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Abstract. For multidimensional wave equations with power nonlinearity
we investigate the question on the existence of solutions in a nonlocal in time
problem whose particular case is a periodic case.
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1. STATEMENT OF THE PROBLEM

In the space R"*! of variables = (z1,...,7,) and ¢, in the cylindrical
domain D = 2 x (0,7, where € is some open Lipschitz domain in R", we
consider a nonlocal problem of finding a solution u(z,t) of the equation

Lyu = uy — Zu”“” + 2auy + cu + Aul|%u = F(z,t), (z,t) € Dp, (1.1)
i=1

satisfying the homogeneous boundary condition
=0 (1.2)

<8u n )
— +ou
v r
on the lateral boundary I : 9Q x (0,T) of the cylinder Dy and the homo-
geneous nonlocal conditions
Kuu:=u(z,0) — pu(z,T) =0, z€Q, (1.3)
Kuug = ui(x,0) — pus(z,T) =0, z€Q, (1.4)

where F' is the given function; a, A, u, a, ¢ and o are the given constants
and a > 0, Au # 0; % is the derivative with respect to the outer normal to
8DT, n Z 2.

Remark 1.1. A great number of works are devoted to the investigation of
nonlocal problems. In the case of abstract evolution equations and partial
differential equations of hyperbolic type, the nonlocal problems are studied
in [1-13,17,21]. Note that for |u| # 1 it suffices to restrict ourselves to
the case || < 1, since the case |p| > 1 reduces to the previous one if we
pass from the variable ¢ to the variable ¢ = T —¢. The case |p| = 1 will
be treated in the final Section 4. In particular, the problem (1.1)—(1.4) for
1 =1 can be treated as a periodic problem.

We introduce into consideration the following spaces of functions:

o

CZ(DT) = {U S CZ(DT) :

(5 )],

WL (D) = {vewd(Dr): K =0}, (1.6)

=0, Kpo=0, K, = 0}, (1.5)

where Wy (D7) is the well-known Sobolev space consisting of functions of
the class Lo(Dr) whose all generalized first order derivatives belong likewise
to Lo(Dr), and the equality IC,v = 0 is understood in a sense of the trace
theory [16, p. 71].

Definition 1.1. Let F' € Ly(Qr). The function u will be said to be a
strong generalized solution of the problem (1.1)-(1.4) of the class W3 in

o
the domain Dy if u € W} x(Dr) and there exists a sequence of functions
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Um € C%(Dr) such that u,, — w in the space W3 ,(Dr), and Ly, — F
in the space Lo(Dr).

Note that the above definition of a solution of the problem (1.1)—(1.4)
remains valid in a linear case, as well, that is for A = 0.

Remark 1.2. Obviously, a classical solution of the problem (1.1)-(1.4) from
the space C?(Dr) is a strong generalized solution of that problem of the
class W3 in the domain D in a sense of Definition 1.1.

Remark 1.3. Tt should be noted that even in a linear case, that is for A = 0,
the problem (1.1)—(1.4) is not always well-posed. For example, for A = a =
¢ =0 and |u| = 1, the homogeneous problem corresponding to (1.1)—(1.4)
may have infinite set of linearly independent solutions, whereas in order for
the inhomogeneous problem to be solvable, it is necessary that a finite or
an infinite set of conditions in the form of functional equalities imposed on
the right-hand side F' of equation (1.1) be fulfilled (see Remark 4.1 below).

The present paper is organized as follows. In Section 2, for some con-
ditions on the coefficients of the problem (1.1)—(1.4) an a priori estimate
for a strong generalized solution of the class W is proved. In Section 3,
on the basis of the obtained a priori estimate it is proved that the problem
(1.1)—(1.4) is solvable. In the last Section 4, as an application of the results
obtained in the previous sections, we consider the case |u| = 1.

2. AN A PRIORI ESTIMATE OF SOLUTION OF THE PROBLEM (1.1)—(1.4)
Consider the conditions
a>0, ¢>0, c>0. (2.1
2

)
Lemma 2.1. Let A > 0, |u| < 1, and let F' € Ly(Dr) and conditions (2.1)
be fulfilled. Then for a strong generalized solution u of the problem (1.1)-
(1.4) of the class Wy in the domain Dt in a sense of Definition 1.1 the a
priori estimate

Iy < 1P Laomy +c2 2.2)
with nonnegative constants ¢; = ¢;(A\, u, Q,T), independent of u and F, and
c1 > 0, is valid, whereas in a linear case, that is for A = 0, if 0 > 0, the
constant cz = 0, and by virtue of (2.2), a solution of the problem (1.1)—(1.4)
is unique in a sense of Definition 1.1.

Proof. Let u be a strong generalized solution of the problem (1.1)—(1.4) of
the class W3 in the domain Dp. By Definition 1.1, there exists the sequence
of functions u,, € C%(Dr) (see (1.5)) such that

Jim[fum, — uf =0, lim [[Lxum = FllL,0r) =0 (2:3)

o =
W3 ,.(Dr)
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Let us consider the function wu,, € Ci(ET) as a solution of the problem

Lyuy, = Fp,, (x,t) S DT, (24)
Oup,
(L + Uum) =0, Kuum =0, K tme =0. (2.5)
ov r
Here
F,, := Lyu,,. (2.6)

Multiplying both parts of equality (2.4) by 2u,,; and integrating with
respect to the domain D, := DrN{t < 7}, 0 <7 < T, we obtain

0 /0um\?2 02wy, Ouy,
/&( 5 dxdt?/; o2 o
D, =
2
+4a/u3nt dmdt—l—c/( Tt dmdt—l—i)\ %|um|°‘Jr2 dx dt

D, D, DT

= Q/qumt dx dt. (2.7)

D,

Assume w, == {(x,t) € Dr: 2 € Q, t =7}, 0 < 7 < T, where wy and
Qr are, respectively, the lower and upper bases of the cylindrical domain
Dyp. Let v := (Vg,,Vgyy- - - Vs, , Vt) be the unit vector of the outer normal
to dD,. Since

Va; w.Uwg

= 0, I/t| = 1, Vt|w0 = *17

wr

=0, 1=1,...,n,

I/t|1".r::l"ﬂ{t§7'}
therefore, taking into account (2.5) and integrating by parts, we have
0 [O0um\?2 Oy \ 2
/E(W) dacdtz/( ot ) ths:/ufntdx—/u%ndx, (2.8)

D,

wr wo

D,
_Q/Zasum QU dx dt = /Z Upp )t — 2(Umna, Ut )z } dx dt
/Zumw dx—/ZumgC dr —2 /[Zumwiw}umtds

i=1

.

/Zumw dx—/Zumi dm—f—?/oumumtds
/Zumw dm—/Zumw da;—l—a/( s )eds
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n n
= /Zu%m dx—/Zufmi dx + o / ut, ds —o / u?, ds, (2.9)
i=1 L i=1 o

wr W Owo
2
— / 9 |ty |22 da dt
a+2 ) ot
DT
2) a2 2) a+2
= 25 [l = 20 [l g
wWr wo
/(ufn)t de dt = /ufn dx — /ufn dx.
D, wr wo
Assuming
n ZA
Wi (7) = / [cufn +ul, + Z uf,m + ) |um|°‘+2] dz
o i=1
+o / u?, ds (2.11)
Owr
by virtue of (2.8), (2.9), (2.10) and (2.7), we obtain
a m
wm (7) + 4a / u?, drdt = w,(0)+2 [ F, gtL dx dt. (2.12)
D, D,

Since 2F,, U < e 1F2 + cu?,, for every € = const > 0, it follows from
(2.12), owing to a > 0, that

Wi (T) < Wy (0) + € / u?, drdt4 et /Ffl dz dt. (2.13)
D, D,

Next, by virtue of (2.11), A > 0 and o > 0, we have

/ufm d:cdt:/ {/ufmd:c} ds < /wm(s) ds,
0

T 0 Ws

whence, with regard for (2.13), we obtain

Wi (1) < s/wm(f) dé + w, (0) + 1 /Fib dedt, 0<7<T. (2.14)
0 D,
Since D, C Dp, 0 < 7 < T, the right-hand side of inequality (2.14) is
a nondecreasing function of the variable 7, and by Gronwall’s lemma, it
follows from (2.14) that
wp (1) < [wm(O) +et /F,%L dx dt} e, 0<7<T. (2.15)

.
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By virtue of (2.5), A > 0,0 >0, |u| <1, @ > 0, from (2.12) we get

n

wp (0) = / {cu,zn(x,()) +u? (x,0) + Zufm (z,0)
o i=1
+ 22 |u?, (x,0)]*+2 dx+0/u2 (2,0)ds
a+2 ™ maT
o0

= [ i om0 S o)
Q =1

2)|p|**? a+2 2,2 2

o [um (z,T)| dx +o | pus,(x,T)ds < p“wy,(T). (2.16)
a

o9

Using inequality (2.15) for 7 = T, by virtue of (2.16), we find that

+

Wi (0) < p2wp, (T) < i [wm(o) et / F2 dx dt] e, (2.17)

r

Since |u| < 1, we can choose a positive constant e = (i, T') so small that
= pPett < 1. (2.18)

For example, in the capacity of € from (2.18) we can take the number
1 1
g = T ln(f)

1]
Owing to (2.18), from (2.17) we obtain

w(0) < (1= )~ pPe e FullL, py)- (2.19)

Taking into account (2.19), from (2.15) we find that
Wi (T) < ANFmllZ,ppy, 0<7<T. (2.20)

Here
—1,2_—1_¢eT —1| _eT 1 1

’yz[(l—ul) pe et +e }e ) E:TIn(m). (2.21)

By virtue of A >0, @« >0, ¢ >0, 0 > 0 and (2.11), we have

2 _ 2 2
/umdxf / u,, dr + / u,, dr
wr wry [um|<1 Wy Jum[>1

< mesQ + |ty |22 da

Wr, |um|>1
a+2

It follows from (2.11), (2.20) and (2.22) that
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n
a—+2
/ [ufn + ufm + ;ufml} dr < mes) + > Wy (T) + Wi (7)
a+2
= mesQ + (1 + 5 )7||Fm||i2(DT)7 0<7<T. (223)

By (2.23), we obtain

A n

2 _ 2 2 2

b, = [ [ (s S ) ao] i

0 W 1=

2
< TmesQ + T(l + %)ynaniz(Dﬂ, 0<7<T. (2.24)

Taking from both parts of inequality (2.24) the square root and using
the obvious inequality (a2 + b%)Y/2 < |a| + |b|, we have

lumlle, .y < CrllFmllzaor) +c2. (2.25)
2

Here, due to (2.21), for A > 0, we get

1
2 2
cl = <T(1 + o+ ) |:(1 _ ﬂ1)71‘u2€7165T + 51:|66T) ,

12)\ 1 2.26
() o

e=—1In
|l

T
co = (TmesQ)%.

Bearing in mind limiting equalities (2.3) and passing in inequality (2.25)
to the limit, as m — oo, we obtain (2.2). Thus Lemma 2.1 is proved for
A>0.

In a linear case, that is for A = 0, but ¢ > 0, the proof of a priori estimate
(2.2) with ¢o = 0 follows from the following reasoning. As is known, the
norm of the space W4 (Q) for o > 0 is equivalent to the norm

n
||| :/Zvi dx—|—a/1}2ds
o =1 09

[18, p. 147] that is, in particular, there exists the positive constant ¢y =
¢o(§2, o) such that

”U”%/VZ}(Q) = / ['UQ + ZUJQDJ dz
i=1

Q

SCO[/ZUEH dx—l—a/des} Vo e Wy (). (2.27)
o =t 80

By (2.1),(2.27), instead of (2.22) and (2.23), with regard for (2.11), we
will have
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n
/“@i,+u;,+§:u;“}dx

o 1=1

< / W2, da+ wn(7) < (co + Dwom (7). (2.28)

wr

From (2.20) and (2.28), analogously to how we have obtained (2.24), it
follows that

T
||um||3<;/1 D = /(CO + Dwn (1) dr < Tco + VY| Flll, (ppy- (2:29)
2,0
0

Passing in inequality (2.29) to the limit, as m — oo, and taking into
account (2.3), we obtain estimate (2.2) in which

1
2
Cy = 0,
what proves Lemma 2.1 in case A =0 and o > 0. O

Remark 2.1. In Section 3, the question on the solvability of the problem
(1.1)—(1.4) is reduced to that of finding a uniform with respect to the pa-
rameter s € [0,1] a priori estimate for a strong generalized solution of the
equation

n
Vgt — Z Vg2 + 8(c — a*)v + s exp(—aat)|v|*v
i=1
= sexp(at)F(x,t), (z,t) € Dy, (2.31)

satisfying both the boundary condition

ov
(5 + av) T 0 (2.32)
and the nonlocal conditions
(Kpuoo) (@) =0, (Kpv0)(@) =0, z €, (2.33)

where pig = pexp(—aT’), |u| < 1, and the operator K, for 1 = pg is defined
in (1.3). To obtain a uniform with respect to 7 a priori estimate for the
solution of the problem (2.31)—(2.33) it is sufficient that instead of (2.1) be
fulfilled the more bounded conditions

a>0, ¢>a% o>0. (2.34)
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For this case, we present in the proof of Lemma 2.1 certain changes.
Assuming

25\

W (T) = /[s(c a )v —l—vmt—i—g vmm i2 exp(—aa7)|vm|a+2 dx

o
i=1

wr
+0 / vZ, ds,
Owr

instead of equality (2.12) for w,,, in regard to the function v,, we get

- 28)\(1
Wy (T

/exp —aat)|v,|*T? de dt
D,
= Wy, (0) + 2s / exp(at) Fpvme dzx dt,

D,

whence by virtue of sAa > 0, s € [0, 1], analogously to (2.13)—(2.15), we
respectively, obtain

Wi (T7) < Wy (0) + £ / v2, dodt + e exp(2aT) / F2 dxdt,
Dt
T

) < E/wm €) dé + W (0) + e ! exp(2aT) / F2 dxdt,
0 Dr

W (1) < {wm(O) + e texp(2aT) / F2 dx dt} e, 0<7T<T.

Further, by (2.33), (2.34) and po = pexp(—at), |pu| < 1, taking into
account the fact that

[0%2 = |up|2 exp(—aaT) 0] exp(aaT)

|10
= |po|* exp(—aaT)|u|* < |uo|* exp(—aaT),

we instead of (2.16) have

n0) = [ [ste = a0 0.0) + 020,04 3 02 020
Q i=1

25\
b= 5 |vm(x,0)|a+2] dera/vfn(x,O) ds
et

o0

-/ [uésw—a%(x,ﬂ+ﬂ3vzt<x,T>
Q
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25|02

) Um(x,T)|0‘+2} dx

+ p’(% Z U?rwi (33, T) +
i=1
2,2 2~
+ U/Movm(xaT) dS S Mme(T)
o0

Analogously, instead of (2.17)—(2.21) we, respectively, obtain

Wy (0) < p i, (T) < pd [{Em(O) + e L exp(2aT) / F2 dx dt} e,
Dt
p2 = pget <1,
W (0) < (1 = p2) " pge ™" e exp(2aT) | FinllZ, (b, )

() S AN FmllZyppr 0<7<T,
5= [(1 — o) tpde et e exp(2a + €)T,

where by virtue of |ug| < |u], we can take in the capacity of € the same
number € = % ln(ﬁ) as in (2.21). Next, analogously to how from (2.20)

and (2.28) we have got a priori estimate (2.2) with the constants ¢; and ca,
from (2.30) we will have

o, oy < ol FlLacon (235)
JHO

where the positive constant

Nl

c3 = {T(co +1) [(1 — o) e et e exp(2a + a)T} (2.36)

does not depend on v, F' and on the parameter s € [0, 1].

3. THE EXISTENCE OF A SOLUTION OF THE PROBLEM (1.1)—(1.4)

To prove that the problem (1.1)—(1.4) has a solution in case |u| < 1, we
will use the well-known facts dealing with the solvability of the following
mixed problem

U — Zuzixi = F(z,t), (z,t) € Dr, (3.1)
i=1

) =0, u(z,0)=p(), u(z,0) =), e, (3.2)

(3u n )
— +ou
ov
where F', p and v are the given functions, o = const > 0.
For F € La(Dr), ¢ € W5 (), ¢ € La(2) a unique generalized solution
u of the problem (3.1), (3.2) from the space Es 1 (D) with the norm
2,2 2
ve 4+ vp + vm} dz
[l

2 _
1015, , (pr) = oS
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is given by the formula [16, pp. 214, 226], [19, pp. 292, 294]

oo
u= Z <ak cos gt + by sin pgt
k=1

+ i O/Fk(r) sin pg(t — 7) dT) vr(x), (3.3)

where \p = fui, 0<p Spg <o < pup < -+ are eigen-functions and
klim i = 0, while pr € W3(Q) are the corresponding eigen-functions of
—00

the spectral problem Aw = Aw, (‘g—”;‘j +ow = 0 in the domain Q (A :=

Moo

n
> 88723) which form simultaneously an orthonormalized basis in Lo (£2) and

=1

orthogonal basis in W3 () in a sense of the scalar product

(v, w)wa (o) :/vaiwxi dx—i—/avwds
o i=1

o0
[16, p. 237], that is,

1, 1=k
) =6 (o Y, [ = (34
Pk, 01) La(0) ko (Pk w)wg(m KOk O 0. 14k (3.4)
Here
A = (g@,(pk)L2(Q)7 bk :/qul(’(/J,QDk)7 k= 1,2,..., (35)
F(z,t) =) Fi(t)er(),
> @9
Fk(t) = (Fv (Pk)LQ(Wt)7 wr = DprN {t = T}7

and for the solution u from (3.3) the estimate

[ell 2,1 (D) < 7<||F||L2(DT) + ||<PHW21(Q) + ||¢||L2(Q)) (3.7)

with the positive constant v, independent of F', ¢ and v, is valid [16, pp. 214,
226].
Let us consider now the linear problem

0%u " 92y

Lou := o 2 Py = F(z,t), (z,t) € Dr, (3.8)
ou
(5 + Uu) . =0, (3.9)
u(z,0) — pu(x,T) =0, u(z,0) — pue(x,T) =0, z€Q, (3.10)

corresponding to (1.1)—(1.4) in case a = ¢ = A = 0.
Show that for |u| < 1, for any F' € Lo(Dr), there exists a unique strong
generalized solution of the problem (3.8)—(3.10). Indeed, since the space of
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finite infinitely differentiable functions C§°(Dr) is dense in Lo(Dr), there-
fore for F' € Ly(Dr) and for any natural number m there exists the function
F,, € C§°(Dr) such that

1
||Fm - FHL2(DT) < E : (311)

On the other hand, for the function F,, in the space Ly(Dr) the decompo-
sition [16]

Fr(z,t) = ZFm,k<t)‘Pk(x)a Fm,k(t) = (Fn, QOk)Lz(Q) (3.12)
k=1

is valid.
Therefore there exists the natural number ¢,,, lim ¢,, = oo, such that
m—»o0

for
L

F(2,t) =Y Fok(t)pr(z) (3.13)

k=1
the inequality
~ 1
HFm*FmHLz(DT) < m (3.14)
holds.
It follows from (3.11) and (3.14) that
Tim (B~ Flla(og) = 0. (3.15)

The solution u = u,, of the problem (3.1), (3.2) for

Lo L
o= o, =Y mbrpr, F=Fp,
k=1 k=1

is given by formula (3.3) which with regard for (3.4)—(3.6) and (3.13) takes
the form
L

Um = Z (ak COS ,Ukt +Zk sin /,th
k=1

+ :}CO/Fm,k(T) sin pu(t — 7) dT)ng(x). (3.16)

By the construction, the function wu,, from (3.16) satisfies equation (3.8)
and the boundary condition (3.9) for F = F, from (3.13).

Define now unknown coefficients a; and Ek in such a way that the function
U, from (3.16) likewise satisfy the nonlocal conditions (3.10). Towards this
end, we substitute the right-hand side of (3.16) into equalities (3.10). As a
result, taking into account that the system of functions {pg(z)} forms the
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basis in L2(2), to find coefficients a; and by, we obtain the following system
of linear algebraic equations
(1 — peos i T)ag — (wsin puT)by,

T

= L | Fpk(r) sin (T — 7) dr,
Pk
i ~ 0 ~ (3.17)
(ppur sin prT)ak + pr(1 — peos peT)by
T
= /L/Fmﬁk(’r) cos pg(T — 1) dr,
0
k=1,2,...,4,, whose solution is

G = [dlkwk sin T — dog(1 — ucos ukT)} A7 k=12, 0, (3.18)
gk = [dgk(l — pcos upT) — dygfofir sinukT} A;l, k=1,2,...,0m. (3.19)

Here

T
dip = ,uﬁ /Fm,k(T) sin p (T — 7) dT,
k
0

T
do, = H/Fm,k(T) cos pug (T — 1) dr
0

and since |p| < 1, for the determinant Ay of system (3.17), we have
2 2 2 2
Ay = g [(1 — peos upT)” + p” sin MkT} > (1= [pul)” >0. (3.20)

Below, the Lipschitz domain 2 will be assumed to be such that the eigen-
functions ¢y, € C2(Q), k > 1. For example, this fact will hold if 9Q € Cl31+3
[18, p. 227]. This may take place also in the case of piecewise smooth
Lipschitz domain, for example, for the parallelepiped Q = {z € R" : |z;] <
a;, i = 1,...,n}, the corresponding eigen-functions ¢y € C°°(Q) [19] (see
also Remark 4.1). Thus, since F,, € C§°(Dr), by virtue of (3.12), the
function F,, » € C?([0,T]), and hence the function u,, from (3.16) belongs
to the space C%(D7). Next, by the construction, the function wu,, from

(3.16) will belong to the space C? (D) which has been defined in (1.5), and
Lotm = Fpy  Lo(tm — ug) = F, — Fp. (3.21)

From (3.21) and a priori estimate (2.2) for a = ¢ = A = 0 in which by
Lemma 2.1 the constant c; = 0, we have

< allFm = FillLo(or)- (3.22)



The Existence of Solutions of one Nonlocal in Time Problem. .. 97

By virtue of (3.15), it follows from (3.22) that the sequence u,, € C%(Dr)
is fundamental in the whole space W3 u(D1). Therefore there exists the

function u € W , (D) such that by (3.15) and (3.21) the limiting equalities
(2.3) are valid for A = 0. The latter means that the function u is a strong
generalized solution of the problem (3.8)—(3.10). The uniqueness of that
solution follows from a priori estimate (2.2) in which A = 0 and the constant
co = 0, that is,

g, < alFlacon: (3.23)

Remark 3.1. Thus the linear problem (3.8)—(3.10) has a unique strong gen-

eralized solution u € W3 ,(Dr) for which we can write u = 0, ' (F), where

"

o
D;l : Lo(Dr) — W%,H(DT) is the linear continuous operator whose norm
by virtue of (3.23) admits the estimate

[mpad] <eci. (3.24)

o —_
L2(Dr)—=W;3 ,(Dr)

Remark 3.2. Regarding a new unknown function v := wexp(at), the problem
(1.1)—(1.4) can be written in the form

n

Lyv = vy — vaf + (¢ — a®)v + Xexp(—aat)|v|*v

i=1
= exp(at)F(z,t), (z,t) € Dr, (3.25)
(% +ov) =0, (3.26)
(Kuov)(2) =0, (Kpove)(2) =0, 2 €, (3.27)

where pg = pexp(—aT’). Note that the problems (1.1)—(1.4) and (3.25)—
(3.27) are equivalent in a sense that u is a strong generalized solution of the
problem (1.1)—(1.4), if and only if v is a strong generalized solution of the

problem (3.25)(3.27), that is v € W, (Dr), and there exists the sequence

of functions v, € C2 (Dr) such that v, — v in the space W3 , (Dr), and
Lvm — exp(at)F(z,t) in the space Lo(D7).

Remark 3.3. The embedding operator I : W (D) — Ly(Dr) is the linear,
continuous, compact operator for 1 < ¢ < %, when n > 1 [16, p. 81].
At the same time, the Nemytski’s operator N : Ly(Dr) — Lo(Dr) acting by
the formula N'v = (¢ — a?)v + Aexp(—aat)|v|*v is continuous and bounded
if ¢ > 2(a+ 1) [14, p. 349], [15, pp. 66, 67]. Thus, if a < -2, that is

2(a+1) < 2t then there exists the number g such that 1 < ¢ < Antl)

n—1 7 n—1

and g > 2(a + 1). Therefore, in this case the operator

No=NT: Wi, (Dr) = Ly(Dr) (3.28)
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will be continuous and compact. Moreover, from w € W%#O (Dr) it all
the more follows that exp(—aat)|v|*v € Lo(Dr), and if v, — v in the

space W3 , (Dr), then exp(—aat)|vy,|* v, — exp(—aat)|v|*v in the space
Ly(Dr).

Remark 3.4. Under the assumption that @ > 0 and |u| < 1, we have || < 1,

and taking into account Remarks 3.1 and 3.2, the function v € W3 , (Dr)
is a strong generalized solution of the problem (3.25)—(3.27), if and only if
v is a solution of the following functional equation

v=01 ((a2 —c)v — )\exp(—aat)|v|av) + D;()l(exp(at)F) (3.29)

o
o
in the space W3, (Dr).

We rewrite equation (3.29) in the form

v = Agv := —D;{} (Nov) + D;[)l(exp(at)F), (3.30)

where the operator Ny : W4, (Dr) — Ly(Dr) from (3.28) is, by Re-
mark 3.3, continuous and compact one. Consequently, owing to (3.24), the

operator Ay : W3, (Dp) — W5, (Dr) from (3.30) is likewise continu-
ous and compact for 0 < a < % At the same time, by Remarks 2.1,
3.2 and 3.4, if conditions (2.34) are fulfilled for every value of parameter
s € [0, 1] and for every solution v of equation v = sAgv with the parameter
s € [01,], then a priori estimate (2.35) with nonnegative constant c¢s from
(2.36), independent of v, F' and s, is valid. Therefore, by the Lerée—Schauder

theorem [20, p. 375], equation (3.30), and hence by Remarks 3.2 and 3.4,

the problem (1.1)-(1.4) has at least one solution u € W3 ,(Dr). Thus we
have proved the following

Theorem 3.1. Let 0 < a < -2, A >0, |u| < 1 and conditions (2.34) be
fulfilled. Then for any F € Lo(Dr) the problem (1.1)—(1.4) has at least one

strong generalized solution of the class W3 in the domain Dt in a sense of
Definition 1.1.

4. THE CASE |u| =1

Instead of conditions (2.1) we consider now the conditions
a>0, c>a? o>0. (4.1)

Theorem 4.1. Let 0 < a < =2, A > 0, |u| = 1 and conditions (4.1) be
fulfilled. Then for any F' € Lo(Dr) the problem (1.1)—(1.4) has at least one
strong generalized solution of the class W4 in the domain Dt in a sense of

Definition 1.1.
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Proof. Regarding a new unknown function v := wexp(at), the problem
(1.1)-(1.4) by Remark 3.2 reduces equivalently to the nonlocal problem
(3.25)—(3.27), where by virtue of a > 0, for the number py = pexp(—aT’) we
have |po| < 1. Therefore if the conditions of Theorem 4.1 are fulfilled, then
repeating reasoning mentioned in proving Theorem 3.1 we can conclude
that the problem (3.25)—(3.27) and hence the problem (1.1)-(1.4) has at
least one strong generalized solution of the class W3 in the domain Dp. [

Remark 4.1. Tt should be noted that for || = 1 the homogeneous problem
corresponding to (1.1)—(1.4) may have even in a linear case, i.e., for A =0, a
finite or even an infinite set of linearly independent solutions, if conditions
(4.1) are violated, whereas for the solvability of that problem the function
F € Ly(Dr) must satisfy, respectively, a finite or an ininite number of
conditions of solvability of type ¢(F) = 0, where ¢ is the linear continuous
functional in Lo(Dr). Indeed, let us consider the case A = a = ¢ = 0,
o = 1. When p = 1, we denote by A(1) a set of those uy from (3.3) for
which the ratio % is a natural number, ie., A(1) = {px : % € N}
Formulas (3.18) and (3.19) for finding unknown coefficients @ and by, in the
representation (3.16) have been obtained from the system of linear algebraic
equations (3.17). In case A\(1) # @ and pui € A(1), p = 1, the determinant
of system (3.17) given by formula (3.20) is equal to zero. Moreover, in this
case all coefficients a;, and Ek in the left-hand side of system (3.17) are equal
to zero. Therefore, in accordance with (3.3), the homogeneous problem
corresponding to (3.8), (3.9) and (3.10) is satisfied with the function

ug(z,t) = (C1 cos pt + Co sin pgt)op (), (4.2)

where C and Cs are arbitrary constant numbers, and in this case the nec-
essary conditions for the solvability of the inhomogeneous problem (3.8)—
(3.10) corresponding to ux € A(1) are

U1 (F) = / F(z,t)pr(z)sinpup(T —t)dedt =0,
Dt

(4.3)
U o(F) = / F(z,t)pr(z) cos up (T — t) dx dt = 0.
Dt
Analogously, in case p = —1, we denote by A(—1) a set of those puy

from (3.3) for which the ratio % is an odd natural number. For p; €
A(=1), p = —1, the function uy from (4.2) is, likewise, a solution of the
homogeneous problem corresponding to (3.8)—(3.10), and conditions (4.3)
are the necessary ones for solvability of that problem. For example, for n =
2, the eigen-numbers and eigen-functions of the spectral problem Aw = Aw,
(% —i—w)’aQ =0 are

1
M= =1 [k =1+ (ke = 1], k= (ki k) € N2
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ok (x1,w2) = dip (sin fig, 21 + [ig, €08 [ig, 1) ( SIn [, @2 + Fik, COS ik, T2),

where fiy, = 1 (2k; — 1), pp = 3 /(2k1 — 1)2 + (2k2 — 1)2, and dj, is the

— 2
normalizing factor defined from the condition ||¢k|r,) = 1. It can be

easily seen that if the number T is such that 2\/T§ﬂ € N, then for any

k = (k1,k2) such that k; = ko we have pup € A(1). In this case, i.e., for
=1 and 2\/T§ﬂ € N, the homogeneous problem corresponding to (3.8)—
(3.10) will have an infinite set of linearly independent solutions of type
(4.2), and for the solvability of that problem it is necessary that an infinite
number of conditions of type (4.3) for k = (k1, k2) such that k; = k2 € N

are fulfilled. The case = —1 is considered analogously.
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