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Abstract. In this paper, we establish the existence and uniqueness of solutions for a class of bound-
ary value problems for nonlinear implicit fractional differential equations with impulse and Caputo’s
fractional derivatives, the stability of this class of problems is considered, as well. The arguments are
based upon the Banach contraction principle and the Schaefer’s fixed point theorem. We present two
examples to show the applicability of our results.
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ÒÄÆÉÖÌÄ. ÊÀÐÖÔÏÓ ßÉËÀÃßÀÒÌÏÄÁÖËÄÁÉÀÍÉ ÃÀ ÉÌÐÖËÓÄÁÉÀÍÉ ÀÒÀßÒ×ÉÅÉ ÀÒÀÝáÀÃÉ ÃÉ×Ä-
ÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏËÄÁÄÁÉÓÈÅÉÓ ÃÀÃÂÄÍÉËÉÀ ÆÏÂÉÄÒÈÉ ÓÀÓÀÆÙÅÒÏ ÀÌÏÝÀÍÉÓ ÀÌÏÍÀáÓÍÉÓ
ÀÒÓÄÁÏÁÀ ÃÀ ÄÒÈÀÃÄÒÈÏÁÀ. ÂÀÍáÉËÖËÉÀ ÀÂÒÄÈÅÄ ÀÙÍÉÛÍÖË ÀÌÏÝÀÍÀÈÀ ÌÃÂÒÀÃÏÁÉÓ ÓÀÊÉ-
ÈáÉ. ÃÀÌÔÊÉÝÄÁÄÁÉ ÄÚÒÃÍÏÁÀ ÁÀÍÀáÉÓ ÊÖÌÛÅÉÈÉ ÀÓÀáÅÉÓ ÐÒÉÍÝÉÐÓ ÃÀ ÛÀÄ×ÄÒÉÓ ÈÄÏÒÄÌÀÓ
ÖÞÒÀÅÉ ßÄÒÔÉËÉÓ ÛÄÓÀáÄÁ.
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1. Introduction

In this paper, we establish existence, uniqueness and stability results to the following boundary
value problems (BVPs) for nonlinear implicit fractional differential equations with impulses

cDα
tk
y(t) = f

(
t, y, cDα

tk
y(t)

)
for each t ∈ (tk, tk+1], k = 0, . . . ,m, 0 < α ≤ 1, (1)

∆y
∣∣
t=tk

= Ik(y(t
−
k )), k = 1, . . . ,m, (2)

ay(0) + by(T ) = c, (3)
where cDα

tk
is the Caputo’s fractional derivative, f : J×R×R → R, Ik : R → R are given functions, and

a, b, c are real constants with a+ b ̸= 0, 0 = t0 < t1 < · · · < tm < tm+1 = T , ∆y
∣∣
t=tk

= y(t+k )− y(t
−
k ),

y(t+k ) = lim
h→0+

y(tk +h) and y(t−k ) = lim
h→0−

y(tk +h) represent the right and left limits of y(t) at t = tk.
In recent years, there has been a significant development in the theory of fractional differential

equations. It is caused by its applications in the modeling of many phenomena in various fields of
science and engineering such as acoustic, control theory, signal processing, porous media, electrochem-
istry, viscoelasticity, rheology, polymer physics, proteins, optics, economics, astrophysics, chaotic
dynamics, statistical physics, thermodynamics, biosciences, bioengineering, etc. See, for example,
[1, 6, 7, 15, 20, 27], and the references therein. On the other hand, impulsive differential equations
have received much attention, we refer the reader to the books [2, 10, 16, 22, 24, 26], and the pa-
pers [13, 19, 29], and the references therein. Very recently, boundary value problems of fractional
differential equations have received a considerable attention because they occur in the mathematical
modeling of a variety of physical processes; see, for example, [3, 4, 8, 9, 14, 28, 31]. In [11, 12], the
authors give some existence and uniqueness results for some classes of implicit fractional order differ-
ential equations. In [23], the authors consider the existence of multiple positive solutions of systems
of nonlinear Caputo’s fractional differential equations with general separated boundary conditions.

Motivated by the works mentioned above, in this paper we present some existence and uniqueness
results for a class of boundary value problems for implicit fractional differential equations. The
present paper is organized as follows. In Section 2, some notations are introduced and we recall some
preliminaries about fractional calculus and auxiliary results. In Section 3, two results for the problem
(1)–(3) are presented: the first one is based on the Banach contraction principle, and the second
one on Schaefer’s fixed point theorem. In Section 4, we present Ulam–Hyers stability result for the
problem (1)–(2). Finally, in the last Section, we give two examples to illustrate the applicability of
our main results.

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which are used throughout
this paper. Let T > 0, J = [0, T ]. By C(J,R) we denote the Banach space of continuous functions
from J into R with the norm

∥y∥∞ = sup
{
|y(t)| : t ∈ J

}
;

L1(J,R) is the space of Lebesgue-integrable functions w : J → R with the norm

∥w∥1 =

T∫
0

|w(s)| ds,

ACn(J) =
{
h : J → R : h, h′, . . . h(n−1) ∈ C(J,R) and h(n−1) is absolutely continuous

}
.

In what follows, α > 0. Consider the set of functions

PC(J,R) =
{
y : J → R : y ∈ C((tk, tk+1],R), k = 0, . . . ,m

and there exist y(t−k ) and y(t+k ), k = 1, . . . ,m with y(t−k ) = y(tk)
}
.

PC(J,R) is a Banach space with the norm
∥y∥PC = sup

t∈J
|y(t)|.
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Let J0 = [t0, t1] and Jk = (tk, tk+1] where k = 1, . . . ,m.

Definition 2.1 ([21, 25]). The fractional (arbitrary) order integral of the function h ∈ L1([0, T ],R+)
of order α ∈ R+ is defined by

Iαh(t) =
1

Γ(α)

t∫
0

(t− s)α−1h(s) ds,

where Γ is the Euler’s gamma function defined by Γ(α) =
∞∫
0

tα−1e−t dt, α > 0.

Definition 2.2 ([21, 25]). For a function h ∈ ACn(J), the Caputo’s fractional-order derivative of
order α is defined by

(cDα
0 h)(t) =

1

Γ(n− α)

t∫
0

(t− s)n−α−1h(n)(s) ds,

where n = [α] + 1 and [α] denotes the integer part of the real number α.

Lemma 2.3 ([21, 25]). Let α ≥ 0 and n = [α] + 1. Then

Iα(cDα
0 f(t)) = f(t)−

n−1∑
k=0

fk(0)

k!
tk.

Lemma 2.4 ([21]). Let α > 0. Then the differential equation
cDα

0 k(t) = 0

has solutions k(t) = c0 + c1t+ c2t
2 + · · ·+ cn−1t

n−1, ci ∈ R, i = 0, 1, 2, . . . , n− 1, n = [α] + 1.

Lemma 2.5 ([21]). Let α > 0. Then

IαcDα
0 k(t) = k(t) + c0 + c1t+ c2t

2 + · · ·+ cn−1t
n−1

for some ci ∈ R, i = 0, 1, 2, . . . , n− 1, n = [α] + 1.

D. Bainov and S. Hristova [5] introduced the following integral inequality of Gronwall type for
piecewise continuous functions which can be used in the sequel.

Lemma 2.6. Let for t ≥ t0 ≥ 0 the inequality

x(t) ≤ a(t) +

t∫
t0

g(t, s)x(s) ds+
∑

t0<tk<t

βk(t)x(tk)

holds, where βk(t) (k ∈ N) are nondecreasing functions for t ≥ t0, a ∈ PC([t0,∞),R+), a is nonde-
creasing and g(t, s) is a continuous nonnegative function for t, s ≥ t0 and nondecreasing with respect
to t for any fixed s ≥ t0. Then, for t ≥ t0, the following inequality is valid:

x(t) ≤ a(t)
∏

t0<tk<t

(1 + βk(t)) exp
( t∫

t0

g(t, s) ds

)
.

Definition 2.7. A function y ∈ PC(J,R) ∩ AC(Jk) is said to be a solution of (1)–(3) if y satisfies
the equation cDα

tk
y(t) = f(t, y(t), cDα

tk
y(t)) on Jk and the conditions

∆y
∣∣
t=tk

= Ik(y(t
−
k )), k = 1, . . . ,m,

ay(0) + by(T ) = c.
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Here, we adopt the concepts from Wang et al. [30] and introduce Ulam’s type stability concepts
for the problem (1)–(3). Let z ∈ PC(J,R), ε > 0, ψ > 0, and φ ∈ PC(J,R+) be nondecreasing. We
consider the set of inequalities{∣∣cDαz(t)− f

(
t, z(t), cDαz(t)

)∣∣ ≤ ε, t ∈ (tk, tk+1], k = 1, . . . ,m,∣∣∆y(tk)− Ik
(
y(t−k )

)∣∣ ≤ ε, k = 1, . . . ,m,
(4)

{∣∣cDαz(t)− f
(
t, z(t), cDαz(t)

)∣∣ ≤ φ(t), t ∈ (tk, tk+1], k = 1, . . . ,m,∣∣∆y(tk)− Ik
(
y(t−k )

)∣∣ ≤ ψ, k = 1, . . . ,m,
(5)

and {∣∣cDαz(t)− f
(
t, z(t), cDαz(t)

)∣∣ ≤ εφ(t), t ∈ (tk, tk+1], k = 1, . . . ,m,∣∣∆y(tk)− Ik
(
y(t−k )

)∣∣ ≤ εψ, k = 1, . . . ,m.
(6)

Definition 2.8. The problem (1)–(3) is Ulam–Hyers stable if there exists a real number cf,m > 0
such that for each ε > 0 and for each solution z ∈ PC(J,R) ∩AC(Jk) of (4) there exists a solution y
of the problem (1)–(3) with

|z(t)− y(t)| ≤ cf,mε, t ∈ J.

Definition 2.9. The problem (1)–(3) is generalized Ulam–Hyers stable if there exists θf,m ∈
C(R+,R+), θf,m(0) = 0 such that for each solution z ∈ PC(J,R) ∩ AC(Jk) of (4) there exists a
solution y of the problem (1)–(3) with

|z(t)− y(t)| ≤ θf,m(ε), t ∈ J.

Definition 2.10. The problem (1)–(3) is Ulam–Hyers–Rassias stable with respect to (φ,ψ) if there
exists cf,m,φ > 0 such that for each ε > 0 and for each solution z ∈ PC(J,R) ∩ AC(Jk) of (6) there
exists a solution y of the problem (1)–(3) with

|z(t)− y(t)| ≤ cf,m,φε(φ(t) + ψ), t ∈ J.

Definition 2.11. The problem (1)–(3) is generalized Ulam–Hyers–Rassias stable with respect to
(φ,ψ) if there exists cf,m,φ > 0 such that for each solution z ∈ PC(J,R) ∩AC(Jk) of (5) there exists
a solution y of the problem (1)–(3) with

|z(t)− y(t)| ≤ cf,m,φ(φ(t) + ψ), t ∈ J.

Remark 2.12. It is clear that:
(i) Definition 2.8 implies Definition 2.9;
(ii) Definition 2.10 implies Definition 2.11;
(iii) Definition 2.10 for φ(t) = ψ = 1 implies Definition 2.8.

Remark 2.13. A function z ∈ PC(J,R) ∩ AC(Jk) is a solution of (6) if and only if there are σ ∈
PC(J,R) and a sequence σk, k = 1, . . . ,m (which depend on z), such that

(i) |σ(t)| ≤ εφ(t), t ∈ (tk, tk+1], k = 1, . . . ,m, and |σk| ≤ εψ, k = 1, . . . ,m;
(ii) cDαz(t) = f(t, z(t), cDαz(t)) + σ(t), t ∈ (tk, tk+1], k = 1, . . . ,m;
(iii) ∆z(tk) = Ik(z(t

−
k )) + σk, k = 1, . . . ,m.

One can have similar remarks for inequalities (4) and (5).

Theorem 2.14 ([18]) (Ascoli–Arzela theorem). Let A ⊂ C(J,R). A is relatively compact (i.e., A is
compact) if:

1. A is uniformly bounded, i.e., there exists M > 0 such that
|f(x)| < M for every f ∈ A and x ∈ J.

2. A is equicontinuous, i.e., for every ε > 0, there exists δ > 0 such that for each x, x ∈ J ,
|x− x| ≤ δ implies |f(x)− f(x)| ≤ ε, for every f ∈ A.
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Theorem 2.15 ([17]) (The Banach fixed point theorem). Let C be a non-empty closed subset of a
Banach space X. Then any contraction mapping T of C into itself has a unique fixed point.

Theorem 2.16 ([17]) (The Schaefer’s fixed point theorem). Let X be a Banach space and N : X −→ X
be a completely continuous operator. If the set E = {y ∈ X : y = λNy for some λ ∈ (0, 1)} is bounded,
then N has fixed points.

3. The Existence of Solutions

To prove the existence of solutions to (1)–(3), we need the following auxiliary Lemma.

Lemma 3.1. Let 0 < α ≤ 1 and let σ : J → R be continuous. A function y ∈ PC(J,R) is a solution
of the fractional integral equation

y(t) =



−1

a+b

[
b

m∑
i=1

Ii(y(t
−
i ))+

b

Γ(α)

m∑
i=1

ti∫
ti−1

(ti−s)α−1σ(s) ds+
b

Γ(α)

T∫
tm

(T−s)α−1σ(s) ds−c
]

+
1

Γ(α)

t∫
0

(t− s)α−1σ(s) ds, if t ∈ [0, t1]

−1

a+b

[
b

m∑
i=1

Ii(y(t
−
i ))+

b

Γ(α)

m∑
i=1

ti∫
ti−1

(ti−s)α−1σ(s) ds+
b

Γ(α)

T∫
tm

(T−s)α−1σ(s) ds−c
]

+

k∑
i=1

Ii(y(t
−
i ))+

1

Γ(α)

k∑
i=1

ti∫
ti−1

(ti−s)α−1σ(s) ds

+
1

Γ(α)

t∫
tk

(t− s)α−1σ(s) ds, if t ∈ (tk, tk+1],

(7)

where k = 1, . . . ,m, if and only if y ∈ PC(J,R) ∩AC(Jk) is a solution of the fractional BVP
cDαy(t) = σ(t), t ∈ Jk, (8)

∆y
∣∣
t=tk

= Ik(y(t
−
k )), k = 1, . . . ,m, (9)

ay(0) + by(T ) = c. (10)

Proof. Assume that y satisfies (8)–(10). If t ∈ [0, t1], then
cDαy(t) = σ(t).

By Lemma 2.5

y(t) = c0 + Iασ(t) = c0 +
1

Γ(α)

t∫
0

(t− s)α−1σ(s) ds

for c0 ∈ R. If t ∈ (t1, t2], then Lemma 2.5 implies

y(t) = y(t+1 ) +
1

Γ(α)

t∫
t1

(t− s)α−1σ(s) ds = ∆y
∣∣
t=t1

+ y(t−1 ) +
1

Γ(α)

t∫
t1

(t− s)α−1σ(s) ds

= I1(y(t
−
1 )) +

[
c0 +

1

Γ(α)

t1∫
0

(t1 − s)α−1σ(s) ds

]
+

1

Γ(α)

t∫
t1

(t− s)α−1σ(s) ds

= c0 + I1(y(t
−
1 )) +

1

Γ(α)

t1∫
0

(t1 − s)α−1σ(s) ds+
1

Γ(α)

t∫
t1

(t− s)α−1σ(s) ds.
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If t ∈ (t2, t3], then from Lemma 2.5 we get

y(t) = y(t+2 ) +
1

Γ(α)

t∫
t2

(t− s)α−1σ(s) ds = ∆y
∣∣
t=t2

+ y(t−2 ) +
1

Γ(α)

t∫
t2

(t− s)α−1σ(s) ds

= I2(y(t
−
2 )) +

[
c0 + I1(y(t

−
1 )) +

1

Γ(α)

t1∫
0

(t1 − s)α−1σ(s) ds+
1

Γ(α)

t2∫
t1

(t2 − s)α−1σ(s) ds

]

+
1

Γ(α)

t∫
t2

(t− s)α−1σ(s) ds

= c0 +
[
I1(y(t

−
1 )) + I2(y(t

−
2 ))

]
+

[
1

Γ(α)

t1∫
0

(t1 − s)α−1σ(s) ds+
1

Γ(α)

t2∫
t1

(t2 − s)α−1σ(s) ds

]

+
1

Γ(α)

t∫
t2

(t− s)α−1σ(s) ds.

Repeating the process in this way, the solution y(t) for t ∈ (tk, tk+1], where k = 1, . . . ,m, can be
written as

y(t) = c0 +
k∑

i=1

Ii(y(t
−
i )) +

1

Γ(α)

k∑
i=1

ti∫
ti−1

(ti − s)α−1σ(s) ds+
1

Γ(α)

t∫
tk

(t− s)α−1σ(s) ds.

Applying the boundary condition ay(0) + by(T ) = c we get

c = c0(a+ b) + b
m∑
i=1

Ii(y(t
−
i )) +

b

Γ(α)

m∑
i=1

ti∫
ti−1

(ti − s)α−1σ(s) ds+
b

Γ(α)

T∫
tm

(T − s)α−1σ(s) ds.

Then

c0 =
−1

a+ b

[
b

m∑
i=1

Ii(y(t
−
i )) +

b

Γ(α)

m∑
i=1

ti∫
ti−1

(ti − s)α−1σ(s) ds+
b

Γ(α)

T∫
tm

(T − s)α−1σ(s) ds− c

]
.

Thus, if t ∈ (tk, tk+1], where k = 1, . . . ,m, then

y(t) =
−1

a+ b

[
b

m∑
i=1

Ii(y(t
−
i )) +

b

Γ(α)

m∑
i=1

ti∫
ti−1

(ti − s)α−1σ(s) ds+
b

Γ(α)

T∫
tm

(T − s)α−1σ(s) ds− c

]

+
k∑

i=1

Ii(y(t
−
i )) +

1

Γ(α)

k∑
i=1

ti∫
ti−1

(ti − s)α−1σ(s) ds+
1

Γ(α)

t∫
tk

(t− s)α−1σ(s) ds.

Conversely, assume that y satisfies the impulsive fractional integral equation (7). If t ∈ [0, t1], then
ay(0) + by(T ) = c and, using the fact that cDα is the left inverse of Iα, we get

cDαy(t) = σ(t) for each t ∈ [0, t1].

If t ∈ (tk, tk+1], k = 1, . . . ,m, using the fact that cDαC = 0, where C is a constant, we get
cDαy(t) = σ(t) for each t ∈ (tk, tk+1].

Also, we can easily show that
∆y

∣∣
t=tk

= Ik(y(t
−
k )), k = 1, . . . ,m.

We are now in a position to state and prove our existence result for the problem (1)–(3) based on
the Banach fixed point theorem. �
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Theorem 3.2. Assume
(H1) the function f : J × R× R → R is continuous;
(H2) there exist constants K > 0 and 0 < L < 1 such that∣∣f(t, u, v)− f(t, u, v)

∣∣ ≤ K|u− u|+ L|v − v|
for any u, v, u, v ∈ R and t ∈ J ;

(H3) there exists a constant l̃ > 0 such that∣∣Ik(u)− Ik(u)
∣∣ ≤ l̃ |u− u|

for each u, u ∈ R and k = 1, . . . ,m.
If ( |b|

|a+ b|
+ 1

)[
ml̃ +

(m+ 1)KTα

(1− L)Γ(α+ 1)

]
< 1, (11)

then there exists a unique solution for the BVP (1)–(3).
Proof. Transform the problem (1)–(3) into a fixed point problem. Consider the operatorN :PC(J,R)→
PC(J,R) defined by

N(y)(t) =
−1

a+ b

[
b

m∑
i=1

Ii(y(t
−
i )) +

b

Γ(α)

m∑
i=1

ti∫
ti−1

(ti − s)α−1g(s) ds+
b

Γ(α)

T∫
tm

(T − s)α−1g(s) ds− c

]

+
1

Γ(α)

∑
0<tk<t

tk∫
tk−1

(tk − s)α−1g(s) ds+
1

Γ(α)

t∫
tk

(t− s)α−1g(s) ds+
∑

0<tk<t

Ik(y(t
−
k )), (12)

where g ∈ C(J,R) is such that
g(t) = f

(
t, y(t), g(t)

)
.

Clearly, the fixed points of operator N are solutions of problem (1)–(3).
Let u,w ∈ PC(J,R). Then for t ∈ J we have

∣∣N(u)(t)−N(w)(t)
∣∣ ≤ |b|

|a+ b|

[ m∑
i=1

∣∣Ii(u(t−i ))− Ii(w(t
−
i ))

∣∣
+

1

Γ(α)

m∑
i=1

ti∫
ti−1

(ti − s)α−1|g(s)− h(s)| ds+ 1

Γ(α)

T∫
tm

(T − s)α−1|g(s)− h(s)| ds
]

+
1

Γ(α)

∑
0<tk<t

tk∫
tk−1

(tk − s)α−1|g(s)− h(s)| ds

+
1

Γ(α)

t∫
tk

(t− s)α−1|g(s)− h(s)| ds+
∑

0<tk<t

∣∣Ik(u(t−k ))− Ik(w(t
−
k ))

∣∣,
where g, h ∈ C(J,R) are such that

g(t) = f
(
t, u(t), g(t)

)
and

h(t) = f
(
t, w(t), h(t)

)
.

By (H2), we have
|g(t)− h(t)| =

∣∣f(t, u(t), g(t))− f(t, w(t), h(t))
∣∣ ≤ K|u(t)− w(t)|+ L|g(t)− h(t)|.

Then
|g(t)− h(t)| ≤ K

1− L
|u(t)− w(t)|.

Therefore, for each t ∈ J,
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∣∣N(u)(t)−N(w)(t)
∣∣ ≤ |b|

|a+ b|

[ m∑
k=1

l̃
∣∣u(t−k )− w(t−k )

∣∣
+

K

(1− L)Γ(α)

m∑
k=1

tk∫
tk−1

(tk − s)α−1|u(s)− w(s)| ds+ K

(1− L)Γ(α)

T∫
tm

(T − s)α−1|u(s)− w(s)| ds
]

+
K

(1− L)Γ(α)

m∑
k=1

tk∫
tk−1

(tk − s)α−1|u(s)− w(s)| ds

+
K

(1− L)Γ(α)

t∫
tk

(t− s)α−1|u(s)− w(s)| ds+
m∑

k=1

l̃
∣∣u(t−k )− w(t−k )

∣∣
≤

( |b|
|a+ b|

+ 1
)[
ml̃ +

mKTα

(1− L)Γ(α+ 1)
+

KTα

(1− L)Γ(α+ 1)

]
∥u− w∥PC .

Thus
∥N(u)−N(w)∥PC ≤

( |b|
|a+ b|

+ 1
)[
ml̃ +

(m+ 1)KTα

(1− L)Γ(α+ 1)

]
∥u− w∥PC .

By (11), the operator N is a contraction. Hence, by the Banach contraction principle, N has a unique
fixed point which is a unique solution of the problem (1)–(3). �

Our second result is based on the Schaefer’s fixed point theorem.

Theorem 3.3. Assume that (H1), (H2) and the following conditions are fulfilled:
(H4) there exist p, q, r ∈ C(J,R+) with r∗ = supt∈J r(t) < 1 such that

|f(t, u, w)| ≤ p(t) + q(t)|u|+ r(t)|w| for t ∈ J and u,w ∈ R;

(H5) the functions Ik : R → R are continuous and there exist constants M∗, N∗ > 0 such that
|Ik(u)| ≤M∗|u|+N∗ for each u ∈ R, k = 1, . . . ,m.

If ( |b|
|a+ b|

+ 1
)(
mM∗ +

(m+ 1)q∗Tα

(1− r∗)Γ(α+ 1)

)
< 1, (13)

then the BVP (1)–(3) has at least one solution on J .

Proof. Let the operator N be defined by (12). We shall use the Schaefer’s fixed point theorem to
prove that N has a fixed point. The proof will be given in several steps.

Step 1: N is continuous. Let {un} be a sequence such that un → u in PC(J,R). Then for each
t ∈ J∣∣N(un)(t)−N(u)(t)

∣∣ ≤ |b|
|a+ b|

[ m∑
i=1

∣∣Ik(un(t−k ))− Ik(u(t
−
k ))

∣∣
+

1

Γ(α)

m∑
i=1

ti∫
ti−1

(ti − s)α−1|gn(s)− g(s)| ds+ 1

Γ(α)

T∫
tm

(T − s)α−1|gn(s)− g(s)| ds
]

+
1

Γ(α)

∑
0<tk<t

tk∫
tk−1

(tk − s)α−1|gn(s)− g(s)| ds

+
1

Γ(α)

t∫
tk

(t− s)α−1|gn(s)− g(s)| ds+
∑

0<tk<t

∣∣Ik(un(t−k ))− Ik(u(t
−
k ))

∣∣, (14)

where gn, g ∈ C(J,R) are such that
gn(t) = f

(
t, un(t), gn(t)

)
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and
g(t) = f

(
t, u(t), g(t)

)
.

By (H2), we have
|gn(t)− g(t)| =

∣∣f(t, un(t), gn(t))− f(t, u(t), g(t))
∣∣ ≤ K|un(t)− u(t)|+ L|gn(t)− g(t)|.

Then
|gn(t)− g(t)| ≤ K

1− L
|un(t)− u(t)|.

Since un → u, we get gn(t) → g(t) as n → ∞ for each t ∈ J . Let η > 0 be such that, for each t ∈ J ,
we have |gn(t)| ≤ η and |g(t)| ≤ η. Then we have

(t− s)α−1|gn(s)− g(s)| ≤ (t− s)α−1
[
|gn(s)|+ |g(s)|

]
≤ 2η(t− s)α−1

and
(tk − s)α−1|gn(s)− g(s)| ≤ (tk − s)α−1

[
|gn(s)|+ |g(s)|

]
≤ 2η(tk − s)α−1.

For each t ∈ J , the functions s→ 2η(t− s)α−1 and s→ 2η(tk − s)α−1 are integrable on [0, t], then
the Lebesgue Dominated Convergence Theorem and (14) imply that∣∣N(un)(t)−N(u)(t)

∣∣ −→ 0 as n→ ∞

and hence ∥∥N(un)−N(u)
∥∥
PC

−→ 0 as n→ ∞.

Consequently, N is continuous.
Step 2: F maps bounded sets into bounded sets in PC(J,R). Indeed, it is enough to show that for

any η∗ > 0 there exists a positive constant ℓ such that for each u ∈ Bη∗ = {u ∈ PC(J,R) : ∥u∥PC ≤
η∗}, ∥N(u)∥PC ≤ ℓ. For each t ∈ J we have

N(u)(t) =
−1

a+ b

[
b

m∑
i=1

Ii(u(t
−
i )) +

b

Γ(α)

m∑
i=1

ti∫
ti−1

(ti − s)α−1g(s) ds+
b

Γ(α)

T∫
tm

(T − s)α−1g(s) ds− c

]

+
1

Γ(α)

∑
0<tk<t

tk∫
tk−1

(tk − s)α−1g(s) ds+
1

Γ(α)

t∫
tk

(t− s)α−1g(s) ds+
∑

0<tk<t

Ik(u(t
−
k )), (15)

where g ∈ C(J,R) is such that
g(t) = f

(
t, u(t), g(t)

)
.

By (H4), for each t ∈ J we have
|g(t)| =

∣∣f(t, u(t), g(t))∣∣ ≤ p(t) + q(t)|u(t)|+ r(t)|g(t)|
≤ p(t) + q(t)η∗ + r(t)|g(t)| ≤ p∗ + q∗η∗ + r∗|g(t)|,

where p∗ = sup
t∈J

p(t) and q∗ = sup
t∈J

q(t). Then

|g(t)| ≤ p∗ + q∗η∗

1− r∗
:=M.

Thus (15) implies

|N(u)(t)| ≤ |b|
|a+ b|

[
m(M∗|u|+N∗) +

mMTα

Γ(α+ 1)
+

MTα

Γ(α+ 1)

]
+

|c|
|a+ b|

+
mMTα

Γ(α+ 1)
+

MTα

Γ(α+ 1)
+m

(
M∗|u|+N∗)

≤
( |b|
|a+ b|

+ 1
)[
m(M∗|u|+N∗) +

(m+ 1)MTα

Γ(α+ 1)

]
+

|c|
|a+ b|

.

Therefore

∥N(u)∥PC ≤
( |b|
|a+ b|

+ 1
)[
m(M∗η∗ +N∗) +

(m+ 1)MTα

Γ(α+ 1)

]
+

|c|
|a+ b|

:= ℓ.
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Step 3: F maps bounded sets into equicontinuous sets of PC(J,R). Let τ1, τ2 ∈ J , τ1 < τ2, Bη∗

be a bounded set of PC(J,R) as in Step 2, and let u ∈ Bη∗ . Then

∣∣N(u)(τ2)−N(u)(τ1)
∣∣ ≤ 1

Γ(α)

τ1∫
0

∣∣(τ2 − s)α−1 − (τ1 − s)α−1
∣∣ |g(s)| ds

+
1

Γ(α)

τ2∫
τ1

∣∣(τ2 − s)α−1
∣∣ |g(s)| ds+ ∑

0<tk<τ2−τ1

∣∣Ik(u(t−k ))∣∣
≤ M

Γ(α+ 1)

[
2(τ2 − τ1)

α + (τα2 − τα1 )
]
+ (τ2 − τ1)

(
M∗|u|+N∗)

≤ M

Γ(α+ 1)

[
2(τ2 − τ1)

α + (τα2 − τα1 )
]
+ (τ2 − τ1)

(
M∗η∗ +N∗).

As τ1 → τ2, the right-hand side of the above inequality tends to zero. As a consequence of Steps 1
to 3, together with the Ascoli–Arzela theorem, we can conclude that N : PC(J,R) → PC(J,R) is
completely continuous.

Step 4: A priori bounds. Now it remains to show that the set
E =

{
u ∈ PC(J,R) : u = λN(u) for some 0 < λ < 1

}
is bounded. Let u ∈ E, then u = λN(u) for some 0 < λ < 1. Thus for each t ∈ J

u(t) =
−1

a+ b

[
bλ

m∑
i=1

Ii(u(t
−
i )) +

bλ

Γ(α)

m∑
i=1

ti∫
ti−1

(ti − s)α−1g(s) ds+
bλ

Γ(α)

T∫
tm

(T − s)α−1g(s) ds− cλ

]

+
λ

Γ(α)

∑
0<tk<t

tk∫
tk−1

(tk − s)α−1g(s) ds+
λ

Γ(α)

t∫
tk

(t− s)α−1g(s) ds+ λ
∑

0<tk<t

Ik(u(t
−
k )). (16)

By (H4), for each t ∈ J we have
|g(t)| =

∣∣f(t, u(t), g(t))∣∣ ≤ p(t) + q(t)|u(t)|+ r(t)|g(t)| ≤ p∗ + q∗|u(t)|+ r∗|g(t)|.

Thus
|g(t)| ≤ 1

1− r∗
(
p∗ + q∗|u(t)|

)
≤ 1

1− r∗
(
p∗ + q∗∥u∥PC

)
.

This implies, by (16) and (H5), that for each t ∈ J

|u(t)| ≤ |b|
|a+ b|

[
m
(
M∗∥u∥PC +N∗)+ mTα(p∗ + q∗∥u∥PC)

(1− r∗)Γ(α+ 1)
+
Tα(p∗ + q∗∥u∥PC)

(1− r∗)Γ(α+ 1)

]
+

|c|
|a+ b|

+
mTα(p∗ + q∗∥u∥PC)

(1− r∗)Γ(α+ 1)
+
Tα(p∗ + q∗∥u∥PC)

(1− r∗)Γ(α+ 1)
+m

(
M∗∥u(t)∥PC +N∗).

Then

∥u∥PC ≤
( |b|
|a+ b|

+ 1
)[
m
(
M∗∥u(t)∥PC +N∗)+ (m+ 1)(p∗ + q∗∥u∥PC)T

α

(1− r∗)Γ(α+ 1)

]
+

|c|
|a+ b|

≤
( |b|
|a+ b|

+ 1
)(
mN∗ +

(m+ 1)p∗Tα

(1− r∗)Γ(α+ 1)

)
+

|c|
|a+ b|

+
( |b|
|a+ b|

+ 1
)(
mM∗ +

(m+ 1)q∗Tα

(1− r∗)Γ(α+ 1)

)
∥u∥PC .

Thus [
1−

( |b|
|a+ b|

+ 1
)(
mM∗ +

(m+ 1)q∗Tα

(1− r∗)Γ(α+ 1)

)]
∥u∥PC

≤
( |b|
|a+ b|

+ 1
)[ |c|

|a+ b|
+mN∗ +

(m+ 1)p∗Tα

(1− r∗)Γ(α+ 1)

]
.
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Finally, by (13), we obtain

∥u∥PC ≤
( |b|
|a+b| + 1)

[
mN∗ + (m+1)p∗Tα

(1−r∗)Γ(α+1) +
|c|

|a+b|
][

1− ( |b|
|a+b| + 1)(mM∗ + (m+1)q∗Tα

(1−r∗)Γ(α+1) )
] := R.

This shows that the set E is bounded. As a consequence of the Schaefer’s fixed point theorem, we
deduce that N has a fixed point which is a solution of the problem (1)–(3). �

4. Ulam–Hyers Rassias Stability

Now, we state the following Ulam–Hyers–Rassias stable result.

Theorem 4.1. Assume that (H1)–(H3), (11) and the following condition are satisfied:
(H6) there exists a nondecreasing function φ ∈ PC(J,R+) and there exists λφ > 0 such that for

any t ∈ J :
Iαφ(t) ≤ λφφ(t).

Then the problem (1)–(2) is Ulam–Hyers–Rassias stable with respect to (φ,ψ).

Proof. Let z ∈ PC(J,R) ∩AC(Jk) be a solution of (6). Denote by y the unique solution of the BVP

cDα
tk
y(t) = f

(
t, y(t), cDα

tk
y(t)

)
, t ∈ (tk, tk+1], k = 1, . . . ,m,

∆y(tk) = Ik(y(t
−
k )), k = 1, . . . ,m,

ay(0) + by(T ) = c,

y(0) = z(0).

Using Lemma 3.1, for each t ∈ (tk, tk+1] we obtain

y(t) = y(0) +
k∑

i=1

Ii(y(t
−
i )) +

1

Γ(α)

k∑
i=1

ti∫
ti−1

(ti − s)α−1g(s) ds

+
1

Γ(α)

t∫
tk

(t− s)α−1g(s) ds, t ∈ (tk, tk+1],

where g ∈ C(J,R) is such that
g(t) = f(t, y(t), g(t)).

Since z is a solution of (6), by Remark 2.13, we have{
cDα

tk
z(t) = f

(
t, z(t), cDα

tk
z(t)

)
+ σ(t), t ∈ (tk, tk+1], k = 1, . . . ,m,

∆z(tk) = Ik(z(t
−
k )) + σk, k = 1, . . . ,m.

(17)

Clearly, the solution of (17) is given by

z(t) = z(0)+
k∑

i=1

Ii(z(t
−
i ))+

k∑
i=1

σi+
1

Γ(α)

k∑
i=1

ti∫
ti−1

(ti−s)α−1h(s) ds

+
1

Γ(α)

k∑
i=1

ti∫
ti−1

(ti−s)α−1σ(s) ds+
1

Γ(α)

t∫
tk

(t−s)α−1h(s) ds

+
1

Γ(α)

t∫
tk

(t− s)α−1σ(s) ds, t ∈ (tk, tk+1],

where h ∈ C(J,R) is such that
h(t) = f

(
t, z(t), h(t)

)
.
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Hence for each t ∈ (tk, tk+1] it follows that

|z(t)− y(t)| ≤
k∑

i=1

|σi|+
k∑

i=1

∣∣Ii(z(t−i ))− Ii(y(t
−
i ))

∣∣
+

1

Γ(α)

k∑
i=1

ti∫
ti−1

(ti − s)α−1|h(s)− g(s)| ds+ 1

Γ(α)

k∑
i=1

ti∫
ti−1

(ti − s)α−1|σ(s)| ds

+
1

Γ(α)

t∫
tk

(t− s)α−1|h(s)− g(s)| ds+ 1

Γ(α)

t∫
tk

(t− s)α−1|σ(s)|.

Thus

|z(t)− y(t)| ≤ mεψ + (m+ 1)ελφφ(t) +
k∑

i=1

l̃
∣∣z(t−i )− y(t−i )

∣∣
+

1

Γ(α)

k∑
i=1

ti∫
ti−1

(ti − s)α−1|h(s)− g(s)| ds+ 1

Γ(α)

t∫
tk

(t− s)α−1|h(s)− g(s)| ds.

By (H2), we get

|h(t)− g(t)| =
∣∣f(t, z(t), h(t))− f

(
t, y(t), g(t)

)∣∣ ≤ K|z(t)− y(t)|+ L|g(t)− h(t)|.

Then

|h(t)− g(t)| ≤ K

1− L
|z(t)− y(t)|.

Therefore, for each t ∈ J,

|z(t)− y(t)| ≤ mεψ + (m+ 1)ελφφ(t) +
k∑

i=1

l̃
∣∣z(t−i )− y(t−i )

∣∣
+

K

(1− L)Γ(α)

k∑
i=1

ti∫
ti−1

(ti − s)α−1|z(s)− y(s)| ds

+
K

(1− L)Γ(α)

t∫
tk

(t− s)α−1|z(s)− y(s)| ds.

Thus

|z(t)−y(t)| ≤
k∑

i=1

l̃
∣∣z(t−i )−y(t−i )∣∣+ε(ψ+φ(t))(m+(m+1)λφ

)
+

K(m+ 1)

(1− L)Γ(α)

t∫
0

(t− s)α−1|z(s)− y(s)| ds.

Applying Lemma 2.6, we get

|z(t)− y(t)| ≤ ε(ψ + φ(t))(m+ (m+ 1)λφ)

×
[ ∏
0<tk<t

(1 + l̃) exp
( t∫

0

K(m+ 1)

(1− L)Γ(α)
(t− s)α−1 ds

)]
≤ cφε(ψ + φ(t)),
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where

cφ = (m+ (m+ 1)λφ)

[ m∏
k=1

(1 + l̃) exp
( K(m+ 1)Tα

(1− L)Γ(α+ 1)

)]
=

(
m+ (m+ 1)λφ

)[
(1 + l̃) exp

( K(m+ 1)Tα

(1− L)Γ(α+ 1)

)]m
.

Thus, the problem (1)–(2) is Ulam–Hyers–Rassias stable with respect to (φ,ψ). �

Next, we present the following Ulam–Hyers stability result.

Theorem 4.2. Assume that (H1)–(H3) and (11) are satisfied. Then the problem (1)–(2) is Ulam–
Hyers stable.

Proof. Let z ∈ PC(J,R) ∩AC(Jk) be a solution of (4). Denote by y the unique solution of the BVP

cDα
tk
y(t) = f

(
t, y(t), cDα

tk
y(t)

)
, t ∈ (tk, tk+1], k = 1, . . . ,m,

∆y(tk) = Ik(y(t
−
k )), k = 1, . . . ,m,

ay(0) + by(T ) = c,

y(0) = z(0).

Similarly as in the proof of Theorem 4.1 we get the inequality

|z(t)− y(t)| ≤
k∑

i=1

l̃
∣∣(z(t−i ))− (y(t−i ))

∣∣
+mε+

Tαε(m+ 1)

Γ(α+ 1)
+

K(m+ 1)

(1− L)Γ(α)

t∫
0

(t− s)α−1|z(s)− y(s)| ds.

Applying Lemma 2.6, we obtain

|z(t)− y(t)| ≤ ε
(mΓ(α+ 1) + Tα(m+ 1)

Γ(α+ 1)

)
×

[ ∏
0<tk<t

(1 + l̃) exp
( t∫

0

K(m+ 1)

(1− L)Γ(α)
(t− s)α−1 ds

)]
≤ cφε,

where

cφ =
(mΓ(α+1)+Tα(m+1)

Γ(α+1)

)[ m∏
k=1

(1+ l̃) exp
( K(m+1)Tα

(1−L)Γ(α+1)

)]
=

(mΓ(α+1)+Tα(m+1)

Γ(α+1)

)[
(1+ l̃) exp

( K(m+1)Tα

(1−L)Γ(α+1)

)]m
.

which completes the proof of the theorem. �

Moreover, if we set γ(ε) = cε, γ(0) = 0, then the problem (1)–(2) is generalized Ulam–Hyers stable.

Remark 4.3. Our results for the boundary value problem (1)–(3) are appropriate for the following
problems:

• Initial value problem: a = 1, b = 0, c = 0.

• Terminal value Problem: a = 0, b = 1, c is arbitrary.
• Anti-periodic problem: a = 1, b = 1, c = 0.

However, our results are not applicable for the periodic problem, i.e., for a = 1, b = −1, c = 0.
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5. Examples

Example 1. Consider the following impulsive boundary value problem:
cD

1
2
tk
y(t)=

1

5et+2(1+|y(t)|+|cD
1
2
tk
y(t)|)

for each t∈J0 ∪ J1, (18)

∆y
∣∣
t= 1

2

=
|y( 12

−
)|

10 + |y( 12
−
)|
, (19)

2y(0)− y(1) = 3, (20)

where J0 = [0, 12 ], J1 = ( 12 , 1], t0 = 0 and t1 = 1
2 . Set

f(t, u, v) =
1

5et+2(1 + |u|+ |v|)
, t ∈ [0, 1], u, v ∈ R.

Clearly, the function f is jointly continuous.
For each u, v, u, v ∈ R and t ∈ [0, 1]∣∣f(t, u, v)− f(t, u, v)

∣∣ ≤ 1

5e2
(
|u− u|+ |v − v|

)
.

Hence the condition (H2) is satisfied with K = L = 1
5e2 .

Let
I1(u) =

u

10 + u
, u ∈ [0,∞).

Let u, v ∈ [0,∞). Then we have∣∣I1(u)− I1(v)
∣∣ = ∣∣∣ u

10 + u
− v

10 + v

∣∣∣ = 10|u− v|
(10 + u)(10 + v)

≤ 1

10
|u− v|.

Thus the condition( |b|
|a+ b|

+ 1
)[
ml̃ +

(m+ 1)KTα

(1− L)Γ(α+ 1)

]
= 2

[ 1

10
+

2
5e2

(1− 1
5e2 )Γ(

3
2 )

]
= 2

[ 4

(5e2 − 1)
√
π
+

1

10

]
< 1

is satisfied with T = 1, a = 2, b = −1, c = 3, m = 1 and l̃ = 1
10 . From Theorem 3.2 it follows that

the problem (18)–(20) has a unique solution on J .
Set for any t ∈ [0, 1], φ(t) = t, ψ = 1. Since

I
1
2 φ(t) =

1

Γ( 12 )

t∫
0

(t− s)
1
2−1s ds ≤ 2t√

π
,

the condition (H6) is satisfied with λφ = 2√
π

. From this it follows that the problem (18)–(19) is
Ulam–Hyers–Rassias stable with respect to (φ,ψ).

Example 2. Consider the following impulsive anti-periodic problem:

cD
1
2
tk
y(t)=

2+|y(t)|+|cD
1
2
tk
y(t)|

108et+3(1+|y(t)|+|cD
1
2
tk
y(t)|)

for each t∈J0 ∪ J1, (21)

∆y
∣∣
t= 1

3

=
|y( 13

−
)|

6 + |y( 13
−
)|
, (22)

y(0) = −y(1), (23)

where J0 = [0, 13 ], J1 = ( 13 , 1], t0 = 0, and t1 = 1
3 . Set

f(t, u, v) =
2 + |u|+ |v|

108et+3(1 + |u|+ |v|)
, t ∈ [0, 1], u, v ∈ R.

Clearly, the function f is jointly continuous. For any u, v, u, v ∈ R and t ∈ [0, 1]∣∣f(t, u, v)− f(t, u, v)
∣∣ ≤ 1

108e3
(
|u− u|+ |v − v|

)
.
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Hence the condition (H2) is satisfied with K = L = 1
108e3 . For each t ∈ [0, 1] we have

|f(t, u, v)| ≤ 1

108et+3

(
2 + |u|+ |v|

)
.

Thus the condition (H4) is satisfied with p(t) = 1
54et+3 and q(t) = r(t) = 1

108et+3 .
Let

I1(u) =
u

6 + u
, u ∈ [0,∞).

For each u ∈ [0,∞) we have
|I1(u)| ≤

1

6
u+ 1.

Thus the condition (H5) is satisfied with M∗ = 1
6 and N∗ = 1. Therefore the condition( |b|

|a+ b|
+ 1

)(
mM∗ +

(m+ 1)q∗Tα

(1− r∗)Γ(α+ 1)

)
=

3

2

(1
6
+

4

(108e3 − 1)
√
π

)
< 1,

is satisfied with T = 1, a = 1, b = 1, c = 0, m = 1 and q∗(t) = r∗(t) = 1
108e3 . From Theorem 3.3 it

follows that the problem (21)–(23) has at least one solution on J .
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