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Abstract. A necessary condition for the existence of spectral factoriza-
tion is positive definiteness a.e. on the unit circle of a matrix function which
is being factorized. Correspondingly, the existing methods of approximate
computation of the spectral factor can be applied only in the case where the
matrix function is positive definite. However, in many practical situations
an empirically constructed matrix spectral densities may lose this property.
In the present paper we consider possibilities of approximate spectral fac-
torization of matrix functions by their known perturbation which might not
be positive definite on the unit circle.
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1. INTRODUCTION

Matrix Spectral Factorization Theorem [9], [5] asserts that if

Sngtg 812Et§ cee Slrétg

So1(t Soo(t cee Sop(T

St =1\ . : : R (1)
sp1(t)  sp2(t) oo sep(t)

|t| = 1, is a positive definite (a.e.) matrix function with integrable entries,
sij € L*(T), and if the Paley~Wiener condition

logdet S € L'(T) (2)

is satisfied, then (1) admits a (left) spectral factorization
S(t) =ST(t)S™(t) = ST(B)(ST()", 3)
where ST is an r X r outer analytic matrix function with entries from the
Hardy space H?(D), D = {z € C : |z| < 1}, and S~ (2) = (ST(1/2))*,

|z| > 1. It is assumed that (3) holds for boundary values a.e. on T. A
spectral factor ST is unique up to a constant right unitary multiplier (see

e.g. [3]).
In the scalar case, r = 1, a spectral factor of a positive function f can be
explicitly written by the formula

2T

0
e =ew (5 [ S towse) i) ()
0

e —

and it is well-known that if (1) is a Laurent polynomial matrix

N
St)= Y Cutk, CrecCr, (5)
k=—N

N

then the spectral factor ST(t) = Y AxtF is a polynomial matrix of the
k=0

same order (see e.g. [2]).

A challenging practical problem is actual approximate computation of
matrix coefficients of analytic function S* for a given matrix function (1).
Starting with Wiener’s original efforts [10], various methods have been de-
veloped to approach this problem (see the survey papers [7], [8] and refer-
ences therein). Recently, a new algorithm of matrix spectral factorization
has been proposed in [6]. This algorithm can be applied to any matrix
function which satisfies the necessary and sufficient condition (2) for the
existence of factorization. (Most of other algorithms impose additional re-
strictions on (1), such as S to be rational or strictly positive definite on the
boundary.) In the present paper we would like to demonstrate that (at least
in the polynomial case) the proposed algorithm can be also applied to the
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so-called “perturbed” data which looses the property of positive definiteness.
Namely, we consider and solve the following problem.

In most practical applications of spectral factorization, a power spectral
density S is constructed from empirical observations which are always sub-
ject to small numerical errors. Thus, instead of theoretically existing matrix
spectral density (1), which is always positive definite (a.e.) on T, we have to
deal with S which may no longer be even positive semi-definite on T. The

n

classical illustrative example is when S(t) = > Ct* is a Laurent matrix
k=—n
polynomial with det S(tg) = 0 for some ¢y € T and we disturb the coeffi-
cients C%. The question arises if the above mentioned spectral factorization
algorithm can treat S as positive definite in order to correct this “small er-
ror” in data and find ST approximately. (Most of existing matrix spectral
factorization algorithms do not make sense for non positive definite data.)
Below we provide a positive answer to this question. To be specific, for
polynomial matrix functions, depending on algorithm proposed in [6], we
explicitly describe a computational procedure which can be applied to any
polynomial data (say, maps €, : Py(mxm) — Ph(mxm),n=1,2,..., see
Section 2 for the notation) in such a manner that the following statement
is true.

Theorem 1. Let S be a polynomial matriz function (5) which is positive
semi-definite on T and has a spectral factor ST, and let S,,, n =1,2,..., be a
sequence of arbitrary (not necessarily positive semi-definite on T) polynomial
matriz functions of the same degree N such that

[[Sn = Sllzr = 0. (6)

Then
[€0(Sn) = ST — 0. (7)

The paper is organized as follows. In the next section, we introduce the
notation that will be used throughout the paper. In Section 3, we review the
matrix spectral factorization algorithm proposed in [6] and in Section 4 we
describe the strategy dealing with non positive definite matrices. In Section
5, we consider the above formulated problem in the scalar case and solve it
for polynomial functions. A partial solution of the problem is provided for
general spectral densities. The main Theorem 1 along with some auxiliary
lemmas are proved in Section 6.

2. NOTATION

Let T = {z € C: |z| = 1} with the standard Lebesgue measure dyu on it
and D= {z € C: |z| <1}. Asusual, L? = LP(T), 0 < p < oo, denotes the
Lebesgue space of p-integrable complex functions defined on T, and C"™*™,
LP(T)™*™  etc., denote the set of m x m matrices with entries from C,
LP(T), etc. If S € C"™" is a matrix (function) and m < r, then S, stands
for the upper-left m x m submatrix of S (S is assumed to be 1). For a
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matrix (function) M, its Hermitian conjugate matrix (function) is denoted
by M* = M Finally, I,,, is the m x m unit matrix.

The kth Fourier coefficient of an integrable (matrix) function f € L!(T)
(f € LYT)™*™) is denoted by cx{f} (Cix{f} € C™ ™). For p > 1,
LE(T) := {f € Ly(T) : c{f} = 0 whenever k < 0}, and, for n > 0,
LY (T) := {f € Ly(T) : e{f} = 0 whenever k& < —n}. Moreover,

N
Py = { > c2¥, ¢ € C} is the set of trigonometric polynomials of
k=—N

N
degree at most N and Py := {3 ex2*, ¢ € C}. Also, P = UPy and
k=0

Pt = UP]T,, while Q[z] := {p/q: p,q € PT} stands for the set of rational
functions.

The Hardy space of analytic functions in D, H? = HP(D) is identified
with L% (T) for p > 1, and H}, = H{, (D) is the set of outer analytic functions
from H,. A square matrix function is called outer if its determinant is an
outer function.

For a real function f, let sf be the truncated function

O = {f(t) if f(t) > 6,

5 i f(t) <o ®

(we usually use the argument “¢” for functions defined on T). Also, let
f) = max(0, f) and () = max(0, —f).

The notation f,, = f means that f,, converges to f in measure. Observe
that

fo 3 f=> fD) = fOD) (9)

We will also use the following implication (see, e.g. [4, Corollary 1]):

lfn— fllze = 0, |unl <1, up = u=|fnu, — fullrz — 0. (10)

3. OVERVIEW OF THE MATRIX SPECTRAL FACTORIZATION ALGORITHM

The first step of the matrix spectral factorization algorithm proposed
in [6] is the triangular factorization

S(t) = Mg(t)Mg(t), (11)
where Mg(t) is the lower triangular matrix
ff'(t) 0 e 0 0
Eanlt)  f ) - 0 0
Ms(t) = : : : : o (12)
E1a(t) &o1p(t) - 41 0
& (t) Erat) oo &rpoa(t) f1(1)

&, € LA(T), f;* € H3. Then Mg is post multiplied by the unitary matrix
functions of the special form Uy, Ug, ..., U,, so that to make the left-upper
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m X m submatrices of Mg analytic step-by-step, m = 2,3,...,r. As a result,
we get (see [4, formula (47)])

ST(t) = Ms(t)U2(t)Us(t) - Uy (1), (13)

where each U,, has a block matrix form

U, (t) = (Uné(t) 0 )

Irfm

and Up,(t) is the special unitary matrix function

u11(t) u12(t) e U1, m—1(t) Ut ()
uo1 () uo2(t) e U2,m—1(t) Uzm (1)
U(t) = (14
Un-11(t) Um—12(t) - Um—1m-1(t) Um—1m(t)
U1 (t)  um2(t) o Umm—1() Umm(t)
ui; € LY, detU(t) =1 ae., (15)

while, for each m < r, the left-upper m x m submatrix of MsUsU;s...U,,
is a spectral factor of the left-upper m x m submatrix of S, i.e.,

(Ms()U2(t)Us(t) - U (1)), = Sphay- (16)

An explicit description of the representation (13) and its approximate
computation are discussed in [6], [4]. In particular, when the left-upper
(m — 1) x (m — 1) submatrix of (12) has already been made analytic, the
matrix function (MSUQUg . Um,l) has the form

[m]

(MgUsz---Uy,q)

[m]
0 0
: + :
= S[J:n_l] ] = S[m—l] | F, (A7)
0 0
G G o Cmer S 00 ... 01
where F' is the matrix function
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
Fit)y=1 . . . . | (18)
0 0 0 1 0

GO Gl Gl - ) FEO)
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Remark 1. Note that matrix function (17) multiplied by its Hermitian con-
jugate gives S|,,). Therefore, the following equation

G
R S1im
<2 Som
Spn_1] = (19)
Sm—1,m
Cmfl

holds.

The analyticity of the m-th row in (17) is achieved by application of the
following

Theorem 2 (see [4, Lemma 4]). For any matriz function F of the form
(18), where
GeLXT), i=1,2,....m—1, fteH?, (20)
there exists a unitary matriz function U of the form (14), (15), such that
FU € L3 (T)™ ™.

Remark 2. Note that under the above circumstances,

0

Sty = Sim—1] (1) U. (21)
G G oo Gmr S

In order to compute (14) approximately, (18) is approximated by its
Fourier series. More specifically, let F}, be the matrix function (18) in which
the last row is replaced by

(G (), G5 (1), s Gma (0), £ (1)), G € L2(T), (22)
where (" (t) = i ce{GHF, f = f. Then the following result is invoked:
k=—n

Theorem 3 (see [6, Theorem 1]). Let F,, be a matriz function of the form
(18), (22), where

re L2 (T), i=1,2,..., and f,7(0) #0. (23)

Then there exists a unique unitary matriz function U, of the form (14),
where w;; € Py, detUy(t) =1 (on T), and U, (1) = I,,, such that

E,U, € L3 (T)™™.

Note that [6] in fact provides an explicit construction of U,.
In order to justify the approximating properties of the algorithm, the
following convergence theorem is proved in [4].
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Theorem 4 (cf. [4, Theorem 2|). Let F be a matriz function of the form
(18), (20), and let F,,, n =1,2,..., be a sequence of matriz functions of the
form (18) with the last row replaced by (22). Let also

"= Gy fT— fT in L? and f € H3. (24)

If U,, n=1,2,..., are the corresponding unitary matriz functions defined
according to Theorem 2, then U, converges in measure:

U, = U,

and F,U,, converges in L? to the spectral factor of FF*.

4. TREATMENT OF NONPOSITIVE DEFINITE MATRIX FUNCTIONS

The main argument which helps to deal with the matrix functions S
which are close to S, but are not necessarily positive semi-definite (a.e. on
T) is the observation that Theorem 4 remains valid if in (24) we replace
the condition f; € HZ by a weaker requirement f,7(0) # 0, as in (23).
Theorem 3 guarantees that the corresponding U, exists in this case as well.
Because of the importance of this fact for our goals, we formulate this result
separately.

Theorem 5. Let F' be a matriz function of the form (18), (20), and let F,,
n=12 ... be a sequence of matriz function of the form (18), (22), (23)
such that

"= ¢ oand fF — Y oin L2

If U,, n=1,2,..., are the corresponding unitary matriz functions defined
according to Theorem 3, then U, converges in measure:
U,=U0,

and F,U, converges in L? to the spectral factor of FF*.

Remark 3. It should be observed that under the above circumstances F,, U,
might not be the canonical spectral factor of F,, F* (which was the case in
the situation of Theorem 4), since det(F,U,,) = det(F,) = f,/ might have
zeros inside the unit circle. Thus the phrase in the end of the first column
on page 2320 in [6] contains a small inaccuracy.

Although Theorems 4 and 5 look alike, there is a significant difference
between their meaning, as it is explained in the above remark. Nevertheless,
the proof of Theorem 5 does not require any additional efforts, and the proof
of Theorem 4 given in [4] goes through without any changes. Therefore we
do not provide the proof of Theorem 5 here.

For a positive definite (a.e. on T) matrix function (1) the triangular fac-
torization (11) can be performed by the recurrent formulas which are similar
to Cholesky factorization formulas for constant positive definite matrices.
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Namely, for the entries of matrix function (12), we can write (see [6], for-
mulas (56)—(58)):

fi = \/det Sy [ det Spyp 1) = det S}, /det STy, (25)
where /f is the scalar spectral factor of f defined by (4),

gilzsil/ﬁv ’L':2,3,...,7”, (26)
-1 -
&= (5= Y_€uln) [ 17, G=23,r=1, i=j+1j42,..m (27)
k=1

If now S is not necessarily positive definite, then det §[m] might become
negative on a set of positive measure and we would not be able to define
the scalar spectral factor of det Sj,,/ det Sp,;,—1). However, we could still
define Mg using formulas (25)-(27) if we were able to determine the +/f
for not necessarily positive function f. In the following section, we define a
“scalar spectral factor” of not necessarily positive function for specific cases.
If we continue the computational procedures described in Section 3 for Mg
in place of Mg, we get MzU3Us - - - U, which is similar to expression (13)
and therefore we would expect its closeness to ST. For polynomial matrix
functions, we perform these procedures in an explicit way.

5. THE SCALAR CASE

If 0 < f € LYT) and log f € L'(T), then the spectral factor f* can be
written by the formula (4). However, if we only know that fis close to f
in L! norm, then f might even not be non-negative a.e. (we discard the
1mag1nary part of f if it exists, so we assume here that f is a real function).
Even if f were positive, log f should also be close to log f in order to claim
the closeness of f* to f+ (see [4], [1]). Therefore, we consider

0 P
70 = e (4 / S togsfe) a0 (28)
0

(see (8)) and prove the following
Lemma 1. Let 0 < f € LY(T) and log f € L*(T). Suppose f,, € L*(T) and

[ fn = fllzr — 0. (29)

Then

o, —
Jim T (£ = /e =0, (30)

Proof. Tt has been proved in [4] that if 0 < f, € LY(T), (29) holds and
27 27

[ log fn(e?®)df — [ log f(e'?)df, then || f;F — f¥| g2 — 0. Hence, we can
0 0

show first that
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a) ILm llsfr. — sfllr = 0 for each § > 0 and

n—o00
T T

lim [ logsfn(e?)df = / log 5 f (') df, (31)

which implies that lim ||sf;7 — s/ |2 = 0 and, consequently,
n—oo

lim [sff = fHlle = s = fT 22, (32)
n—oo

and then
. s - 0y 70 — i -
b) 61_1>r(r)1+ lsf—fllzr — 0and 61_1>r(r)1+ﬁ[10g5f(e ) do 1{1ogf(e ) df, which

implies that

li o ft e =0.
S [lsf ™ = fT 2 =0 (33)

The relation (30) will then follow from (32) and (33).

Part b) is an easy exercise in Lebesgue integration theory, and we will
thus concentrate on a). It is easy to realize that |sfn, — s5f| < |fn — f]
and therefore the first part of a) follows from (29), which also implies that
log s fn = logsf as n — oco. In addition, [log s f,,]*) = [logsf]®) (see (9)).

The necessary and sufficient condition for (29) is that

fn=f and sup /fndm—>0 as k— oo and ¢ — 0.
n>k,p,(E)<sE

Therefore, ||[log s fn] ") —[log s f]F) ||z — 0 and, in addition, ||[logsf.]) —
[logsf]||z1 — 0 due to the bounded convergence theorem. Thus (31)
follows. O

The relation (30) shows that for any sequence f,,, n = 1,2, ..., satisfying
(29) there exist ¢, — 0+ such that

i [, fif — fF e =0, (34)

However, (34) does not hold for every sequence §,, — 0+ and, in general, it
is hard to determine conditions on ¢, which would guarantee (34).
An explicit computational procedure is proposed for polynomial case.

N
Namely, for any polynomial p(z) = > ¢x2* (which might not be positive

k=—N
or even real on T), let
Re{p(t hen Re{p(t 0
A(t) = e{p(®)} when Re{p(t)} >0, (35)
1 when Re{p(t)} <0,
let pT be the spectral factor of p:
2m

A7 | ei? — 2
0

60
#t = exp < 1 /e T2 g (ei?) d&), (36)



Matrixz Spectral Factorization with Perturbed Data 75

and let pT be its Fourier approximation up to degree N:
N

pr(z) =Y a{pi}e. (37)
k=0
We prove the following
Lemma 2. Let
N
f&)=> cath >0 for teT, (38)
k=—N

and let
N

k=—N
be such a sequence that

fa— £ (39)
Then B
f= 1 (40)
Proof. We will show that
£ = £l = 0 (41)

which implies (40), by virtue of the definition (37).
In order to prove (41), it is sufficient to show that (see [4])

1o = fllr — 0 (42)
and
/ log f, (£) dt — / log £(£) dt. (43)
T T
Let E, :={t € T: Re{f(t)} > 0}. Then
fo=1p,Re{fn} + Ing, = Re{ f,,}F) + Ing,. (44)
Since (39) holds, we have ||Re{f.} — f||z: — 0, which implies that
||§Re{fn}(+) - f(+)HL1 = ||§Re{fn}(+) - f”Ll — 0. (45)

Since Re{fn} = f, u{f < 0} = 0, and 0 is the continuity point of the
distribution function t — pu{f < t}, we have

w(T\ Eyp) — 0, (46)

which implies that ||1r\ g, |21 — 0 and (42) follows from (44) and (45).
In order to prove (43), we need the following

Lemma 3. Let Py C ’P;{, be the set of monic polynomials with the degrees
not exceeding N. Then

log[f ()] du| = 0. (47)
{teT: |£(1)|<8}

lim sup

6—0+ fePy
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Proof. Let

(z — z1).

f(z) =

=

k

N
Then {t € T: |f(t)| <6} U{teT: |t— 2| <5/N} and
k=1

1

log || du' S

N
U {Jt—zx|<6/N}
k=1

N N N
SZ / |10g|t—zj\|gzz / ’10g|t—zj||

I=UR=L sy <oty

.
I
=

N
U {lt—2k|<8t/N}
k=1

< N? / |log|t —1]|dp— 0 as § —0+.
{lt—1]<at/N}
Consequently, (47) holds. a
We continue with the proof of (43) as follows.

Since Re{f,,} — f and f, — Re{f,} = 0 by virtue of (35) and (46), the
convergence in measure
In=f (48)
holds, which implies that 5f, = sf for each § > 0, and since f, are uni-
formly bounded as well, from the above by virtue of (39), we have

/ log 5 dy — / log 5 f dp. (49)
T

T
On the other hand,

/1og5fd,u—/logfdu‘§ lim / log fdu =0 (50)
6—0+

T T (r<8)

as log f € LY(T), and

‘/logafndu—/logfndu‘s‘ / logfndu‘
T T

{0<fn <5}

lim
d—0+

< / log%e{fn}d,u‘ —0 as § — 0+, (51)
{0<Re{fn}<é}
&0} SEG,
by virtue of Lemma 3, since Re{f, }(t) = Re{ > ¢ 'tk} = Y &t
k=—N k=—N
are trigonometric polynomials and (é%})fltN%e{fn}(t) € P, while é%L}
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are uniformly bounded. Now (43) follows from (49), (50) and (51) since
lim ‘/logfndu— /logfdﬂ‘
n— oo
T T

/10gfn dp — /IOg 5 fn dpi]
T

T

/ log s/ dii — / log 5fdu‘
T

T

< lim limsup

n—=00 5§50+

+ lim limsup
n—o0 5§ 504

4+ lim sup
6—0+

/log5fdu—/logfd,u‘20. O
T T

6. THE MATRIX CASE

In this section we introduce the computational procedures €, : Py (m x
m) — Pl(m xm), n=1,2,..., and prove Theorem 1. First, we need two
auxiliary lemmas.

Lemma 4. Let

p(z)
f(z2) === €Q[z]nL>(T 52
(2) o) [2] (T) (52)
be a rational function without poles in D, satisfying
lf(z)| < C for z€T, (53)
and let
pn = p and ¢n — (54)

where deg(p,) = deg(p) and deg(q,) = deg(q), n=1,2,....
Let wyn = exp(%i), n=12,..., k=0,1,...,n — 1, be the Discrete
Fourier Transform nodes. Then
n—1

2m
V, = o Z |hn(win)|? = | fI5 as n— 0, (55)
k=0

where
ha(e) = {pnw)/qn(m if |pa()/gu(@)| < C,
0 if |pn(w)/an(w)| > C.
Proof. By virtue of (54), for each R < oo, the set of polynomials p,, n =
1,2,..., is uniformly bounded on D(0,R) = {z € C: |z| < R}, i.e.,

sup sup |pn(z)] < 0.
" 2eD(0,R)

N
Let g(2) =b [[ (2—2k), b # 0. If g (2) = by, Hszl(Z—Zk,n), n=12...,
k=1

and we label the zeroes of g, accordingly, then we get

b, =+ b and 2y, = 21, k=1,2,...,N, as n — oo.
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Since the zeros of ¢, are concentrated around the points zp, k& =
1,2,..., N, for each € > 0, there exist § > 0 and ng € N such that

w{T\ @w} <e (56)

and the functions

frn i =0n/qn, n > no, (57)
are uniformly bounded in
N
D.:=D(0,1+6)\ | ) D(z, 9). (58)
k=1

Consequently, the set of functions (57) is a normal family and converges
uniformly on every compact in (58) which implies, by virtue of (53), that
there exists ni > ng such that

[fn(2)| < C for n>ny and z € TN D..

Consequently, h,, = f, on TN D, for n > ny and h,, converges uniformly to
finTND..

Since the derivatives of a normal family of functions form a normal family
as well, we have that h, together with h/ converge uniformly on T N D..
Consequently,

27
D S e e T
{k: Wkn EDE} TND.
as n — 0o, while

‘/|f|2du—/|f|2du‘§ sup /If\Qdu—>O as £ =0
T

E)<e
TND. u(s) E

and

lim sup
n—oo

2 5 2 = 9
— Z |n (wWre,n) ™ — o Z [ (W) |
k=0

n
{k3 Wkn EDE}

2
—limsup — 3 |ha(wpa)l’ < Cu{T\D.} < Ce =0 as € - 0.
n—oo T {k: wpgn¥Dc}

Hence (55) holds. O

Lemma 5. Let f, p,, q, and V,, be the same as in Lemma 4. Assume that
4, (0) #£0, n=1,2,..., and let

oo
Z ag?’ ~ Pn(z)
k=0

qn(2)
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be the Tailor expansion of pn/qn in the neighborhood of zero. Define
L[pn, an] € Py by

! ! I+1
Zakzk if Z|ak|2§Vn<Z|ak|2 and 1<n,
Lulpn, nl(2) := ¢ F7° 0 F=0 (59)

Zakzk if Z |04;<;|2 < V,.
k=0 k=0

Then
||£n[pn,qn] — f||L2(T) — 0 as n — oo. (60)

Proof. The Tailor coefficients of f = p/q can be expressed recurrently in
terms of coefficients of p and ¢. Thus, because of (54), we have

for each k>0, cx{Ln[pn,qn]} = cu{f} as n — occ. (61)

By virtue of Lemma 4 and definition (59), taking into account (61), we also
have

Hﬁn[pnaQn]HLz(T) — ||f||L2(1r) as n — 00.

The convergence in (60) now follows from the general fact that in a Hilbert
space the weak convergence, when combined with the convergence of norms,
implies strong convergence. (]

We are ready now to introduce the computational procedure ¢ = &,
described in the introduction, which can be applied to any S,, € P"*", such
that Theorem 1 holds.

Note that if S is a polynomial matrix function (5), then for each m,
1 < m < r, the first m — 1 entries (1,(2,...,(n—1 of the m-th row of
MgUsUs...U,,_1 in (17) are rational functions, since they can be deter-
mined by Cramer’s rule from equation (19) as

Gi(t) = pi(t)/a(t) = t™ (tVpi(t) /a(1)), (62)

where ¢ = det S[fn_l] € P;(m_l) (it is free of zeros in D) and p; is the

determinant of the matrix S[fn _1p the i-th column of which is replaced by
[S2ms -y Sm—1,m]| T, implying zNp; € P¥, .

We compute the diagonal entries ff‘n, J/‘;"’n, cey Aj‘n of the “triangular
+

factor” of S, by the formulas: ff“n = (Sn)py  (see Section 2 for notation
Sim) and definitions (35)-(37)) and

— +

Pt = L [det((Sn)pm) +det(Sa)pno)) ] (63)

(see Lemma 5 for definitions). Set

~ ~ +
(Sn)fyy = filn = (Su)ny (64)
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and for each m = 2,3,...,r we recurrently construct
N
Sn) g = Agntt, Ag, € C™M,
k=0

an approximate “spectral factor” of (S, )], making an assumption that
(§n)[tn71] has already been constructed and performing the following oper-
ations. Let

Cim = tN Lot Dimsan(D)], i=1,2,...,m —1, (65)

where p; , and ¢; are defined similar to (62), namely, g, = det ((S’\”);ﬂ*l])
and p; , is the determinant of the matrix (S’\n)ﬁ%l] with its i-th column

replaced by [S2m, - .-, Sm—1.,m]’ . For the matrix ﬁnﬁm of the form (18) with
the last row

(Cl,ny CQ,na ) Cm—l,na f'jr;,n)v (66)
using Theorem 3, we construct the unitary matrix function U,, , such that
FpmUpn € (PT)™*™. By virtue of formula (21), the matrix function

0
5. det ((Su)f—1)) 0 Unn  (67)
G Com - G-t Frhn
is a candidate for (§n)[+m] Since we know that S[jn] € (P)™*™, we discard

coefficients of the entries in (67) with indices outside the range [0, N] and
let

N
(Sn)ihy(2) =D _CW{S- U}, m=23,...,r. (68)
k=0
We define
C(Sn) = (Su)fhy- (69)

Let us prove now the convergence (7).
Consider the equation (63). Since, because of (6), det ((Sn)pm)) —
—~ —+
det S as n — o0, we have det((Sn)pm)) — det S[J;n], m = 1,2,...,r,
by virtue of Lemma 2 (in particular,
—~ + ~
see (64)), while the limiting functions det S[‘:n] are free of zeros in D and
+ = det S[+ ]/det S[—:n—l] € Ly(T) (see (25)) do not have poles on T. Con-

m

sequently, the hypotheses of Lemma 5 hold and therefore

f,',t’n—>f$inL2 as n—o0, m=23,...,m (71)
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Since (70) holds, we assume invoking induction that

(§n)[+m_1] — S[Jr in L? as n — oo, (72)

m—1]

and prove (72) for m — 1 replaced by m.
Consider now the equation (65). The sequences of polynomials p; ,, and
qn also satisfy the hypothesis of Lemma 5 and therefore

Zi,n — ¢ in L? as n — oo. (73)

Thus, taking into account the relation (71) also, we have that the sequence of
matrix functions ﬁmm of the form (18), (66) converges in L2. Consequently,
we can apply Theorem 5 to conclude that the sequence of unitary matrix
functions Uy ,, in the equation (67) is convergent in measure which, by
virtue of (10), implies that the product in (67) and, consequently, (68) are
convergent. Namely,

[m]

(5p) = S[‘rn] in L? as n — oo. (74)

We get (7) if we substitute m = r in (74), and thus the proof of Theorem 1
is completed.
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