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Abstract. For multidimensional wave equations with power nonlinearity
we investigate the question on the existence of solutions in a nonlocal in time
problem whose particular case is a periodic case.
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ÒÄÆÉÖÌÄ. ÌÒÀÅÀËÂÀÍÆÏÌÉËÄÁÉÀÍÉ ÔÀËÙÉÓ ÂÀÍÔÏËÄÁÉÓÀÈÅÉÓ áÀ-
ÒÉÓáÏÅÀÍÉ ÀÒÀßÒ×ÉÅÏÁÉÈ ÂÀÌÏÊÅËÄÖËÉÀ ÃÒÏÉÈ ÀÒÀËÏÊÀËÖÒÉ ÀÌÏ-
ÝÀÍÉÓ ÀÌÏÍÀáÓÍÄÁÉÓ ÀÒÓÄÁÏÁÉÓ ÓÀÊÉÈáÉ. ÀÌ ÀÌÏÝÀÍÉÓ ÊÄÒÞÏ ÛÄÌÈáÅÄ-
ÅÀÀ ÐÄÒÉÏÃÖËÉ ÀÌÏÝÀÍÀ.
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1. Statement of the Problem

In the space Rn+1 of variables x = (x1, . . . , xn) and t, in the cylindrical
domain D = Ω× (0, T ), where Ω is some open Lipschitz domain in Rn, we
consider a nonlocal problem of finding a solution u(x, t) of the equation

Lλu := utt −
n∑

i=1

uxixi + 2aut + cu+ λ|u|αu = F (x, t), (x, t) ∈ DT , (1.1)

satisfying the homogeneous boundary condition(∂u
∂ν

+ σu
)∣∣∣∣

Γ

= 0 (1.2)

on the lateral boundary Γ : ∂Ω × (0, T ) of the cylinder DT and the homo-
geneous nonlocal conditions

Kµu := u(x, 0)− µu(x, T ) = 0, x ∈ Ω, (1.3)
Kµut := ut(x, 0)− µut(x, T ) = 0, x ∈ Ω, (1.4)

where F is the given function; α, λ, µ, a, c and σ are the given constants
and α > 0, λµ ̸= 0; ∂

∂ν is the derivative with respect to the outer normal to
∂DT , n ≥ 2.

Remark 1.1. A great number of works are devoted to the investigation of
nonlocal problems. In the case of abstract evolution equations and partial
differential equations of hyperbolic type, the nonlocal problems are studied
in [1–13, 17, 21]. Note that for |µ| ≠ 1 it suffices to restrict ourselves to
the case |µ| < 1, since the case |µ| > 1 reduces to the previous one if we
pass from the variable t to the variable t′ = T − t. The case |µ| = 1 will
be treated in the final Section 4. In particular, the problem (1.1)–(1.4) for
µ = 1 can be treated as a periodic problem.

We introduce into consideration the following spaces of functions:
◦
C2

µ(DT ) :=

{
v ∈ C2(DT ) :(∂v

∂ν
+ σv

)∣∣∣∣
Γ

= 0, Kµv = 0, Kµvt = 0

}
, (1.5)

◦
W 1

2,µ(DT ) :=
{
v ∈W 1

2 (DT ) : Kµv = 0
}
, (1.6)

where W 1
2 (DT ) is the well-known Sobolev space consisting of functions of

the class L2(DT ) whose all generalized first order derivatives belong likewise
to L2(DT ), and the equality Kµv = 0 is understood in a sense of the trace
theory [16, p. 71].

Definition 1.1. Let F ∈ L2(ΩT ). The function u will be said to be a
strong generalized solution of the problem (1.1)–(1.4) of the class W 1

2 in
the domain DT if u ∈

◦
W 1

2,µ(DT ) and there exists a sequence of functions
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um ∈
◦
C2

µ(DT ) such that um → u in the space
◦
W 1

2,µ(DT ), and Lλum → F
in the space L2(DT ).

Note that the above definition of a solution of the problem (1.1)–(1.4)
remains valid in a linear case, as well, that is for λ = 0.

Remark 1.2. Obviously, a classical solution of the problem (1.1)–(1.4) from
the space C2(DT ) is a strong generalized solution of that problem of the
class W 1

2 in the domain DT in a sense of Definition 1.1.

Remark 1.3. It should be noted that even in a linear case, that is for λ = 0,
the problem (1.1)–(1.4) is not always well-posed. For example, for λ = a =
c = 0 and |µ| = 1, the homogeneous problem corresponding to (1.1)–(1.4)
may have infinite set of linearly independent solutions, whereas in order for
the inhomogeneous problem to be solvable, it is necessary that a finite or
an infinite set of conditions in the form of functional equalities imposed on
the right-hand side F of equation (1.1) be fulfilled (see Remark 4.1 below).

The present paper is organized as follows. In Section 2, for some con-
ditions on the coefficients of the problem (1.1)–(1.4) an a priori estimate
for a strong generalized solution of the class W 1

2 is proved. In Section 3,
on the basis of the obtained a priori estimate it is proved that the problem
(1.1)–(1.4) is solvable. In the last Section 4, as an application of the results
obtained in the previous sections, we consider the case |µ| = 1.

2. An a Priori Estimate of Solution of the Problem (1.1)–(1.4)

Consider the conditions

a ≥ 0, c ≥ 0, σ ≥ 0. (2.1)

Lemma 2.1. Let λ > 0, |µ| < 1, and let F ∈ L2(DT ) and conditions (2.1)
be fulfilled. Then for a strong generalized solution u of the problem (1.1)–
(1.4) of the class W 1

2 in the domain DT in a sense of Definition 1.1 the a
priori estimate

∥u∥ ◦
W 1

2,µ(DT )
≤ c1∥F∥L2(DT ) + c2 (2.2)

with nonnegative constants ci = ci(λ, µ,Ω, T ), independent of u and F , and
c1 > 0, is valid, whereas in a linear case, that is for λ = 0, if σ > 0, the
constant c2 = 0, and by virtue of (2.2), a solution of the problem (1.1)–(1.4)
is unique in a sense of Definition 1.1.

Proof. Let u be a strong generalized solution of the problem (1.1)–(1.4) of
the class W 1

2 in the domain DT . By Definition 1.1, there exists the sequence
of functions um ∈

◦
C2

µ(DT ) (see (1.5)) such that

lim
m→∞

∥um − u∥ ◦
W 1

2,µ(DT )
= 0, lim

m→∞
∥Lλum − F∥L2(DT ) = 0. (2.3)
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Let us consider the function um ∈
◦
C2

µ(DT ) as a solution of the problem

Lλum = Fm, (x, t) ∈ DT , (2.4)(∂um
∂ν

+ σum
)∣∣∣∣

Γ

= 0, Kµum = 0, Kµumt = 0. (2.5)

Here
Fm := Lλum. (2.6)

Multiplying both parts of equality (2.4) by 2umt and integrating with
respect to the domain Dτ := DT ∩ {t < τ}, 0 < τ ≤ T , we obtain∫

Dτ

∂

∂t

(∂um
∂t

)2

dx dt− 2

∫
Dτ

n∑
i=1

∂2um
∂x2i

∂um
∂t

dx dt

+4a

∫
Dτ

u2mt dx dt+ c

∫
Dτ

(u2m)t dx dt+
2λ

α+ 2

∫
Dτ

∂

∂t
|um|α+2 dx dt

= 2

∫
Dτ

Fmumt dx dt. (2.7)

Assume ωτ := {(x, t) ∈ DT : x ∈ Ω, t = τ}, 0 ≤ τ ≤ T , where ω0 and
ΩT are, respectively, the lower and upper bases of the cylindrical domain
DT . Let ν := (νx1 , νx2 , . . . , νxn , νt) be the unit vector of the outer normal
to ∂Dτ . Since

νxi

∣∣
ωτ∪ω0

= 0, i = 1, . . . , n,

νt
∣∣
Γτ :=Γ∩{t≤τ} = 0, νt

∣∣
ωτ

= 1, νt
∣∣
ω0

= −1,

therefore, taking into account (2.5) and integrating by parts, we have∫
Dτ

∂

∂t

(∂um
∂t

)2

dx dt =

∫
Dτ

(∂um
∂t

)2

νt ds =

∫
ωτ

u2mt dx−
∫
ω0

u2mt dx, (2.8)

−2

∫
Dτ

n∑
i=1

∂2um
∂x2i

∂um
∂t

dx dt =

∫
Dτ

n∑
i=1

[
(u2mxi

)t − 2(umxiumt)xi

]
dx dt

=

∫
ωτ

n∑
i=1

u2mxi
dx−

∫
ω0

n∑
i=1

u2mxi
dx− 2

∫
Γτ

[ n∑
i=1

umxiνi

]
umt ds

=

∫
ωτ

n∑
i=1

u2mxi
dx−

∫
ω0

n∑
i=1

u2mxi
dx+ 2

∫
Γτ

σumumt ds

=

∫
ωτ

n∑
i=1

u2mxi
dx−

∫
ω0

n∑
i=1

u2mxi
dx+ σ

∫
Γτ

(u2m)t ds
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=

∫
ωτ

n∑
i=1

u2mxi
dx−

∫
ω0

n∑
i=1

u2mxi
dx+ σ

∫
∂ωτ

u2m ds− σ

∫
∂ω0

u2m ds, (2.9)

2λ

α+ 2

∫
Dτ

∂

∂t
|um|α+2 dx dt

=
2λ

α+ 2

∫
ωτ

|um|α+2 dx− 2λ

α+ 2

∫
ω0

|um|α+2 dx,

∫
Dτ

(u2m)t dx dt =

∫
ωτ

u2m dx−
∫
ω0

u2m dx.

(2.10)

Assuming

wm(τ) =

∫
ωτ

[
cu2m + u2mt +

n∑
i=1

u2mxi
+

2λ

α+ 2
|um|α+2

]
dx

+ σ

∫
∂ωτ

u2m ds (2.11)

by virtue of (2.8), (2.9), (2.10) and (2.7), we obtain

wm(τ) + 4a

∫
Dτ

u2mt dx dt = wm(0) + 2

∫
Dτ

Fm
∂um
∂t

dx dt. (2.12)

Since 2Fmumt ≤ ε−1F 2
m + εu2mt for every ε = const > 0, it follows from

(2.12), owing to a ≥ 0, that

wm(τ) ≤ wm(0) + ε

∫
Dτ

u2mt dx dt+ ε−1

∫
Dτ

F 2
m dx dt. (2.13)

Next, by virtue of (2.11), λ > 0 and σ ≥ 0, we have∫
Dτ

u2mt dx dt =

τ∫
0

[ ∫
ωs

u2mt dx

]
ds ≤

τ∫
0

wm(s) ds,

whence, with regard for (2.13), we obtain

wm(τ) ≤ ε

τ∫
0

wm(ξ) dξ + wm(0) + ε−1

∫
Dτ

F 2
m dx dt, 0 < τ ≤ T. (2.14)

Since Dτ ⊂ DT , 0 < τ ≤ T , the right-hand side of inequality (2.14) is
a nondecreasing function of the variable τ , and by Gronwall’s lemma, it
follows from (2.14) that

wm(τ) ≤
[
wm(0) + ε−1

∫
Dτ

F 2
m dx dt

]
eετ , 0 < τ ≤ T. (2.15)
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By virtue of (2.5), λ > 0, σ ≥ 0, |µ| < 1, α > 0, from (2.12) we get

wm(0) =

∫
Ω

[
cu2m(x, 0) + u2mt(x, 0) +

n∑
i=1

u2mxi
(x, 0)

+
2λ

α+ 2
|u2m(x, 0)|α+2

]
dx+ σ

∫
∂Ω

u2m(x, 0) ds

=

∫
Ω

[
µ2cu2m(x, T ) + µ2u2mt(x, T ) + µ2

n∑
i=1

u2mxi
(x, T )

+
2λ|µ|α+2

α+ 2
|um(x, T )|α+2

]
dx+ σ

∫
∂Ω

µ2u2m(x, T ) ds ≤ µ2wm(T ). (2.16)

Using inequality (2.15) for τ = T , by virtue of (2.16), we find that

wm(0) ≤ µ2wm(T ) ≤ µ2

[
wm(0) + ε−1

∫
Dτ

F 2
m dx dt

]
eεT . (2.17)

Since |µ| < 1, we can choose a positive constant ε = ε(µ, T ) so small that

µ1 = µ2eεT < 1. (2.18)

For example, in the capacity of ε from (2.18) we can take the number
ε = 1

T ln( 1
|µ| ).

Owing to (2.18), from (2.17) we obtain

w(0) ≤ (1− µ1)
−1µ2ε−1eεT ∥Fm∥2L2(DT ). (2.19)

Taking into account (2.19), from (2.15) we find that

wm(τ) ≤ γ∥Fm∥2L2(DT ), 0 < τ ≤ T. (2.20)

Here

γ =
[
(1− µ1)

−1µ2ε−1eεT + ε−1
]
eεT , ε =

1

T
ln

( 1

|µ|

)
. (2.21)

By virtue of λ > 0, α > 0, c ≥ 0, σ ≥ 0 and (2.11), we have∫
ωτ

u2m dx =

∫
ωτ , |um|≤1

u2m dx+

∫
ωτ , |um|>1

u2m dx

≤ mesΩ+

∫
ωτ , |um|>1

|um|α+2 dx

≤ mesΩ+
α+ 2

2λ
wm(τ). (2.22)

It follows from (2.11), (2.20) and (2.22) that
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ωτ

[
u2m + u2mt +

n∑
i=1

u2mxi

]
dx ≤ mesΩ+

α+ 2

2λ
wm(τ) + wm(τ)

= mesΩ+
(
1 +

α+ 2

2λ

)
γ∥Fm∥2L2(DT ), 0 < τ ≤ T. (2.23)

By (2.23), we obtain

∥um∥2◦
W 1

2,µ(DT )
=

T∫
0

[ ∫
ωτ

(
u2m + u2mt +

n∑
i=1

u2mxi

)
dx

]
dτ

≤ T mesΩ+ T
(
1 +

α+ 2

2λ

)
γ∥Fm∥2L2(DT ), 0 < τ ≤ T. (2.24)

Taking from both parts of inequality (2.24) the square root and using
the obvious inequality (a2 + b2)1/2 ≤ |a|+ |b|, we have

∥um∥ ◦
W 1

2,µ(DT )
≤ c1∥Fm∥L2(DT ) + c2. (2.25)

Here, due to (2.21), for λ > 0, we get
c1 =

(
T
(
1 +

α+ 2

2λ

)[
(1− µ1)

−1µ2ε−1eεT + ε−1
]
eεT

) 1
2

,

ε =
1

T
ln

( 1

|µ|

)
,

c2 = (T mesΩ) 1
2 .

(2.26)

Bearing in mind limiting equalities (2.3) and passing in inequality (2.25)
to the limit, as m → ∞, we obtain (2.2). Thus Lemma 2.1 is proved for
λ > 0.

In a linear case, that is for λ = 0, but σ > 0, the proof of a priori estimate
(2.2) with c2 = 0 follows from the following reasoning. As is known, the
norm of the space W 1

2 (Ω) for σ > 0 is equivalent to the norm

∥v∥2 =

∫
Ω

n∑
i=1

v2xi
dx+ σ

∫
∂Ω

v2 ds

[18, p. 147] that is, in particular, there exists the positive constant c0 =
c0(Ω, σ) such that

∥v∥2W 1
2 (Ω) =

∫
Ω

[
v2 +

n∑
i=1

v2xi

]
dx

≤ c0

[ ∫
Ω

n∑
i=1

v2xi
dx+ σ

∫
∂Ω

v2 ds

]
∀ v ∈W 1

2 (Ω). (2.27)

By (2.1),(2.27), instead of (2.22) and (2.23), with regard for (2.11), we
will have
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ωτ

[
u2m + u2mt +

n∑
i=1

u2mxi

]
dx

≤
∫
ωτ

u2m dx+ wm(τ) ≤ (c0 + 1)wm(τ). (2.28)

From (2.20) and (2.28), analogously to how we have obtained (2.24), it
follows that

∥um∥2◦
W 1

2,µ(DT )
≤

T∫
0

(c0 + 1)wm(τ) dτ ≤ T (c0 + 1)γ∥Fm∥2L2(DT ). (2.29)

Passing in inequality (2.29) to the limit, as m → ∞, and taking into
account (2.3), we obtain estimate (2.2) in whichc1 =

(
T (c0 + 1)

[
(1− µ1)

−1µ2ε−1eεT + ε−1
]
eεT

) 1
2

,

c2 = 0,

(2.30)

what proves Lemma 2.1 in case λ = 0 and σ > 0. �

Remark 2.1. In Section 3, the question on the solvability of the problem
(1.1)–(1.4) is reduced to that of finding a uniform with respect to the pa-
rameter s ∈ [0, 1] a priori estimate for a strong generalized solution of the
equation

vtt −
n∑

i=1

vxixi + s(c− a2)v + sλ exp(−αat)|v|αv

= s exp(at)F (x, t), (x, t) ∈ DT , (2.31)

satisfying both the boundary condition(∂v
∂ν

+ σv
)∣∣∣∣

Γ

= 0 (2.32)

and the nonlocal conditions

(Kµ0v)(x) = 0, (Kµ0vt)(x) = 0, x ∈ Ω, (2.33)

where µ0 = µ exp(−aT ), |µ| < 1, and the operator Kµ0 for µ = µ0 is defined
in (1.3). To obtain a uniform with respect to τ a priori estimate for the
solution of the problem (2.31)–(2.33) it is sufficient that instead of (2.1) be
fulfilled the more bounded conditions

a ≥ 0, c ≥ a2, σ > 0. (2.34)
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For this case, we present in the proof of Lemma 2.1 certain changes.
Assuming

w̃m(τ)=

∫
ωτ

[
s(c−a2)v2m+v2mt+

n∑
i=1

v2mxi
+

2sλ

α+2
exp(−αaτ)|vm|α+2

]
dx

+ σ

∫
∂ωτ

v2m ds,

instead of equality (2.12) for um, in regard to the function vm we get

w̃m(τ) +
2sλa

α+ 2

∫
Dτ

exp(−αat)|vm|α+2 dx dt

= w̃m(0) + 2s

∫
Dτ

exp(at)Fmvmt dx dt,

whence by virtue of sλa ≥ 0, s ∈ [0, 1], analogously to (2.13)–(2.15), we,
respectively, obtain

w̃m(τ) ≤ w̃m(0) + ε

∫
DT

v2mt dx dt+ ε−1 exp(2aT )
∫
DT

F 2
m dx dt,

w̃m(τ) ≤ ε

T∫
0

wm(ξ) dξ + w̃m(0) + ε−1 exp(2aT )
∫
DT

F 2
m dx dt,

w̃m(τ) ≤
[
w̃m(0) + ε−1 exp(2aT )

∫
DT

F 2
m dx dt

]
eετ , 0 < τ ≤ T.

Further, by (2.33), (2.34) and µ0 = µ exp(−at), |µ| < 1, taking into
account the fact that

|µ0|α+2 = |µ0|2 exp(−αaT )|µ0|α exp(αaT )
= |µ0|2 exp(−αaT )|µ|α ≤ |µ0|2 exp(−αaT ),

we instead of (2.16) have

w̃m(0) =

∫
Ω

[
s(c− a2)v2m(x, 0) + v2mt(x, 0) +

n∑
i=1

v2mxi
(x, 0)

+
2sλ

α+ 2
|vm(x, 0)|α+2

]
dx+ σ

∫
∂Ω

v2m(x, 0) ds

=

∫
Ω

[
µ2
0s(c− a2)v2m(x, T ) + µ2

0v
2
mt(x, T )
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+ µ2
0

n∑
i=1

v2mxi
(x, T ) +

2sλ|µ0|α+2

α+ 2
|vm(x, T )|α+2

]
dx

+ σ

∫
∂Ω

µ2
0v

2
m(x, T ) ds ≤ µ2

0w̃m(T ).

Analogously, instead of (2.17)–(2.21) we, respectively, obtain

w̃m(0) ≤ µ2
0w̃m(T ) ≤ µ2

0

[
w̃m(0) + ε−1 exp(2aT )

∫
DT

F 2
m dx dt

]
eεT ,

µ2 = µ2
0e

εT < 1,

w̃m(0) ≤ (1− µ2)
−1µ2

0ε
−1eεT exp(2aT )∥Fm∥2L2(DT ),

w̃m(τ) ≤ γ̃∥Fm∥2L2(DT
, 0 < τ ≤ T,

γ̃ =
[
(1− µ2)

−1µ2
0ε

−1eεT + ε−1
]

exp(2a+ ε)T,

where by virtue of |µ0| ≤ |µ|, we can take in the capacity of ε the same
number ε = 1

T ln( 1
|µ| ) as in (2.21). Next, analogously to how from (2.20)

and (2.28) we have got a priori estimate (2.2) with the constants c1 and c2,
from (2.30) we will have

∥v∥ ◦
W 1

2,µ0
(DT )

≤ c3∥F∥L2(DT ), (2.35)

where the positive constant

c3 =
{
T (c0 + 1)

[
(1− µ2)

−1µ2
0ε

−1eεT + ε−1
]

exp(2a+ ε)T
} 1

2 (2.36)

does not depend on v, F and on the parameter s ∈ [0, 1].

3. The Existence of a Solution of the Problem (1.1)–(1.4)

To prove that the problem (1.1)–(1.4) has a solution in case |µ| < 1, we
will use the well-known facts dealing with the solvability of the following
mixed problem

utt −
n∑

i=1

uxixi = F (x, t), (x, t) ∈ DT , (3.1)

(∂u
∂ν

+ σu
)∣∣∣∣

Γ

= 0, u(x, 0) = φ(x), ut(x, 0) = ψ(x), x ∈ Ω, (3.2)

where F , φ and ψ are the given functions, σ = const > 0.
For F ∈ L2(DT ), φ ∈ W 1

2 (Ω), ψ ∈ L2(Ω) a unique generalized solution
u of the problem (3.1), (3.2) from the space E2,1(DT ) with the norm

∥v∥2E2,1(DT ) = sup
0≤t≤T

∫
ω

[
v2 + v2t +

n∑
i=1

v2xi

]
dx
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is given by the formula [16, pp. 214, 226], [19, pp. 292, 294]

u =

∞∑
k=1

(
ak cosµkt+ bk sinµkt

+
1

µk

t∫
0

Fk(τ) sinµk(t− τ) dτ

)
φk(x), (3.3)

where λk = −µ2
k, 0 < µ1 ≤ µ2 ≤ · · · ≤ µk ≤ · · · are eigen-functions and

lim
k→∞

µk = 0, while φk ∈ W 1
2 (Ω) are the corresponding eigen-functions of

the spectral problem ∆w = λw, (∂w∂ν + σw)
∣∣
∂Ω

= 0 in the domain Ω (∆ :=
n∑

i=1

∂2

∂x2
i
) which form simultaneously an orthonormalized basis in L2(Ω) and

orthogonal basis in W 1
2 (Ω) in a sense of the scalar product

(v, w)W 1
2 (Ω) =

∫
Ω

n∑
i=1

vxiwxi dx+

∫
∂Ω

σvw ds

[16, p. 237], that is,

(φk, φl)L2(Ω) = δlk, (φk, φl)W 1
2 (Ω) = −λkδlk, δlk =

{
1, l = k,

0, l ̸= k.
(3.4)

Here
ak = (φ,φk)L2(Ω), bk = µ−1

k (ψ,φk), k = 1, 2, . . . , (3.5)

F (x, t) =
∞∑
k=1

Fk(t)φk(x),

Fk(t) = (F,φk)L2(ωt), ωτ := DT ∩ {t = τ},
(3.6)

and for the solution u from (3.3) the estimate

∥u∥E2,1(DT ) ≤ γ
(
∥F∥L2(DT ) + ∥φ∥W 1

2 (Ω) + ∥ψ∥L2(Ω)

)
(3.7)

with the positive constant γ, independent of F , φ and ψ, is valid [16, pp. 214,
226].

Let us consider now the linear problem

L0u :=
∂2u

∂t2
−

n∑
i=1

∂2u

∂x2i
= F (x, t), (x, t) ∈ DT , (3.8)

(∂u
∂ν

+ σu
)∣∣∣∣

Γ

= 0, (3.9)

u(x, 0)− µu(x, T ) = 0, ut(x, 0)− µut(x, T ) = 0, x ∈ Ω, (3.10)
corresponding to (1.1)–(1.4) in case a = c = λ = 0.

Show that for |µ| < 1, for any F ∈ L2(DT ), there exists a unique strong
generalized solution of the problem (3.8)–(3.10). Indeed, since the space of
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finite infinitely differentiable functions C∞
0 (DT ) is dense in L2(DT ), there-

fore for F ∈ L2(DT ) and for any natural number m there exists the function
Fm ∈ C∞

0 (DT ) such that

∥Fm − F∥L2(DT ) <
1

m
. (3.11)

On the other hand, for the function Fm in the space L2(DT ) the decompo-
sition [16]

Fm(x, t) =

∞∑
k=1

Fm,k(t)φk(x), Fm,k(t) = (Fm, φk)L2(Ω) (3.12)

is valid.
Therefore there exists the natural number ℓm, lim

m→∞
ℓm = ∞, such that

for

F̃m(x, t) =

ℓm∑
k=1

Fm,k(t)φk(x) (3.13)

the inequality

∥F̃m − Fm∥L2(DT ) <
1

m
(3.14)

holds.
It follows from (3.11) and (3.14) that

lim
m→∞

∥F̃m − F∥L2(DT ) = 0. (3.15)

The solution u = um of the problem (3.1), (3.2) for

φ =

ℓm∑
k=1

ãkφk, ψ =

ℓm∑
k=1

µk b̃kφk, F = F̃m

is given by formula (3.3) which with regard for (3.4)–(3.6) and (3.13) takes
the form

um =

ℓm∑
k=1

(
ãk cosµkt+ b̃k sinµkt

+
1

µk

t∫
0

Fm,k(τ) sinµk(t− τ) dτ

)
φk(x). (3.16)

By the construction, the function um from (3.16) satisfies equation (3.8)
and the boundary condition (3.9) for F = F̃m from (3.13).

Define now unknown coefficients ãk and b̃k in such a way that the function
um from (3.16) likewise satisfy the nonlocal conditions (3.10). Towards this
end, we substitute the right-hand side of (3.16) into equalities (3.10). As a
result, taking into account that the system of functions {φk(x)} forms the
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basis in L2(Ω), to find coefficients ãk and b̃k, we obtain the following system
of linear algebraic equations

(1− µ cosµkT )ãk − (µ sinµkT )̃bk

=
µ

µk

T∫
0

Fm,k(τ) sinµk(T − τ) dτ,

(µµk sinµkT )ãk + µk(1− µ cosµkT )̃bk

= µ

T∫
0

Fm,k(τ) cosµk(T − τ) dτ,

(3.17)

k = 1, 2, . . . , ℓm, whose solution is

ãk =
[
d1kµµk sinµkT − d2k(1− µ cosµkT )

]
∆−1

k , k = 1, 2, . . . , ℓm, (3.18)

b̃k =
[
d2k(1− µ cosµkT )− d1kµµk sinµkT

]
∆−1

k , k = 1, 2, . . . , ℓm. (3.19)

Here

d1k =
µ

µk

T∫
0

Fm,k(τ) sinµk(T − τ) dτ,

d2k = µ

T∫
0

Fm,k(τ) cosµk(T − τ) dτ

and since |µ| < 1, for the determinant ∆k of system (3.17), we have

∆k = µk

[
(1− µ cosµkT )

2 + µ2 sin2 µkT
]
≥ µk

(
1− |µ|

)2
> 0. (3.20)

Below, the Lipschitz domain Ω will be assumed to be such that the eigen-
functions φk ∈ C2(Ω), k ≥ 1. For example, this fact will hold if ∂Ω ∈ C [n2 ]+3

[18, p. 227]. This may take place also in the case of piecewise smooth
Lipschitz domain, for example, for the parallelepiped Ω = {x ∈ Rn : |xi| <
ai, i = 1, . . . , n}, the corresponding eigen-functions φk ∈ C∞(Ω) [19] (see
also Remark 4.1). Thus, since Fm ∈ C∞

0 (DT ), by virtue of (3.12), the
function Fm,k ∈ C2([0, T ]), and hence the function um from (3.16) belongs
to the space C2(DT ). Next, by the construction, the function um from
(3.16) will belong to the space

◦
C2

µ(DT ) which has been defined in (1.5), and

L0um = F̃m, L0(um − uk) = F̃m − F̃k. (3.21)

From (3.21) and a priori estimate (2.2) for a = c = λ = 0 in which by
Lemma 2.1 the constant c2 = 0, we have

∥um − uk∥ ◦
W 1

2,µ(DT )
≤ c1∥F̃m − F̃k∥L2(DT ). (3.22)
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By virtue of (3.15), it follows from (3.22) that the sequence um ∈
◦
C2

µ(DT )

is fundamental in the whole space
◦
W 1

2,µ(DT ). Therefore there exists the

function u ∈
◦
W 1

2,µ(DT ) such that by (3.15) and (3.21) the limiting equalities
(2.3) are valid for λ = 0. The latter means that the function u is a strong
generalized solution of the problem (3.8)–(3.10). The uniqueness of that
solution follows from a priori estimate (2.2) in which λ = 0 and the constant
c2 = 0, that is,

∥u∥ ◦
W 1

2,µ(DT )
≤ c1∥f∥L2(DT ). (3.23)

Remark 3.1. Thus the linear problem (3.8)–(3.10) has a unique strong gen-
eralized solution u ∈

◦
W 1

2,µ(DT ) for which we can write u = �−1
µ (F ), where

�−1
µ : L2(DT ) →

◦
W 1

2,µ(DT ) is the linear continuous operator whose norm
by virtue of (3.23) admits the estimate

∥�−1
µ ∥

L2(DT )→
◦
W 1

2,µ(DT )
≤ c1. (3.24)

Remark 3.2. Regarding a new unknown function v := u exp(at), the problem
(1.1)–(1.4) can be written in the form

L̃λv := vtt −
n∑

i=1

vxixi + (c− a2)v + λ exp(−αat)|v|αv

= exp(at)F (x, t), (x, t) ∈ DT , (3.25)(∂v
∂ν

+ σv
)∣∣∣∣

Γ

= 0, (3.26)

(Kµ0v)(x) = 0, (Kµ0vt)(x) = 0, x ∈ Ω, (3.27)

where µ0 = µ exp(−aT ). Note that the problems (1.1)–(1.4) and (3.25)–
(3.27) are equivalent in a sense that u is a strong generalized solution of the
problem (1.1)–(1.4), if and only if v is a strong generalized solution of the
problem (3.25)–(3.27), that is v ∈

◦
W 1

2,µ0
(DT ), and there exists the sequence

of functions vm ∈
◦
C2

µ0
(DT ) such that vm → v in the space

◦
W 1

2,µ0
(DT ), and

L̃λvm → exp(at)F (x, t) in the space L2(DT ).

Remark 3.3. The embedding operator I :W 1
2 (DT ) → Lq(DT ) is the linear,

continuous, compact operator for 1 < q < 2(n+1)
n−1 , when n > 1 [16, p. 81].

At the same time, the Nemytski’s operator N : Lq(DT ) → L2(DT ) acting by
the formula N v = (c− a2)v+ λ exp(−αat)|v|αv is continuous and bounded
if q ≥ 2(α + 1) [14, p. 349], [15, pp. 66, 67]. Thus, if α < 2

n−1 , that is
2(α+1) < 2(n+1)

n−1 , then there exists the number q such that 1 < q < 2(n+1)
n−1

and q ≥ 2(α+ 1). Therefore, in this case the operator

N0 = N I :
◦
W 1

2,µ0
(DT ) → L2(DT ) (3.28)
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will be continuous and compact. Moreover, from w ∈
◦
W 1

2,µ0
(DT ) it all

the more follows that exp(−αat)|v|αv ∈ L2(DT ), and if vm → v in the
space

◦
W 1

2,µ0
(DT ), then exp(−αat)|vm|αvm → exp(−αat)|v|αv in the space

L2(DT ).

Remark 3.4. Under the assumption that a ≥ 0 and |µ| < 1, we have |µ0| < 1,
and taking into account Remarks 3.1 and 3.2, the function v ∈

◦
W 1

2,µ0
(DT )

is a strong generalized solution of the problem (3.25)–(3.27), if and only if
v is a solution of the following functional equation

v = �−1
µ0

(
(a2 − c)v − λ exp(−αat)|v|αv

)
+�−1

µ0

(
exp(at)F

)
(3.29)

in the space
◦
W 1

2,µ0
(DT ).

We rewrite equation (3.29) in the form

v = A0v := −�−1
µ0

(N0v) +�−1
µ0

(
exp(at)F

)
, (3.30)

where the operator N0 :
◦
W 1

2,µ0
(DT ) → L2(DT ) from (3.28) is, by Re-

mark 3.3, continuous and compact one. Consequently, owing to (3.24), the
operator A0 :

◦
W 1

2,µ0
(DT ) →

◦
W 1

2,µ0
(DT ) from (3.30) is likewise continu-

ous and compact for 0 < α < 2
n−1 . At the same time, by Remarks 2.1,

3.2 and 3.4, if conditions (2.34) are fulfilled for every value of parameter
s ∈ [0, 1] and for every solution v of equation v = sA0v with the parameter
s ∈ [01, ], then a priori estimate (2.35) with nonnegative constant c3 from
(2.36), independent of v, F and s, is valid. Therefore, by the Lerè–Schauder
theorem [20, p. 375], equation (3.30), and hence by Remarks 3.2 and 3.4,
the problem (1.1)–(1.4) has at least one solution u ∈

◦
W 1

2,µ(DT ). Thus we
have proved the following

Theorem 3.1. Let 0 < α < 2
n−1 , λ > 0, |µ| < 1 and conditions (2.34) be

fulfilled. Then for any F ∈ L2(DT ) the problem (1.1)–(1.4) has at least one
strong generalized solution of the class W 1

2 in the domain DT in a sense of
Definition 1.1.

4. The Case |µ| = 1

Instead of conditions (2.1) we consider now the conditions

a > 0, c ≥ a2, σ > 0. (4.1)

Theorem 4.1. Let 0 < α < 2
n−1 , λ > 0, |µ| = 1 and conditions (4.1) be

fulfilled. Then for any F ∈ L2(DT ) the problem (1.1)–(1.4) has at least one
strong generalized solution of the class W 1

2 in the domain DT in a sense of
Definition 1.1.
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Proof. Regarding a new unknown function v := u exp(at), the problem
(1.1)–(1.4) by Remark 3.2 reduces equivalently to the nonlocal problem
(3.25)–(3.27), where by virtue of a > 0, for the number µ0 = µ exp(−aT ) we
have |µ0| < 1. Therefore if the conditions of Theorem 4.1 are fulfilled, then
repeating reasoning mentioned in proving Theorem 3.1 we can conclude
that the problem (3.25)–(3.27) and hence the problem (1.1)–(1.4) has at
least one strong generalized solution of the class W 1

2 in the domain DT . �

Remark 4.1. It should be noted that for |µ| = 1 the homogeneous problem
corresponding to (1.1)–(1.4) may have even in a linear case, i.e., for λ = 0, a
finite or even an infinite set of linearly independent solutions, if conditions
(4.1) are violated, whereas for the solvability of that problem the function
F ∈ L2(DT ) must satisfy, respectively, a finite or an ininite number of
conditions of solvability of type ℓ(F ) = 0, where ℓ is the linear continuous
functional in L2(DT ). Indeed, let us consider the case λ = a = c = 0,
σ = 1. When µ = 1, we denote by Λ(1) a set of those µk from (3.3) for
which the ratio µkT

2π is a natural number, i.e., Λ(1) = {µk : µkT
2π ∈ N}.

Formulas (3.18) and (3.19) for finding unknown coefficients ãk and b̃k in the
representation (3.16) have been obtained from the system of linear algebraic
equations (3.17). In case λ(1) ̸= ∅ and µk ∈ Λ(1), µ = 1, the determinant
of system (3.17) given by formula (3.20) is equal to zero. Moreover, in this
case all coefficients ãk and b̃k in the left-hand side of system (3.17) are equal
to zero. Therefore, in accordance with (3.3), the homogeneous problem
corresponding to (3.8), (3.9) and (3.10) is satisfied with the function

uk(x, t) = (C1 cosµkt+ C2 sinµkt)φk(x), (4.2)

where C1 and C2 are arbitrary constant numbers, and in this case the nec-
essary conditions for the solvability of the inhomogeneous problem (3.8)–
(3.10) corresponding to µk ∈ Λ(1) are

ℓk,1(F ) =

∫
DT

F (x, t)φk(x) sinµk(T − t) dx dt = 0,

ℓk,2(F ) =

∫
DT

F (x, t)φk(x) cosµk(T − t) dx dt = 0.

(4.3)

Analogously, in case µ = −1, we denote by Λ(−1) a set of those µk

from (3.3) for which the ratio µkT
π is an odd natural number. For µk ∈

Λ(−1), µ = −1, the function uk from (4.2) is, likewise, a solution of the
homogeneous problem corresponding to (3.8)–(3.10), and conditions (4.3)
are the necessary ones for solvability of that problem. For example, for n =
2, the eigen-numbers and eigen-functions of the spectral problem ∆w = λw,
(∂w∂ν + w)

∣∣
∂Ω

= 0 are

λk = −1

4

[
(2k1 − 1)2 + (2k2 − 1)2

]
, k = (k1, k2) ∈ N2,
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φk(x1, x2) = dk
(

sin µ̃k1x1 + µ̃k1 cos µ̃k1x1
)(

sin µ̃k2x2 + µ̃k2 cos µ̃k2x2
)
,

where µ̃ki = 1
2 (2ki − 1), µk = 1

2

√
(2k1 − 1)2 + (2k2 − 1)2, and dk is the

normalizing factor defined from the condition ∥φk∥L2(Ω) = 1. It can be
easily seen that if the number T is such that T

2
√
2π

∈ N, then for any
k = (k1, k2) such that k1 = k2 we have µk ∈ Λ(1). In this case, i.e., for
µ = 1 and T

2
√
2π

∈ N, the homogeneous problem corresponding to (3.8)–
(3.10) will have an infinite set of linearly independent solutions of type
(4.2), and for the solvability of that problem it is necessary that an infinite
number of conditions of type (4.3) for k = (k1, k2) such that k1 = k2 ∈ N
are fulfilled. The case µ = −1 is considered analogously.
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