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Abstract. The unimprovable in a certain sense conditions guaranteeing
the existence and uniqueness of positive solutions of periodic type boundary
value problems for singular in phase variables nonlinear nonautonomous
differential systems are established.
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Let —oo < a < b < 400, Roy =10, +00[,

Ry, = {(%)?:1 eR": z1>0,...,z, >O}

and f; : [a,0] x Rf, — R (i = 1,...,n) are functions satisfying the local
Carathéodory conditions, i.e. f;(-,z1,...,2,) :[a,b] > R (i=1,...,n)are
measurable for all (z;)7_, € Ry, fi(t,-,..., ) : Ry = R (i=1,...,n)

are continuous for almost all ¢ € [a, ] and for any p > 0 and py €]0, p[ the
function

;o,p(t) :maX{Z’fi(ta‘rl?"‘vxn” *Po < Spa"'7p0 < Zn <,0}
i=1

is integrable on [a, b].
Consider the differential system

du; )
ch = filt,u1,...,up) (i=1,...,n) (1)

with the boundary conditions

wi(a) = pi(us(b)) (i=1,...,n), (2)
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where ¢; : Roy — Ry (¢ =1,...,n) are continuous functions.
A particular case of (2) are the periodic boundary conditions

ui(a) =u;(b) (i=1,...,n).

Thus the conditions (2) we call the periodic type boundary conditions.

A solution (u;)j~; : [a,b] = Rf, of the system (1) satisfying the boundary
conditions (2) is called a positive solution of the problem (1), (2).

For singular in phase variables first and second order differential equa-
tions, periodic type boundary value problems are studied in detail (see,
e.g., [1, 2, 3,5, 7]). As for the system (1), for it problems of the type (2)
are investigated mainly only in the regular case, i.e., in the case where the
functions f; (i =1,...,n) are continuous, or satisfy the local Carathéodory
conditions on the set [a,b] x R and ¢; : Ry — Ry (i = 1,...,n) are
continuous functions, where

Ry = [0, 400 RY = {(z);: 21> 0,...,70 >0}

(see [1, 2] and the references therein).

Theorems below on the existence of a positive solution of the problem
(1),(2) cover the cases in which the system under consideration has sin-
gularities in phase variables, in particular, the case where for arbitrary
i,ke{l,....,n}and z; >0 (j=1,...,n; j # k) the equality

lim |f¢(t, 1. .. ,xn)‘ = 400
zr—0
is fulfilled.

In Theorems 1 and 2 it is assumed, respectively, that the functions f;
(i=1,...,n)and ¢; (i =1,...,n) on the sets [a,b] x Rf, and Ro, satisfy
the inequalities

Ji(fi(taxlv s vxn) _pi(t)mi) > Qi(tvmi) (7’ = ]-7' . 'an)v (3)
oi(pi(z) —ayz) >0 (i=1,...,n), (4)
qi(t,z;) < oi(filt 21, . .. @) — pi(t)z:)

IN

I
—_

3
~—
—
ot
~

n
S Zpik(tvml + - +xn)1’k + q0(tax17 cee 71'71) (Z
k=1

oi(pi(z) — a;x) >0, oi(pi(x) —Bix) < By (i=1,...,n). (6)

Here,

o; € {—1,1}, a; >0, ﬁl >0, O'Z‘(ﬁi—()li) >0 (i: 1,...,’/7,), BO >0,
p; : [a,b) = R (i = 1,...,n) are integrable functions, p; : [a,b] X Ry — R
and ¢; : [a,b] x Roy — Ry (i,k = 1,...,n) are integrable in the first argu-
ment and nonincreasing and continuous in the second argument functions,

and qo : [a,b] x Ry, — Ry is an integrable in the first argument and non-
increasing and continuous in the last n arguments function. Moreover, p;



and ¢; (1 =1,...,n) satisfy the conditions

(v [ 1) =1) <0 =1,
oo ([ moras) ~1) <0 =1
b

/qi(t,x)dt>0 for x>0 (i=1,...,n).

Along with (1), (2) we consider the auxiliary problem

dui
dt

= (1= N)(pi(t)u; + 0iqi(t, us))+
—i—)\fi(t,ul,...,un)—i-aig (i: 1,...,77,)7
ui(a) = (1 — Nazui(b) + Ap; (ui (b)) (i =1,...,n),

depending on the parameters A > 0 and ¢ > 0.

Theorem 1 (Principle of a priori boundedness). Let the inequalities
(3), (4), (7), and (9) be fulfilled and let there exist positive constants &g
and p such that for arbitrary A € [0,1] and € €]0,q] every positive solution

(us)?_q of the problem (10), (11) admits the estimates
w(t)y<p (i=1,...,n).

Then the problem (1), (2) has at least one positive solution.

By X = (zik){';=, and r(X) we denote the n x n matrix with compo-
nents z;; € R (i,k = 1,...,n) and the spectral radius of the matrix X,
respectively. For any integrable function p : [a,b] — R and positive number

B satisfying the condition

Ap,B) =1— Bexp (/bp(S) dS) # 0,

we put

g(p, B)(t,s) =

t

A(;,ﬁ)exp</p(7)dT> for a <s<t<b,

t

Alp,B) P

S

B </bp(7')d7'+/p(7')d7'> for a <t<s<b
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and
. t b
w(p, B)(t)=——|(1 — B ex (/ s ds)—l—ﬁex (/ s ds)—l}
A= 505|1 - Dew ( [oo o [rs
Theorem 2. Let the inequalities (5), (6), (8), and (9) be fulfilled and let
there exist continuous functions ¥; : [a,b] = Roy (i =1,...,n) such that
lim_r(H(z) <1 (12)

where H(z) = (hik(v))} )=, and

b
:max{Ei}t)/’g(pi,Bi)(t,s)’pik(&x)fk(s)ds: agtgb} (i,k=1,...,n).

Then the problem (1), (2) has at least one positive solution.

This theorem can be proved on the basis of Theorem 1 and Theorems 2.1,
2.2 and 3.1 of [3].
Now we pass to the case, where

b
oipi(t) <0 for a <t <b, ai/pi(t)dt<0 (i=1,...,n)

and the inequalities (5) have the form

qi(t,z;) <oy (filt,ze, ..., 2n) — pi(t)z;) <

~ hik(m1+---—|—a:n) .

where h;r @ Ror — Roy (i,k = 1,...,n) are continuous nonincreasing
functions, and o4, ¢; (i = 1,...,n) and gg are the numbers and functions
satisfying the above conditions.

>From Theorem 2 it follows the following corollary.

Corollary 1. If along with (6), (8) and (13) the inequality (12) is ful-
filled, where H(z) = (hik(v))} =1, then the problem (1), (2) has at least one
positive solution.

As an example, we consider the problems

dui - .
- = oo Y v+ foiltu, o)) =1,m), (1)
k=1

ui(a) =u(b) (i=1,...,n), (15)




and
dui |1 — Brlhix
dt 702;(1—Bk)(t—a)+ﬂk(b—a) e
+oifoi(t,ur, ... u,) (=1,...,n), (16)
ui(a) = Bu;(b) (i=1,...,n), (17)

where 0; € {—1,1} (i=1,...,n), pix (i,k=1,...,n)and B; (i =1,...,n)
are the constants satisfying the inequalities

pii<0a pikZO (Z#kv iakzla-"7n)a (18)

Bi>07 01(61_1)<0 (i:17"'an)7 (19)

hik (i,k =1,...,n) are nonnegative constants and fo; : [a,b] x R, — R
(i = 1,...,n) are functions satisfying the local Carathédoty conditions.

Moreover, on the set [a,b] x Rfj, the inequalities

Qi(t7xi) < fOi(t7x17"'7In) < qo(taxlv-"7xn) (7’ = ]-a"'vn)

are fulfilled, where qq : [a,b] x Rj, — Ry is an integrable in the first argu-
ment and nonincreasing and continuous in the last n arguments function,
and ¢; : [a,b] Xx Royx — Ry (¢ = 1,...,n) are integrable in the first ar-
gument and nonincreasing in the second argument functions satisfying the
conditions (9).

Corollary 2. For the existence of at least one positive solution of the prob-
lem (14), (15) it is necessary and sufficient that real parts of the eigenvalues
of the matriz (pir)} y—, be negative.

Corollary 3. For the existence of at least one positive solution of the prob-
lem (16), (17) it is necessary and sufficient that the matriz H = (hix){
satisfy the inequality

r(H) < 1. (20)
Remark 1. In the conditions of Corollaries 2 and 3 the functions fo; (i =
1,...,n) may have singularities of arbitrary order in the least n arguments.

For example, in (14) and (16) we may assume that

n

foi(t,xy, ..., xy,) = Z (quir @)z "% + goip exp(x, %)) (i=1,...,n),
=1

where p1ik, poir (i,k = 1,...,n) are positive constants and qq;x : [a,b] —
Ry, gk : [a,b] = Ry (i,k =1,...,n) are integrable functions such that
b
/ (qm(t) + qgii(t)) dt >0 (Z =1,... ,n).

a

The uniqueness of a positive solution of the problem (1), (2) can be proved
only in the case where each function f; has the singularity in the i-th phase
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variable only. More precisely, we consider the case when the system (1) has
the following form
dui
dt (
The particular cases of (21) are the differential systems

= pi(t)ui + o; (fOi t,ug, ... ,Un) + qi(t,ui)) (Z =1,... 7’I’L). (21)

n

dui .
= zai(;pikuk—i—qi(t,ui)) (i=1,...,n) (22)

and

du; - |1 — Blha > .

—=0; ur+qi(t, u; i=1,...,n). (23

i (;(1—ﬁk)(t—a)+ﬁk(b—a) () ) € e
Here o; € {-1,1} (i =1,...,n), p; : [a,b] = R (i =1,...,n) are integrable
functions, fo; : [a,b] x R — Ry (i = 1,...,n) are functions satisfying the
local Carathéodoty conditions, and ¢; : [a,b] x Roy — Ry (i = 1,...,n)
are integrable in the first argument and nonincreasing and continuous in
the second argument functions. Moreover, p; and ¢; (i = 1,...,n) satisfy

the conditions (8) and (9). As for p;; and 8; (i,k = 1,...,n), they are the
constants satisfying the inequalities (18) and (19), and h;, (i,k=1,...,n)
are nonnegative constants.

Theorem 3. Let on the sets [a,b] x R and R the conditions

oi(foilt,x1, .., @0) — foi(t,y1, - yn)) sgn(z; — ;) <
< Zpik(t)|$k -y t=1,...,n)
k=1

and
oi(pi(®) —az) 20, oy [(sai(:r) —pi(y))sgn(r —y) — Bilr — yl} <0
(t=1,...,n)

hold, where p;, : [a,b] = Ry (i,k =1,---,n) are integrable functions. Let,
moreover, there exist continuous functions ¢; : [a,b] — Roy (i = 1,...,n)
such that the matriz H = (hix)} -, with the components

b
hikmaX{Eil(t)/|g(pi7ﬂi)(t75)|pik(s)ék(5) ds : aétéb} (i,k=1,...,n)

satisfies the inequality (20). Then the problem (21), (2) has a unique positive
solution.

Theorem 3 results in the following corollaries.

Corollary 4. For the existence of a unique positive solution of the problem
(22), (15) it is necessary and sufficient that real parts of eigenvalues of the
matriz (pi)i x—1 be negative.
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Corollary 5. For the existence of a unique positive solution of the problem
(23), (17) it is necessary and sufficient that the matriz H = (hi)7 -, satisfy
the inequality (20).

Remark 2. In the conditions of Theorem 3 and its corollaries, the functions
¢; (i = 1,...,n) may have singularities of arbitrary order in the second
argument. For example, in (21), (22) and (23) we may assume that

qi(t,x) = g1 (t)x™ " + g (t) exp(z™2) (i=1,...,n),
where p;1 > 0, g2 >0 (i =1,...,n), and g, : [a,0] = Ry (i =1,...,n;
k = 1,2) are integrable functions such that
b

/(Qil(t)+Qi2(t)) dt>0 (i=1,...,n).
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