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ON THE WELL-POSEDNESS OF ANTIPERIODIC PROBLEM
FOR SYSTEMS OF LINEAR GENERALIZED DIFFERENTIAL EQUATIONS

Abstract. The question of well-posedness of antiperiodic boundary value problem for systems of
linear generalized differential equations is considered. The necessary and sufficient as well as the
effective sufficient conditions are found for the well-posedness of the problem.
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We consider the question of well-posedness of the ω-antiperiodic problem for linear generalized
ordinary differential equations of the form

dx(t) = dA(t) · x(t) + df(t) for t ∈ R, (1)
x(t+ ω) = −x(t) for t ∈ R, (2)

where A : R → Rn×n and f : R → Rn are, respectively, the matrix- and vector-functions with bounded
variation components on the every closed interval [a, b] from R, and ω is a fixed positive number.

Let the system (1) have a unique ω-antiperiodic solution x0.
Along with the system (1), consider a sequence of systems

dx(t) = dAk(t) · x(t) + dfk(t) (k = 1, 2, . . . ) (1k)
where Ak : R → Rn×n and fk : R → Rn are, respectively, the matrix- and vector-functions with
bounded variation components on every closed interval [a, b] from R.

In the present paper, the necessary and sufficient conditions are given for a sequence of ω-antipe-
riodic problems (1k), (2) (k = 1, 2, . . . ) to have a unique solution xk for a sufficiently large k and

lim
k→+∞

xk(t) = x0(t) uniformly on R. (3)

The analogous questions for the linear general boundary value problems are investigated in [2,
6, 10, 11, 19] (see also the references therein) for linear generalized differential systems, in [3–5, 14]
(see also the references therein) for nonlinear generalized differential systems and equations, and
in [1, 9, 12,13,16] (see also the references therein) for ordinary differential and impulsive systems.

The problem on the solvability of the ω-antiperiodic boundary value problem (1), (2) can be found
in [8].

As to the well-posedness question concerning of the antiperiodic problem, it is sufficiently far from
by completeness. Thus the problem considered in the present paper is actual.

To a considerable extent, the interest to the theory of generalized ordinary differential equations
has also been stimulated by the fact that this theory enables one to investigate ordinary differential,
impulsive and difference equations from a unified point of view (see [3,7,14,15,17,18] and the references
therein).

The theory of generalized ordinary differential equations has been introduced by J. Kurzweil [14,15]
in connection with the investigation of the well-posed problem for the Cauchy problem for ordinary
differential equations.

In the paper, the use will be made of the following notation and definitions:
R = ]−∞,+∞[ is the real axis;
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Rn×m is the space of all real n×m matrices X = (xij)
n,m
i,j=1 with the norm

∥X∥ = max
j=1,...,m

n∑
i=1

|xij |;

On×m (or O) is the zero n×m matrix; In is the identity n× n-matrix.
Rn = Rn×1 is the space of all real column n-vectors x = (xi)

n
i=1.

A matrix-function is said to be continuous, integrable, nondecreasing, etc., if each of its components
is such. The inequalities between the real matrices are understood componentwise.

If X : [a, b] → Rn×m is a matrix-function, then
b∨
a
(X) is the sum of total variations on [a, b] of

its components xij (i = 1, . . . , n; j = 1, . . . ,m); V (X)(t) = (V (xij)(t))
n,m
i,j=1, where V (xij)(a) = 0,

V (xij)(t) =
t∨
a
(xij) for a < t ≤ b; X(t−) and X(t+) are, respectively, the left and the right limits of

X at the point t (X(a−) = X(a), X(b+) = X(b)); d1X(t) = X(t)−X(t−), d2X(t) = X(t+)−X(t).
BV([a, b],Rn×m) is the normed space of all bounded variation matrix-functions X : [a, b] → Rn×m

(i.e.,
b∨
a
(X) < ∞) with the norm ∥X∥s = sup{∥X(t)∥ : t ∈ [a, b]}.

BVloc(R,Rn×m) is the set of all matrix-functions X : [a, b] → Rn×m whose restrictions on every
closed interval [a, b] from R belong to BV([a, b],Rn×n).

BV+
ω (R,Rn×m) and BV−

ω (R,Rn×m) are the sets of all matrix-functions G : R → Rn×m whose
restrictions on [0, ω] belong to BV([0, ω],Rn×m), and there exist a constant matrix C ∈ Rn×m such
that, respectively,

G(t+ ω) = G(t) + C and G(t+ ω) = −G(t) + C for t ∈ R.
sc, sj : BV([a, b],R) → BV([a, b],R) (j = 1, 2) are the operators defined, respectively, by

s1(x)(a) = s2(x)(a) = 0,

s1(x)(t) =
∑

a<τ≤t

d1x(τ) and s2(x)(t) =
∑

a≤τ<t

d2x(τ) for a < t ≤ b,

and
sc(x)(t) = x(t)− s1(x)(t)− s2(x)(t) for t ∈ [a, b].

If g : [a, b] → R is a nondecreasing function, x : [a, b] → R and a ≤ s < t ≤ b, then
t∫

s

x(τ) dg(τ) =

∫
]s,t[

x(τ) dsc(g)(τ) +
∑

s<τ≤t

x(τ)d1g(τ) +
∑

s≤τ<t

x(τ)d2g(τ),

where
∫

]s,t[

x(τ) dsc(g)(τ) is the Lebesgue–Stieltjes integral over the open interval ]s, t[ with respect to

the measure µ0(sc(g)) corresponding to the function sc(g).
If a = b, then we assume

b∫
a

x(t) dg(t) = 0,

and if a > b, then we assume
b∫

a

x(t) dg(t) = −
a∫

b

x(t) dg(t).

Thus
b∫
a

x(τ) dg(τ) is the Kurzweil–Stieltjes integral (see [14–19]).

If g(t) ≡ g1(t)− g2(t), where g1 and g2 are nondecreasing functions, then
t∫

s

x(τ) dg(τ) =

t∫
s

x(τ) dg1(τ)−
t∫

s

x(τ) dg2(τ) for s ≤ t.
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If G = (gik)
l,n
i,k=1 ∈ BV([a, b],Rl×n) and X = (xkj)

n,m
k,j=1 : [a, b] → Rn×m, then

Sc(G)(t) ≡
(
sc(gik)(t)

)l,n
i,k=1

, Sj(G)(t) ≡
(
sj(gik)(t)

)l,n
i,k=1

(j = 1, 2)

and
b∫

a

dG(τ) ·X(τ) =

( n∑
k=1

b∫
a

xkj(τ) dgik(τ)

)l,m

i,j=1

.

We introduce the operators. If X ∈ BVloc(R, ;Rn×n) and Y ∈ BVloc(R, ;Rn×m), then

B(X,Y )(t) = X(t)Y (t)−X(0)Y (0)−
t∫

0

dX(τ) · Y (τ);

if, in addition, det(X(t)) ̸= 0 for t ∈ R, then

I(X,Y )(t) =

t∫
0

d
(
X(τ) + B(X,Y )(τ)

)
·X−1(τ);

and if, moreover, det(In + (−1)jdjX(t)) ̸= 0 for t ∈ R (j = 1, 2), then
A(X,Y )(0) = On×m,

A(X,Y )(t) = Y (t)− Y (0) +
∑

0<τ≤t

d1X(τ) · (In − d1X(τ))−1 d1Y (τ)

−
∑

0≤τ<t

d2X(τ) · (In + d2X(τ))−1 d2Y (τ) for t > 0,

A(X,Y )(t) = −A(X,Y )(t) for t < 0.

We say that the matrix-function X ∈ BV([a, b],Rn×n) satisfies the Lappo–Danilevskiĭ condition if
the matrices Sc(X)(t), S1(X)(t) and S2(X)(t) are pairwise permutable for every t ∈ [a, b], and there
exists t0 ∈ [a, b] such that

t∫
t0

Sc(X)(τ) dSc(X)(τ) =

t∫
t0

dSc(X)(τ) · Sc(X)(τ) for t ∈ [a, b].

A vector-function BVloc(R,Rn×m) is said to be a solution of the system (1) if

x(t)− x(s) =

t∫
s

dA(τ) · x(τ) + f(t)− f(s) for s < t; s, t ∈ R.

We assume that
A,Ak ∈ BV+

ω (R,Rn×n) and f, fk ∈ BV−
ω (R,Rn) (k = 1, 2, . . . ),

i.e.,
A(t+ ω) = A(t) + C, Ak(t+ ω) = Ak(t) + Ck for t ∈ R (k = 1, 2, . . . )

and
f(t+ ω) = −f(t) + c, fk(t+ ω) = −fk(t) + ck for t ∈ R (k = 1, 2, . . . ),

where C,Ck ∈ Rn×n (k = 1, 2, . . . ) and c, ck ∈ Rn (k = 1, 2, . . . ) are, respectively, some constant
matrix and vector. In addition, without loss of generality, we assume that

A(0) = Ak(0) = On×n, f(0) = fk(0) = 0 (k = 1, 2, . . . )

(the last condition is assumed for every generalized linear systems, as well). Moreover, we assume
det

(
In + (−1)jdjA(t)

)
̸= 0 for t ∈ R (j = 1, 2).

Alongside with the system (1), we consider the corresponding homogeneous system
dx(t) = dA(t) · x(t). (40)
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Moreover, along with the problem (2), we consider the problem
x(0) = −x(ω). (5)

If the matrix-function A satisfies the Lappo–Danilevskiĭ’s condition, then the fundamental matrix
Y , Y (0) = In, of the system (40) is defined by

Y (t) ≡ exp(S0(A)(t))
∏

0≤τ<t

(In + d2A(τ))
∏

0<τ≤t

(In − d1A(τ))
−1 for t ∈ [0, ω].

Definition 1. We say that a sequence (Ak, fk) (k = 1, 2, . . . ) belongs to the set S(A, f) if the ω-
antiperiodic problem (1k), (2) has a unique solution xk for any sufficiently large k, and the condition
(3) holds.

Proposition 1. The following statements are valid:
(a) if x is a solution of the system (1), then the vector-function y(t) = −x(t+ ω) (t ∈ R) will be

a solution of the system (1), as well;
(b) the problem (1), (2) is solvable if and only if the system (1) on the closed interval [0, ω] has a

solution satisfying the boundary condition (5). Moreover, the set of restrictions of solutions
of the problem (1), (2) on [0, ω] coincides with the set of solutions of the problem (1), (5).

Theorem 1. The inclusion (
(Ak, fk)

)+∞
k=1

∈ S(A, f) (6)
is valid if and only if there exists a sequence of matrix-functions H,Hk ∈ BV([0, ω],Rn×n) (k =
1, 2, . . . ) such that

lim
k→+∞

sup
b∨
a

(Hk + B(Hk, Ak)) < +∞, (7)

inf
{∣∣det(H(t))

∣∣ : t ∈ [0, ω]
}
> 0, (8)

and the conditions
lim

k→+∞
Hk(t) = H(t), (9)

lim
k→+∞

B(Hk, Ak)(t) = B(H,A)(t), (10)

lim
k→+∞

B(Hk, fk)(t) = B(H, f)(t)

are fulfilled uniformly on [0, ω].

Theorem 2. Let A∗ ∈ BV([0, ω],Rn×n), f∗ ∈ BV([0, ω],Rn) be such that
det

(
In + (−1)jdjA∗(t)

)
̸= 0 for t ∈ [0, ω] (j = 1, 2) (11)

and the system
dx(t) = dA∗(t) · x(t) + df∗(t) (12)

have a unique ω-antiperiodic solution x∗. Let, moreover, there exist sequences of matrix- and vector-
functions Hk ∈ BV([0, ω],Rn×n) (k = 1, 2, . . . ) and hk ∈ BV([0, ω],Rn) (k = 1, 2 . . . ), respectively,
such that hk(0) = −hk(ω) (k = 1, 2, . . . ),

inf
{∣∣det(Hk(t))

∣∣ : t ∈ [0, ω]
}
> 0 (k = 1, 2, . . . ), (13)

and

lim
k→+∞

sup
b∨
a

A∗k < +∞, (14)

and the conditions
lim

k→+∞
A∗k(t) = A∗(t), (15)

lim
k→+∞

f∗k(t) = f∗(t)
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are fulfilled uniformly on [0, ω], where

A∗k(t) ≡ Ik(Hk, Ak)(t) (k = 1, 2, . . . ),

f∗k(t) ≡ hk(t)− hk(0) + Bk(Hk, fk)(t)−
t∫

0

dA∗k(τ) · hk(t) (k = 1, 2, . . . ).

Then the system (1k) has a unique ω-antiperiodic solution xk for any sufficiently large k, and

lim
k→+∞

∥Hkxk + hk − x∗∥s = 0.

Corollary 1. Let the conditions (7) and (8) hold, and let the conditions (9), (10) and

lim
k→+∞

(
B(Hk, fk − φk)(t) +

t∫
0

dB(Hk, Ak)(s) · φk(s)

)
= B(H, f)(t)

be fulfilled uniformly on [0, ω], where H,Hk ∈ BV([0, ω],Rn×n) (k = 1, 2, . . . ). Then the system (1k)
has a unique ω-antiperiodic solution xk for any sufficiently large k and

lim
k→+∞

∥xk − φk − x∗∥s = 0.

Corollary 2. Let the conditions (7) and (8) hold, and let the conditions (9),

lim
k→+∞

t∫
0

Hk(s) dAk(s) =

t∫
0

H(s) dA(s), lim
k→+∞

t∫
0

Hk(s) dfk(s) =

t∫
0

H(s) df(s),

lim
k→+∞

djAk(t) = djA(t) (j = 1, 2), and lim
k→+∞

djfk(t) = djf(t) (j = 1, 2)

be fulfilled uniformly on [0, ω], where H,Hk ∈ BV([0, ω],Rn×n) (k = 1, 2, . . . ). Let, moreover, either

lim
k→+∞

sup
∑

a≤t≤b

(
∥djAk(t)∥+ ∥djfk(t)∥

)
< +∞ (j = 1, 2)

or
lim

k→+∞
sup

∑
a≤t≤b

∥djHk(t)∥ < +∞ (j = 1, 2). (16)

Then the inclusion (6) holds.

Corollary 3. Let the conditions (7) and (8) hold, and let the conditions (9),

lim
k→+∞

Ak(t) = A(t), (17)

lim
k→+∞

fk(t) = f(t)), (18)

lim
k→+∞

t∫
0

d
(
H−1(s)Hk(s)

)
·Ak(s) = A∗(t),

lim
k→+∞

t∫
0

d
(
H−1(s)Hk(s)

)
· fk(s) = f∗(t)

be fulfilled uniformly on [0, ω], where H,Hk, A∗ ∈ BV([0, ω],Rn×n) (k = 1, 2, . . . ), and f∗ ∈
BV([0, ω],Rn). Let, moreover, the system

dx(t) = d
(
A(t)−A∗(t)

)
· x(t) + d

(
f(t)− f∗(t)

)
have a unique ω-antiperiodic solution. Then(

(Ak, fk)
)+∞
k=1

∈ S(A−A∗, f − f∗).
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Corollary 4. Let there exist a natural number m and matrix-functions Bj ∈ BV([0, ω],Rn×n) (j =
0, . . . ,m− 1 such that

lim
k→+∞

sup
b∨
a

(Akm) < +∞,

and the conditions
lim

k→+∞

(
Akm(t)−Akm(0)

)
= A(t),

lim
k→+∞

(
fkm(t)− fkm(0)

)
= f(t)

be fulfilled uniformly on [0, ω], where

Hk0(t) ≡ In, Hk j+1 0(t) ≡
1∏

j+1

(
In −Akl(t) +Akl(0) +Bl(t)−Bl(0)

)
,

Ak j+1 ≡ Hkj(t) + B(Hkj , Ak)(t), fk j+1 ≡ B(Hkj , fk)(t).

Then the inclusion (6) holds.

If m = 1, then Corollary 4 has the following form

Corollary 5. Let

lim
k→+∞

sup
b∨
a

(Ak) < +∞

and the conditions (17) and (18) be fulfilled uniformly on [0, ω]. Then the inclusion (6) holds.

Theorem 1′. Let A∗ ∈ BV([0, ω],Rn×n), f∗ ∈ BV([0, ω],Rn) be such that the condition (11) hold
and the system (12) has a unique ω-antiperiodic solution x∗. Let, moreover, there exist sequences
of matrix- and vector-functions Hk ∈ BV([0, ω],Rn×n) (k = 1, 2, . . . ) and B,Bk ∈ BV([0, ω],Rn×n)
(k = 1, 2, . . . ), and a sequence of vector-functions hk ∈ BV([0, ω],Rn) (k = 1, 2 . . . ), respectively, such
that hk(0) = −hk(ω) (k = 1, 2, . . . ), the conditions (13),

lim
k→+∞

sup
b∨
a

(A∗k −Bk) < +∞, (19)

det
(
In+(−1)jdjB(t)

)
̸=0, det

(
In+(−1)jdjBk(t)

)
̸=0 for t∈ [0, ω] (j=1, 2; k=0, 1, . . . ) (20)

hold, and the conditions
lim

k→+∞
Zk(t) = Z(t), (21)

lim
k→+∞

B
(
Z−1
k , A∗k(t)

)
= B(Z−1, A∗(t)), (22)

lim
k→+∞

B
(
Z−1
k , f∗k(t)

)
= B(Z−1, f∗(t)) (23)

are fulfilled uniformly on [0, ω], where A∗k and f∗k are the matrix- and vector-functions appearing in
Theorem 2, and Zk (Z) is the fundamental matrix of the system

dx(t) = dBk(t) · x(t)
(
dx(t) = dB(t) · x(t)

)
(24)

under the condition
Zk(0) = In (Z(0) = Im) (k = 1, 2, . . . ). (25)

Then the conclusion of Theorem 2 is true.
Below, everywhere, just as in the above theorem, it will be assumed that Zk (Z) is the fundamental

matrix of the system (24) under the condition (25) for every k ∈ {1, 2, . . . }, as well.

Corollary 6. Let the conditions (8), (19),

lim
k→+∞

sup
∑

0≤t≤ω

∥djBk(t)∥ < +∞ (j = 1, 2) (26)
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and
det

(
In + (−1)jdjB(t)

)
̸= 0 for t ∈ [0, ω] (j = 1, 2; k = 0, 1, . . . ) (27)

hold and let the conditions (9),

lim
k→+∞

Bk(t) = B(t), (28)

lim
k→+∞

t∫
0

Z−1
k (s) dA(Bk, A∗k)(s) =

t∫
0

Z−1(s) dA(B,A∗)(s) (29)

and

lim
k→+∞

t∫
0

Z−1
k (s) dA(Bk, f∗k)(s) =

t∫
0

Z−1(s) dA(B, f∗)(s) (30)

be fulfilled uniformly on [0, ω], where H, Hk ∈ BV([0, ω],Rn×n) (k = 1, 2, . . . ), and B and Bk ∈
BV([0, ω],Rn×n) (k = 1, 2, . . . ) satisfy the Lappo–Danilevskiĭ condition; A∗k(t) ≡ I(Hk, Ak)(t) (k =
1, 2, . . . ),

f∗k(t) ≡ −Hk(t)φk(t) +Hk(0)φk(0) + B(Hk, fk)(t) +

t∫
0

dA∗k(s) ·Hk(s)φk(s),

φk ∈ BV([0, ω],Rn) (k = 1, 2, . . . ),

and A∗ and f∗ are the matrix- and vector-functions appearing in Theorem 1′. Then the conclusion of
Corollary 1 is true.

In the Lappo–Danilevskiĭ case, for every k ∈ {1, 2, . . . }, we have

Zk(t) ≡ exp(S0(Bk)(t))
∏

0≤τ<t

(
In + d2Bk(τ)

) ∏
0<τ≤t

(
In − d1Bk(τ)

)−1
.

Corollary 7. Let the conditions (8), (19) hold and let the conditions (9), (15), (27) and

lim
k→+∞

t∫
0

exp(−Bk(s)) df∗k(s) =

t∫
0

exp(−B(s)) df∗(s)

be fulfilled uniformly on [0, ω], where H, Hk ∈ BV([0, ω],Rn×n) (k = 1, 2, . . . ), and B and Bk ∈
BV([0, ω],Rn×n) (k = 1, 2, . . . ) are the continuous matrix-functions satisfying the Lappo–Danilevskiĭ
condition; and A∗, A∗k and f∗, f∗k, φk (k = 1, 2, . . . ) are, respectively, matrix- and vector-functions
appearing in Corollary 6. Then the conclusion of Corollary 1 is true.

Corollary 8. Let there exist a sequence of matrix-functions H and Hk (k = 0, 1, . . . ) from
BV([0, ω],Rn×n) such that the matrix-functions Sc(A) and Sc(A∗k) (k = 1, 2, . . . ) satisfy the Lappo–Da-
nilevskiĭ condition and the conditions (8) and

lim
k→+∞

sup
∑

0≤t≤ω

∥djA∗k(t)∥ < +∞ (j = 1, 2)

hold, let the conditions (9),

lim
k→+∞

Sc(A∗k)(t) = Sc(A∗)(t), lim
k→+∞

Sj(A∗k) = Sj(A∗)(t) (j = 1, 2)

and

lim
k→+∞

t∫
0

exp
(
− Sc(A∗k)(s)

)
df∗k)(s) =

t∫
0

exp
(
− Sc(A∗k)(s)

)
df∗)(s)

be fulfilled uniformly on [0, ω], where A∗, A∗k and f∗, f∗k, φk (k = 1, 2, . . . ) are, respectively, the
matrix-and vector-functions appearing in Corollary 6. Then the conclusion of Corollary 1 is true.
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Theorem 2′. The inclusion (6) is valid if and only if there exist the sequences of matrix-functions
H, Hk and B, Bk ∈ BV([0, ω],Rn×n) (k = 0, 1, . . . ) such that the conditions (8), (20) and

lim
k→+∞

sup
b∨
a

(I(Hk, Ak)−Bk) < +∞

hold, and the conditions (9), (21),
lim

k→+∞
B
(
Z−1
k , I(Hk, Ak)

)
(t) = B

(
Z−1, I(H,A)

)
(t)

and
lim

k→+∞
B
(
Z−1
k , I(Hk, fk)

)
(t) = B

(
Z−1, I(H, f)

)
(t)

are fulfilled uniformly on [0, ω].
Corollary 9. Let the conditions (20) and

lim
k→+∞

sup
b∨
a

(Ak −Bk) < +∞ (31)

hold and the conditions (21),
lim

k→+∞
B(Z−1

k , Ak)(t) = B(Z−1, A)(t) (32)

and
lim

k→+∞
B(Z−1

k , fk)(t) = B(Z−1, f)(t) (33)

be fulfilled uniformly on [0, ω], where B and Bk ∈ BV([0, ω],Rn×n) (k = 1, 2, . . . ). Then the inclusion
(6) holds.
Corollary 10. Let the conditions (26), (27) and (31) hold and the conditions (29),

lim
k→+∞

t∫
0

Z−1
k (s) dA(Bk, Ak)(s) =

t∫
0

Z−1(s) dA(B,A)(s)

and

lim
k→+∞

t∫
0

Z−1
k (s) dA(Bk, fk)(s) =

t∫
0

Z−1(s) dA(B, f)(s)

be fulfilled uniformly on [0, ω], where B and Bk ∈ BV([0, ω],Rn×n) (k = 1, 2, . . . ) satisfy the
Lappo–Danilevskiĭ condition. Then the inclusion (6) holds.
Corollary 11. Let the condition (31) hold and the conditions (17), (29) and

lim
k→+∞

t∫
0

exp(−Bk(s)) dfk(s) =

t∫
0

exp(−B(s)) df(s)

be fulfilled uniformly on [0, ω], where B and Bk ∈ BV([0, ω],Rn×n) (k = 1, 2, . . . ) are the continuous
matrix-function satisfying the Lappo–Danilevskiĭ condition. Then the inclusion (6) holds.
Corollary 12. Let the matrix-functions Sc(A) and Sc(Ak) (k = 0, 1, . . . ), A(t) ≡ A0(t), satisfy the
Lappo–Danilevskiĭ condition and the condition

lim
k→+∞

sup
∑

0≤t≤ω

∥djAk(t)∥ < +∞ (j = 1, 2)

hold. Let, moreover, the conditions
lim

k→+∞
Sc(Ak)(t) = Sc(A)(t), lim

k→+∞
Sj(Ak) = Sj(A)(t) (j = 1, 2)

and

lim
k→+∞

t∫
0

exp
(
− Sc(Ak)(s)

)
dfk(s) =

t∫
0

exp
(
− Sc(A)(s)

)
df(s)
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be fulfilled uniformly on [0, ω]. Then the inclusion (6) holds.

Remark 1. The condition (8) is equivalent to the condition

det
(
H(t−) ·H(t+)

)
̸= 0 for t ∈ [0, ω].

Remark 2. Let A∗(t) ≡ I(H,A)(t) and (9) be fulfilled uniformly on [0, ω]. Then the condition (14)
holds and (15) is fulfilled uniformly on [0, ω] if and only if the condition (7) holds and (10) is fulfilled
uniformly on [0, ω], respectively.

Remark 3. Without loss of generality we can assume that H(t) ≡ In in Theorems 1 and 1′ and in the
above corollaries.

Remark 4. In designations of Theorem 1′:
(a) if (19) holds and the conditions (21),

lim
k→+∞

t∫
0

Z−1
k (s) d

(
A∗k(s)−Bk(s)

)
=

t∫
0

Z−1
k (s) d

(
A∗(s)−B(s)

)
(34)

and
lim

k→+∞
dj
(
A∗k(t)−Bk(t

)
) = dj

(
A∗(t)−B(t)

)
(j = 1, 2) (35)

are fulfilled uniformly on [0, ω], then (22) is fulfilled uniformly on [0, ω], as well. On the other
hand, if the condition (19) holds and the conditions (21) and

lim
k→+∞

(
A∗k(t)−Bk(t)

)
= A∗(t)−B(t)

are fulfilled uniformly on [0, ω], then the conditions (34) and (35) are fulfilled uniformly on
[0, ω], as well;

(b) if
lim

k→+∞
sup

∑
0≤t≤ω

∥djf∗k(t)∥ < +∞ (j = 1, 2)

and the conditions (21),

lim
k→+∞

t∫
0

Z−1
k (s) df∗k(s) =

t∫
0

Z−1
k (s) df∗(s) (36)

and
lim

k→+∞
djf∗k(t) = djf∗(t) (j = 1, 2) (37)

are fulfilled uniformly on [0, ω], then the condition (24) is fulfilled uniformly on [0, ω], as well;
(c) if B(t) ≡ A∗(t) and Bk(t) ≡ A∗k(t) (k = 1, 2, . . . ), then (19) vanishes and (22) follows

from (21).

Remark 5. In designations of Corollary 6:
(a) if (19) holds and (15) and (28) are fulfilled uniformly on [0, ω], then (29) is fulfilled uniformly

on [0, ω], as well;
(b) if (26) and (27) holds and (28), (36) and (37) are fulfilled uniformly on [0, ω], then (30) is

fulfilled uniformly on [0, ω], as well.
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