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Abstract. Asymptotic representations of solutions of nonautonomous nonlinear ordinary
differential n-th order equations that are close, in a certain sense, to linear equations are
established.
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ÒÄÆÉÖÌÄ. n-ÖÒÉ ÒÉÂÉÓ ÀÒÀÀÅÔÏÍÏÌÉÖÒÉ ÀÒÀßÒ×ÉÅÉ ÜÅÄÖËÄÁÒÉÅÉ ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏ-
ËÄÁÄÁÉÓÈÅÉÓ, ÒÏÌËÄÁÉÝ ÂÀÒÊÅÄÖËÉ ÀÆÒÉÈ ÀáËÏÓ ÀÒÉÀÍ ßÒ×ÉÅ ÂÀÍÔÏËÄÁÄÁÈÀÍ, ÃÀÃÂÄÍÉ-
ËÉÀ ÀÌÏÍÀáÓÍÄÁÉÓ ÀÓÉÌÐÔÏÔÖÒÉ ßÀÒÌÏÃÂÄÍÄÁÉ.
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1. Introduction and Preliminaries
Consider the differential equation

y(n) = α0p(t)y| ln |y||σ, (1.1)
where α0 ∈ {−1, 1}, σ ∈ R, p : [a, ω[→ ]0,+∞[ is a continuous function, −∞ < a < ω ≤
+∞1.

A solution y of the equation (1.1) is called a Pω(λ0)-solution, if it is defined on the interval
[ty, ω[⊂ [a, ω[ , and satisfies the conditions:

lim
t↑ω

y(k)(t) =

{
either 0,

or ±∞
(k = 0, 1, . . . , n− 1), lim

t↑ω

(y(n−1)(t))2

y(n)(t)y(n−2)(t)
= λ0. (1.2)

For each such solution, the representation y(t)| ln |y(t)|| = |y(t)|1+o(1) sign y(t) as t ↑ ω,
holds. Therefore, when we study these solutions, the equation (1.1) is asymptotically close
to linear differential equations

y(n) = α0p(t)y, (1.3)
such asymptotic behavior of solutions has been studied extensively (see, e.g., [9, Chapter 1]).

For n = 2 and any σ ∈ R, asymptotic behavior as t ↑ ω of all possible types of Pω(λ0)-
solutions of the differential equation (1.1) was studied in [1, 2, 3, 5, 7].

We introduce the following auxiliary notation:
a0k = (n− k)λ0 − (n− k − 1) (k = 1, . . . , n) for λ0 ∈ R,

πω(t) = t− ω, if ω < +∞,

IA(t) =

t∫
A

[πω(τ)]
n−1p(τ) dτ,

A = ω, if
ω∫

a

|πω(τ)|n−1p(τ) dτ < +∞.

The following theorem concerning the differential equation (1.1) has been established in [4].

Theorem 1.1. Let σ ̸= n and λ0 ∈ R \ {0, 12 ,
2
3 , . . . ,

n−2
n−1 , 1}. Then for the existence of a

Pω(λ0)-solution of the equation (1.1) it is necessary, and if the inequality

σ ̸= a01

(
1 +

n−1∑
k=1

1

a0k

)
(1.4)

holds and the algebraic equation
n−1∏
j=1

(a0j + ρ) +
n−1∑
k=1

k−1∏
j=1

(a0j + ρ)
n−1∏

j=k+1

a0j = 0 (1.5)

with respect to ρ has no roots with zero real part, then it is sufficient for the inequality

α0

( n−1∏
k=1

a0k

)[
(λ0 − 1)πω(t)

]n
> 0 for t ∈ [a, ω[ , (1.6)

and the conditions

lim
t↑ω

p
1
n (t)|πω(t)|

∣∣∣n− σ

n
JB(t)

∣∣∣ σ
n−σ

=
|a01|

|λ0 − 1|

(∏n−1
k=1 |a0k|

1
n

|a01|

) n
n−σ

,

1 We assume that a > 1 for ω = +∞, and ω − a < 1 for ω < +∞.
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to take place. Moreover, each of these solutions admits the following asymptotic representa-
tions as t ↑ ω:

ln |y(t)| = ν

(
|a01|∏n−1

k=1 |a0k|
1
n

) n
n−σ

∣∣∣n− σ

n
JB(t)

∣∣∣ n
n−σ

[1 + o(1)], (1.7)

y(k)(t)

y(k−1)(t)
=

a0k
(λ0 − 1)πω(t)

[1 + o(1)] (k = 1, . . . , n− 1), (1.8)

where
ν = sign

[
a01(λ0 − 1)(n− σ)πω(t)JB(t)

]
.

In addition to these conditions, if the algebraic equation (1.5) has the m-roots (including
multiples), the real parts of which have a sign opposite to the sign of the function (λ0−1)πω(t)
on the interval [a, ω[ , and the inequality( σ

a01
− 1−

n−1∑
k=1

1

a0k

)(
1 +

n−1∑
k=1

1

a0k

)
> 0

is satisfied, then the equation (1.1) has m-parametric family of solutions with the representa-
tions (1.7) and (1.8), and when the opposite inequality holds, it has m+ 1-parametric family
of such solutions.

From this theorem the following corollary for the linear differential equation (1.3) is ob-
tained.

Corollary 1.1. For the existence of Pω(λ0)-solution of the equation (1.3), where λ0 ∈ R \
{0, 12 , . . . ,

n−2
n−1 , 1}, it is necessary, and if the algebraic equation (1.5) with respect to ρ has no

roots with zero real part, then it is sufficient that the inequality (1.6) and the condition

lim
t↑ω

p(t)πn
ω(t) =

α0
∏n−1

k=1 a0k
(λ0 − 1)n

(1.9)

are satisfied. For each of these solutions the asymptotic representations

ln |y(t)| = α0(λ0 − 1)n−1IA(t)∏n−1
k=2 a0k

[1 + o(1)], (1.10)

y(k)(t)

y(k−1)(t)
=

a0k
(λ0 − 1)πω(t)

[1 + o(1)] (k = 1, . . . , n− 1), (1.11)

take place as t ↑ ω. Moreover, if in addition to these conditions, the algebraic equation (1.5)
has the m-roots (including multiples), the real parts of which have a sign, opposite to that
of the function (λ0 − 1)πω(t) on the interval [a, ω[ , then for the equation (1.1) there exists
m+ 1-parametric family of solutions with the representations (1.10) and (1.11).

We note that this corollary refers to the case where the differential equation (1.3) is asymp-
totically close to the Euler equations.

If
lim
t↑ω

p(t)πn
ω(t) = c0 ̸= 0

and the next algebraic equation with respect to λ0

c0(λ0 − 1)n = α0

n−1∏
k=1

[
(n− k)λ0 − (n− k − 1)

]
,
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which we obtain from (1.9) by taking into account the inequality (1.6), has n distinct real
roots λ0j (j = 1, . . . , n), then the fundamental system of solutions yj (j = 1, . . . , n) of the
differential equation (1.3) admits as t ↑ ω the following asymptotic representations:

ln |yj(t)| =
α0(λ0j − 1)n−1IA(t)∏n−1

k=2 [(n− j)λ0j − (n− j − 1)]
[1 + o(1)],

y(k)(t)

y(k−1)(t)
=

(n− j)λ0j − (n− j − 1)

(λ0j − 1)πω(t)
[1 + o(1)] (k = 1, . . . , n− 1; j = 1, . . . , n).

From the previous statements it is clear that the case for λ0 = 1 is a special one in the
study of Pω(λ0)-solutions. This case is the subject of this work.

2. The Main Result and the Necessary Auxiliary Statements for its
Establishment

We introduce the function JB(t), setting

JB(t) =

t∫
B

p
1
n (τ) dτ, B =


a, if

ω∫
a

p
1
n (τ) dτ = +∞,

ω, if
ω∫

a

p
1
n (τ) dτ < +∞.

The main result of this paper is the following

Theorem 2.1. Let σ ̸= n. Then for the existence of Pω(1)-solution of the equation (1.1) it
is necessary that for some µ ∈ {−1, 1} the inequality

α0µ
n > 0 (2.1)

and the condition
lim
t↑ω

|πω(t)|p
1
n (t)|JB(t)|

σ
n−σ = +∞ (2.2)

hold. Moreover, each of these solutions admits the following asymptotic representations as
t ↑ ω

ln |y(t)| = ν
∣∣∣n− σ

n
JB(t)

∣∣∣ n
n−σ

[1 + o(1)], (2.3)

y(k)(t)

y(k−1)(t)
= µp

1
n (t)

∣∣∣n− σ

n
JB(t)

∣∣∣ σ
n−σ

[1 + o(1)] (k = 1, . . . ,−1), (2.4)

where
ν = µ sign

(n− σ

n
JB(t)

)
.

If the function p : [a, ω[→ ]0,+∞[ is continuously differentiable, and there exists the limit
(finite or equal to ±∞)

lim
t↑ω

(p
1
n (t)|JB(t)|

σ
n−σ )′

p
2
n (t)|JB(t)|

2σ
n−σ

, (2.5)

and if (2.1) and (2.2) hold, then the equation (1.1) has at least one Pω(1)-solution which
admits the asymptotic representations (2.3), (2.4) as t ↑ ω. If µ = 1 and σ > n, then there
exists (n − 1)-parametric family of solutions, if µ = 1 and σ < n, then we get n-parametric
family of solutions, if µ = −1 and σ < n, then we obtain one parametric family of solutions.

To prove Theorem 2.1, we will use the following lemma which can be deduced from Lem-
mas 10.1–10.6 in [6].
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Lemma 2.1. Let y : [t0, ω[→ R \ {0} be an arbitrary Pω(1)-solution of the equation (1.1).
Then we have the following asymptotic relations:

y(k)(t)

y(k−1)(t)
∼ y′(t)

y(t)
(k = 1, . . . , n) as t ↑ ω (2.6)

and
lim
t↑ω

πω(t)y
(k)(t)

y(k−1)(t)
= ±∞ (k = 1, . . . , n). (2.7)

Along with this lemma, we will also need the next result on the existence of vanishing at
infinity solutions of a system of quasi-linear differential equations

v′k = β0

[
fk(τ, v1, . . . , vn) +

n∑
i=1

ckivi + Vk(v1, . . . , vn)
]

(k = 1, . . . , n− 1),

v′n = H(τ)
[
fn(τ, v1, . . . , vn) +

n∑
i=1

cnivi + Vn(v1, . . . , vn)
]
,

(2.8)

in which β0 ∈ R \ {0}, cik ∈ R (i, k = 1, . . . , n), H : [τ0,+∞[→ R \ {0} is a continuous
function, fk : [τ0,+∞[×Rn

1
2

(k = 1, . . . , n) are continuous functions satisfying the conditions

lim
t↑ω

fk(τ, v1, . . . , vn) = 0 uniformly in (v1, . . . , vn) ∈ Rn
1
2

, (2.9)

where
Rn

1
2

=
{
(v1, . . . , vn) ∈ Rn : |vi| ≤

1

2
(i = 1, . . . , n)

}
,

and Vk : Rn
1
2

→ R (k = 1, . . . , n) are continuously differentiable functions such that

Vk(0, . . . , 0) = 0 (k = 1, . . . , n),
∂Vk(0, . . . , 0)

∂vi
= 0 (i, k = 1, . . . , n). (2.10)

By Theorem 2.6 of [8], for a system of the differential equations (2.8), we have the following

Lemma 2.2. Let the function H : [τ0,+∞[ [R \ {0} be continuously differentiable and satisfy
the following conditions:

lim
τ→+∞

H(τ) = 0, lim
τ→+∞

H ′(τ)

H(τ)
= 0,

+∞∫
τ0

H(τ) dτ = ±∞, (2.11)

and the matrices Cn = (cki)
n
k,i=1 and Cn−1 = (cki)

n−1
k,i=1 are such that detCn ̸= 0, and Cn−1

has no eigenvalues with a zero real part. Then the system of differential equations (2.8) has
at least one solution (vk)

n
k=1 : [τ1,+∞[→ Rn

1
2

(τ1 ≥ τ0), which tends to zero as t → +∞.
Moreover, if among the eigenvalues of the matrix Cn−1 there are m eigenvalues (taking into
account multiplicity), the real parts of which have opposite sign to β0, then the system (2.8)
has m-parametric family of solutions if H(τ)(detCn)(detCn−1) > 0, and m + 1-parametric
family of solutions if the inequality holds in opposite direction.

3. Proof of the Main Theorem and the Corollary to a Linear Differential
Equation

Proof of Theorem 2.1. Necessity. Let y : [ty, ω[→ R \ {0} be an arbitrary Pω(1) solution of
(1.1). Then, according to Lemma 2.1, the conditions (2.6) and (2.7) are satisfied. In view of
(2.7), in a left neighborhood of ω,

sign
(y′(t)
y(t)

)
= µ, where µ ∈ {−1; 1}. (3.1)
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Since from (1.1)
y(n)(t)

y(t)
= α0p(t)|| ln |y(t)||σ

and by (2.6)
y(n)(t)

y(t)
=

y(n)(t)

y(n−1)(t)
· y

(n−1)(t)

y(n−2)(t)
· · · y

′(t)

y(t)
∼

(y′(t)
y(t)

)n
as t ↑ ω,

then (y′(t)
y(t)

)n
= α0p(t)| ln |y(t)||σ[1 + o(1)] as t ↑ ω.

Hence, in view of (3.1), it is clear that the inequality (2.1) holds, and so we have the
asymptotic relation

y′(t)

y(t)| ln |y(t)||
σ
n

= µp
1
n (t)[1 + o(1)] as t ↑ ω. (3.2)

Since σ ̸= n, therefore, integrating this relation from ty to t and taking into account the
definition of Pω(1)-solution, we find that

| ln |y(t)||
n−σ
n sign

(
ln |y(t)|

)
=

µ(n− σ)

n
JB(t)[1 + o(1)] as t ↑ ω.

Thus (2.3) holds. Taking into account (2.3), from (3.2) we obtain the representation
y′(t)

y(t)
= µp

1
n (t)

∣∣∣n− σ

n
JB(t)

∣∣∣ σ
n−σ

[1 + o(1)] as t ↑ ω,

from which, by (2.6) and (2.7), it follows that the condition (2.2) holds and we have the
asymptotic representation (2.4).

Sufficiency. Let p : [a, ω[→ ]0,+∞[ be continuously differentiable function for which there
is a finite or equal to ±∞ limit (2.5). We show that in this case, if the conditions (2.1) and
(2.2) are satisfied, then the equation (1.1) has solutions defined in the left neighborhood of
ω and admits as t ↑ ω the asymptotic representations (2.3) and (2.4).

We choose arbitrary a0 ∈ ]a, ω[ . By (2.2) we get
ω∫

a0

p
1
n (t)|JB(t)|

σ
σ−n dt = +∞,

hence, taking into account the form of the function JB, it follows that

lim
t↑ω

|JB(t)|
n

n−σ = +∞. (3.3)

Next, we establish that the limit (2.5) is equal to zero. Assume the contrary. Then, by
virtue of its existence,

lim
t↑ω

Q(t) =

{
either const ̸= 0,

or ±∞,
(3.4)

where

Q(t) =
(p

1
n (t)|JB(t)|

σ
n−σ )′

p
2
n (t)|JB(t)|

2σ
n−σ

.

Integrating the function Q from a0 to t, we obtain
t∫

a0

Q(τ) dτ = − 1

p
1
n (t)|JB(t)|

σ
n−σ

+ C, (3.5)
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where C is a constant. If ω = +∞, then πω(t) = t, and in this case, by (2.2), we have

lim
t→+∞

∫ t
a0

Q(τ) dτ

t
= 0.

However, this is impossible since by the de L’Hospital’s rule and (3.4),

lim
t→+∞

∫ t
a0

Q(τ) dτ

t
= lim

t→+∞
Q(t) ̸= 0.

If ω < ∞, then πω(t) = t− ω and by (2.2)

lim
t↑ω

p
1
n (t)|JB(t)|

σ
n−σ = +∞.

Therefore, from (3.5) it follows that

lim
t↑ω

t∫
a0

Q(τ) dτ = C.

Due to this condition, the equation (3.5) can be rewritten as
t∫

ω

Q(τ) dτ = − 1

p
1
n (t)|JB(t)|

σ
n−σ

.

Dividing this relation by πω(t), taking then the limit as t ↑ ω and using (2.2) we obtain

lim
t↑ω

∫ t
ω Q(τ) dτ

t− ω
= 0.

However, the last equality is impossible because the limit owing to the de L’Hospital’s rule
and (3.4), is nonzero. Therefore, the assumption that the limit (2.5) is not equal to zero was
incorrect.

Now, applying to the equation (1.1) the transformation
y(k)(t)

y(k−1)(t)
= µp

1
n (t)

∣∣∣n− σ

n
JB(t)

∣∣∣ σ
n−σ

[1 + vk(τ)] (k = 1, . . . , n− 1),

ln |y(t)| = ν
∣∣∣n− σ

n
JB(t)

∣∣∣ n
n−σ

[1 + vn(τ)], τ =
∣∣∣n− σ

n
JB(t)

∣∣∣ n
n−σ

,

(3.6)

we obtain the following system of differential equations:
v′k = µ (1 + vk)[vk+1 − vk − µh(τ)] (k = 1, . . . , n− 2),

v′n−1 = µ
[ |1 + vn|σ

(1 + v1) · · · (1 + vn−2)
− (1 + vn−1)

2 − µh(τ)(1 + vn−1)
]
,

v′n = g(τ)(v1 − vn),

(3.7)

in which

g(τ(t)) =
∣∣∣n− σ

n
JB(t)

∣∣∣− n
n−σ

, h(τ(t)) =
(p

1
n (t)|n−σ

n JB(t)|
σ

n−σ )′

p
2
n (t)|n−σ

n JB(t)|
2σ

n−σ

.

We will consider this system on the set [τ0,+∞[×Rn
1
2

, where

τ0 =
∣∣∣n− σ

n
JB(a0)

∣∣∣ n
n−σ

, Rn
1
2

=
{
(v1, . . . , vn) ∈ Rn : |vk| ≤

1

2
(k = 1, . . . , n)

}
.

By (3.3) and the fact that the limit (2.5) is equal to zero as established above, we have
lim

τ→+∞
g(τ) = lim

t↑ω
g(τ(t)) = 0, lim

τ→+∞
h(τ) = lim

t↑ω
h(τ(t)) = 0. (3.8)
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Moreover,
+∞∫
τ0

g(τ) dτ =
n

n− σ

ω∫
a0

p
1
n (s) ds

JB(s)
=

n

n− σ
ln |JB(s)|

∣∣∣ω
a0

= ±∞. (3.9)

By separating linear parts in the equations of the system (3.7), we obtain a system of
differential equations (2.8) in which

β0 = µ, H(τ) = g(τ), fk(τ, v1, . . . , n) = −µ(1 + vk)h(τ) (k = 1, . . . , n− 1),

fn(τ, v1, . . . , n) ≡ 0, Vk(v1, . . . , vn) = vkvk+1 − v2k (k = 1, . . . , n− 2),

Vn−1(v1, . . . , vn) =
|1 + vn|σ

(1 + v1) · · · (1 + vn−2)
+

n−2∑
i=1

vi − v2n−1 − σvn, Vn(v1, . . . , vn) ≡ 0,

ckk = −1, ckk+1 = 1, cki = 0 for i ̸= k, k + 1 (k = 1, . . . , n− 2),

cn−1i = −1 (i = 1, . . . , n− 2), cn−1n−1 = −2, cn−1n = σ,

cn1 = 1, cni = 0 (i = 2, . . . , n− 1), cnn = −1.

Here the functions Vk (k = 1, . . . , n) satisfy (2.10) and by (3.8) and (3.9) the conditions
(2.9) and (2.11) hold. Furthermore, for the matrices Cn−1 = (cki)

n−1
k,i=1 and Cn = (cki)

n
k,i=1,

we find

detCn = (−1)n+1[σ − n], det[Cn−1 − ρE] = (−1)n+1
n∑

k=1

(1 + ρ)k−1.

Therefore, (detCn)(detCn−1) = n(σ − n) and the characteristic equation of the matrix
Cn−1 has the form

n∑
k=1

(1 + ρ)k−1 = 0.

The roots of this equation differ from the roots of (1+ρ)n = 1. Clearly, all such roots have
negative real parts.

Hence, taking into account the condition σ ̸= n, it is clear that the system of differential
equations (3.7) satisfy all the conditions of Lemma 2.2. On the basis of this lemma, the given
system of differential equations has at least one solution (vk)

n
k=1 : [τ1,+∞[→ Rn (τ1 ≥ τ0),

which tends to zero as τ → +∞. Moreover, if µ = 1 and σ > n, there exist (n−1)-parametric
family of such solutions and n-parametric family in case µ = 1 and σ < n. If µ = −1 and
σ < n, there exists one-parametric family of solutions. Each such solution of the system
(3.7) by virtue of the substitutions (3.6) corresponds to y-solution of the differential equation
(1.1), which admits the asymptotic representations (2.3), (2.4) as t ↑ ω. It is not difficult to
see that using the conditions (2.1) and (2.2) any of these solutions is a Pω(1)-solution. �

From this theorem we get the following corollary for the linear differential equation (1.3).

Corollary 3.1. For the existence of Pω(1)-solution of the differential equation (1.3), it
is necessary, and if the function p : [a, ω[→ ]0,+∞[ is continuously differentiable and
limt↑ω p′(t)p−

n+1
n (t) is finite or equal to ±∞, then it is sufficient that for some µ ∈ {−1; 1},

the inequality (2.1) holds and the condition

lim
t↑ω

p(t)|πω(t)|n = +∞ (3.10)

is fulfilled.
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Moreover, for each of these solutions there take place the following asymptotic representa-
tions as t ↑ ω:

ln |y(t)| = µJB(t)[1 + o(1)],

y(k)(t)

y(k−1)(t)
= µp

1
n (t)[1 + o(1)] (k = 1, . . . , n− 1),

whereas, for µ = 1, there exists an n-parametric family of Pω(1)-solutions for this represen-
tation, and for µ = −1, there exists one-parametric family of solutions.

This corollary complements the results given in [9, Chapter 1, § 6] on the asymptotic
behavior of solutions of linear differential equations. In view of (3.10), it does not refer to
the cases where the differential equation (1.3) is asymptotically close to the Euler equation
and the equation with almost constant coefficients.
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