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Abstract. The purpose of the present research is to investigate the
Fredholm criteria for the Prandtl-type integro-differential equation with
piecewise-continuous coefficients in the Bessel potential spaces Hl) (R).

We reduce the integro-differential equations to an equivalent system of
Mellin type convolution equation. Applying the recent results to Mellin
convolution equations with meromorphic kernels in Bessel potential spaces
obtained by V. Didenko & R. Duduchava [3] and R. Duduchava [9], the
Fredholm criteria (and in some cases, the unique solvability criteria) of the
above-mentioned integro-differential equations are obtained.
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INTRODUCTION AND THE FORMULATION OF THE MAIN THEOREM

We study the following integro-differential equation in the Bessel poten-

tial space setting
o -4 [ €0 47— fo), )
R

1 1
s _ s—1
p € Hy(R), ¢(0)=0, feH, " (R), 5<s<1+5, 1<p<oo,

where a(t) is a piecewise-constant coefficient: a(t) = a_ for t < 0 and
a(t) = ay for t > 0. Such boundary integral equations occur as an equiva-
lent reformulation of many problems in the classical two-dimensional elas-
ticity (stringers attached to plates, rigid inclusions in elastic plates, stamps
applied to elastic plates etc., see [16]) in aerodynamics (airfoil equation)
and in many other problems. In Section 1 we expose an example from Sec-
tion 6, [18], where the model initial stringer problem was considered and
solved in a spaceless setting by a somewhat different method, namely by the
method of complex analysis. We endow the example with the non-classical
setting when the displacement vector u + tv is sought in the Bessel poten-
tial space HZH/ P
space H5 /P71,

Based on the investigations from [3,9], in Section 4 is defined the symbol
A (w) of the equation (1), which is a continuous 2 x 2 matrix-function on
the infinite rectangle SR. For an elliptic symbol wlggfq | det Aj(w)| # 0, the

and the stresses o, oy, Tzy belong to the Bessel potential

increment of the argument - arg det A5 (w) is an integer and called the
index ind det.A;. The following theorem is the main result for the equation
(1) in the present paper.

Theorem 0.1. Let, 1 <p<oo, -1<s<1,ar €C.
The equation (1) is Fredholm if and only if the following two conditions
hold:

(i) The coefficients ax are not negative reals: ax € C\R~, R— :=
(70070];

(ii) The parameters p and s are not the solutions to the following tran-
scendental equation:

cos? = sin? (1 + s> —sin2 = = 0. (2)
p p p
If the conditions i and i hold and 1 < p < 4, then the equation (1) has
a unique solution for all 1 < p < 4 and arbitrary —1 < s < 1.
If the conditions i and i hold and 4 < p < oo, then the transcendental
equation (2) has two pairs of solutions {p, s,} and {p, s, —1}, where s, > 0,
sp —1 < 0. Then the equation (1) has

(i) a unique solution for all s, — 1 < s < sp;
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(ii) a unique solution for all right-hand sides which are orthogonal to
the solution of the dual homogeneous equation for all s, < s <1
(the equation has index —1);

(iii) @ non-unique solution for all right-hand sides provided —1 < s <
sp — 1; the homogeneous equation has one linearly independent so-
lution (the equation has index 1).

The same method which we use in the present paper, applies also to the
equations with complex conjugated unknown functions

ar(z)o(x) + az(x)¢' () + as(z)p(x) + as(x)y’ ()
as(x) [ o(t) ag(x) [ ¢'(t) ar(x) [ o(t)
T dt + dt + —= dt
/ | [

T t—=x t—zx T t—
r r
ag(z) [ () ag(x) [ »(t)
+ s /t—xdt+ T /t—xdt
r r
002 [0 4o ), wer, 3)
r

weH;(F), feL,T), aj e PCT), j=1,...,10,

where I' is a union of smooth curves, open or closed, including infinite
beams (e.g. R). Such equations occur in many problems of elasticity (see
e.g. [6-8,17]).

For the investigation of equation (1) on R we first convert it into a system
of Mellin convolution equations with constant coefficients on the semi-axes
R*. Then the results on Mellin convolution equations in the Bessel potential
spaces (see [3,9]) are applied and provide the criteria for the initial equation
to have the Fredholm property and write formula for the index.

For the investigation of equation (3) first a quasi-localization is applied,
which assigns to it at each point ¢ € I' the same equation, but either on
the axes R with piecewise constant coefficients, which have jumps only at 0,
or on the beam R with constant coefficients (“freezing coefficients” at the
localization points; see details in [1,2,4,15]). The obtained equations are
investigated just as in the case of equation (1). It is proved that equation
(3) is Fredholm one, if and only if all local equations are Fredholm (the local
and global Fredholmness for the localized equations coincide).

The details of this investigation will be available in a forthcoming publi-
cation.

The present paper is organized as follows: in Section 1 we describe the
stringer problem which leads to the integro-differential equation (1) we are
going to investigate. In Section 2 we observe Fourier convolution operators
in the Bessel potential spaces. The key result on commutants of the Mellin
convolution operators and Bessel potentials is represented in Section 3. In



Integro-Differential Equations of Prandtl Type in the Bessel Potential Spaces 49

the Section 4 we investigate integro-differential equation (1) in the Bessel
potential space IB%Z(R) and prove the key results, including Theorem 0.1.

1. THE INTEGRO-DIFFERENTIAL EQUATION OF THE STRINGER PROBLEM

In the present section we expose some details how the Prandtl-type equa-
tion (1) is derived as an equivalent boundary integral equation for a model
stringer problem. The procedure is very well described in the literature and
we only expose some details to show in which space is it correct to look for
a solution of a boundary integral equation. In foregoing papers the space
where solution belongs was either ignored (see e.g. [16,18]), or a solution
was sought in the Lebesgue space L,, (see e.g. [6-8]). It should be noted here
that the Fredholm property of equation (1) might be essentially different in
Lebesgue and Bessel potential spaces (see [3,9] and Section 3 below).

Suppose a piecewise homogenous thin elastic plate, consisting of two
semi-infinite parts occupy the upper Imz > 0 and the lower Imz < 0
complex half-planes of the variable z = x 4 dy. It is reinforced along the
junction line y = 0. A piecewise homogenous infinite elastic stringer consists
of two semi-infinite bars x > 0 and = < 0, joined to one another and
having elastic moduli £_ and F, and small cross sections S_ and S,
respectively. The plates have thicknesses h_, h, Poisson’s ratios v_, v
and share moduli p_, . Here and below the subscript 4 corresponds
to the plate occupying the upper half-plane Imz > 0 and the subscript
— corresponds to the plate occupying the lower half-plane Im 2z < 0. The
plates are joined so that their middle surfaces are identical. The stringer is
attached ideally rigidly to the plates and symmetrically both with respect
to the junction line of the plates and with respect to their middle surfaces.

Problem S: Find complex potentials that describe the stress state of the
plates and the contact stresses under the stringer.

To write the corresponding boundary integral equation we follow [18] and
apply the complex potentials.
First, we write the equilibrium equations in the interval [z, 2 + Az] :

N(z + Az) — N(z) + [h_7} (x) — ho + 7, (x)| Az = 0, (4)
[h_of,(x) —h_ + 0., ()] Az = 0.

After dividing both sides by Az and taking the limit as Ax — 0, we obtain
N'(z)+h_7} (x) —h_ +7,(x) =0, h_of(x) —h_+o0,(x)=0, (5)
where IV is the normal stress in the stringer calculated for the entire thick-
ness of the stringer, 7., and o, are the share and normal stresses in the
plates calculated per unit thickness of the plates. N(z) = E_S_e(x) at
x > 0and N(z) = EySie(z) at * < 0. The stringer is rigidly attached
to the plates. Within the model adopted, this is taken into account by

equating the displacement vector u + v of points in the stringer and the
displacement vectors (u+4v)™ and (u+iv)~ of the corresponding points in
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the upper and lower plates on the line y = 0. Thus, we obtain the following
system of boundary conditions:

A(@)u" (@) +hot (x) =h-+7,,(x)=0, h_oj(z)=h_+0, (x)=0,
(u+iv)(z) = (u+iv)” (z) = (u+iv)"(z), =€ R\ {0},

where A(z) = E_S_ for x < 0 and A(x) = E, S, for x > 0. Conditions (6)
must be supplemented with the equilibrium condition of the stringer

(6)

oo
/ [ho7t(x) = h_ + 7 (x)] dz 4 Py = 0.
—00
It is natural to look for a weak solution. Namely, in the classical setting
the displacement vector u + iv belongs to the Sobolev (energy) space H?!
and the stresses o, 0y, T4y, Which are compiled of the partial derivatives

of the displacement vector u + iv in the plates with respect to the variable
x in the Hilbert space ILo:

u+iv e HY(C UCT), Oz, Oy, Ta,y € L2(C), (7)

where C™ denotes the lower and C* the upper complex half-planes.
The displacement vector u + 7v and the stresses 0, 0y, 7oy are found by
means of the Kolosov—Muskhelishvili’s formulae

05(2) + 0y(z) =4Re Py (z),
0y(2) —iTpy(2) = Pi(2) — P4 (Z) + (2 — 2)P+(2),

s [u(z) +iv(2)] = B2 (=) ~ 2 (2) + (2~ DBL(), £Imz>0, (8)

dx
Ba(z) = {(I)I(z), Tmz > 0, 3— vy

®1(z), Imz<0, " Ttuvy

where @4 (z) are piecewise holomorphic functions (complex potentials) with
a line of discontinuity along the real axis and they vanish at infinity. Based
on the representation of the potentials as the Cauchy integrals,

1 T I T 0
*x(z)= 27r(1+(5f€)/ i, 2-(@)= 27r(f£:+5)/ P O)

for the unknown density we derive the following equation from (8):

g(m)_@di 9() dt:g(g:)—@/ 90 40, (10)

T dx t—=x s
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(see [18, Section 6] for details), where

5= Zirzt, g(x) = 22(2) % Re [r_ @7 (z) + @ ()],

EySy ky(h-+0)+r_(14£40)

dhypy (K4 +06)(1+£4.0)
Equation (10) coincides with (1) and in the classical setting (7) due to

the Kolosov—Muskhelishvili’s formulae (8), we have &4 € Lo(C*). Then,

due to the representation formulae (9), the unknown function g in equation
(11) has to be found in the trace space

g € HV2(R). (12)

(11)

a(x)=ayg for £2>0, ay:= >0.

In the non-classical setting,
1
u+iv € HY(CTUCT), 04,04,70y €HS'(C), 1<p<oo, s>- (13)
p

(we should impose the constraint s > 1/p to ensure the existence of the trace
(u +iv)™T on the boundary), the integral equation (11) has to be solved in
the trace space

g € HETVPL(R). (14)

2. FOURIER CONVOLUTION OPERATORS IN THE BESSEL POTENTIAL
SpAcEs H (RT)

To formulate the next theorem we need to introduce the Fourier convo-
lution and Bessel potential operators.

Let a € Lo, 10c(R) be a locally bounded m x m matrix function. The
Fourier convolution operator (FCO) with the symbol a is defined by

W =FtaF. (15)
Here
Fu() = /eigwu(x) dr, £ e€R". (16)
R
is the Fourier transformation and
F (€)= (271()” /e—i%(g) d¢, x €R". (17)
R

is its inverse transformation. If the operator
0 —
W, Hp(R) — H7"(R) (18)
is bounded, we say that a is an Ly-multiplier of order r and use “L,,-mul-

tiplier” if the order is 0. The set of all L,-multipliers of order r (of order 0)
is denoted by D7 (IR) (by 91,(R), respectively). Let

MR) = [ MR, MR = () M(R).

p—e<q<p+te p—e<q<p-+te
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For an L,-multiplier of order r, a € M (IR), the Fourier convolution
operator (FCO) on the semi-axis R is defined by the equality

W, =r W2 Hy(RT) — HS"(RT), (19)

where ry := rg¢ : H3(R) — HP(R") is the restriction operator to the
semi-axes RT.

We did not use in the definition of the class of multipliers 901 (R) the
parameter s € R. This is due to the fact that 907 (R) is independent of s:
if the operator W, in (19) is bounded for some s € R, it is bounded for all
other values of s.

Another definition of the multiplier class 9 (R) is written as follows: a €
M5 (R) if and only if A™"a € M, (R) = MY(R), where A"(€) := (1+ [¢[*)™/2.
This assertion is one of the consequences of Theorem 2.1 below.

The Bessel potential operators are defined as follows:

AL =W3, Hy(RY) — Hy7"(RY),
AT =1 W RE HE(RT) — HS"(RY), (20)
() =0E£7)", §€R, Imy>0,
and they arrange isomorphisms of the corresponding spaces (see [6,9]). Here,
{ ]H[ZS,(R“‘) — H5(R) is some extension operator and the final result is
independent of the choice of an extension ¢ (we did not needed the extension
operator in (19), since the space H?(R") is automatically embedded in
H3(R) by extending the functions with 0).
Theorem 2.1. Let 1 < p < oco. Then
1. For anyr,s € R, v € C, Im~ > 0 the convolution operators
AL =Wy : HZ(RJF) — H;_T(RJF),
AT = 7"+W£37€ (HE(RY) — HY"(RT), (21)
() =(£7)", £eR, Imy >0,
arrange isomorphisms of the corresponding spaces (see [6,14]). Here,
£ HP (RT) — H (R) is some extension operator and the final result

is independent of the choice of an extension £. v is the restriction
from the azes R to the semi-azes RT.

2. For any operator A : ]ﬁ[;(]R*) — H~"(R*) of order r, the follo-
wing diagram is commutative

A

H3(R+)

Ay J{ lL‘i‘J : (22)

Lp(RY) ——————L,(R¥)

A*TTAASE

HIS)—T(R+)
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Diagram (22) provides an equivalent lifting of the operator A of
orderr to the operator A* " AN L,(RT) — L, (RY) of order 0.

3. For any bounded convolution operator W : HP (RT) — H>~"(R™T)
of order r and for any pair of complex numbers 1, 72 such that
Im~; >0, j =1,2, the lifted operator

AY W AY, =W, HSY(RY) — HS " H(RY),

[
v (23)
ay,u(é-) = (6 - ’yl)ua(é-)(é- + 72)
is again a Fourier convolution.
In particular, the lifted operator W, _ . = ATTW,A®

L,(RT) — L,(R™) has the symbol

) = A0l 0 = (52) T

Remark 2.2. For any pair of multipliers a € 9 (R), b € M (R) the corre-
sponding convolution operators on the axes W? and W,? have the property
WOW? = WOWO = WY,

For the corresponding Wiener—Hopf operators on the half-axes a similar
equality

W Wy = Wy (24)
holds if and only if either the function a(§) has an analytic extension in the
lower half-plane, or the function b(§) has an analytic extension in the upper
half-plane (see [6]).

Note that actually (23) is a consequence of (24).

Let R := RU {oo} denote the one point compactification of the real axes

R and ﬁi:: RU{=£o0} denote the two point compactification of R. By C(R)
(by C(R), respectively) we denote the space of continuous functions g(z)
on R which have the equal limits at the infinity g(—o0) = g(+00) (limits at

the infinity may be different g(—o0) # g(+o0). By PC(]I.%) is denoted the
space of piecewise-continuous functions on R, having the limits a (¢t + 0) at
all points ¢ € R, including the infinity.
Proposition 2.3 ([6, Lemma 7.1] and [10, Proposition 1.2]). Let 1 <p< oo,
a€CRT),be C(R)N ﬁp(R) and a(oco) = b(oo) = 0. Then the operators
aWy, Wyal : L,(Rt) — L,(R™) are compact.

Moreover, these operators are bounded in all Bessel potential space, and,

due to Krasnoselskij interpolation theorem for compact operators, are com-
pact in these spaces.

Proposition 2.4 ([6, Lemma 7.4] and [10, Lemma 1.2]). Let 1 < p < o0
and let a and b satisfy at least one of the conditions

(i) a € C(RY), b e M,(R) N PC(R);
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(ii) a € PC(R"), b € CM,(R).
Then the commutants [al, Ws] and [al, )], where MY is a Mellin convo-
lution operator (see the next Section 3), are compact operators in the space
L,(RT).
Moreover, these operators are compact in all Bessel potential and Besov
spaces, where they are bounded, due to Krasnoselskij interpolation theorem
for compact operators.

The differentiation is a Fourier convolution operator with the symbol
—i&:

T O = r O F T Y = v FH i) Fp = Woyerp, ¢ € CO(RT). (25)
Using (25) and (20), we get

_ £
re (O AL — 1) =r (ALL0 — 1) =W,, g(&) = e 1, £€R.
The symbol g(&) is infinitely smooth and vanishes at infinity: g(+oo) = 0.

Then, due to Proposition 2.3, the operators

vo[r(OALL = D)), [re(0 AL — D)]vol (26)

are compact for all vg € C§°(R™) (and even for all sufficiently smooth
vg € C™(R™)) which vanish at infinity vg(co) = 0. The compactness of the
operators in (26) imply the local invertibility of 9; (with the local inverse
AZl) even at all finite points t € R*.

3. MELLIN CONVOLUTION OPERATORS IN THE BESSEL POTENTIAL
SpACES H(RT)

In the present section we expose auxiliary results from [9] (also see
[3, 6, 10]), which are essential for the investigation of boundary integral
equation (1).

Consider a Mellin convolution operator 90 in the Bessel potential spaces

MY = Mg'aMp  HE(RT) — H3(RY), (27)
where
Mav(e) = [0, e,
0
1 _ 1 7 i +
Mg u(t) = 5 tePu(g)dg, teRT.

are the Mellin transformation and the inverse to it. B
The symbol a(€) of this operator is an n x n matrix function a € CIMY(R)
continuous on the real axis R with the only possible jump at infinity.
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The most important example of a Mellin convolution operator is an in-
tegral operator of the form

MOu(t) = cou(t)—&-% / :(j)t dt + K(;)u(T)dg (28)
0 0

with n X n matrix coefficients and n x n matrix kernel. 90 is a bounded
operator in the weighted Lebesgue space of vector-functions
M L,(#,RY) — L,(t7, RT), 1<p<oo, -1<y<p—1, (29

endowed with the norm

i 1/p
lu| Ly, RY)| := [/mu(tw’dt]
0
under the following constraint on the kernel (on each entry of the matrix

kernel)

/#HIC(t) dt < co, B:=
0
(cf. [6]). The symbol of the operator (28) is the Mellin transform of the
kernel

1
Y p<cp<t (30)

a(§) := co + ¢1 coth w(if + &) + MK (§)
| [ oier b
i=co+crcothn(if+&)+ [ ¢ K(t)? , £eR, (31)
0
and the symbol is responsible for the Fredholm properties of the operator.
Obviously,

MM = Moy = MMy, ¢ € C5°(RT),
for arbitrary a € 9 (R) and b € M, (R).
Theorem 3.1. Letl <p<ooand -1 <y<p—1(orl<p< oo provided
c1 =0 in (28)). The operator MY in (28)~(29) with a symbol a € CIM)(R),
is a Fredholm operator if and only if its symbol is invertible (is elliptic)

ggﬂf@ |deta(§)| > 0. (32)

If the symbol is elliptic, the operator is invertible and 93?2_1 is the inverse.

Things are different in the Bessel potential spaces. Let us recall some
results from [9, Section 2].

Consider the kernels which are meromorphic functions on the complex
plane C, vanishing at infinity,

N d:
K(t):=>" W (33)

Jj=0
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having poles at ¢g,c1,...,cny € C\ {0} and complex coefficients d; € C.

Definition 3.2 (see [9]). We call a kernel K(¢) in (33) admissible if for
those poles ¢y, ..., ¢, which belong to the positive semi-axes arg cg = --- =
arg ¢y = 0, the corresponding multiplicities is one my = --- =my = 1.

For example: The Mellin convolution operator

1 m—1
KT o(t) == - / 7(—15—01)7()2 dr, —m <argc<m, v€Ly(R") (34)

has an admissible kernel for arbitrary m = 1,2, ... if the following constraint
holds: for a real arg ¢ = 0 and positive ¢ > 0 necessarily m = 1.

Proposition 3.3 (see [9, Corollary 2.3, Theorem 2.4]). Let 1 < p < co and
—1<y<p—1(orl<p< oo provided c; =0 in (28)), s € R and K(t) in
(33) be an admissible kernel. Then the Mellin convolution operator

T t dr
0 — hd 2
Mou(t) = cou(t) + /IC(T)U(T) .
0
is bounded in the Lebesgue space L,(R™,t7) and, also, in the Bessel potential
space in the following setting:
MmO« 7 H3(RT) — H3(RT). (35)

Theorem 3.4 ([3, Theorem 5.1] and [9]). Let s € R and 1 < p < co.
If r<arge<m argc#0,0<argy <m and 0 < arg(—c~y) < 7, the
Mellin convolution operator between the Bessel potential spaces

K!: Hj(RT) — H)(RY) (36)
is lifted to the equivalent operator
ALK AT =K Wy Ly (RT) — Ly (RY), (37)
where ¢=% = |c| e~ 88 ¢ gnd
§+0 ) s
3 =) . 38
GE (38)

If -m <arge<m arge#0,0 <argy <7 and —7 < arg(—c~y) < 0,
the Mellin convolution operator between the Bessel potential spaces (36) is
lifted to the equivalent operator

s 1A—s _ —s
A—‘YKCA’Y =cC ngmfwo c gicwoﬂ

= c_SKiqun, +T: LP(R+) - LP(R+)’ (39)

s
=v09=ev0.y

where T : L,(R") — L, (R™) is a compact operator.
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Let us consider the Banach algebra 2,(R") generated by Mellin convo-
lution and Fourier convolution operators, i.e. by the operators

A=) Wa M0 W, (40)

j=1

and their compositions in the Lebesgue space L,(R"). Here, zmgj are the
Mellin convolution operators with continuous N x N matrix symbols a; €
Cm,(R), Wy,, Wy, are Fourier convolution operators with N' x N matrix
symbols b;, d; € CM,(R\ {0}) := CM, (R UR"). The algebra of N x N
matrix L,-multipliers CO, (R \ {0}) consists of those piecewise-continuous
N x N matrix multipliers b € M, (R) N PC(R) which are continuous on the
semi-axis R~ and RT, but might have finite jump discontinuities at 0 and
at infinity.

To define the symbol of the operator A in (40) which governs the Fred-
holm property and the index of A (see Theorem 3.5, below) we consider the
infinite clockwise oriented “rectangle” R := 'y UT; UTy U T, where (cf.
Figure 1)

r, — R x {_A'_Oo}, I‘g: = {:I:oo} X RJF’ I's =R x {0}

(=00, —o0) (€.€) (+00, +00)
[ > 9
I'y
o , Y
FEJ (—00, —7) (+o0,7) ry
I.
I8 ! € °
(—oc,0—0) (£,€) (+00,0+0)

FIGURE 1. The domain R of definition of the symbol A} (w).
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The symbol A,(w) of the operator A in (40) is a function on the set R, viz.

m

Z(dj)P(Ooag)aj(E)(bj)P(ooa5)) W = (5;5) € ]-—‘713
j=1
> dj(n)a;(+00)b;(n), w = (4o0,n) €'y,
Ap(w) = {0 (41)
Zdj(_n)aj(_oo)bj(_n)7 w=(—o0,n) €Ty,
> (d)p(0,9)a; () (6),(0,6),  w=(£0) €T,
j=1

The connecting function g,(c0, €) in (41) for a piecewise continuous function
g € PC(R) is defined as follows:

gp(z, ) := % [9(z+0) + g(z —0)] — % [9(z +0) — g(z —0)] cotw(% — i§)

+7 . .
sfroy cosm(d 4 Tl g
2

Sinw(% —i€)

— ei7r

, £ER, (42)

1 1 L]
gF = Eln g(x +0), Reg;f::;argg(:c:I:O)7 z € R:=RU{o0}.

The function gp(co,£) fills up the discontinuity (the jump) of g(&§) at
oo between g(—oo) and g(+o0) with an oriented arc of the circle (see [9,
Section 4] for further details).

The symbol A, (w) is continuous on the rectangle S and if it is elliptic

Jnf [det Ap(w)| >0, (43)
the increment of the argument (1/27) arg A, (w) when w ranges through R

in the positive direction, is an integer. This integer is called the winding
number or the index of the symbol and is denoted by ind det A,,.

Theorem 3.5 (]9, Theorem 4.13]). Let 1 < p < co and let A be defined by
(40). Then A : L,(RT) — L,(R") is a Fredholm operator if and only if
its symbol A, (w) is elliptic. If A is Fredholm, the index of the operator is

Ind A = —ind det A,,. (44)

4. INVESTIGATION OF THE INTEGRO-DIFFERENTIAL EQUATION (1)

For the investigation of equation (1) we apply the approach developed
in [11] and the localization technique.

Proof of Theorem 0.1. Let us introduce the notation

cPl(t) = (P(*t), fl(t) = f(it)a
w2(t) == p(t), fa(t) = f(t) for t > 0.
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Then ¢ (t) := —¢'(—t), h(t) := ¢'(t) and the integral equation (1) is then
written in the following form:

@U+/%mma7%mmﬂm
0

T t—T1 ™ t+ 71
% b teRT,  (45)
) - % 210) gy O [0 )
v2 s t+7 ™ t—71 20
0 0

01,02 EHI(RT), f1, fo € H3'(RT).

Moreover, by physical arguments (the system (45) is an equivalent reformu-
lation of the Problem S (see (11), (13)) and we can assume that:

(i) a solution to the system (45) vanishes at 0

P1,P2 € ﬁ;(Rﬂ- (46)
(ii) the system (45) has a unique solution ¢4, @2 in the classical setting
s=1/2,p=2:
1,000 € HY2(RY), f1, fo € HTV2(RT). (47)
The system of integral equations (45) is of Mellin type,
pi(t) +a- [ K1 @) (1) = KLy 9h(t)| = ful(t),

(48)
Pa(t) — a4 K' 11 (t) — K1‘P2() = fa(t),

©1,p2 € H;(R‘f‘), i, f2 € Hfgfl(RJr),

where

t

=n~

/('0 dr, 0<|argc|<m, ¢€Ly(RY),
0

is a Mellin convolutions operator with a meromorphic kernel (see Definition
3.2).
Since ¢; € H5(RT), f; € HS~'(RT), j = 1,2, we introduce new functions
=A%, o2 =A%, i=ATSTgr fo=ATSTg,
Im’y > 07 1/)17,(/}27.91792 S LP(R )a
use the equality

do(t
W _ )= W)t
and get
A;s¢1 +a— [K%W_igA;swl — Kl—IW—iSA;SwQ} _ _;+1g1,

Ay = ay {Kl—lw—iEAv_swl - K}W_%A;wz} = AT g,
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Here, the pair of functions 11, ¥ is unknown while the pair g1, go is known
(prescribed).

The system is already lifted to the LL,-space setting, and we will write it
in a convenient form by applying the Bessel potential operator Af/_l to the
both parts of the equations:

NI+ o [NTUKAW At = ATUKL WA
= NN g =gy,

NI s — ay [ASKL WALt = A UKW AT 0|
= AT gy = g,

wla wQa 91,92 S LP(R+)a
since As_fylA:fYHu = u (see [6]). By using the equality

T 1A—7T _ —ryxrl AT —r
AT KIATT = c"KIAT A

—cytty

proved in [3, Theorem 5.1] for arbitrary ¢ € C and again the equality
As__ﬂ/lA; s+l — I we rewrite the system in the following form:

s—1A—s
ASTIASSY,
+a_ [KiAs__leJsA;S%*(*1)7S+1K1—1AfflW—igA;SwQ} — 9

s—1A—s
AP IAS 51y
oy [(“1) UKL ASTIW AT — KA WA TS| = g,

’(/)17 ’l/)Qa g1, 92 S LP(R+)
Next, we apply the equalities
Ay =Wierpyr, WoWy =W,

where the second one holds if a(§) has an analytic extension in the lower
half-plane or b(§) has an analytic extension in the upper half-plane (see [3,6]
for details). The above equalities imply, in particular, that

E—’Y)s 1,
§+v/ £—v

—1A—s
AN = Wiyt Wigq)— = W
Aiilw_igA;S =W _ic.

£+
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Finally, we arrive to the following system of convolution equations, which
is an equivalent reformulation of the system (48) in the L,-space setting:

W(m)s 1P+ a,K}W(g)S —ie P1
£+ E—v §+’Y §—~
H KL W by =

1 (49)
s .
Wiy vt (_1)1 0+ KW —ic Y
+a+K1W(§%)S %1% = 92,
d)lvaaglng S ]Lp(R+)
Let us rewrite the system (49) as follows
¢1) + (91> +
AV =G, V.= eL,(RY), G:= €L,(R
(92) € Lot) 1) eL,®")
where
[W(5W)s 1 +G,KiW(§——y )s —i£ eﬂSia—Kllw;iﬁ ]
A= £+ ‘E_;’Y 1 &ty £y 1 Sty
erar K W Wi o T BiW ) e

According to [9, Formulae (41), (81)], the symbols of operators K| = E)JT%%

and K' | = MY, are, respectively,
—1

1

K1(6) = —icothm(if + &) = —cot (B — i€), KL,(¢) = smr(B i)

With the shorthand notation,

§—7y* 1 §—7\* —i§ —i§
n@ =) e 2O=(c) 75 BO=75

we rewrite the operator A as follows

Wi, +a M Wy, ™ MG Wy

Al A,
A=|g1 fal= | 50
|: :| ew31a+w%£l ng Wb1 + a+9ﬁolq ng] ( )

Af Af

and investigate the operator A : L,(RT) — L,(R™).
It is easy to see that the functions by (), ba(€) b3(€) and KL, have the
following limits:

bl(:I:oo) = 0, bl (0) = - )

bo(—00) = —i, by(400) = —ie*™ by(0) = 0,
bg(ﬂ:OO) = —i, b3(0) = O,
Ki(£o0) = +i, K1 (£o0)=0.
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Then, according to [9, Formulae (85), (86)] (also see the earlier paper

[10]), the symbol of the operators AT and A¥ in (50) are written as follows:
A7 S S
Aﬁ)Zl(i%W)( )5@]
(A (w)  (A])j(w)
where
27st 27wst
(Af);(w) = jay cot (B — iﬁ)(e 2+ 1 4 5 L cot (B — i{))
g cotm(B — i) sinm(B — i€ + s)
- e sin(8 — i)
. e cosm(B— if) sinw(f — i + s)
=iaye ,
sin? (B — i€)
s () = 0T ™
("42 )p(w) - Sil’l’ﬂ'(ﬁ _ Zf) if w= (f,OO) € Fla
N S/ e S S et/ Bt A S
(AD)p(w) = (_UJW) E— wi(_an) —
:_<n—7)*1+ain
n+y R

(.AQi);(w) =0 if w=(+o0,n) € E7
(Apw) = (T0) Ly (120) 70

n+~/ n—v n+v/ n—v
::(n*7)51+ain
n+y/ n—v"’

(AZ)3(w) =0 if w=(—o0,n) €T3,

TSt
e

+\s _
(AD)p(w) = 5

(A7) (w) =0 if w= (¢ 00) €5,
andﬁziféR,nER*. Then

det A7 (w)
- omsi COSZm(B—i€) sin? W(B—zf+s)—51n m(B—i€)
f-ase sin (3 —i€) ’
W= (57 ) S Fla
- (n—vyﬁﬂl+wmﬂb+mm) w = (oo, 7) € TE (51)
Tty n* =2 P T EEIE
2mst
eyQ ., w=(£0)€eTs.

The symbol A7 (w) is non-elliptic (i.e., det A;(w) = 0) if and only if
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(i) (14 a-n)(1+a4n) # 0for all 0 <n < oco. This condition holds if
and only if coefficients a1 are not negative reals: ax € C\ R—;

(ii) The parameters p and s are solutions to the equation
1 1 1
cos? w(f — zf) sin? 7r<f +5— i§) — sin? 7T<* — i§) =0. (52)
p p p

By analyzing the transcendental equation (52), we come to the following
conclusions.

(52) have a solution only for £ = 0 and (52) transforms into an equivalent
transcendental equation (2).

For 1 < p < 4, (2) has no solution for any —1 < s < 1, because if we
write it in an equivalent form

1
sin? 7T<* + s) = tan? ~ (53)
p p

the right-hand side is more than 1, while the left-hand side is less than or
1

is equal to 1. On the other hand, in the classical setting p = 2, s = —35
equation (1) has a unique solution (see (47)). Since this pair belongs to the
quadrat 1 < p < 4, —1 < s < 1, where equation (1) is Fredholm, it has the
same kernel and co-kernel in all these cases, i.e., is uniquely solvable for all
1 <p<4andall -1 < s <1 (see [5] and [12] for the proof of the assertion).

For 4 < p < o0, (53) has, due to the periodicity, two pairs of solutions
{p,sp} and {p,s, — 1}, where s, > 0, s, —1 < 0. It can be shown that
for s, =1 < s < s5p, for =1 < s < s, — 1, and for s, < s < 1 the
symbol A} has index 0, +1 and —1, respectively. Manipulating with the
properties of kernels and co-kernels in embedded spaces, we can prove easily
that equation (1) has, respectively, no kernel and co-kernel (is uniquely
solvable), has no kernel, but 1-dimensional co-kernel (has a unique solution
for all right-hand sides which are orthogonal to the solution of the dual
homogeneous equation) and has the 1-dimensional kernel, but no co-kernel
(has a non-unique solution for all right-hand sides), respectively. O
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