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1. INTRODUCTION

The main aim of the paper is the study of the Fredholm property, es-
sential spectrum, and invertibility of some operators of the Mathemati-
cal Physics, such that the Schrodinger and Dirac operators with complex
electric potentials, and Maxwell operators in absorbing at infinity media.
This investigation is based on the limit operators method [23]. Earlier this
method was applied to the investigation of the location of essential spectra
of perturbed pseudodifferential operators with applications to electromag-
netic Schrodinger operators, square-root Klein—Gordon, and Dirac opera-
tors under general assumptions with respect to the behavior of real valued
magnetic and electric potentials at infinity. By means of this method a
very simple and transparent proof of the well known Hunziker, van Win-
ter, Zjislin theorem (HWZ-Theorem) for multi-particle Hamiltonians has
been obtained [14,15]. In the papers [19,20,22] the limit operators method
was applied to the study of the location of the essential spectrum of dis-
crete Schréodinger operators on Z™, and on periodic combinatorial graphs.
We also note the recent papers [16-18] devoted to applications of the limit
operators method to the investigation of the Fredholm properties of bound-
ary and transmission problems, and the boundary equations for unbounded
domains.

The paper is organized as follows. In Section 2 we give some notations
and an auxiliary material. In Section 3 we consider the Fredholm property
of strongly elliptic second order systems of differential operators of the form

n
Au(w) = 3 (i0s, — a(@)PH (@) (10, — ar(a))u(a)
k=1
+ W(z)u(z), = eR", (1.1)

where aj, are real-valued functions on R” and b*' are N x N Hermitian
matrices, W is a complex-valued N x N matrix. We suppose that ag, and
the coefficients of the matrix * belong to C’g’u(R”), and the coefficients of
the matrix W belong to Cy ,(R™), where Cy ,,(R") is the class of bounded
uniformly continuous functions on R”, and C  (R™) is the class of functions
a on R" such that d,;a € Cpo(R"), j = 1,. ..,n. In this section we prove
that if

liminf inf J(W(z)h,h) >0,

=00 ||hllon =1
then A : H2(R",CN) — L?(R",C") is a Fredholm operator of the index 0.
In Section 4, applying the results of Section 3, we study the spectra of elec-
tromagnetic Schrodinger operators on R™ with real magnetic and complex
electric potentials ®. We prove that if

lim infJ3(®(x)) > 0, (1.2)

T—r00

where @ is the electric potential, then the essential spectrum of the Schrodin-
ger operator does not have intersections with the real line R. If, in addition
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to (1.2),

J(@(x)) >0, zeR", (1.3)
then the spectrum of the Schrodinger operator does not intersect the real
line R. Under the proof of the last result we have used the uniqueness of
the continuation for elliptic operators (see e.g. [4,9,10]). Note that there is
an extensive literature devoted to the spectral properties of the Schrodinger
operators (see e.g. [1,5,24-26]).

Section 5 is devoted to the investigation of spectra of the Dirac opera-
tors with real-valued magnetic and complex-valued electric potentials. We
suppose here that the magnetic and electric potentials are slowly oscillating
at infinity. We prove here that the conditions (1.2), (1.3) provide us with
the spectrum of the Dirac operator which does not contain the real values.
For the proof we use the results of Section 3 and the uniqueness of the
continuation for some almost diagonal strongly elliptic systems of second
order.

In Section 6, we consider the harmonic Maxwell system on R3 for isotropic
nonhomogeneous media. We suppose that the electric and magnetic per-
mittivities € and p are the slowly oscillating at infinity complex valued
functions. We prove that the operator of Maxwell’s system is invertible in
admissible functional spaces if the electromagnetic medium is absorbing at
infinity, that is,

lim infJ(e(z)pu(x)) > 0.

Tr—r0o0
The proof of this result is based on the realization of the Maxwell system in
a quaternionic form (see e.g. [8,11,12]), applications of results of Section 3,

and the uniqueness of the continuation for almost diagonal strongly elliptic
systems of second order.

2. AUXILIARY MATERIAL

2.1. Notation. We will use the following standard notation.

e Given Banach spaces X, Y, £(X,Y) is the space of all bounded
linear operators from X into Y. We abbreviate £(X, X) to £(X).
If X is a Hilbert spaces, then (x,y)x is a scalar product in X of

T, y.
e L2(R",CY) is the Hilbert space of all measurable functions on R™
with values in CV provided with the norm

1/2
lull L2mn cny = (/Ilu(x)II%N dx) )
R'ﬂ

e H*(R",CY) is a Sobolev space of distributions with norm

, 1/2
fullnoencsy o= ([ @1 IO as)

Rn
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where 4 is the Fourier transform of .

We also use the standard multi-index notations. Thus, a =
(01,...,0ay) with o € NU{0} is a multi-index, || = a1+ +ap
is its length, and

9 = Q2190 D = (i) - (=i, )"

Finally, (¢) := (1 + |¢]?)Y/2 for £ € R™.
Cy(R™) is the C*-algebra of all bounded continuous functions on R™.

Cp.(R™) is the C*-subalgebra of C,(R™) of all uniformly continuous
functions.

CF(R™) is the C*-subalgebra of Cy(R") of k-times differentiable
functions such that 9%a € Cy(R") for |a| < k, and a € Cf  (R") if
a € CFR™) and 9%a € Cy,(R™) for |a| = k.

We say that a € CF(R™) if a € CF(R™) and lim, o a(x) = 0.

We denote by SO(R™) a C*-subalgebra of Cj,(R™) which consists of
all functions a, slowly oscillating at infinity in the sense that

lim sup |a(z +y) —a(z)|=0

T—r 00 yeK

for every compact subset K of R™.
We denote by SO*(R™) the set of functions a € CF(R™) such that

lim da(z)
z—00 6'xj

=0, 7=1,...,n.

Evidently, SO*(R") C SO(R™).

If A(R™) is an algebra of functions on R™, then we set

A(R™, L(CN)) = AR™) @ L(CN).

Br={x€R": |z| < R}, and B, = {zx € R": |z| > R}.

2.2. Fredholm properties of matrix partial differential operators
and limit operators. We consider matrix partial differential operators of
order m of the form

(Au)(@) = Y aa(z)Du(z), = €R", (2.1)

laf<m

under the assumption that the coefficients a, belong to Cp,,(R™, L(CN)).
One can see that A : H™(R",CY) — L?(R",C") is a bounded operator.
The operator A is said to be elliptic at the point x € R™ if

detag(x,&) #0
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for every point £ # 0, where

ag(,6) = Y an(r)E”
|a]=m
is the main symbol of A, and A is called uniformly elliptic if

det Z aa(x)wa‘ >0,

|a]=m

inf
zER™, wegn—1

where S~ ! refers to the unit sphere in R”.

The Fredholm properties of the operator A: H*(R™ CN)— Hs~™(R" CV)
can be expressed in terms of its limit operators which are defined as follows
(see e.g. [21]). Let h : N — R™ be a sequence tending to infinity. Since
aq € Cpu(R™, L(CN)), the Arcela—Ascoli’s theorem combined with a Cantor
diagonal argument implies that there exists a subsequence g of h such that
the sequences of the functions x +— aq(z + g(k)) converge as k — oo to a
limit function a¢ uniformly on every compact set K C R" for every multi-
index a. The operator

is called the limit operator of A defined by the sequence g. We denote by
Lim(A) the set of all limit operators of the differential operator A.

Theorem 2.1 ( [21]). Let A be a differential operator of the form (2.1).
Then A : H™(R",CN) — L2(R",C") is a Fredholm operator if and only if:

(i) A is a uniformly elliptic operator on R™;

(ii) all limit operators of A are invertible as operators from H™(R™, CN)
to L2(R",CN).

Note that the uniform ellipticity of the operator A implies the a priori
estimate

ull grzn cvy < C (JAull p2@n cny + ull 2@n.cny) - (2.2)

This estimate allows one to consider the uniformly elliptic differential op-
erator A as a closed unbounded operator on L?(R™,CY) with a dense do-
main H™(R™,CY). It turns out (see [2, p. 27-32]) that A, considered as
an unbounded operator in this way, is an (unbounded) Fredholm operator
if and only if A, considered as a bounded operator from H™(R",CV) to
L?(R™,CY), is a Fredholm operator.

We say that A € C belongs to the essential spectrum of A if the operator
A — M is not Fredholm as an unbounded differential operator. As above,
we denote the essential spectrum of A by sp,,, A and the common spectrum
of A (considered as an unbounded operator) by sp A. Then the assertion of
Theorem 2.1 can be stated as follows.
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Theorem 2.2 ( [21]). Let A be a uniformly elliptic differential operator of
the form (2.1). Then

SDess A = U sp AY. (2.3)
A9€Lim(A)

3. FREDHOLM PROPERTY OF SYSTEMS OF STRONGLY ELLIPTIC PARTIAL
DIFFERENTIAL OPERATORS ON R"

We consider the system of partial differential equations of second order
on R™ in the divergent form

Au(z) = Y (i85, — ar(@)b™ (2)(i0, — ar(x))u(x)

o l=1
+ W(x)u(z), =e€R", (3.1)

where
ap € Cp ,(R™), b e Cy (R™), LR™), W€ Cpu(R",LR™)), (3.2)

ay are real-valued functions, b*! are Hermitian matrices, that is, b¥!(z)* =
b¥!(x), and W is a complex-valued matrix. The conditions (3.2) provide
the boundedness of A : H?(R",C") — L?(R",C"). We suppose that the
operator A is strongly elliptic, that is there exists a constant v > 0 such
that for every h € CN and v = (v1,...,v,) € R",

n

> (0" (@)h Bevvery = A|[BlE [V][Ra- (3.3)
k=1
Theorem 3.1. Let the conditions (3.2), (3.3) and
liminf inf J(W(z)h,h)er >0 (3.4)

T—r00 Hh”chl

hold. Then A : H?*(R",CN) — L?(R",C") is a Fredholm operator of the
index 0.

Proof. Since A is a uniformly elliptic operator, by the condition (3.3) we
have to prove that all limit operators AY of the operator A are invertible
from H?(R™,C") — L?(R™,C"). The limit operators A9 are of the form

n

Adu(e) = Y (i0y, — af(2)) (") () (i0s, — af (z))u(x)

k=1
+ W9 (x)u(z), =€ R™ (3.5)
The condition (3.4) implies that there exists € > 0 such that for every
reR™,
I(WI(z)h, h)en > €| hl|2n (3.6)
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Then for every u € H?(R",CY),

‘ (A%, u)L2(Rn7C) | > J(A%, U)L2(]Rn’(CN)

= /J(Wgu, u)en dr > €||“H2L2(Rn,CN)' (3.7)
Rn
This estimate yields that there exists an inverse in the algebraic sense opera-
tor (A9)~1, bounded in L?(R™,C"). Since A is a uniformly elliptic operator
on R", the following a priory estimate

lull 2 m ovy < C (I1Au| p2rn cny + Hu||L2(R",(CN)> (3.8)

holds. The last estimate implies that all limit operators A9 : H2(R",CV) —
L?(R™,C") are invertible. Then by Theorem 2.1, A : H?(R",CN) —
L?(R",C") is a Fredholm operator. Let us prove that index A = 0. We
consider the family of differential operators 4, = A + p?I, u > 0. As
above, one can prove that 4, : H*(R",CY) — L?(R",C") are Fredholm
operators. Note that A, is an elliptic family depending on the parame-
ter u > 0 (see e.g. [3]). Hence there exists py > 0 such that A, is an
invertible operator for p > pg. Hence index A = 0 because the family
A, : H*(R",CY) — L*(R",C") is continuously depending on the parame-
ter p. O

4. SCHRODINGER OPERATORS WITH A COMPLEX POTENTIAL

We consider the Schrédinger operator

1 e - e
Hu(zx) := . (Dj + e (z))pﬂk(z) (Dj + p ak(a:))u(x)
+e®(z)u(z), xeR",
where D; = % a%,» , h is a Planck constant, m is the electron mass, c¢ is the
light speed in the vacuum, a = (a1,...,a,) is a magnetic potential, and
® is an electrical potential on R™, the latter equipped with a Riemannian
metric p = (pjk)7 x—; which is subject to the positivity condition
zeRn,iggsnfl pir(z)wiwk >0, (4.1)
where pji(z) refers to the matrix, inverse to p/¥(z). Here and in what
follows, we make use of Einstein’s summation convention.

We suppose that p/¥, a; are real-valued functions in Cy ,(R™) and a com-
plex valued electric potential ® € Cj,(R™). Under these conditions, H
can be considered as a closed unbounded operator on L?(R™) with domain
H?(R™). If ® is a real-valued function, then H is a self-adjoint operator and
‘H has a real spectrum.

Theorem 4.1. (i) Let
lim inf3®(x) > 0. (4.2)

r—r00
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Then the essential spectrum of the operator H does not contain real
values.

(ii) Let the condition (4.2) hold and
30(z) > 0 (4.3)

for every x € R™. Then the spectrum of the operator H does not
contain real values.

Proof. (i) According to formula (2.3),
Spess H = U Sp HQ? (44)
A9€Lim (H)
where
1 e ; e
Hou(w) i= 5= (D + < ad(@)) (077 (@) (D + = af (@) ) u(a)
+ e®d(x)u(x), =€ R™
We set &5 = ® — AI, A € R. The condition (4.2) implies that
inf J99 : 4.
xgﬁaan)A(m) >0 (4.5)
This condition implies that the operator HY — AI, A € R is invertible with
a bounded in L?(R"™) inverse operator (H9 — AI)~1. Hence R > \ & sp HY.
Formula (4.4) implies that (sp.,, H) "R = @.
(ii) As in the proof of Theorem 3.1, we obtain that Hy = H + A :
H?(R") — L?(R") are Fredholm operators of the index zero. Let us prove

that ker Hy = {0}. Let u € ker % . Estimates (4.1), (4.2), and (4.3) imply
that there exists e and R > 0 such that

0= 3(Ho, ) o an oy = 3 / (e®(2)u(x), u(z))er do

]Rn
—7 / (e (2)u(x), u(z))ex dz + 3 / (e (2)u(x), u(x))en do
|z|<R || >R
> €Hu||2L2(B;%,CN)' (4.6)

Since ker H) C H?(R"), the estimate (4.6) implies that
au‘

u]aBR =0, W =0, (4.7)

0BR

where % is a normal derivative to the sphere dBgr. By the uniqueness
of a solution of the Cauchy problem, for elliptic equations with the oldest

Lipschitz coeflicients (see e.g. [4,7,9,10]), we obtain that the Cauchy problem
Au(x) =0, = € Bp,

Ju
u’aBR :05 % |aBR:0



128 Viadimir Rabinovich

has the trivial solution only. Hence u = 0 on R™. That is, ker H) = {0}
and H : H2(R",CY) — L?(R",C") is an invertible operator. This implies
that spHNR = @. O

5. DIRAC OPERATORS WITH COMPLEX ELECTRIC POTENTIALS

In this section we consider the Dirac operator on R3, equipped with the
Riemannian metric tensor (p;;) depending on z € R? (for a general account
on Dirac operators see, for example, [28]). We suppose that there is a
constant C' > 0 such that

pjk(l')gjgk Z C‘£|27 WS RS; (51)

where we use as above Einstein’s summation convention. Let p/* be the
tensor, inverse to p;i, and let ¢?%(z) = \/pi¥(x) be the positive square
root. The Dirac operator on R? is the matrix operator defined as

c . .
D= 3 Y (#F P + Pj®) + Pmyo + e Ey (5.2)

acting on vector functions on R?® with values in C*. In (5.2), the v, k =
0,1,2,3, are the 4 x 4 Dirac matrices, i.e., they satisfy

ViVk + YKV = 201 Es (5.3)
for all choices of j,k =0,1,2,3, FE, is the 4 X 4 unit matrix,
e h 0 .
Pj:Dj+Eaja Dj:;aixj’ J=12,3,

where 7 is the Planck constant, a = (a1, a2, as) is the vector potential of
the magnetic field H, that is, H = V x a, ® is the scalar potential of the
electric field E, that is, E = V®, and m and e are the mass and the charge
of the electron, c is a light speed in the vacuum.

We suppose that

p*a; € SO*R?), j,k=1,2,3, ®c SO (R?), (5.4)
and pjk,Aj are real-valued functions, and electrical potential ® can be a
complex function. We consider the operator D as an unbounded operator
on the Hilbert space L?(R?, C*) with domain H'(R3 C*).
Note that the main symbol of D is op(z,€) = c¢/F(x)&;vk. Using (5.3)
and the identity ¢?*¢"*6; = pI", we obtain that
op(x,8)” = PR ()¢ ()& & vve
= R ()¢ ()01 6 = (PP (2)€;6, ) En.
Together with (5.1), this equality shows that D is a uniformly elliptic matrix
differential operator on R3. Hence the following a priory estimate

||u||H1(R3,C4) S C (”DUHL2(R3,C4) + ||u||L2(R37<C4))

holds which implies that D is a closed operator in L?(R?, C*) with domain
H1(R3,C*). Tt follows from the conditions (5.4) that the limit operators DY
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of D defined by sequences ¢ : Z — R? tending to infinity are the operators
with the constant coefficients of the form

D7 = en(¢)?(Ds + = af ) + meyo — e@7 By,
c
where ] .
()7 == lim_¢'*(g(m)),
m—o0
af = Tim_a;(g(m)), ®%:= lim @(g(m)).
The operator D is unitarily equivalent to the operator
DY = cryk(qﬁjk)ng + yomc® 4 e®Y,
and the equivalence is realized by the unitary operator Tyo : f — €' ¢ 7% f
a9 = (af,a3,a3). Let ® € SO(R3), and @, C C be the set of all particular
limits ®9 = h_r}n ®(g(m)) defined by sequences R? 5 g(m) — oo.
m o0
Theorem 5.1. Let the conditions (5.1) be fulfilled. Then the Dirac operator
D: H'(R3 C*) — L*(R%,CY)

is a Fredholm operator if and only if

B N (—00, —mc?| = T, B N [mc?, +00) = 2. (5.6)
Proof. Set
BY(€) 1= chre(@™)%€; + mcy0 and ()7 := lim_p™ (g(m)).
Then

(D§(€) — @ Ex)(DE(€) + @7 Ey)
= (02h2(pjk)9§j§k +m2ct — (e@9)2)E4. (5.7)
The condition (5.6) and the identity (5.7) imply that
det ((D§(&) + e®9)Ey) # 0

for every ¢ € R3. Hence, the operator DY : H(R3 C*) — L2(R3,C*) is
invertible and, consequently, so is D9. By Theorem 2.1, D is a Fredholm
operator. For the reverse implication, assume that the condition (5.6) is
not fulfilled. Then there exist ®9 € C and a vector £° € R? \ {0} such that

A (p)IE0E + et — (ed7)? = 0.
Given ¢°, we find a vector u € C* such that v := (238(50) — (e®9)E)u #

0. Then (5.7) implies that (DY(£°) + e®9Ey)v = 0, whence det(DI(£0) +
ePIE,) = 0. Thus, the operator DY is not invertible. By Theorem 2.1, D

cannot be a Fredholm operator. (Il
Theorem 5.2. If the condition (5.1) is satisfied, then
SPess D = €@ 4 (—00, —mc?] + [mc? + 00),

where + denotes the algebraic sum of sets on the complex plane, and e®
is the set of particular limits of the function e® at infinity.
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P?”OO]: Let A € C. The symbol of the operator DY — AI is the function
&~ DJ(&) + (e®9 — \)Ey4. Invoking (5.7)), we obtain
(DY(€) = (e = N E2)(DE(E) + (07 — \)Eu)
=[R2 (p7%)9¢;6, + mPct — (e®? — A?)|Ey. (5.8)
Then eigenvalues A\ (§) of the matrix D (§) — e®IE, are given by
AL(§) :==ed? £ (chgkgjgk +m2eHV2, (5.9)
This implies that
spDY = [e®I + mc?, +00) U (—o0, e®d — mc?].
Hence,
SPess D = Ugsp DY = e®o, + [mc?, +00) + [—00, —mc?). O
Theorem 5.3. Let the condition (5.3) be satisfied and
infJ®%(z) >0, liminfJ®*(z) > 0. (5.10)
Then the Dirac operator
D: H'(R3 C*) — L*(R%,CY)
is invertible.

Proof. Let D,, = D+pul : HY(R3,C*) — L*(R3,C*), u > 0. Then according
to Theorem 5.1, D,, is the continuous family of Fredholm operators. More-
over, D, is an elliptic family. This implies that there exists po > 0 large
enough such that D,, are invertible operators for u > pg. Hence indexD = 0.
Let us prove that ker D = {0}. Note if u € ker D, then u € ker A, where

A= (Dy — eDEy)(Dy + eDEy),
and
Dy = gvk(d)jkpj + P;j¢?*) + myp.
Since p’* € SO?(R?) and ® € SO'(R3), we obtain that
A= (Dy— e®Ey)(Do + e®Ey) = L+ R, (5.11)
where
L = [(¢®h*P;jp’* Py) +mPc* — (e®)?] Ey

is the diagonal 4 x 4 matrix operator with strongly elliptic differential op-
erators of second order on the main diagonal, and

3
R = erawj + 70

Jj=1
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is a 4 x 4 matrix differential operator of the first order with coefficients 77
€ Cy(R3, L(C*)), j =0,1,2,3. Let u € ker A. Then we obtain
0= (AU, U)LQ(R37C4) = 62ﬁ2 / pjk(Pj’U,, Pku)(c4 dx
R3
+ /(m2c4 — (e®(x))}) |u(2)||2e dx + /(Ru(x),u(m))R4 dr.  (5.12)
R3 R3
Since 77 € Co(R3, L(C?)) for every € > 0, there exists Ry > 0 such that
[Rull 2By, 01y < ellullz2(sy,.c1) (5.13)

for R > Ry. Let R > Ry be such that

infJ(e®(z))> > e —e > 0.
Br
The condition (5.10) and formulas (5.12)), (5.13) yield

0 = 3(Au, 1) e 1y > (€ —€) / ()| da (5.14)
By
Note that the operator of second order A is uniformly elliptic. This implies

that ker A ¢ H?(R? C*). Hence u|p;, = 0 implies that u is a solution of
the homogeneous Cauchy problem

Au=0, z € Bp, (5.15)
ul,, =0 2 =
9Br ovloBr

The matrix operator A = L + R is a perturbation of the diagonal elliptic
operator L of second order by the first order operator R with bounded
coefficients, conserving the Carleman estimates (see e.g. [27, Chapter 14],
[6], [7]). Hence the Cauchy problem (5.15) has the trivial solution only, and
ker D = {0}. Hence D is an invertible operator. O

Corollary 5.4. Let the conditions (5.3), (5.10) be satisfied. Then the spec-
trum of D does not have real values.

6. MAXWELL’S EQUATION WITH COMPLEX ELECTRIC AND MAGNETIC
PERMITTIVITY

6.1. Maxwell’s system. We consider the Maxwell’s system describing the
harmonic electromagnetic fields

V x H =iwD +]j, (6.1)
V x E = —iwB, (6.2)
V-D=p, (6.3)
V-B=0, (6.4)
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where w > 0 is a frequency of harmonic vibrations of the electromagnetic
field,

p = p(z) is the volume charge density,

j = j(z) is the current density,

I
o

E x) is the electric field intensivity,
H = H(x) is the magnetic field intensivity,

D = D(z) is the electric induction vector,

B = B(x) is the electric induction vector.

The Maxwell equations are provided by the constitutive relations con-
necting the vectors E;, H and D, B. We consider relations corresponding
to isotropic nonhomogeneous media:

D(z) = e(z)E(x), (6.5)
B(z) = p(z)H(z),

where ¢ = (), u(x) are electric and magnetic permittivity given by com-
plex-valued functions on R? depending on the frequency w, such that

infle(z)| > 0, inf|u(z)| > 0.
(In what follows, we will omit the dependence of these functions on w).
The system (6.1)—(6.6) can be written as
V x H =iweH +j,
V x E = —iwuH,
V.-e¢E =p,
V-uH=0.

(6.7)

We associate with the system (6.7) the operator M : H'(R3,CS) —
L3(R3,C8).

6.2. Quaternionic representation of Maxwell’s system. To study the
Fredholm property and invertibility of the Maxwell’s operators, it is conve-
nient to consider their quaternionic realizations (see the book [11]). We let
H denote the complex quaternionic algebra, which is the associative alge-
bra over the field C generated by four elements 1, e!, €2, e® satisfying the
conditions

and
12=1, (ef)?=-1, 1ef =ef1=¢" e"e/=—ele"

for j,k = 1,2,3. Each of the elements 1,e!, e?, e commutes with the imag-
inary unit ¢. Hence, every element ¢ € H has a unique decomposition

G=qo+qe' +q@e’ +ge’=1q+q
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with ¢; € C. The number gy is called the scalar part of the quaternion g,
and q is its vector part. One can also think of H as a complex linear space
of dimension 4 with usual linear operations.

With respect to the base {1,e!,e? e} of this space, the operator of
multiplication from the left and from the right by 1 has the unit 4 x 4 matrix
EP as its matrix representation, whereas the matrix representations Elj and
EJ of the operators of multiplication from the left and from the right by e;,
7 =1,2,3, are real and skew-symmetric matrices. In what follows, if d is a
quaternion, we denote in a usual way the operator multiplication by & from
the left as H 3% — au € H, and we denote the operator multiplication by @
from the right as H 34 — "% = @4 € H. Let @ = ag + are! + agse? + aze>.
Then the operators @ — ait and @ — a"% have in the base {1,e!, e?, e®}

3 , 3
the matrices M and Mz M, = ZajElj,mar = ZajEﬁ.
Jj=0 Jj=0

The space H carries also the structure of a complex Hilbert space via the

scalar product

(¢ ™) == qoTo + Q17T + 272 + G373
By L?(R3,H) we denote the Hilbert space of all measurable and squared
integrable quaternion valued functions (z) = u(x) + u(x) on R® which is
provided with the scalar product

(8,0) o ) = / (aa), () dz,
R3
and by H*(R3,H) the Sobolev space of order s € R with the norm

1/2
it e s ) = ( 10 = 275w e do:) .
R3

It is clear that L?(R3 H) and H*(R3 H) are isometrically isomorphic to
L?(R?,C*) and H*(R?,CY). Let
Di(z) = €' 9,,u(z), €R?,

be the Moisil-Teodorescu differential operator of the first order acting from
H*(R3 H) into H*~!(R3,H). The operator D has remarkable properties:

Diu(x) = Dug(z) + Du(x) = =V - u(z) + Vug(z) + V x u(x) (6.8)
for the quaternionic function % = ug + u and
D?i = —Au, u€ H*(R? H)), (6.9)

3
where A = Y~ 0,2 is the Laplacian. In what follows, we need the formula
=1
of differentiation of the product of a quaternion function f € C* (R3,H) by
a scalar function a € C1(R3),

D(af) = a(Df) + (Va)f. (6.10)
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Properties (6.8), (6.10) allow us to write Maxwell’s system (6.1)—(6.6) in
the quaternionic form (see [11, p. 88]),

DE(z) = e '(2)Ve(z) - E — iwp(x)H(z) — ggi , (6.11)
DH(z) = p~*(z)Vu(z) - H+ iwe(z)E(z) + j(2), (6.12)

3
where a-b = )" a;b;. Applying formula
j=1

1
a-b:—i(ab—l—ba),

where ab and ba denote the product of the vectors as quaternions, we
obtain

_ 1 -1 T . p(.’IJ)
DE(z) = —5 &7 (@)(Ve()) + (Ve(@)) B(z) — iwp(z)H(z) = Zo5
DH(z) = —% P (@) (Vi) + (Vu(2))")H(z) + iwe(2)B(w) + j(2).

We associate with the system (6.11), (6.12) the quaternionic matrix op-
erator

1
DE(z) + 3 (e Hx)Ve(x) + Ve(2)"E(x)) + iwp(z)H(x)
_ (6.13)
1, _ . ,
DH(z) + 5 (4 (2) (Vpl) + V) H() — e (1) B()
acting from H'(R? H?) into L*(R3, H?),H? = H x H.
Remark 6.1. Since a quaternionic system of equations can be written in

the matrix-vectorial form, we can apply the limit operators approach for
investigation of the Fredholm property of the operator M.

6.3. Fredholm property and invertibility.

Theorem 6.2. Let
lim inf Jk?(z) > 0, (6.14)

xr—r 00
where k?(x) = w?e(x)u(z) is square of the wave number of Mazwell’s system.
Then M : HY(R3,H?) — L*(R3,H?) is a Fredholm operator of the index 0.

Proof. We follow to the above given scheme of the proof of the Fredholm
properties. The main symbol of M is a quaternionic matrix function

om(§) = <iez)€j ie?€j> )

_(EPEs 0 B
(f) - ( 0 : §|2E4) ) |£‘2 - |£1|2 + |§2‘2 + ‘€3|2. (615)

and

il\’)

(o)
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Let 4

~ _ (iE}¢; 0

7le) = ( 0 B¢
be the main symbol of M in the matrix representation. Then (6.15) implies
that M is a uniformly elliptic operator. The limit operators M9 are those
with constant coefficients

MY (E(x)) _ (DE(.I) + iwugH(x)> ’ (6.16)

H(x) DH(x) — iweIE(z)
where
99— i 99— i
pd = lim p(g(m)), &= lim e(g(m))
and

lim Vy(z) = ILm Ve(x) =0,

r—00

since ¢, € SO?(R™). We will prove that the condition (6.14) provides the
invertibility of the operators MY : H'(R3,H?) — L?(R3, H?). Indeed, let

M9 <EI> _ (ggt ZZJ;ZI;) - (g) , (6.17)

The system (6.17) is reduced to two independent equations
—(A+ (k9)*)E = DF — iwp®, (6.18)
—(A+ (k9)*H = D® + iwe’F, (6.19)

where (k9)% = w?e9p9 is a square of the wave number of the limit operator.
Since J(k9)% > 0 the operators (A?+(k9)%) : H*(R3, H(C)) — L?(R3,H(C))

are invertible, and we obtain
—D(A + (k9)?)7'F —dwpd (A + (k9)?)"1®
(Mg)1<F>_ (A+ (k7)) ! (A + (k9)%)  (620)
® —D(A+ (k9)?) 71 ® + iwed (A + (k9)?)~'F

It follow from (6.20) that (M9)~! is a bounded operator from L?(R? H?)
into H'(R3, H?). Hence the limit operators

M9 HY(R3 H?) — L?(R3, H?)
are invertible. Thus Theorem 2.1 implies that
M HY(R? H?) — L*(R3 H?)
is a Fredholm operator.
Let us consider the family of operators My = M+, A > 0. It is easy to
see that M is the family of elliptic systems with a parameter. Moreover, as

above, M is a Fredholm family, continuously depending on the parameter
A > 0. Hence index M = 0. O

Theorem 6.3. Let ¢, € SO*(R?), and
JK*(x) > 0, (6.21)
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and the condition (6.14) be satisfied. Then the operator
M HY(R® H?) — L*(R® H?)
is invertible.

Proof. Tt remains to prove that ker M = {0}. Suppose that u = (EI) €

ker M. Then u satisfies the homogeneous system of equations
DE(z) = ¢ Y(x)Ve(z) - E — iwp(x)H(z), (6.22)
DH(z) = p *(z)Vu(z) - H + iwe(2)E(x). (6.23)
Applying differentiation formula (6.10)), we reduce this system to the fol-
lowing ones:

(D? — k*(2))E(z) — D(e*(2)Ve(x) - E) + iwVu(x) - H(z) = 0,

2 2 . , (6.24)
(D* —k*(z))H(z) — D(pp~ " (z)Vpu(x) - H) — iwVe(z) - E(z) = 0.

Hence (E

H) satisfies the homogeneous system of quaternionic equations

(5= even (3) 7 (3)- )

E\ [-D(e Yz)Ve(z) - E) +iwVu(z) - H(z)
T (1) = () B0y - D o -5

Note that 7 is a matrix quaternionic differential operator of the first order
with coefficients in the class C¢(R™). This implies that

where

Am By, Tl £ (2 (2 12), L2 (R H2))
= ngnoo T By |l c(m2®2 B2), L2 (R? H2)) = 0,
where ¢p € C>®(R?), 0 < op, < 1, supppp, C B, ng;{(m) =1 if
x € B}p. Note that ker B € H?(R?, C%) because the operator B is uniformly
elliptic on R®. Repeating the proof of triviality of the kernel of the Dirac
operator, we obtain ker M = {0}. O

Theorems 6.2 and 6.3 imply the following result.
Theorem 6.4. Let e, i € SO*(R3). Then:
(i) If the condition (6.14) is satisfied, then the operator
M : HY(R? C%) — L*(R*, C?®)
of the Mazwell system is a Fredholm one;
(ii) If the conditions (6.14) and (6.21) are satisfied, then
M : HY(R? C%) — L*(R*,C?®)

is an invertible operator.
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Note that the electric and magnetic permittivity in the dispersive elec-
tromagnetic media are complex-valued functions of the form (see e.g. [13]):

ioe(x) ),

M»

e(x) = eo (1 +
(6.25)

(@) = po (1 +
where gg, 1o are electric and magnetic permittivity in the vacuum, o (x),

o, (x) are absorption coefficients for the electric and magnetic permittivity
satisfying the conditions:

oe(x) >0, o,(x)>0. (6.26)
This implies that
) = (14 200y (1 1 Fzulay
= c? w w /)

where ¢ is the light speed in the vacuum.
Thus Theorem 6.4 provides us with the following result.

Theorem 6.5. Let o.,0, € SO*(R?). Then Mazwell’s operator M :
HY(R3,C%) — L%(R3,C®) is invertible if at least one of the conditions

lggg‘}fae(x) > 0, lgg})rgfau(m) >0

in (6.25) holds.
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