Jitka Vacková

BOUNDED SOLUTIONS OF NONLINEAR DIFFERENTIAL SYSTEMS WITH DEVIATING ARGUMENTS

Abstract. For systems of nonlinear differential equations with deviating arguments, sufficient conditions for the existence and uniqueness of bounded on $(-\infty, +\infty)$ solutions are established.

რეზიუმე. გადახრილ არგუმენტებიან არაწრფივ დიფერენციალურ განტოლებათა სისტემებისთვის დადგენილია (-∞, +∞) შუალედში შემოსაზღვრული ამონახსნების არსებობისა და ერთადერთობის საკმარისი პირობები.

2010 Mathematics Subject Classification: 34K10, 34B15, 34B40.

Key words and phrases: System of nonlinear differential equations with deviating arguments, local Carathéodory conditions, bounded solution, existence, uniqueness, a priori estimates.

Consider the system of nonlinear differential equations with deviating arguments

$$x'_{i}(t) = g_{i}(t)x_{i}(t) + f_{i}(t, x_{1}(\tau_{i1}(t)), \dots, x_{n}(\tau_{in}(t))) \quad (i = 1, \dots, n),$$

$$(1)$$

where $\tau_{ij} : \mathbb{R} \to \mathbb{R}$ (i, j = 1, ..., n) are measurable in any finite interval functions, $g_i \in L_{loc}(\mathbb{R}, \mathbb{R})$ (i = 1, ..., n) and $f_i : \mathbb{R}^{n+1} \to \mathbb{R}$ (i = 1, ..., n) are functions satisfying the local Carathéodory conditions.

A vector function $(x_i)_{i=1}^n : \mathbb{R} \to \mathbb{R}^n$ is said to be a **bounded solution of the system** (1) if it is absolutely continuous in any finite interval, satisfies the system (1) almost everywhere on \mathbb{R} and

$$\sup\left\{\sum_{i=1}^n |x_i(t)|: t \in \mathbb{R}\right\} < +\infty.$$

For systems of ordinary differential equations, the problem on the existence of bounded solutions is investigated in detail (see, [4–7] and the references therein). In particular, for both linear [5] and essentially nonlinear differential systems [4,6], I. Kiguradze has established unimprovable in a certain sense conditions guaranteeing, respectively, the existence and uniqueness of a bounded solution.

By R. Hakl [1,2] effective sufficient conditions are established for the existence of a unique solution of a linear differential system with deviating arguments

$$\frac{dx_i(t)}{dt} = \sum_{j=1}^n p_{ij}(t)x_j(\tau_{ij}(t)) + q_i(t) \quad (i = 1, \dots, n).$$

In the present paper, based on the method of a priori estimates elaborated in [3, 4, 8–10], the Kiguradze type theorems on the existence and uniqueness of a bounded solution of the system (1) are established.

Throughout the paper the following notation is used.

 $\mathbb{R} = (-\infty, +\infty), \ \mathbb{R}_+ = [0, \infty).$

 \mathbb{R}^n is the space of *n*-dimensional vectors $x = (x_i)_{i=1}^n$ with the components $x_i \in \mathbb{R}$ (i = 1, ..., n). $\mathbb{R}^{n \times n}$ is the space of $n \times n$ matrices $X = (x_{ij})_{i,j=1}^n$ with the components $x_{ij} \in \mathbb{R}$ (i, j = 1, ..., n). $\mathbb{R}^{n \times n}_+ = \{X = (x_{ij})_{i,j=1}^n \in \mathbb{R}^{n \times n} : x_{ij} \in \mathbb{R}_+ (i, j = 1, ..., n)\}.$ r(X) is the spectral radius of the matrix $X \in \mathbb{R}^{n \times n}$.

 $L_{loc}(\mathbb{R},\mathbb{R})$ is the space of summable in any finite interval functions $u:\mathbb{R}\to\mathbb{R}$.

Theorem 1. Let there exist a constant matrix $A = (a_{ij})_{i,j=1}^n \in \mathbb{R}^{n \times n}_+$, a nonnegative number b, and nonnegative functions p_{ij} , $q_i \in L_{loc}(\mathbb{R}, \mathbb{R})$ (i, j = 1, ..., n) such that

$$r(A) < 1, \tag{2}$$

$$\left|f_{i}(t,x_{1},\ldots,x_{n})\right| \leq \sum_{j=1}^{t} p_{ij}(t)|x_{j}| + q_{i}(t) \quad \text{for } t \in \mathbb{R}, \quad (x_{j})_{j=1}^{n} \in \mathbb{R}^{n} \quad (i=1,\ldots,n),$$

$$\left|\int_{t_{i}}^{t} \exp\left(\int_{s}^{t} g_{i}(\xi) \, d\xi\right) p_{ij}(s) \, ds\right| \leq a_{ij} \quad \text{for } t \in \mathbb{R} \quad (i,j=1,\ldots,n), \tag{3}$$

$$\sum_{i=1}^{n} \left| \int_{t_i}^t \exp\left(\int_s^t g_i(\xi) \, d\xi \right) q_i(s) \, ds \right| \le b \quad \text{for } t \in \mathbb{R},$$
(4)

where $t_i \in \{-\infty, +\infty\}$ (i = 1, ..., n). Then the system (1) has at least one bounded solution.

n

Theorem 2. Let there exist a constant matrix $A = (a_{ij})_{i,j=1}^n \in \mathbb{R}^{n \times n}_+$, a nonnegative number b, and nonnegative functions $p_{ij} \in L_{loc}(\mathbb{R}, \mathbb{R})$ (i, j = 1, ..., n) such that along with (2), (3) the conditions

$$\begin{aligned} |f_{i}(t,x_{1},\ldots,x_{n}) - f_{i}(t,y_{1},\ldots,y_{n})| \\ &\leq \sum_{j=1}^{n} p_{ij}(t)|x_{j} - y_{j}| \quad for \ t \in \mathbb{R}, \ \ (x_{j})_{j=1}^{n} \in \mathbb{R}^{n}, \ \ (y_{j})_{j=1}^{n} \in \mathbb{R}^{n} \ \ (i=1,\ldots,n), \\ &\sum_{j=1}^{n} \left| \int_{-\infty}^{t} \exp\left(\int_{-\infty}^{t} g_{i}(\xi) \, d\xi \right) |f_{i}(s,0\ldots,0)| \, ds \right| \leq b \quad for \ t \in \mathbb{R} \end{aligned}$$
(6)

$$\sum_{i=1}^{n} \left| \int_{t_i}^{t} \exp\left(\int_{s}^{t} g_i(\xi) \, d\xi \right) |f_i(s, 0 \dots, 0)| \, ds \right| \le b \quad for \ t \in \mathbb{R}$$

and

$$\limsup_{t \to t_i} \int_0^t g_i(s) \, ds = +\infty \quad (i = 1, \dots, n) \tag{7}$$

be fulfilled, where $t_i \in \{-\infty, +\infty\}$ (i = 1, ..., n). Then the system (1) has one and only one bounded solution.

Let us describe a scheme of proving the above-formulated theorems.

For an arbitrary natural number m, we consider the system of differential equations

$$x_{i}'(t) = g_{i}(t)x_{i}(t) + \lambda f_{i}(t, x_{1}(\tau_{i\,1m}(t)), \dots, x_{n}(\tau_{i\,nm}(t))) \quad (i = 1, \dots, n)$$
(8)

and the system of differential equations

$$\left|x_{i}'(t) - g_{i}(t)x_{i}(t)\right| \leq \sum_{j=1}^{n} p_{ij}(t)\left|x_{j}(\tau_{ijm}(t))\right| + q_{i}(t) \quad (i = 1, \dots, n)$$
(9)

with the boundary conditions

$$x_i(\sigma_i m) = 0 \ (i = 1, \dots, n).$$
 (10)

Here $\lambda \in [0, 1], \sigma_i \in \{-1, 1\} \ (i = 1, \dots, n),$

$$\tau_{ijm}(t) = \begin{cases} \tau_{ij}(t) & \text{for } |\tau_{ij}(t)| \le m, \\ m & \text{for } \tau_{ij}(t) > m, \\ -m & \text{for } \tau_{ij}(t) < -m \end{cases}$$

and $p_{ij} \in L_{loc}(\mathbb{R}, \mathbb{R}), q_i \in L_{loc}(\mathbb{R}, \mathbb{R})$ (i, j = 1, ..., n) are nonnegative functions.

An absolutely continuous vector function $(x_i)_{i=1}^n : [-m,m] \to \mathbb{R}^n$ is said to be a solution of the system (8) (of the system (9)) if it almost everywhere on [-m,m] satisfies this system. A solution of the system (8) (of the system (9)), satisfying the boundary conditions (10), is called a solution of the problem (8), (10) (of the problem (9), (10)).

The following lemmas are valid.

Lemma 1. Let there exist a positive constant ρ such that for an arbitrary natural number m and arbitrary $\lambda \in [0, 1]$ every solution of the problem (8), (10) admits the estimate

$$\max\left\{\sum_{i=1}^{n} |x_i(t)|: -m \le t \le m\right\} \le \rho.$$
(11)

Then the system (1) has at least one bounded solution.

Lemma 2. Let inequalities (2)–(4), where $t_i \in \{-\infty, +\infty\}$ (i = 1, ..., n), $A = (a_{ij})_{i,j=1}^n \in \mathbb{R}^{n \times n}_+$ and $b \in \mathbb{R}_+$, be fulfilled. Moreover, let the condition

$$\sigma_i = \begin{cases} 1 & \text{if } t_i = +\infty, \\ -1 & \text{if } t_i = -\infty \end{cases}$$

for any $i \in \{1, ..., n\}$ be fulfilled. Then there exists a positive constant ρ such that for an arbitrary natural m every solution of the problem (9), (10) admits the estimate (11).

Theorem 1 follows from Lemmas 1 and 2.

Assume now that the conditions of Theorem 2 are fulfilled. Then by Theorem 1, the system (1) has at least one bounded solution $(x_i)_{i=1}^n$. Our aim is to show that an arbitrary bounded solution $(\overline{x}_i)_{i=1}^n$ of that system coincides with $(x_i)_{i=1}^n$. Assume

$$u_i(t) = \overline{x}_i(t) - x_i(t) \quad (i = 1, \dots, n)$$

and

$$\rho_i = \sup \{ |u_i(t)| : t \in \mathbb{R} \} \ (i = 1, \dots, n).$$

Then according to the condition (5), the vector function $(u_i)_{i=1}^n$ is a bounded solution of the system of differential inequalities

$$|u'_i(t) - g_i(t)u_i(t)| \le \sum_{j=1}^n p_{ij}(t)\rho_j \ (i = 1, \dots, n).$$

If we now take the conditions (3) and (7) into account, then it becomes clear that

$$|u_i(t)| \le \sum_{j=1}^n \left| \int_{t_i}^t \exp\left(\int_s^t g_i(\xi) \, d\xi \right) p_{ij}(s) \, ds \right| \rho_j \le \sum_{j=1}^n a_{ij} \rho_j \text{ for } t \in \mathbb{R} \ (i = 1, \dots, n)$$

and

$$\rho_i \le \sum_{j=1}^n a_{ij} \rho_j \quad (i = 1, \dots, n)$$

Hence, in view of (2), it follows that

$$\rho_i = 0 \ (i = 1, \dots, n),$$

and, consequently,

$$\overline{x}_i(t) \equiv x_i(t) \ (i=1,\ldots,n).$$

Example. Consider the differential equation

$$x'(t) = g(t) [x(t) + a | x(\tau(t)) | + b],$$
(12)

where $a \in \mathbb{R}_+$, b > 0, $\tau : \mathbb{R} \to \mathbb{R}$ is a measurable in any infinite interval function and $g \in L_{loc}(\mathbb{R}, \mathbb{R})$ is a nonnegative function such that

$$\int_{0}^{+\infty} g(s) \, ds = +\infty. \tag{13}$$

The equation (12) follows from the system (1) in case

$$n = 1, \ \tau_1(t) = \tau(t), \ g_1(t) = g(t), \ f_1(t, x_1) = g_1(t)(a|x_1| + b).$$
 (14)

On the other hand, the equalities (13) and (14) guarantee the fulfilment of the conditions (3), (5)-(7), where

$$t_1 = +\infty, \ a_{11} = a, \ p_{11}(t) = a_{11}g_1(t),$$

whence by Theorem 2, it follows that if

$$a < 1, \tag{15}$$

then the equation (12) has a unique bounded solution.

Let us now show that the condition (15) is also necessary for the existence of a bounded solution of the equation (1). Indeed, let the equation (12) have a bounded solution x. If we put

$$\delta = \inf \left\{ |x(t)| : t \in \mathbb{R} \right\}$$

then with regard for (13), we find

$$-x(t) = \int_{t}^{+\infty} \exp\left(\int_{s}^{t} g(\xi) \, d\xi\right) g(s) \left[a|x(\tau(s))| + b\right] ds$$
$$\geq (a\delta + b) \int_{t}^{+\infty} \exp\left(\int_{s}^{t} g(\xi) \, d\xi\right) g(s) \, ds = a\delta + b > 0 \text{ for } t \in \mathbb{R}$$

and

 $\delta \ge a\delta + b.$

Consequently, the inequality (15) is fulfilled.

The above-constructed example shows that the condition (2) in Theorems 1 and 2 is unimprovable and it cannot be replaced by the condition

$$r(A) \le 1.$$

References

- 1. R. Hakl, On bounded solutions of systems of linear functional-differential equations. *Georgian Math. J.* 6 (1999), no. 5, 429–440.
- R. Hakl, On nonnegative bounded solutions of systems of linear functional differential equations. Mem. Differential Equations Math. Phys. 19 (2000), 154–158.
- 3. R. Hakl, I. Kiguradze, and B. Půža, Upper and lower solutions of boundary value problems for functional differential equations and theorems on functional differential inequalities. *Georgian Math. J.* **7** (2000), no. 3, 489–512.
- I. T. Kiguradze, Boundary value problems for systems of ordinary differential equations. (Russian) Translated in J. Soviet Math. 43 (1988), no. 2, 2259–2339. Itogi Nauki i Tekhniki, Current problems in mathematics. Newest results, Vol. 30 (Russian), 3–103, 204, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1987.
- 5. I. Kiguradze, The initial value problem and boundary value problems for systems of ordinary differential equations. Vol. I. Linear theory. (Russian) *Metsniereba, Tbilisi*, 1997.
- I. Kiguradze, On boundary value problems with conditions at infinity for nonlinear differential systems. Nonlinear Anal. 71 (2009), no. 12, e1503–e1512.
- I. Kiguradze and B. Půža, Certain boundary value problems for a system of ordinary differential equations. (Russian) Differencial'nye Uravnenija 12 (1976), no. 12, 2139–2148, 2298; translation in Differ. Equations 12 (1976), 1493–1500.
- I. Kiguradze and B. Půža, Theorems of Conti-Opial type for nonlinear functional-differential equations. (Russian) Differ. Uravn. 33 (1997), no. 2, 185–194; translation in Differential Equations 33 (1997), no. 2, 184–193.
- I. Kiguradze and B. Půža, On boundary value problems for functional-differential equations. Mem. Differential Equations Math. Phys. 12 (1997), 106–113.
- I. Kiguradze and B. Půža, On the solvability of nonlinear boundary value problems for functional-differential equations. Georgian Math. J. 5 (1998), no. 3, 251–262.

(Received 22.06.2016)

Author's address:

Department of Mathematics and Statistics, Masaryk University, Kotlářská 267/2, 611 37 Brno, Czech Republic.

E-mail: jitka@finnsub.com