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Abstract. A necessary condition for the existence of spectral factoriza-
tion is positive definiteness a.e. on the unit circle of a matrix function which
is being factorized. Correspondingly, the existing methods of approximate
computation of the spectral factor can be applied only in the case where the
matrix function is positive definite. However, in many practical situations
an empirically constructed matrix spectral densities may lose this property.
In the present paper we consider possibilities of approximate spectral fac-
torization of matrix functions by their known perturbation which might not
be positive definite on the unit circle.
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ÒÄÆÉÖÌÄ. ÓÐÄØÔÒÀËÖÒÉ ×ÀØÔÏÒÉÆÀÝÉÉÓ ÀÒÓÄÁÏÁÉÓÀÈÅÉÓ ÀÖÝÉËÄ-
ÁÄËÉÀ ÂÀÓÀ×ÀØÔÏÒÉÆÉÒÄÁÄËÉ ÌÀÔÒÉÝ ×ÖÍØÝÉÀ ÉÚÏÓ ÃÀÃÄÁÉÈÀÃ
ÂÀÍÓÀÆÙÅÒÖËÉ È.Ú. ÄÒÈÄÖËÏÅÀÍ ßÒÄßÉÒÆÄ. ÛÄÓÀÁÀÌÉÓÀÃ, ÀÒÓÄÁÖËÉ
ÌÄÈÏÃÄÁÉ ÓÐÄØÔÒÀËÖÒÉ ÈÀÍÀÌÀÌÒÀÅËÉÓ ÌÉÀáËÏÄÁÉÈ ÐÏÅÍÉÓÀ ÛÄÉÞ-
ËÄÁÀ ÂÀÌÏÚÄÍÄÁÖË ÉØÍÀÓ ÌáÏËÏÃ ÃÀÃÄÁÉÈÀÃ ÂÀÍÓÀÆÙÅÒÖËÉ ÌÀÔÒÉ-
ÝÄÁÉÓÀÈÅÉÓ, ÌÀÛÉÍ ÒÏÝÀ ÌÒÀÅÀË ÐÒÀØÔÉÊÖË ÓÉÔÖÀÝÉÀÛÉ ÄÌÐÉÒÉ-
ÖËÀÃ ÛÄÃÂÄÍÉËÉ ÓÐÄØÔÒÀËÖÒÉ ÓÉÌÊÅÒÉÅÉÓ ÌÀÔÒÉÝÉ ÛÄÉÞËÄÁÀ ÖÊÅÄ
ÀÙÀÒ ÉÚÏÓ ÀÌ ÈÅÉÓÄÁÉÓ ÌÀÔÀÒÄÁÄËÉ. ßÉÍÀÌÃÄÁÀÒÄ ÍÀÛÒÏÌÛÉ ÂÀÍáÉ-
ËÖËÉÀ ÛÄÓÀÞËÄÁËÏÁÄÁÉ ÌÀÔÒÉÝ ×ÖÍØÝÉÄÁÉÓ ÌÉÀáËÏÄÁÉÈÉ ×ÀØÔÏ-
ÒÉÆÀÝÉÉÓÀ ÌÀÈÉ "ÛÄÛ×ÏÈÄÁÖËÉ" ÅÄÒÓÉÉÓ ÌÉáÄÃÅÉÈ, ÒÏÌÄËÍÉÝ ÛÄ-
ÉÞËÄÁÀ ÀÙÀÒ ÉÚÅÍÄÍ ÃÀÃÄÁÉÈÀÃ ÂÀÍÓÀÆÙÅÒÖËÍÉ.
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1. Introduction

Matrix Spectral Factorization Theorem [9], [5] asserts that if

S(t) =


s11(t) s12(t) · · · s1r(t)
s21(t) s22(t) · · · s2r(t)

...
...

...
...

sr1(t) sr2(t) · · · srr(t)

 , (1)

|t| = 1, is a positive definite (a.e.) matrix function with integrable entries,
sij ∈ L1(T), and if the Paley–Wiener condition

log detS ∈ L1(T) (2)

is satisfied, then (1) admits a (left) spectral factorization

S(t) = S+(t)S−(t) = S+(t)(S+(t))∗, (3)

where S+ is an r × r outer analytic matrix function with entries from the
Hardy space H2(D), D = {z ∈ C : |z| < 1}, and S−(z) = (S+(1/z))∗,
|z| > 1. It is assumed that (3) holds for boundary values a.e. on T. A
spectral factor S+ is unique up to a constant right unitary multiplier (see
e.g. [3]).

In the scalar case, r = 1, a spectral factor of a positive function f can be
explicitly written by the formula

f+(z) = exp
(

1

4π

2π∫
0

eiθ + z

eiθ − z
log f(eiθ) dθ

)
(4)

and it is well-known that if (1) is a Laurent polynomial matrix

S(t) =

N∑
k=−N

Ckt
k, Ck ∈ Cr×r, (5)

then the spectral factor S+(t) =
N∑

k=0

Akt
k is a polynomial matrix of the

same order (see e.g. [2]).
A challenging practical problem is actual approximate computation of

matrix coefficients of analytic function S+ for a given matrix function (1).
Starting with Wiener’s original efforts [10], various methods have been de-
veloped to approach this problem (see the survey papers [7], [8] and refer-
ences therein). Recently, a new algorithm of matrix spectral factorization
has been proposed in [6]. This algorithm can be applied to any matrix
function which satisfies the necessary and sufficient condition (2) for the
existence of factorization. (Most of other algorithms impose additional re-
strictions on (1), such as S to be rational or strictly positive definite on the
boundary.) In the present paper we would like to demonstrate that (at least
in the polynomial case) the proposed algorithm can be also applied to the
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so-called “perturbed” data which looses the property of positive definiteness.
Namely, we consider and solve the following problem.

In most practical applications of spectral factorization, a power spectral
density S is constructed from empirical observations which are always sub-
ject to small numerical errors. Thus, instead of theoretically existing matrix
spectral density (1), which is always positive definite (a.e.) on T, we have to
deal with Ŝ which may no longer be even positive semi-definite on T. The
classical illustrative example is when S(t) =

n∑
k=−n

Ckt
k is a Laurent matrix

polynomial with detS(t0) = 0 for some t0 ∈ T and we disturb the coeffi-
cients Ck. The question arises if the above mentioned spectral factorization
algorithm can treat Ŝ as positive definite in order to correct this “small er-
ror” in data and find S+ approximately. (Most of existing matrix spectral
factorization algorithms do not make sense for non positive definite data.)
Below we provide a positive answer to this question. To be specific, for
polynomial matrix functions, depending on algorithm proposed in [6], we
explicitly describe a computational procedure which can be applied to any
polynomial data (say, maps Cn : PN (m×m) → P+

N (m×m), n = 1, 2, . . ., see
Section 2 for the notation) in such a manner that the following statement
is true.

Theorem 1. Let S be a polynomial matrix function (5) which is positive
semi-definite on T and has a spectral factor S+, and let Sn, n = 1, 2, . . . , be a
sequence of arbitrary (not necessarily positive semi-definite on T) polynomial
matrix functions of the same degree N such that

∥Sn − S∥L1 → 0. (6)
Then

∥Cn(Sn)− S+∥L2 → 0. (7)

The paper is organized as follows. In the next section, we introduce the
notation that will be used throughout the paper. In Section 3, we review the
matrix spectral factorization algorithm proposed in [6] and in Section 4 we
describe the strategy dealing with non positive definite matrices. In Section
5, we consider the above formulated problem in the scalar case and solve it
for polynomial functions. A partial solution of the problem is provided for
general spectral densities. The main Theorem 1 along with some auxiliary
lemmas are proved in Section 6.

2. Notation

Let T = {z ∈ C : |z| = 1} with the standard Lebesgue measure dµ on it
and D = {z ∈ C : |z| ≤ 1}. As usual, Lp = Lp(T), 0 < p < ∞, denotes the
Lebesgue space of p-integrable complex functions defined on T, and Cm×m,
Lp(T)m×m, etc., denote the set of m × m matrices with entries from C,
Lp(T), etc. If S ∈ Cr×r is a matrix (function) and m ≤ r, then S[m] stands
for the upper-left m × m submatrix of S (S[0] is assumed to be 1). For a
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matrix (function) M , its Hermitian conjugate matrix (function) is denoted
by M∗ = M

T . Finally, Im is the m×m unit matrix.
The kth Fourier coefficient of an integrable (matrix) function f ∈ L1(T)

(f ∈ L1(T)m×m) is denoted by ck{f} (Ck{f} ∈ Cm×m). For p ≥ 1,
Lp
+(T) := {f ∈ Lp(T) : ck{f} = 0 whenever k < 0}, and, for n ≥ 0,

Lp
n−(T) := {f ∈ Lp(T) : ck{f} = 0 whenever k < −n}. Moreover,

PN := {
N∑

k=−N

ckz
k, ck ∈ C} is the set of trigonometric polynomials of

degree at most N and P+
N := {

N∑
k=0

ckz
k, ck ∈ C}. Also, P = ∪PN and

P+ = ∪P+
N , while Q[z] := {p/q : p, q ∈ P+} stands for the set of rational

functions.
The Hardy space of analytic functions in D, Hp = Hp(D) is identified

with Lp
+(T) for p ≥ 1, and Hp

O = Hp
O(D) is the set of outer analytic functions

from Hp. A square matrix function is called outer if its determinant is an
outer function.

For a real function f , let δf be the truncated function

δf(t) =

{
f(t) if f(t) > δ,

δ if f(t) ≤ δ
(8)

(we usually use the argument “t” for functions defined on T). Also, let
f (+) = max(0, f) and f (−) = max(0,−f).

The notation fn ⇒ f means that fn converges to f in measure. Observe
that

fn ⇒ f =⇒ f (+)
n ⇒ f (+). (9)

We will also use the following implication (see, e.g. [4, Corollary 1]):
∥fn − f∥L2 → 0, |un| ≤ 1, un ⇒ u =⇒ ∥fnun − fu∥L2 → 0. (10)

3. Overview of the Matrix Spectral Factorization Algorithm

The first step of the matrix spectral factorization algorithm proposed
in [6] is the triangular factorization

S(t) = MS(t)M
∗
S(t), (11)

where MS(t) is the lower triangular matrix

MS(t) =


f+
1 (t) 0 · · · 0 0

ξ21(t) f+
2 (t) · · · 0 0

...
...

...
...

...
ξr−1,1(t) ξr−1,2(t) · · · f+

r−1(t) 0
ξr1(t) ξr2(t) · · · ξr,r−1(t) f+

r (t)

 , (12)

ξij ∈ L2(T), f+
i ∈ H2

O. Then MS is post multiplied by the unitary matrix
functions of the special form U2,U3, . . . ,Ur, so that to make the left-upper
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m×m submatrices of MS analytic step-by-step, m = 2, 3, . . . , r. As a result,
we get (see [4, formula (47)])

S+(t) = MS(t)U2(t)U3(t) · · ·Ur(t), (13)

where each Um has a block matrix form

Um(t) =

(
Um(t) 0

0 Ir−m

)
,

and Um(t) is the special unitary matrix function

U(t) =



u11(t) u12(t) · · · u1,m−1(t) u1m(t)

u21(t) u22(t) · · · u2,m−1(t) u2m(t)

...
...

...
...

...
um−1,1(t) um−1,2(t) · · · um−1,m−1(t) um−1,m(t)

um1(t) um2(t) · · · um,m−1(t) umm(t)


, (14)

uij ∈ L∞
+ , detU(t) = 1 a.e., (15)

while, for each m ≤ r, the left-upper m×m submatrix of MSU2U3 . . .Um

is a spectral factor of the left-upper m×m submatrix of S, i.e.,(
MS(t)U2(t)U3(t) · · ·Um(t)

)
[m]

= S+
[m]. (16)

An explicit description of the representation (13) and its approximate
computation are discussed in [6], [4]. In particular, when the left-upper
(m − 1) × (m − 1) submatrix of (12) has already been made analytic, the
matrix function

(
MSU2U3 . . .Um−1

)
[m]

has the form(
MSU2 · · ·Um−1

)
[m]

=


0

S+
[m−1]

...
0

ζ1 ζ2 . . . ζm−1 f+
m

 =


0

S+
[m−1]

...
0

0 0 . . . 0 1

F, (17)

where F is the matrix function

F (t) =



1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 1 0

ζ1(t) ζ2(t) ζ3(t) · · · ζm−1(t) f+
m(t)


. (18)
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Remark 1. Note that matrix function (17) multiplied by its Hermitian con-
jugate gives S[m]. Therefore, the following equation

S+
[m−1]


ζ1

ζ2

...

ζm−1

 =


s1m
s2m

...
sm−1,m

 (19)

holds.

The analyticity of the m-th row in (17) is achieved by application of the
following

Theorem 2 (see [4, Lemma 4]). For any matrix function F of the form
(18), where

ζi ∈ L2(T), i = 1, 2, . . . ,m− 1, f+ ∈ H2
O, (20)

there exists a unitary matrix function U of the form (14), (15), such that

FU ∈ L2
+(T)m×m.

Remark 2. Note that under the above circumstances,

S+
[m] =


0

S+
[m−1]

...
0

ζ1 ζ2 . . . ζm−1 f+
m

 U. (21)

In order to compute (14) approximately, (18) is approximated by its
Fourier series. More specifically, let Fn be the matrix function (18) in which
the last row is replaced by(

ζn1 (t), ζ
n
2 (t), . . . , ζ

n
m−1(t), f

+
n (t)

)
, ζni ∈ L2(T), (22)

where ζni (t) =
∞∑

k=−n

ck{ζi}tk, f+
n = f+

m. Then the following result is invoked:

Theorem 3 (see [6, Theorem 1]). Let Fn be a matrix function of the form
(18), (22), where

ζni ∈ L2
n−(T), i = 1, 2, . . . , and f+

n (0) ̸= 0. (23)

Then there exists a unique unitary matrix function Un of the form (14),
where uij ∈ P+

n , detUn(t) = 1 (on T), and Un(1) = Im, such that

FnUn ∈ L2
+(T)m×m.

Note that [6] in fact provides an explicit construction of Un.
In order to justify the approximating properties of the algorithm, the

following convergence theorem is proved in [4].
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Theorem 4 (cf. [4, Theorem 2]). Let F be a matrix function of the form
(18), (20), and let Fn, n = 1, 2, . . ., be a sequence of matrix functions of the
form (18) with the last row replaced by (22). Let also

ζni → ζi, f+
n → f+ in L2 and f+

n ∈ H2
O. (24)

If Un, n = 1, 2, . . ., are the corresponding unitary matrix functions defined
according to Theorem 2, then Un converges in measure:

Un ⇒ U,

and FnUn converges in L2 to the spectral factor of FF ∗.

4. Treatment of Nonpositive Definite Matrix Functions

The main argument which helps to deal with the matrix functions Ŝ
which are close to S, but are not necessarily positive semi-definite (a.e. on
T) is the observation that Theorem 4 remains valid if in (24) we replace
the condition f+

n ∈ H2
O by a weaker requirement f+

n (0) ̸= 0, as in (23).
Theorem 3 guarantees that the corresponding Un exists in this case as well.
Because of the importance of this fact for our goals, we formulate this result
separately.

Theorem 5. Let F be a matrix function of the form (18), (20), and let Fn,
n = 1, 2, . . ., be a sequence of matrix function of the form (18), (22), (23)
such that

ζni → ζi and f+
n → f+ in L2.

If Un, n = 1, 2, . . ., are the corresponding unitary matrix functions defined
according to Theorem 3, then Un converges in measure:

Un ⇒ U,

and FnUn converges in L2 to the spectral factor of FF ∗.

Remark 3. It should be observed that under the above circumstances FnUn

might not be the canonical spectral factor of FnF
∗
n (which was the case in

the situation of Theorem 4), since det(FnUn) = det(Fn) = f+
n might have

zeros inside the unit circle. Thus the phrase in the end of the first column
on page 2320 in [6] contains a small inaccuracy.

Although Theorems 4 and 5 look alike, there is a significant difference
between their meaning, as it is explained in the above remark. Nevertheless,
the proof of Theorem 5 does not require any additional efforts, and the proof
of Theorem 4 given in [4] goes through without any changes. Therefore we
do not provide the proof of Theorem 5 here.

For a positive definite (a.e. on T) matrix function (1) the triangular fac-
torization (11) can be performed by the recurrent formulas which are similar
to Cholesky factorization formulas for constant positive definite matrices.
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Namely, for the entries of matrix function (12), we can write (see [6], for-
mulas (56)–(58)):

f+
m =

√
detS[m]/detS[m−1] = detS+

[m]/ detS+
[m−1] , (25)

where
√
f is the scalar spectral factor of f defined by (4),

ξi1 = si1/f
+
1 , i = 2, 3, . . . , r, (26)

ξij=
(
sij−

j−1∑
k=1

ξikξjk

)/
f+
j , j=2, 3, . . . , r−1, i=j+1, j+2, . . . , r. (27)

If now Ŝ is not necessarily positive definite, then det Ŝ[m] might become
negative on a set of positive measure and we would not be able to define
the scalar spectral factor of detS[m]/ detS[m−1]. However, we could still
define MŜ using formulas (25)–(27) if we were able to determine the

√
f

for not necessarily positive function f . In the following section, we define a
“scalar spectral factor” of not necessarily positive function for specific cases.
If we continue the computational procedures described in Section 3 for MŜ
in place of MS , we get MŜU2U3 · · ·Ur which is similar to expression (13)
and therefore we would expect its closeness to S+. For polynomial matrix
functions, we perform these procedures in an explicit way.

5. The Scalar Case

If 0 ≤ f ∈ L1(T) and log f ∈ L1(T), then the spectral factor f+ can be
written by the formula (4). However, if we only know that f̂ is close to f

in L1 norm, then f̂ might even not be non-negative a.e. (we discard the
imaginary part of f̂ if it exists, so we assume here that f̂ is a real function).
Even if f̂ were positive, log f̂ should also be close to log f in order to claim
the closeness of f̂+ to f+ (see [4], [1]). Therefore, we consider

δf
+(z) = exp

(
1

4π

2π∫
0

eiθ + z

eiθ − z
log δf(e

iθ) dθ

)
(28)

(see (8)) and prove the following

Lemma 1. Let 0 ≤ f ∈ L1(T) and log f ∈ L1(T). Suppose fn ∈ L1(T) and
∥fn − f∥L1 → 0. (29)

Then
lim

δ→0+
lim

n→∞
∥δf+

n − f+∥L2 = 0. (30)

Proof. It has been proved in [4] that if 0 ≤ fn ∈ L1(T), (29) holds and
2π∫
0

log fn(eiθ) dθ →
2π∫
0

log f(eiθ) dθ, then ∥f+
n − f+∥H2 → 0. Hence, we can

show first that
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a) lim
n→∞

∥δfn − δf∥L1 = 0 for each δ > 0 and

lim
n→∞

∫
T

log δfn(e
iθ) dθ =

∫
T

log δf(e
iθ) dθ, (31)

which implies that lim
n→∞

∥δf+
n − δf

+∥L2 = 0 and, consequently,

lim
n→∞

∥δf+
n − f+∥L2 = ∥δf+ − f+∥L2 , (32)

and then
b) lim

δ→0+
∥δf−f∥L1 → 0 and lim

δ→0+

∫
T

log δf(e
iθ) dθ =

∫
T

log f(eiθ) dθ, which

implies that
lim

δ→0+
∥δf+ − f+∥L2 = 0. (33)

The relation (30) will then follow from (32) and (33).
Part b) is an easy exercise in Lebesgue integration theory, and we will

thus concentrate on a). It is easy to realize that |δfn − δf | ≤ |fn − f |
and therefore the first part of a) follows from (29), which also implies that
log δfn ⇒ log δf as n → ∞. In addition, [log δfn]

(±) ⇒ [log δf ]
(±) (see (9)).

The necessary and sufficient condition for (29) is that

fn ⇒ f and sup
n>k,µ(E)<ε

∫
E

fn dm → 0 as k → ∞ and ε → 0.

Therefore, ∥[log δfn]
(+)− [log δf ]

(+)∥L1 → 0 and, in addition, ∥[log δfn]
(−)−

[log δf ]
(−)∥L1 → 0 due to the bounded convergence theorem. Thus (31)

follows. �

The relation (30) shows that for any sequence fn, n = 1, 2, . . ., satisfying
(29) there exist δn → 0+ such that

lim
n→∞

∥δnf+
n − f+∥L2 = 0. (34)

However, (34) does not hold for every sequence δn → 0+ and, in general, it
is hard to determine conditions on δn which would guarantee (34).

An explicit computational procedure is proposed for polynomial case.

Namely, for any polynomial p(z) =
N∑

k=−N

ckz
k (which might not be positive

or even real on T), let

p̌(t) =

{
ℜe{p(t)} when ℜe{p(t)} > 0,

1 when ℜe{p(t)} ≤ 0,
t ∈ T, (35)

let p̌+ be the spectral factor of p̌:

p̌+ = exp
(

1

4π

2π∫
0

eiθ + z

eiθ − z
log p̌(eiθ) dθ

)
, (36)
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and let p̃+ be its Fourier approximation up to degree N :

p̃+n (z) =
N∑

k=0

ck{p̂+n }zk. (37)

We prove the following

Lemma 2. Let

f(t) =
N∑

k=−N

ckt
k ≥ 0 for t ∈ T, (38)

and let

fn(t) =
N∑

k=−N

c
{n}
k tk

be such a sequence that
fn → f. (39)

Then
f̃+
n → f+. (40)

Proof. We will show that
∥f̌+

n − f+∥H2 → 0 (41)
which implies (40), by virtue of the definition (37).

In order to prove (41), it is sufficient to show that (see [4])
∥f̌n − f∥L1 → 0 (42)

and ∫
T

log f̌n(t) dt →
∫
T

log f(t) dt. (43)

Let En := {t ∈ T : ℜe{fn(t)} > 0}. Then
f̌n = 1Enℜe{fn}+ 1T\En

= ℜe{fn}(+) + 1T\En
. (44)

Since (39) holds, we have ∥ℜe{fn} − f∥L1 → 0, which implies that∥∥ℜe{fn}(+) − f (+)
∥∥
L1 =

∥∥ℜe{fn}(+) − f
∥∥
L1 → 0. (45)

Since ℜe{fn} ⇒ f , µ{f ≤ 0} = 0, and 0 is the continuity point of the
distribution function t 7→ µ{f ≤ t}, we have

µ(T \ En) → 0, (46)
which implies that ∥1T\En

∥L1 → 0 and (42) follows from (44) and (45).
In order to prove (43), we need the following

Lemma 3. Let P ′
N ⊂ P+

N be the set of monic polynomials with the degrees
not exceeding N . Then

lim
δ→0+

sup
f∈P′

N

∣∣∣∣ ∫
{t∈T: |f(t)|<δ}

log |f(t)| dµ
∣∣∣∣ = 0. (47)
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Proof. Let

f(z) =
N∏

k=1

(z − zk).

Then {t ∈ T : |f(t)| < δ} ⊂
N∪

k=1

{t ∈ T : |t− zk| < δ1/N} and

∣∣∣∣ ∫
{|f |<δ}

log |f | dµ
∣∣∣∣ ≤ ∫

N∪
k=1

{|t−zk|<δ1/N}

∣∣ log |f |
∣∣ dµ

≤
N∑
j=1

∫
N∪

k=1

{|t−zk|<δ1/N}

∣∣ log |t− zj |
∣∣ ≤ N∑

j=1

N∑
k=1

∫
{|t−zk|<δ1/N}

∣∣ log |t− zj |
∣∣

≤ N2

∫
{|t−1|<δ1/N}

∣∣ log |t− 1|
∣∣ dµ → 0 as δ → 0 + .

Consequently, (47) holds. �

We continue with the proof of (43) as follows.
Since ℜe{fn} → f and f̌n − ℜe{fn} ⇒ 0 by virtue of (35) and (46), the

convergence in measure
f̌n ⇒ f (48)

holds, which implies that δ f̌n ⇒ δf for each δ > 0, and since f̌n are uni-
formly bounded as well, from the above by virtue of (39), we have∫

T

log δ f̌n dµ →
∫
T

log δf dµ. (49)

On the other hand,

lim
δ→0+

∣∣∣∣ ∫
T

log δf dµ−
∫
T

log f dµ

∣∣∣∣ ≤ lim
δ→0+

∫
{f≤δ}

log f dµ = 0 (50)

as log f ∈ L1(T), and∣∣∣∣ ∫
T

log δ f̌n dµ−
∫
T

log f̌n dµ
∣∣∣∣ ≤ ∣∣∣∣ ∫

{0<f̌n≤δ}

log f̌n dµ
∣∣∣∣

≤
∣∣∣∣ ∫
{0<ℜe{fn}≤δ}

logℜe{fn} dµ
∣∣∣∣ → 0 as δ → 0+, (51)

by virtue of Lemma 3, since ℜe{fn}(t) = ℜe{
N∑

k=−N

c
{n}
k tk} =

N∑
k=−N

č
{n}
k tk

are trigonometric polynomials and
(
č
{n}
N

)−1
tNℜe{fn}(t) ∈ P ′

2N , while č
{n}
N
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are uniformly bounded. Now (43) follows from (49), (50) and (51) since

lim
n→∞

∣∣∣∣ ∫
T

log f̌n dµ−
∫
T

log f dµ

∣∣∣∣
≤ lim

n→∞
lim sup
δ→0+

∣∣∣∣ ∫
T

log f̌n dµ−
∫
T

log δ f̌n dµ
∣∣

+ lim
n→∞

lim sup
δ→0+

∣∣∣∣ ∫
T

log δ f̌n dµ−
∫
T

log δf dµ

∣∣∣∣
+ lim sup

δ→0+

∣∣∣∣ ∫
T

log δf dµ−
∫
T

log f dµ

∣∣∣∣ = 0. �

6. The Matrix Case

In this section we introduce the computational procedures Cn : PN (m×
m) → P+

N (m×m), n = 1, 2, . . ., and prove Theorem 1. First, we need two
auxiliary lemmas.
Lemma 4. Let

f(z) =
p(z)

q(z)
∈ Q[z] ∩ L∞(T) (52)

be a rational function without poles in D, satisfying
|f(z)| < C for z ∈ T, (53)

and let
pn → p and qn → q, (54)

where deg(pn) = deg(p) and deg(qn) = deg(q), n = 1, 2, . . . .
Let ωk,n = exp( 2πkn i), n = 1, 2, . . ., k = 0, 1, . . . , n − 1, be the Discrete

Fourier Transform nodes. Then

Vn :=
2π

n

n−1∑
k=0

|hn(ωk,n)|2 → ∥f∥22 as n → 0, (55)

where

hn(ω) =

{
pn(ω)/qn(ω) if |pn(ω)/qn(ω)| ≤ C,

0 if |pn(ω)/qn(ω)| > C.

Proof. By virtue of (54), for each R < ∞, the set of polynomials pn, n =

1, 2, . . . , is uniformly bounded on D(0, R) = {z ∈ C : |z| ≤ R}, i.e.,
sup
n

sup
z∈D(0,R)

|pn(z)| < ∞.

Let q(z) = b
N∏

k=1

(z−zk), b ̸= 0. If qn(z) = bn
∏N

k=1(z−zk,n), n = 1, 2, . . . ,

and we label the zeroes of qn accordingly, then we get
bn → b and zk,n → zk, k = 1, 2, . . . , N, as n → ∞.
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Since the zeros of qn are concentrated around the points zk, k =
1, 2, . . . , N , for each ε > 0, there exist δ > 0 and n0 ∈ N such that

µ

{
T \

N∪
k=1

D(zk, δ)

}
< ε (56)

and the functions
fn := pn/qn, n ≥ n0, (57)

are uniformly bounded in

Dε := D(0, 1 + δ) \
N∪

k=1

D(zk, δ). (58)

Consequently, the set of functions (57) is a normal family and converges
uniformly on every compact in (58) which implies, by virtue of (53), that
there exists n1 ≥ n0 such that

|fn(z)| < C for n ≥ n1 and z ∈ T ∩Dε.

Consequently, hn = fn on T∩Dε for n ≥ n1 and hn converges uniformly to
f in T ∩Dε.

Since the derivatives of a normal family of functions form a normal family
as well, we have that hn together with h′

n converge uniformly on T ∩ Dε.
Consequently,

2π

n

∑
{k: ωkn∈Dε}

|hn(ωk,n)|2 →
∫

T∩Dε

|f |2 dµ

as n → ∞, while∣∣∣∣ ∫
T∩Dε

|f |2 dµ−
∫
T

|f |2 dµ
∣∣∣∣ ≤ sup

µ(E)<ε

∫
E

|f |2 dµ → 0 as ε → 0

and

lim sup
n→∞

∣∣∣∣2πn ∑
{k: ωkn∈Dε}

|hn(ωk,n)|2 −
2π

n

n−1∑
k=0

|hn(ωk,n)|2
∣∣∣∣

= lim sup
n→∞

2π

n

∑
{k: ωkn ̸∈Dε}

|hn(ωk,n)|2 ≤ Cµ{T \Dε} ≤ Cε → 0 as ε → 0.

Hence (55) holds. �

Lemma 5. Let f , pn, qn and Vn be the same as in Lemma 4. Assume that
qn(0) ̸= 0, n = 1, 2, . . ., and let

∞∑
k=0

αkz
k ∼ pn(z)

qn(z)
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be the Tailor expansion of pn/qn in the neighborhood of zero. Define
Ln[pn, qn] ∈ P+

n by

Ln[pn, qn](z) :=


l∑

k=0

αkz
k if

l∑
k=0

|αk|2≤Vn<
l+1∑
k=0

|αk|2 and l<n,

n∑
k=0

αkz
k if

n∑
k=0

|αk|2 ≤ Vn.

(59)

Then ∥∥Ln[pn, qn]− f
∥∥
L2(T) → 0 as n → ∞. (60)

Proof. The Tailor coefficients of f = p/q can be expressed recurrently in
terms of coefficients of p and q. Thus, because of (54), we have

for each k ≥ 0, ck
{
Ln[pn, qn]

}
→ ck{f} as n → ∞. (61)

By virtue of Lemma 4 and definition (59), taking into account (61), we also
have ∥∥Ln[pn, qn]

∥∥
L2(T) → ∥f∥L2(T) as n → ∞.

The convergence in (60) now follows from the general fact that in a Hilbert
space the weak convergence, when combined with the convergence of norms,
implies strong convergence. �

We are ready now to introduce the computational procedure C = Cn

described in the introduction, which can be applied to any Sn ∈ Pr×r, such
that Theorem 1 holds.

Note that if S is a polynomial matrix function (5), then for each m,
1 < m ≤ r, the first m − 1 entries ζ1, ζ2, . . . , ζm−1 of the m-th row of
MSU2U3 . . .Um−1 in (17) are rational functions, since they can be deter-
mined by Cramer’s rule from equation (19) as

ζi(t) = pi(t)/q(t) = tN (tNpi(t)/q(t)), (62)

where q = detS+
[m−1] ∈ P+

N(m−1) (it is free of zeros in D) and pi is the
determinant of the matrix S+

[m−1], the i-th column of which is replaced by
[s2m, . . . , sm−1,m]T , implying zNpi ∈ P+

Nm.
We compute the diagonal entries f̂+

1,n, f̂
+
2,n, . . . , f̂

+
r,n of the “triangular

factor” of Sn by the formulas: f̂+
1,n = (̃Sn)[1]

+

(see Section 2 for notation
S[m] and definitions (35)–(37)) and

f̂+
m,n = Ln

[ ˜det((Sn)[m])
+

, ˜det((Sn)[m−1])
+]

(63)

(see Lemma 5 for definitions). Set

(Ŝn)
+
[1] = f̂+

1,n = (̃Sn)[1]
+

(64)
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and for each m = 2, 3, . . . , r we recurrently construct

(Ŝn)
+
[m](t) =

N∑
k=0

Âk,nt
k, Âk,n ∈ Cm×m,

an approximate “spectral factor” of (Sn)[m], making an assumption that
(Ŝn)

+
[m−1] has already been constructed and performing the following oper-

ations. Let

ζ̂i,n = tNLn[tN p̂i,n, q̂n(t)] , i = 1, 2, . . . ,m− 1, (65)

where p̂i,n and q̂i are defined similar to (62), namely, q̂n = det
(
(Ŝn)

+
[m−1]

)
and p̂i,n is the determinant of the matrix (Ŝn)

+
[m−1] with its i-th column

replaced by [ŝ2m, . . . , ŝm−1,m]T . For the matrix F̂n,m of the form (18) with
the last row

(ζ̂1,n, ζ̂2,n, . . . , ζ̂m−1,n, f̂
+
m,n), (66)

using Theorem 3, we construct the unitary matrix function Um,n such that
F̂n,mUm,n ∈ (P+)m×m. By virtue of formula (21), the matrix function

Ŝ · U :=


0

det
(
(Ŝn)

+
[m−1]

) ...
0

ζ̂1,n ζ̂2,n . . . ζ̂m−1,n f̂+
m,n

Um,n (67)

is a candidate for (Ŝn)
+
[m]. Since we know that S+

[m] ∈ (P+
N )m×m, we discard

coefficients of the entries in (67) with indices outside the range [0, N ] and
let

(Ŝn)
+
[m](z) :=

N∑
k=0

Ck{Ŝ · U}zk, m = 2, 3, . . . , r. (68)

We define
Cn(Sn) = (Ŝn)

+
[r]. (69)

Let us prove now the convergence (7).
Consider the equation (63). Since, because of (6), det

(
(Sn)[m]

)
→

detS[m] as n → ∞, we have ˜det((Sn)[m])
+

→ detS+
[m], m = 1, 2, . . . , r,

by virtue of Lemma 2 (in particular,

(̃Sn)[1]
+

= (Ŝn)
+
[1] → S+

[1], (70)

see (64)), while the limiting functions detS+
[m] are free of zeros in D and

f+
m = detS+

[m]/detS+
[m−1] ∈ L2(T) (see (25)) do not have poles on T. Con-

sequently, the hypotheses of Lemma 5 hold and therefore

f̂+
m,n → f+

m in L2 as n → ∞, m = 2, 3, . . . , r. (71)
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Since (70) holds, we assume invoking induction that

(Ŝn)
+
[m−1] → S+

[m−1] in L2 as n → ∞, (72)

and prove (72) for m− 1 replaced by m.
Consider now the equation (65). The sequences of polynomials pi,n and

qn also satisfy the hypothesis of Lemma 5 and therefore

ζ̂i,n → ζi in L2 as n → ∞. (73)
Thus, taking into account the relation (71) also, we have that the sequence of
matrix functions F̂n,m of the form (18), (66) converges in L2. Consequently,
we can apply Theorem 5 to conclude that the sequence of unitary matrix
functions Un,m in the equation (67) is convergent in measure which, by
virtue of (10), implies that the product in (67) and, consequently, (68) are
convergent. Namely,

(Ŝn)
+
[m] → S+

[m] in L2 as n → ∞. (74)

We get (7) if we substitute m = r in (74), and thus the proof of Theorem 1
is completed.
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