mapping (4.67) is continuous if
11— 00

tio

lim / V()5 filt] dt = 0. (4.68)

Integration by parts yields

705w(t)fi [tldt = 4(too) 705fz- [t] dt — 7Oz/)(t) ( /t 5 fil€] dg) dt.

By Lemma 1.5, we have
t

im [ 6f:(e]de =0
too

uniformly in ¢ € [too, t10]-
Therefore, the relation (4.68) holds. The continuity of the mapping (4.67) allows us to strengthen
inequality given above:

/1/)(t)5f[t]dt <0, 5f € cone((W (Ky; ), — fo).

too

According to Lemma 4.14,
cone([WW (Ky; @), — fo) O Fr = fo. (4.69)

From (4.69) it follows the integral maximum principle

t10 tio

/z/)(t)fo[t] dt:u(t)rélg(}%[])/w(t)fG,xo(t),xo(t—no), o ao(t—Te0), ult), u(t—0y,. . ,u(t—@l,))) dt.

Theorem 4.6 is proved.

To conclude this subsection, it should be noted that Theorems 4.7-4.10 are proved in a similar
way by using the corresponding variation formulas of a solution.

4.6 The optimal control problem with the continuous initial condition

Consider the optimal control problem

i(t) = f(tvx(t)a z(t—71), ozt —7s),u(t),u(t —61),...,u(t — 91/))3 (4.70)
tE[to,tl]CI, UEQ(I27U),

z(t) = o(t), t€[T,to], @€ 3, (4.71)

qi(to,tl, Tly-+-5Ts, (p(to), .T(tl)) = O, Z = H, (472)

qo(t()attha"'7Tsvw<t0)7x(tl)) — min7 (473)
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where &3 = {p € C(I1,R"): p(t) € N}, N C O is a convex set.
The problem (4.70)—(4.73) is called an optimal control problem with the continuous initial condi-
tion.

Definition 4.16. Let v = (to,t1,71,...,7s, 0, u) € A1 = (a,b) X (a,b) x (011,012) X -+ X (0s1,052) X
O3 x QI,U)). A function z(t) = z(t;v) € O, t € [T, 1], is called a solution of the equation (4.70) with
the discontinuous initial condition (4.71), or a solution corresponding to the element v and defined
on the interval [7,¢;], if it satisfies the condition (4.71) and is absolutely continuous on the interval
[to, t1] and satisfies the equation (4.70) a.e. on [tg.t1].

Definition 4.17. An element v = (tg,t1,71,...,7s,,u) € Ay is said to be admissible if the corre-
sponding solution z(t) = z(t; v) satisfies the boundary conditions (4.72).

Denote by Ajg the set of admissible elements.

Definition 4.18. An element vg = (tqo, t10, T10, - - - » T50, Y0, Ug) € Vig is said to be optimal if there
exist a number §y > 0 and a compact set Ky C O such that for an arbitrary element v € A;( satisfying
the condition

s
ltoo = tol + [t10 — t1 + Y Imio = 7l + llpo — @llr, + Hi(fo — f5 Ko) < b
i=1
the inequality
¢ (too, t10, 7105 - - - s Ts05 P0(t00)s xo(tlo)) < ¢° (to, t1, 71, ., Ts, 0(to), o:(tl))
holds.
Theorem 4.11. Let vy be an optimal element and let the following conditions hold:
4.14. 150 > -+ > 10 and with 70 € (00,0;410), 1 = 1,5 — 1;
4.15. 0; = m;h, i = 1,v, where m;, i = 1,v, are natural numbers, h > 0 is a real number;
4.16. the function po(t) is absolutely continuous and po(t) is bounded;
4.17. the function fo(w), w = (t,x,x1,...,7s) € I x O'T%  is bounded;
4.18. there exist the finite limits

lim @o(t) =@y, lim fo(w) = fy, w e (a,to] x O,

t—too— w—rwo

where wo = (too, Po(too), Yo(too — T10)s - - - Po(too — Ts0));

4.19. there exists the finite limit

w~1>izri)11+1 folw)=fri1, wWE(too, t10] O™, wei1=(t10, 2o(t10), To(t10—T10)s - - - » Ts (10— Ts0))-

Then there exist a vector m = (mg,...,m) # 0 with 7o < 0, and a solution Y(t) = (P1(t),...,¥Yn(t))
of the equation

G(t) = =(t) foult] — Z¢(t + 7i0) fox: [t + Tiol, t € [too, 0],
i=1
P(t) =0, t>to, (4.74)

such that the following conditions hold:

4.20. the conditions for the moments tog and t1g:

TQoty = Y(too)lPo — fo |, mQot, = —(ti0)foi1;
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4.21. the conditions for the delays 1,9, 1 =1, s:

tio
TQor, = /1/)(t)f0x,; [tlzo(t — Ti0) dt, i=1,s;

too

4.22. the mazimum principle for the initial function po(t):

too

[Qozo + ¥ (too)]o(too) + Z / Y(t + Ti0) fou: [t + Tiolpo(t) dt,

=1
too—Tio

too

= gl)agé [Qoz, + ¥ (too)]e(too) + Z / t + 7i0) fow, [t + Tio)p(t) dt;
v = 1t
00—Ti0

4.23. the integral mazimum principle for the control function ug(t):

tio

/wwhmw

too

max /1/) t xo(t xo(t—7'10),...,xo(t—no,u(t),u(t—91),...,u(t—91,))) dt;

u(t )eQ(I2,U)

4.24. the condition for the function 1 (t)
Y(t10) = TQou, -

Theorem 4.12. Let vy be an optimal element and let the conditions 4.14-4.17 hold. Moreover, there
exist the finite limits

lim ¢(t) =¢f, lm fo(w) = fy, w € [to,b) x O,

t—too+ w—wo
lim  fo(w) = fl,, w € [t b) x O
W—Ws+1
Then there exist a vector T = (mg,...,m) # 0 with mg < 0, and a solution of the equation (4.74) such

that the conditions 4.21-4.24 hold. Moreover,

TQot, < Y(too)[od — fif], mQor, < —(t10)ff -

Theorem 4.13. Let vo be an optimal element and let the conditions of Theorems 4.11 and 4.12
hold. Moreover, ¢y — fo = ¢a — fof = fo, for1 = f;l = fsy1. Then there exist a vector
T = (mo,...,m) # 0, with 7o < 0, and a solution of the equation (4.74) such that the conditions
4.21-4.24 hold. Moreover,

TQote = ¥(to0)fo, TQot, = —1(t10) fer1-

By variation formulas of a solution (see Section 3), Theorems 4.11-4.13 are proved by the analogous
scheme.
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