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Abstract. This paper considers the factorization of elliptic symbols
which can be represented by matrix-valued functions. Our starting point
is a Fundamental Factorization Theorem, due to Budjanu and Gohberg [2].
We critically examine the work of Shamir [15], together with some correc-
tions and improvements as proposed by Duduchava [6]. As an integral part
of this work, we give a new and detailed proof that certain sub-algebras of
the Wiener algebra on the real line satisfy a sufficient condition for a right
standard factorization. Moreover, assuming only the Fundamental Factor-
ization Theorem, we provide a complete proof of an important result from
Shargorodsky [16], on the factorization of an elliptic homogeneous matrix-
valued function, useful in the context of the inversion of elliptic systems of
multidimensional singular integral operators in a half-space.
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1. INTRODUCTION

This paper considers the factorization of elliptic symbols which can be
represented by matrix-valued functions. Our starting point is a Fundamen-
tal Factorization Theorem due to Budjanu and Gohberg [2]. We critically ex-
amine the work of Shamir [15], together with some corrections and improve-
ments as proposed by Duduchava [6]. We shall call the combined efforts of
these two latter authors the Shamir-Duduchava factorization method.

One important application of the Shamir-Duduchava factorization me-
thod has been given by Shargorodsky [16]. Our primary goal is to provide,
in a single place, a complete proof of Shargorodsky’s result on the factor-
ization of a matrix-valued elliptic symbol, assuming only the Fundamental
Factorization Theorem. As an integral part of this work, we will give a new
and detailed proof that certain sub-algebras of the Wiener algebra on the
real line satisfy a sufficient condition for the right standard factorization.

2. BACKGROUND

Let T" denote a simple closed smooth contour dividing the complex plane
into two regions D, and D_, where for a bounded contour we identify D
with the domain contained within I'. We shall be especially interested in
the case where I' = R, the one point compactification of the real line. In
this situation, of course, Dy are simply the upper and lower half-planes,
respectively. Let G+ denote the union Dy UT.

2.1. Factorization. Suppose we are given a nonsingular matrix-valued fun-
ction A(¢) = (ajk(C))szl, then we define a right standard factorization, or
simply the factorization as a representation of the form

A(Q) = A-(Q)D(OAL(Q) (CeT), (2.1)
where D(() is strictly diagonal with non-zero elements d;; = (((—A1)/(¢—
A7) for j = 1,...,N. The exponents k1 > kg > -+ > Ky are integers

and AT are certain fixed points chosen in D, respectively. (In passing, we
note that if I' = R, it is customary to take A\* = +i.) AL({) are square
N x N matrices that are analytic in D1 and continuous in G1. Moreover,
the determinant of A, (A_) is nonzero on G (G_).

As one would expect, interchanging the matrices A_(¢) and A4 (¢) in
(2.1) gives rise to a left standard factorization. In either a right or a left
factorization, the integers k; = k,(A) are uniquely determined (see [9]) by
the matrix A(¢). Further, if the matrix A(¢) admits a factorization for
a pair of points A%, then it admits a factorization of the same type for
any pair of points u* € D, in that the right or left indices, denoted by
{k;(A), j =1,...,N}, are independent of the points A*.

2.2. Banach algebras of continuous functions. Let /(I") denote a Ba-
nach algebra of continuous functions on I' which includes the set of all
rational functions R(I") not having any poles on I'. Further we insist that
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U(T) is inverse closed in the sense that if a(¢) € U(T") and a(¢) does not
vanish anywhere on T', then a=*(¢) € U(T'). Of course, U(I') C C(T'), where
C(T) is the Banach algebra of all continuous functions on I', with the usual
supremur nor.

Consider the region G;. By RT(I') we denote the set of all rational
functions not having any poles in this domain and by C*(T") the closure
of RT(T') in C(I') with respect to the norm of C(T'). It is easy to see
that CT(T") is a subalgebra of C(T') consisting of those functions that have
analytic continuation to D and which are continuous on G1. We can now
define YT (T') = U(T') N CT(T'). Again, it is straightforward to show that
UT(T) is a subalgebra of U(T"). (Similar definitions of C~(T') and U~ (T")
follow by considering the region G_.)

2.3. Splitting algebras. It turns out that the ability to factorize a given
matrix is intimately linked to the ability to express U(T") as a direct sum of
two subalgebras - one containing analytic functions defined on D, and the
other analytic functions on D_. To ensure the uniqueness of this partition
we let 4~ (I') denote the subalgebra of ¢~ (I') consisting of all functions that
vanish at the chosen point A= € D_. We now say that a Banach algebra
U(T) splits if we can write

UT) =ur @) U= ().

The prototypical example of a splitting algebra is the Wiener algebra,
W (T), of all functions defined on T, the unit circle |[¢| = 1, of the form

a(() = i a;¢? ( i aj<oo>

Jj=—00 j=—00
with the norm [la(¢)|| = Y. l|aj|. The Banach algebras W*(T) have a
Jj=—00

simple characterization. For example, W (T) consists of all functions in
W (T) that can be expanded as an absolutely converging series in nonneg-
ative powers of (. However, the algebra C(T) does not split. (For more
details see [2].)

2.4. R-algebras. We say that a Banach algebra U(T) of complex-valued
functions continuous on I' is an R-algebra if the set of all rational functions
R(T") with poles not lying on I' is contained in ¢(I") and this set is dense,
with respect to the norm of U(I"). In passing, we note that any R-algebra
of continuous functions is inverse closed. (See, for example, [4, Chapter 2,
Section 3, p. 44].) Following Theorem 5.1, p. 20 [3], we have:

Theorem 2.1 (Fundamental Factorization Theorem). Let U(T') be an ar-
bitrary splitting R-algebra. Then every nonsingular matriz-valued function
A(C) € Unxn(T) admits a right standard factorization with factors Ax(Q)
in the subalgebras Uz ().
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2.5. Wiener algebras on the real line. Let L;(R) denote the usual con-
volution algebra of Lebesgue integrable functions on the real line. For any
g € L1(R), we define the Fourier Transform of g as the function Fg, or g,
given by

(Fo)(t) =(t) := %2? / o(2)e da.

We let C5°(R) denote the algebra of continuous functions f on R which
vanish at +oo. It is well known (see, for example, [13, Chapter 9, Theo-
rem 9.6, p. 182]) that if g € L;(R), then

g€ G (R), [glloe < llgllr- (2.2)

The Wiener algebra W (R) is the set of all functions of the form f = g+c,
where g € L1(R) and ¢ is a constant. The norm on W (R) is given by

£ llw @) = llglls + le]-

Suppose f1 = g1 +c1, fo = ga +c2 € W(R). Then since §1g2 = g1 * g2 (see,
for example, [13, Chapter 9, Theorem 9.2, p. 179]), it is straightforward to
show that W (R) is a Banach algebra.

We will also consider certain subalgebras of the Wiener algebra W (R).
For r =0,1,2,... we define W"(R) to be the set of functions f such that

(1—it)*D*f(t) e W(R) (k=0,1,...,7),

where D* is the kth order derivative. (Of course, WO(R) is simply W (R).)
We shall show that W"(R) is a Banach algebra and, moreover, is a splitting
R-algebra.

2.6. Homogeneity, differentiability and ellipticity. Suppose { =
(&1,...&,) € R™ for some integer n > 2. It will be convenient to write
€= (¢,¢,), where ¢ € R"1. We assume that R” has the usual Euclidean
norm, and we let S"~! denote the set {£ € R™ | & +--- 4+ &2 = 1}.

We further suppose that Ag(£,&,) is an N x N matrix-valued function
defined on R™, which is homogeneous of degree 0. In addition, we will as-
sume that the elements of the matrix Ay (¢’,&,) belong to C™T2(S"~1), for
some non-negative integer r, where C"(S”~!) denotes the set of  times con-
tinuously differentiable functions on the domain S*~!. Finally, we assume
that Ag(&',&,) is elliptic, in that

5elgrbf_l | det Ag(¢)] > 0.
2.7. The matrices £+ and E. We will be particularly interested in the
behavior of Ay(¢',&,) as &, — Foo.

Our approach is effectively to fix £, and thereby consider factorization
in the one-dimensional (scalar) variable &,. Since Ag(¢’, ;) is homogeneous
of degree zero,

lim A0(€I7 fn) = Ao(o, ce 7O, i1)7
En—too
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for fixed &’. We define
Ey == A(0,...,0,£1) and E:=E;'E_. (2.3)
2.8. The matrices B.. It is a standard result that any £ € Cyxn can
be expressed in the Jordan Canonical Form
hEht = J = diag[Jy, ..., ],

where the Jordan block Ji, = Ji.(\x) is a matrix of order my, with eigenvalue
A, on every diagonal entry, 1 on the super-diagonal and O elsewhere. The
matrix hi is invertible and

my+---+m;=N.

The Jordan matrix J is unique up to the ordering of the blocks Ji, k =
1,...,L.
Let B™(z) be the m x m matrix (b;(2))} %=, given by

0, 7 <k,
bir(z) =4 b 0T k,
27 ok
. j> k.
G-kt
We now define
K = diag[K,..., K], (2.4)
where K} := A\;B™*(1). By construction, K is a lower triangular matrix

whose block structure and diagonal elements are identical to those of J.
A routine inspection of the equation

Kru = A\pu
shows that the eigenspace associated with the eigenvalue Ax has dimension

one. Therefore (see [5, p. 191]), the matrix K}, is similar to the Jordan block
Jr(Ag) for k=1,...,1. Thus K is similar to J, and we have

J=hy K hy?,
for some nonsingular matrix hy. Hence we can write
E=hKh™', where h:=h]'h,. (2.5)

For any 21,29 € C and positive integer m, it is easy to show that the
matrix-valued functions B™(z) satisfy

B™(z1 4+ 22) = B™(21)B™(22), B™(0)=1. (2.6)
In particular, taking zo = —z1, gives
B™(—z) = [Bm(zl)] (2.7)

In the analysis that follows we will use the logarithm function on the
complex plane. Unless specifically stated to the contrary, we will always
take the principal branch of the logarithm Log z defined by

-1

Logz =log|z| +iargz, —mw <argz <,
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for any non-zero z € C. In other words, we assume that the discontinuity
in arg z occurs across the negative real axis.
For any t € R, we now define the complex-valued functions

a4 (t) := (2mi) "' log(t £ 1). (2.8)
Then
tiigrnoo [t (t) — a_(t)] =0, tli{noo [ap(t) —a_(t)] = 1. (2.9)

Corresponding to the block decomposition in (2.4), we set
B (t)=diag [Bml ((2mi) " log(t£4)), ..., B™ ((2mi) " log(tj:i))} . (2.10)

We note, in passing, that in the special case that { = N, then By (t) = I.
Following [15], we now give a simple test for membership of W (R) for
continuously differentiable functions.

Lemma 2.2. Let r = 0,1,2,... and suppose the function b(t) € C"TH(R)
has the property that, for some § > 0,

DFb(t) = O([t|F7°), k=0,1,...,(r+1),
then b(t) € W (R).
Proof. We follow the approach given in [15]. For 0 < k < r, we define
ge(t) = (1 — it) ) (1)

Our goal is to show that gi(t) € W(R).
Differentiating with respect to ¢,

Ge(t) = —ik(1 — it)* 1) (1) + (1 — it)Fp*+D (1),

Then, by hypothesis, g, and g;, are continuous. Moreover, as [t| — oo, we
have gi(t) = O(|t|=°) and g} (t) = O(|t|~1=?). Hence g, (t) € L*(R).

On applying the Fourier transform (F;_¢) to the function gj,(t), we ob-
tain £ gx(€) € L?(R). But using the Cauchy—Schwarz inequality

[ aore= [ |§1||£§k<s>|d5<(/|;|2ds)2||§gﬁc||p<oo.

|€]=e |€]=e |€]>e

Hence, g (&) is absolutely integrable everywhere outside a neighborhood
(—e¢,€) of zero. On the other hand, for small |£|, from [17, Theorem 127,
p. 173 ], g (€) = O(|€]°~ 1) and hence Gy (&) is absolutely integrable inside
(—¢,€).

Thus, gx(£) € L'(R). We now define a new function hi(x) = gr(—2).
Then, by construction, hi(z) € L*(R) and taking the Fourier transform
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(Fast) of hg(zx), we obtain

Now hy (t) € W(R), and hence, g;(t) € W(R). This completes the proof of
the lemma. 0

2.9. Key theorem from Shamir. The next theorem (see [15, Appendix,
pp. 122-123]) considers some properties of a certain matrix-valued function
derived from an elliptic homogeneous matrix-valued function of degree zero.
Together with Theorem 2.1, it will provide the starting point for proving
our second result.

Theorem 2.3. Suppose that Ag(£,€,) € C 2 (SP™1) is a matriz-valued
function which is homogeneous of degree O and elliptic. Suppose that the
Jordan form of Ay'(0,...,0,1)Ap(0,...,0,—1) has blocks Jx(A\i) of size
my for k=1,...,1. Let the matriz c := Aal((), ...,0,1), and the constant
invertible matriz h be as in equation (2.5). Then, for the fived &' # 0,
lim h=tcAg(¢,&)h =1,
&n_>+00
lim h™'eAo(¢, & )h = diag [\ B™ (1),...,\B™(1)].

En——00
Further, let { = (¢1,...,{N), where

logh; , A2 z
Cq:_72gﬂ'i] for mk<q§2mk7 g=1,...,N, (2’11)
k=1 k=1
and define

(€, £1)¢ == diag [(&n £9),..., (Ea £ )]

Then, for the fized £ # 0,

A€, €)= (€n — i) B_(&)h 7!
x cAo(€, &)MBL (&) (6n + 1) € WRTA(R),

and
lim  Aj(,¢,) =1. (2.12)
Epn—Eoo
Proof. A detailed proof of this theorem is given in Appendix A. O

Remark 2.4. Note that in (2.11), the definition of {4, ¢ =1,..., N includes
a multiplicative factor of (—1) not given in [15].
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Remark 2.5. Since we are assuming that for every non-zero z € C we have
—m < arg z < 7, it follows immediately that

1 1.
f§§R64j<§, jzl,,N

and hence
do := 1§I;}IICI%N<1 —Re(; +Re(;) > 0. (2.13)
3. STATEMENT OF RESULTS
Theorem 3.1. Forr=0,1,2,...,W"(R) is a splitting R-algebra.

Our second result considers the factorization of an elliptic matrix-valued
function of degree u, and it confirms the isotropic case of Lemma 1.9,
p. 60 [16].

Theorem 3.2. Letr := [n/2]+1. Suppose that A € Cy2\ (R™) is a matriz-
valued function which is homogeneous of degree p and elliptic. Then, for
the fized w € S,

Au(€) = A(IE lwr, -, € [wn—1,&n)

admits the factorization

Au(€) = (&0 —il€')" P AL (€) D(w, &) AL (&) (€0 +il€')"2,

where (A (€))*! and (AL (€)™ are homogeneous matriz-valued functions
of order 0 that, for the fived & # 0, satisfy estimates of the form

> esssup [€1D¢ (AL (E,60)),, < oo, 1<jk<N.  (31)
0<q<r ’

Further, they have analytic extensions with respect to &, in the lower half-
plane and the upper half-plane, respectively.
D(w, &) is a lower triangular matriz with elements

€ — €|\ k(@) HGr
<€n +ZI£’|)

on its diagonal. Its off-diagonal terms are homogeneous of degree 0, and
they satisfy an estimate of the form (3.1). The integer

N
k(w) = an(w)
k=1

~ L nargdet [(€ +€2) 2 Anenen)]|
=5 argde [(|f‘ +§n) w(f7§n):|

N
=D Reg
k=1

En=—00
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M

depends continuously on weS" 2. The partial sums Y k;j(w), I<M <N,
k=1

are upper semicontinuous,

_log A,
27

Gk =

j—1 j—1
for Zmy <k< Zmu, k=1,...,N,
v=1 v=1

\; are eigenvalues of the matriz A=1(0,...,0,+1)A(0,...,0,—1) to which
there correspond Jordan blocks of dimension m;.

4. PROOF OF THE FIRST RESULT

The objective of this section is to prove Theorem 3.1. Let % denote the
characteristic functions of RE, respectively.

Lemma 4.1. The Wiener algebra W (R) is an R-algebra.

Proof. An abbreviated proof of this lemma is given in [4, Chapter 2, Sec-
tion 4, pp. 62-63]. A more detailed proof is included here, both for complete-
ness and to introduce some analysis that will be useful when considering the
subalgebras W"(R) for r > 1.

We begin by showing that W (R) contains all rational functions with poles
off R. Firstly, we note the identities

(t—24) " = Fomr(V2mi0~ (z) e "+*), Imzy >0,
(t—z_)' = —Forse(V2mi0T (2) e "), Imz_ <0,

where the functions 0~ (z)e~%+% and 6 (x)e~*-% € L;(R). Secondly, since
all functions in W (R) are bounded at infinity, any rational function in W (R)
must be such that the degree of the numerator must be less than or equal
to the degree of the denominator. (In particular, non-constant polynomial
functions are not included in W(R).) Finally, the fact that W (R) contains
all rational functions with poles off R now follows directly, because W (R)
is an algebra, and we have the usual partial fraction decomposition over C.

We now wish to show that rational functions with poles off R are dense
in W(R). Suppose f € W(R) is arbitrary and r € W(R) is rational. By
definition, we can write f(t) = g(t)+cand r(t) = 5(¢t)+d, where g, s € L1 (R)
and ¢,d € C. Let C2°(R) denote the set of smooth functions with compact
support in R. Then C¢°(R) is dense in L1 (R) and

If =rlw = llg = sllz, +lc—d|
<|lg = hlle, + 1h = sllz, +lc—d| (where h e C2(R))
=llg—nhllL, +|0Th+0"h—0"s—0s||., (taking d = c)
<llg—hlle, +107h—0"s]L, +11 07~ —07s|L,.

Of course, the approximations to §7h and §~h, by §7s and 0~ s, respec-
tively, are independent but similar. Hence, to prove that W(R) is an R-
algebra, it is enough for us to show that we can approximate 0% (z)h(z),
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where h € CS°(R), arbitrarily closely in the L;(R) norm by a function
07 (z)s(x) such that f+s is rational and has no poles in the upper half-
plane.

For z > 0, we let y = e~* and define

) h(=log(y)/y if y€(0,1],
V)= {o it y=0.

Since h(x) has compact support, t(y) is identically zero in some interval
[0,v), where v > 0. Thus, by construction, ¢ (y) € C*°[0,1].

Hence, given any € > 0, we can choose a Bernstein polynomial (see [12])
(Bu)(y), of degree M = M (e€) such that

sup] |(y) — (Buw)(y)| <€

y€l[0,1

M
= sup |¥(y) —Zbkyk’ < e for certain by, € C, £k=0,1,2,..., M
yE[O,l] k=0

M
= sup ’h(m)ez - Z bre "] < e.
k=0

z€[0,00)

M
We let S(x) = > bre™*® and observe, therefore, that our proposed approx-
imant to 9+h(x)_is Ot S(z)e ",
Of course, the Fourier transform of 7S (z)e™* is a rational function with
no poles in the upper half-plane, since for £ = 1,2,3,... we have
1
Vor t+ik’

Finally, we take 0% s(z) := 0+5(z)e™® and then

.

Ote—kz =

[0k~ 8*s(@)]1. = [ Iha) - S(a)e | ds
0

/ Ih(z)e” — S(z)|e~* da
0

§e/e*$dx

0
= €.

This completes the proof that W(R) is an R-algebra. O

Remark 4.2. Suppose now that f =g € W(R). From the proof of the above
lemma, we can show that §tg € CT (R) (See section 2.2.) Indeed, applying
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inequality (2.2), we have
[6+g — ¥ ()| < 11679 — 67 5(2)]|1,-

Since QTSG) € RT(R), we immediately have Otg e C*(R), because CF(R)
is the closure of RT(R) with respect to the supremum norm. It follows in
an exactly similar way that /=g € C~(R).

Lemma 4.3. The Wiener algebra W (R) splits.

Proof. An abbreviated proof of this lemma is given in [4, Chapter 2, Sec-
tion 4, p. 63]. A more detailed proof is included here for completeness.

Our method of proof is a direct construction. Suppose f = g+c € W(R)
then, since g = 0Tg + 0~ g, we have

f=0tg+0-g+c
= (9/+\g+c+) + (9/_\94-0,)
where ¢ = ¢4 4+ c_, and c_ is chosen such that
(6=9)(~i) + - =0.

But since g € L;(R), we have 6% g € L;(R). Moreover, from Remark 4.2,
we have =g € C*(R) and thus

0tg € W(R) N CE(R).
In other words, we have the required decomposition, and thus
W(R) = WHR)® W~ (R)
where W~ (R) = {h € W~ (R) : h(—i) = 0}. This completes the proof that
W (R) splits. O
Remark 4.4. For any ¢ € S(R), we now define three integral operators:
T p(t) = (£1) lim / T—&dﬂ Srp(t) = 1 / #(7) dr.

271 =0 (t £ ie) i T—1

— 00 — 00

For more details see [7] and [8]. Each of these operators is bounded on S(R).
Moreover (see [7, Chapter IT Section 5, pp. 70-71]),
3 = 6= o.

But since S(R) is dense in Wo(R) :=={f e W(R): f =3, g € L1(R)},
each of the singular integral operators can be extended, by continuity, to a
bounded operator on Wy(R).

Finally, we have the well-known formulae

I 410 = 1, n+:%(1+sR), = (7= ).
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Lemma 4.5. Forr =1,2,3,..., W"(R) is a Banach algebra with a norm
that is equivalent to the norm

1 llwe = 11 Fllw + > (1= it)*D* £ (1) -
k=1

Proof. The proof that W7 (R) is a Banach algebra is straightforward. How-
ever, as an illustration, we will prove that given fi, fo € W"(R), the prod-
uct fifs € W(R) and |[fi falwr < Collfullwel| 2w, for some constant
C, that depends only on r.
The existence of a norm || - ||} equivalent to || - ||w+ and such that
I fofellbye < I1Falliwe 1 f2lltyn is then guaranteed by [14, Theorem 10.2, p. 246].
Suppose f1, fo € WT(R). Then, for any integer p satisfying 1 <p <r,

(P DEAORO] =Y (1) [0 - 0D ) [0 itr D7t g
k=0
We assume that W (R) is a Banach algebra and therefore, f; fo € W(R) and
(1 —at)PDP[f1(t) f2(t)] € W(R). Hence, f1fo € W"(R), as required.
By definition,

11 Fallwe = | fufallw + Y [[(1 = it)* DX f fol |

k=1

= |l fifallw
k
> < ) [(1—t)? D7 f1] [(1 —it)*=I D" fo)

>
Jj=
< Wl Ll

+ZZ< )H (1 =ity DI fu|,, || (1 = it)* T DT fo |,

k=1 j=0
< Coll fallwrll fellwr,

where the strictly positive constant C, depends only on the integer r. This
completes the proof of the lemma. (I

w

We now show that W7 (R) splits. To do this, we will need two interme-
diate lemmas.

Lemma 4.6. Suppose f(t),Df(t) € W(R) and t_l)igloo f(t) = 0. Then
II*Df(t) = DIEf(2).
Proof. From [8, Chapter I, Section 4.4, p. 31], we have
DSrf(t) = SeDf(t)
But, from Remark 4.4 we have II* = % (I £ Sg), respectively, and so
DIIE f(t) = IEDf(t). O
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Lemma 4.7. Suppose f(t),tf(t) € W(R) and tllim f(t) =0. Let [tI,1I*]
denote the commutator of tI and IT*. Then [tI,TI*]f € C.
Proof. Suppose f(t),tf(t) € W(R). Then

[tI, 1) f = (tITIT — TTT¢D) f

_1 (¢(I + Sr) — (I + Sr)tI)f (by Remark 4.4)

=5 (tSr — Srt)f

N — DN

ot O 1T 7f(r)
= T_tdf‘ﬁ/ dr

:17@_T)f%

v T—1
— 00

(;;) 7]‘(7’) dr

eC.

Finally, we note that [tI, 11| = [tI,1—11"] = [tI,I]—[tI,IT"] = 0—[tI, 1]
and, hence, [tI,II7] € C. This completes the proof of the lemma. |

Lemma 4.8. Forr=0,1,2,... the algebra W"(R) splits.

Proof. Suppose f(t) € WT(R) for some nonnegative integer r. Since f(t) €
W(R), it is enough to consider the case where , lirin f(t) = 0. Moreover,
—+oo

by Remarks 4.2 and 4.4, we can write
F(&) =T f(8) + 17 f(8), I f € WR)NCH(R).

Thus, to complete the proof, we have to show that II* f(t) € W7 (R).
That is, we have prove that for k = 0,1,...7 we have (1 —it)*DFII* f(t) =
i~k (t + ) DFIIE £(t) € W(R).

We now proceed by induction on r. Our inductive hypothesis is that for
any f € W"(R), we have (t+i)"D"II* f(t) = (I*(¢t+43)"D" f(t)+c) € W(R).
‘We have previously proved this result for » = 0. Suppose that the inductive
hypothesis holds for £ =0,...,(r —1).

From Lemma 4.6,

(t+d)" DI f =t (t+4)" "D f+i- (t+4)  'D'IIEf
=t - (t+)"'D"TMIE(DS) i (t+43)" DT HIE(DS).



Shamir—Duduchava Factorization of Elliptic Symbols 127

But since Df € W™~1(R), applying the inductive hypothesis, we get
(t+4)"D'II* f
=t -1t +0)" ' D" YDf) +i- Tt +i)" ' D" YDf) + ¢
=t Tt +) " 'D"f+i- Tt +0)""'D"f +c
Hence, using Lemma 4.7 (applied to (t +4)"~1D" f), we obtain
(t+4)" D'IIE f = TIF¢(t +0) " D" f + TIFi(t +4)" " 'D" f + ¢
=T (t+4)"D"f + ¢
€ W(R).
This completes the proof by induction. So, finally, for £ = 0,1,...,r, we
have (1 — it)* DFII* f(t) € W(R) and thus, for 7 = 0,1,2,..., the algebra
W™ (R) splits. O
Our final objective in this section is to show that W"(R) is an R-algebra
for r=1,2,3,..., noting that in Lemma 4.1 we have proved this result for
the special case W(R), corresponding to r = 0.
In Appendix B we show that the Fourier transforms of smooth functions

with a compact support and which are zero in a neighborhood of z = 0, are
dense in the space W"(R). Then, proceeding analogously to Lemma 4.1, it

is enough for us to show that we can approximate 6+h, where h € C°(R)
and is zero near 0, arbitrarily closely in the W7 (R) norm by the function

ﬁ\s, that is rational and has no poles in the upper half- plane.
As previously, for > 0, we set y = e~ and define

h(—log(y))/y if y € (0,1],
Wly) = (—log(y))/ . _( ]
0 if y=0.
Since h(x) has compact support, ¥(y) is identically zero in some interval
[0,v), where v > 0. Thus, by construction, ¥(y) € C*°|[0,1].

Remark 4.9. The motivation for choosing the Bernstein polynomial,
(Bm)(y), can be found in [12], as the approximant to ¢ (y) in Lemma 4.1,
is that we can simultaneously choose M = M (e) such that for 1 < j <r
sup [(y) — (Bu)(y)| <€ and  sup [Djw(y) — D} (Bar)(y)| < e
y€[0,1] y€[0,1]

Given y = e~ ®, we can consider ¥(y) in terms of z, as given by the
equation ¢ (y) = e®h(x). The following lemma expresses the derivatives of

¥(y) in terms of the derivatives of h(x).
Lemma 4.10.
Dip(y) = (=10 TD(Dy + 1)+ (Dy + j)h(z) for j=1,2,... .

Proof. Note that by definition, y = e~ and ¥(y) = e*h(z). We use proof
by induction on j.
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Suppose j = 1. Then D,4(y) = Dy (y) - (dy/dx) and, hence.
Dyp(y) = —€"D,(e"h) = —e"(e“h + e"Dyh) = (—1)e** (D, + 1)h,

completing the first step of the inductive proof.
Now suppose the result is true for j = m. Then, by the inductive hy-
pothesis,

DD (y)] = Da |[(~1)"e™V5(Dy 1)+ (Dy + m)h(x)|.
Hence,
m—+1 _ m m+1)x
Dy (y)(dy/de) = (1) (m + 1) (D, +1) - (Dy + m)h(x)
+ (=1)"em*TV2D (D, 4 1) -+ (Dy +m)h(z).
Therefore,
m+41 _ m+1_(m+2)x
Dy thy(y) = (1) e [m 41 4 Dy](Dy + 1) -+ (Dg + m)h(x)
= (=)™ (m + 1) (D, + 1) -+ (Dy + m)(Dy + m+ (),
proving the result for j = m+1. This completes the proof by induction. [

Motivated by Lemma 4.10, for j = 0,1,2,..., we now define:
D,+1)---(Dy+j)h if j >0,
hi(z) = (Dy +1) -+ (D2 + j)h(x) it
h(x) if j=0.
Hence, we can write
Djy(y) = (=17 Dh;(z), j=0,1.2.... (4.1)
In exactly the same way, given y = e~* and (By¢)(y) = S(x), we define
T(x) = S(z)e ™. Hence, (Byth)(y) = e*T(z) and
Dj(Bu)(y) = (~1) eV (Dy + 1) -+ (Dy + )T () for j=1,2,....
Analogously, for j =0,1,2,... we define:
(Dy+ 1) (Dy +4)T(z) if j>0,
Tj(z) = e
T(x) if j=0.
Hence, we can similarly write
Di(BJVIw)(y) = (71)je(j+1)sz (IE), J=0,1,2..., (42)
and we can now express our approximations in terms of the variable x.

Remark 4.11. Using equations (4.1) and (4.2), we can now reformulate the
Bernstein polynomial, (By)(y), approximations to ¥(y) and its deriva-
tives as
sup |e"ho(z) — " Ty()| < e. (4.3)
z€[0,00)
and for 1 <j <r,

sup ’e(jﬂ)xhj(x) — e(jH)ITj(xﬂ <e.
z€[0,00)



Shamir—Duduchava Factorization of Elliptic Symbols 129

Lemma 4.12. Forr=1,2,3,... W"(R) is an R-algebra.

Proof. Our proposed approximant to 6% h(z) is 0TS (x)e™*. From Appendix
B, to show convergence to 0+ h in I - |[wr, it suffices to show the convergence
to 0 h, z*(0Fh) and Di(x*(0Fh))in || - ||, forall 1 < j <k <r.

Of course, one important consequence of the fact that our smooth func-
tion h is zero in the neighborhood of 0 is that it implies that 6T h is also
smooth.

We have already seen in Lemma 4.1 that

|07 h(z) — 94'5’(30)6_””HL1 <e.

Similarly, for 1 < k < r, we have

||0+xkh(:v) - 9*30’“5(3&)673”HL1 = / |£ckh(x) - ka(x)e*ﬂ dx
0
= / le®h(z) — S(z)| zFe " dx
0
= / le“ho(z) — " Ty ()] ake™" da
0

< e/xke_w dx by (4.3)
0

= (k!)e, since /xke_zdx =k!.
0

Suppose that j > 1. Clearly, there exist constants {¢; : 0 <1 < j}, that
depend only on j such that

J J
Dih=> al, DiT=>Y ol
=0 =0

where hg = h, and hy = (D +1)--- (Dy+1)hforl > 0,and To =T = Se™ 7,
and T} = (Dy + 1) -+ (Dy + )T for I > 0.
Hence, for 1 < j <k <r,

H@'kaDih - 9+kai(Se_w) HL1

J
= H(9+xk ch(hl - Tl)HLl
1=0

J
< Z o] - (|0 2* (b — 0|,
=0
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- Z|cl|/| E(hy(x) - Ti(x))| de
0

=0

J

Z |/‘e(l+1)xh e(l+1)le(x)‘e—(l+1)x k dz
1=0

<eZ|cl|/ D22k g by (4.11)

<e

al [ 1')k+1 :

IP_ﬂw

Therefore, W (R) is an R-algebra, as required. a

5. PROOF OF THE SECOND RESULT

The objective of this section is to prove Theorem 3.2. In determining
certain asymptotic estimates for matrices arising during factorization, we
follow the approach of Duduchava [6]. (For full details, see Appendix C.)

Proof. We begin by defining
/ —p/2 /
Ao(€,&n) = (IE'12 + [€al?) ™" A€, 60). (5.1)
For the fixed £ # 0, we set

— i/ R 57"
€' 1&']
From Theorem 2.3, for the fixed w € "2,
Aj(w,t) = (t —3) " B_(t)h eAg(w, )hBI () (t +1)¢ € Wit2 (R).
Moreover, from Lemmas 4.8 and 4.12, W"+2(R) is a splitting R-algebra.
Hence, by Theorem 2.1, the matrix Afj(w,t) admits a right standard factor-

ization.
Therefore, we can write,

cAo(w,t) = hBZH(t)(t — i) Aj(w, t)(t +13) By (t)h ™!
= hB~H(t)(t —i)S | (A" (w,t)) ! diag (t J_r z) (w)Ai(w,t)}

X (t+1) By (),

where the factors (A%)*! € Wit% (R), and have analytic extensions with

respect to &,, to the lower half-plane and the upper half-plane, respectively.

Moreover (see [10, p. 37]), since . lirin Af(w,t) = I, there exist factors
— o0

A% € Wit (R) such that

lim A% (w,t)=1. (5.2)

t—+oo
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We now define
A (w,t) := (t £1)° A% (w,t) (t£14)7C.

Hence, as the diagonal matrices commute,

_pp-1 - -1 g t— iRl
cAo(w,t) = hB= () (A7 (w, 1)~ ding (1)
From equation (5.3),
(AT)je = (t+ )97 (AL) -
Suppose j # k. Then, from Lemma C.4,

lim (A5 (w, 1)), =0 (j # k).

t—too
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(5.3)

AT (w,t)BL ()R,

Civen this result for the off-diagonal terms of AT (w,t) and equations (5.2)

and (5.3), we have
t_l)irino<> A (w,t) =1.
Further, if we set
AG (w,t) == AT (w,t) B (t)h ™!,

then we can write

_ . t — i\ rk(w)+¢
co(e,t) = (Ag (1)~ ding (1)

Now, by definition,
AT = AfBLR!
= [(AF = 1)+ I]|BLh™!
= By [By'(Af —I)By + 1|07}
= BLATh7Y,
where we now define

Af(w,t) == BZ'(t) (A (w,t) — I) BL(t) + I.

Al (w, ).

(5.4)

Remark 5.1. We have already noted that the factors (A% )*! have analytic
extensions with respect to &,, to the lower half-plane and to the upper half-
plane, respectively. From definitions (5.3) and (5.4), it is clear that this

property is likewise shared by the factors (AT)*! and (A3)*!.

Remark 5.2. From Lemma C.6,
[(A5)*'],, e W(R) for 1< j,k < N.

In particular, each element of the matrices (Agt)jEl satisfies a condition of

the form:
Z ess sup |§ngn (A;t(fl,fn))jﬂ < +o0.

0<q<r €
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Finally, we have the required factorization, namely,

— g\ k(w)+C
cAo(w, t) = h(A; )" B~ diag (i R
— h(A7) " d(w, ) ATH, (5.5)
where ()t
. 1 . t — 1\ r(w
d(w, ) = B~1(t) diag (HZ_) B ().

Remark 5.3. Note that, by construction, the matrix-valued functions B4 (&)
commute with the diagonal matrix (&, & 4)¢. (To see this, choose an ar-
bitrary block Ji(Ak). On this block, (&, £1)¢ acts like a scalar, since the
relevant components of the vector ¢ are all equal to —(log A\x)/(274).)

By Remark 5.3, equation (2.10) which defines B (t), together with the
properties of the blocks (see equations (2.6) and (2.7)), we can write

t — 1\ F(w)+¢
d(w, 1) = diag (;— ) BB, (1)
it — iR
s ()

1 t+1 1 t+1
di Bml(fl ‘>,...,Bml<—‘l ) .
x dlag [ 27 Ogt—z 271 Ogt—z

Remark 5.4. We notice that, by definition,

&n t+i & t+il¢]
t=— and - = .
|£ | t—1 gn - 7/|€ |
Hence, the functions of ¢ or (¢t +14)/(t — i) are homogeneous in the variable

§=(¢,6&n)

It remains to consider the sum and partial sums of the factorization
indices. For the fixed &', our final factorization (see equation (5.5)) is

cAo(w,t) = h(A3) td(w,t) ATt

Hence, since c, h are constant matrices and lim AQjE = I, we have
t

—+oo
_ 4/2 En=-+00
Aargdet [(I¢'f? + [éal?) " Aul€ )]
Ep=—00
En="00
= Aargdet Ag(&', &) ‘ (see equation (5.1))
A
= Aargdetd(w,t) (5.6)
t=—00

Now, d(w,t) is a lower triangular matrix, and hence its determinant is the
product of the entries on its main diagonal. Thus

N L kg (w)+Ck
det d(w,t) = H (t z) .
k=1
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Therefore (see [7, Chapter II, Section 6, p. 88]),

t=+o0

1
—Aargdetd(w,t)
27

N
= Z ki (w) + ZRQ Ck- (5.7)
k=1

t=—o0
From equations (5.6) and (5.7), we have

1 B En=-400
o Aarg det [(|§’\2 +1&.1%) “/2Aw(£,7£n):|

En=—00
N

N
= Zlik((U) + ZRGCk
k=1 k

=1

The remaining assertions in Theorem 3.2 concerning the continuity of the
sum and the semicontinuity of the partial sums of the factorization indices,
can be found in [15, Theorem 3.1, p. 113]. O

APPENDIX A. PROOF OF THE KEY THEOREM FROM SHAMIR
We shall give a proof of Theorem 2.3 in two steps:
(i) E7'E_ is similar to diag [A1, ..., An];
(ii) The general case.

Our overall approach will be to reduce the general case to a simpler case.
We begin by establishing some simple decay estimates.

Lemma A.1l. Suppose that Ag(¢',&,) € Oty (S"™Y) is a matriz-valued
function which is homogeneous of degree 0. Then, for the fized £ # 0,

D, [Ao(€,6n) = Ex] = O(l&a| ™), & — %00, 0<k < (r+3), (A1)
where these estimates are uniform for & € S*=2.

Proof. Suppose that &, — oo. Then since Ay is homogeneous of degree 0,

AO<§/a gn) - E+ = A0(§/§;17 1) - AO(O’ 1)

n—1 A )
=3 % 1) g— L 0(6]2)

This completes the proof for & = 0.
For 1 < k < (r 4+ 3), we can ignore the constant matrix E, and we
readily obtain

Df Ag(€,6n) = DE Ag(€6,1,1) = 0(I& ), & — oo

Of course, estimates for the case &, — —oo follow in exactly the same way.
This completes the proof of the lemma. O
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Let us consider the first step. We assume that the invertible matrix
E_T_lE_ is similar to diag[A1,...,An]. In this formulation the eigenvalues
Aj, g =1,..., N are listed according to their multiplicity and, of course, are
all non-zero.

We now define ¢ = ({1,...,{n) by

logA; .
Remark A.2. The definition of ¢, given by equation (A.2), includes a multi-
plicative factor (—1) is not shown in [15]. As will be seen, this modification
allows us to correct an error in the treatment of the discontinuity across the

negative real axis. (See [15, Lemma 4.2].)

Lemma A.3. Suppose that Ay(¢',¢,) € Ont2(SP™Y) is a matriz-valued
function which is homogeneous of degree 0 and elliptic. Suppose further
that for some invertible constant matrix hy,

E=E['E_ = hydiag[\1,..., An]hi " (A.3)
If ¢ = —28% for j=1,...N, ¢ = (C1,...,(n) and ¢ := A;4(0,...,0,1),

27

then for the fized £ # 0,
AG(E,6n) = (&n — 1)~ hy TeAo (€, &) (6n + 1) € WA (R),

and
: * (gl _
fnl—l>niloo AO (f 7£n) =1
Proof. By hypothesis, we have
E=E['E_ = hydiag[\1,..., An]hi "
If we define /~10(§', &) = hytcAo(€,€,)h1, we may assume, without loss of
generality, that
E+=I, E_:dlag[)\l,,)\N]
We define a new matrix-valued function
A5, 6n) = (6n — 1) Ao(€',€0) (&n + )" (A4)

Then, for &, > 0, we can write

Aé (5/7 fn) = (gn _i)_c [AVO(fla fn) _E+] (gn +i)< + (gn _i)_(:E-i- (fn +i)c
and similarly for &, < 0, we have

AG(E €)= (€= [Ao(€', €0) = B-] (6 t) (€ —1) " B (Enti)°

Since the matrices (£, —i)~¢ and (&, +4)¢ are diagonal, we can write a
typical element of the first summand as

(0 — )9 [Ao(€,6n) — Bx] (6 + 1)
= O(Jeal =G RG) = Ol )  (A5)
using Lemma A.1 and equation (2.13).
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Now suppose 1 < k < (r+3) and o € C. Then
Dgn (6n £ z)a = Ca,k(gn + i>a_k7

where Cq i, k =1,2,... are certain constants. Moreover, from Lemma A.1,
Dlgn [;{()(g/afn) - E:t] = O(|£n|7k71) as Sn — zoo.
Hence, for k =0,1,...,r + 3, we can write

Dgn {(gn — i)_Cj [ZO(&C fn) — Ei]jl(gn + 7/)9}
— O(|€n|7RC<_7’+RCCl*k*1) — O(|€n|7607k). (A.ﬁ)

We now consider the second summand, which is diagonal as it is the
product of diagonal matrices. For any o € C and &, — +oo, it will be
useful to factorize (&, £14)* using the following identity:

(& £49)* = (& £i0)* (1 £4&, )™

noting, as expected, that the decomposition on the right-hand side preserves
the modulus and argument of the left-hand side.
For &, > 0, the (4, ) entry of the second summand is given by

(En—1)"9 1 (& +1)9 = (£,—10) 79 (& +10)% 1 (1—ig, 1) ™9 (1446, )%
= (1—d& ") 9 (141, M)%,

since the product of the first two terms is 1.
Similarly, for &, < 0, we have

(gn - i)7Cj )‘j (gn + i)gj
= (&0 —i0)"% (& +10)9 Aj(1 — i€ 1)~ (L4 i€, 1)
— 6108 &n] pi¢im ¢ log \ﬁnleiCﬂr)\j(l — i )T (1 g DY
= TN (L—ig )T (L 4ig, )
= (L—ig )9 (1 +ig, )"

since \; = el°8% = e72™% for j =1,..., N from equation (A.2).
So, for the second summand, combining the results for &, — +oo, for
|€n] > 1 we have

(€n =0 Bx(&n+1)¢ =T =(1—igr ) (1 +ig ") — 1.
So, expanding the factors on the right-hand side in powers of £, 1, we have

(bn — 1) “Bi(Gn+0) —T=)Y_ A" for |&]> 1.

=1

Thus, on differentiating & times with respect to &,, we obtain

Dt { (6w =) Bulgn +)¢ — T} = O(&l ') (A7)
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for k=0,1,...,(r + 3). Combining estimates (A.6) and (A.7), we obtain

DE{A5(E ) =T} = O(I&al %), [6a] = oo (A8)
From Lemma 2.2, we have Aj(¢',&,) € Wit 2 (R). This completes the proof
of the first step. O

With these preparations complete, we now turn to the general case. For
convenience, we now restate Theorem 2.3.

Lemma A.4. Suppose that Ao(¢',&,) € C}“VJ;?’N(S”_l) is a matriz-valued
function which is homogeneous of degree O and elliptic. Suppose that the
Jordan form ongl(O7 .o,0,1)A0(0,...,0,—1) has blocks Ji () of size my,
fork=1,...,1. Let { = ((1,...(N), where

log =

1 J
by

quf 27_”-] fO?” mp<q52mpv q:]-,-“aN'

1 p=1

p=

Let ¢ := Ay*(0,...,0,1). Then for the fized £ # 0,

AS(E &) = (€0 — ) B_ (&)

x cAo(€', 6B (€) (6n + 1) € Wi (R), (A.9)

and
lim Ag(¢ =1
i Ap (€ En)
Proof. By hypothesis, and using equation (2.5), we have
E = E{'E_ = hdiag [\\B™(1),...,\B™(1)]h™",

for some invertible matrix h. If we define Ag(¢,&,) == h=lcAg (&', &n)h, we
may assume, without loss of generality, that

Ey =1, E_=diag [\B™(1),...,\B™(1)].

Mimicing the approach in the first case, we define

log A, 1 1
o J / -
CJ——W, —§SRQCJ<§7 Where]—l,,l
Moreover, we calculate
i — / / =
1%?,11%1(1 Re ¢}, + R¢j) = do > 0. (A.10)

We now define
j—1 j
Cq=C§ for Zmp<q§2mp, qg=1,...,N.
p=1 p=1

Now we can set ¢ = ((1,...,(n), exactly as in the first case.
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Remark A.5. When regarded as a function of z € C, the matrix-valued
functions B4 (z) are analytic in the regions Im z > 0 and Im z < 0, respec-
tively. Note also that, by construction, the matrix-valued functions B4 (&)
commute with the diagonal matrix (£, ). (To see this, choose an arbi-

trary block .J,. On this block, (&, £)¢ acts like a scalar, since the relevant

log A\ )

components of the vector ¢ are all equal to —==*.

As previously (see equation (A.4)), we define a new matrix-valued func-
tion

ALE 6n) = (6n — ) B-(6) Ao(€, &) BY () (G +4)C. (A1)
Now, since E = I, using the established properties of B™ (a4 ), we have
Jim B (6) Ao(€, 6) BT (60)

— lim B_(&)B7(&)

En—00

= lim B_(&)diag [B™ (= ay(&),. . B™ (- ar(&)]

&n—00
= Jim_ding [B™ (o (6) 0 (6).-- B (0= (6)—a4(61))]

= diag [B™*(0),...,B™(0)]
=1.

On the other hand, since F_ = diag [\ B™ (1), ..., A B™(1)],

lim B_(£,)A0(€,€) B (€n)

Epn——00
=, lim B_(&,)diag [\ B™(1),...,NB™(1)]By' (&)
n—>—00
= lim B_(&,)diag [Alel(l —ay),..., NB™(1— a+)}
En——00
=, lim diag |:>\le1(1704++04_), cee )\lel(lfa++a_)}
n—r—00

= diag [\ B™(0),..., NB™(0)]
= diag [MI™, ..., \NI™],

where I™ is an m X m block identity matrix.
So, as in Lemma A.3, we can see that

lim A5(€.€)

Ep—to0

= lim (& — i) B_(&)A0(&, &) BT (&) (& +i) = 1. (A12)

En—to0

To show that DgAS(g’,fn), k =1,...,(r + 3) satisfies estimates of
the form given in equation (A.8), we follow exactly the approach taken
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in Lemma A.3
A ) = (€0 — 1) B_ (&) A0 (&', &) By (€0) (€n +1)°
= (& — 1) B_(&)(Ao(€, &) — Ex) By (&) (6n +10)°
+ (&0 — 1) B_ (&) EL BT (&) (6n + 1),
where

B_ (gn)EiBll(fn)

— By diag [ij (1og g: ;z)} = F4 diag {Bm.f (log ;Z;g:)}

The presence of the logarithmic terms in the matrices B4+ adds only a
minor complication. For any fixed positive integer m, we have

D, [log(&n +4)]™ = m[log(¢n +)]™ (€0 1),

But since
NE
)
tnotoo (& L 1)E
for any fixed integer p and any € > 0, we can effectively repeat the proof of
Lemma A.3 with any §’ satisfying 0 < ¢’ < do.
From Lemma 2.2, we have Aj(¢',&,) € Wit? (R). This completes the
proof of the general case. O

:07

APPENDIX B. FUNCTION APPROXIMATION IN W7 (R)

The goal in this appendix is to prove that the Fourier transforms of
smooth functions which have compact support and are zero in a neighbor-
hood of = 0, are dense in the space W"(R). To show this, we use the
standard approach of cut-off functions and convolution with a mollifier. In
simple terms, this analysis is required because we are effectively working in
a weighted Sobolev space. (See, for example, [1]).

Lemma B.1. Suppose f € W"(R) and 0 < j <k <r. Then
Dff, t'Df and D*(t’ f) € W(R).
In addition, if f =3, then ||z*g||z, = || D* fllw,
1D (z*g)llz, = |#' D" flw and ||z D’ gL, = |ID*(# f)llw-
Proof. Since W(R) is an R-algebra and 0 < j <k,

i
—_ . 1
By definition, (1 —it)*D¥f € W(R) and it follows from (B.1) that
) J
tIDEf = ! (1 —it)*D*f € W(R). (B.2)

(1—it)r
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Moreover, from (B.2),

J
DMIf = "t/ 'DMf e W(R),
=0

where ¢; are some constants. (Note that j < k implies that j —1 < k —1.)
From [11, Proposition 2.2.11, p. 100],

Fose[(i2)*g(2)] = D*g.
Hence,
lz*gll, = ID*gllw = | D* fllw-
Let hy(z) := 2¥g(z). Then, again from [11, Proposition 2.2.11, p. 100],

Fost DIy = (—it)i Dy,

and thus
1D (@*g) ||z, = |t akgllw = [/ D* fllw-
Finally,
|#*D7g| |, = |z*Digllw = | D*Digllw = |ID*(# f)|lw-
This completes the proof of the lemma. O

Suppose g(t) € W"(R). Then, by definition,

gl = llgllz, + Y (D +1)* (g ()] ..
k=1

Hence,

Il < lgllz, + Z{ o gz, + Z ( 1Dt ol |

Thus, to show the convergence to g in || - ||wr, it suffices to show the
convergence to g, z"g and DJ(z%g) in || - ||z, forall 1 <j <k <r.
Note that for j > 1,

Dl (zkg) = i() (DI lg).

1=
Hence, we have
~ k
Gllw- < Cr > llz*Digliz, := Crlgl-, (B.3)
0<j<k<r

where C). is a constant that depends only on r. So, an alternative sufficient
condition for the convergence to g in || - |+ is the convergence to z*Dig
in|l||g, foral0<j <k <r.
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We now define a cut-off function that is zero in a neighborhood of x = 0,
and is also equal to zero when |z| is sufficiently large. Firstly, we define two
smooth functions

o(@) = {0 if |z] < 1/2,

1 if |z > 1,

and

1 if [o] <1,
plw) = {o if Ja] > 2.

Then, for 0 < € < 1, we define the smooth cut-off function ¢, by
pe(x) = afz/€)f(ex).
Notice that by construction,
1
1 if |z] € [e,f},
o(z) = © 2
0 if || € [0,7) U P,oo).
2 €

In particular, for each 0 < € < 1, the function ¢, has compact support, and
is identically zero in the neighborhood of 0.
Therefore, for j = 1,2,..., the support of DJ¢.(z) is contained in FE.,

where
2 1 € € 1 2
im[-2-uf-emgluls ol
€ € Y ¢ 2 Y 2 €|V € €

For any positive integer k, we have
NG
Dia(7) = (7)o (7)
€ € €

DEB(ex) = € %) (ex).

and

Hence, for I =1,2,...,

P06, = 3 e (2) ) ()] [ 450 P e,

for certain constants ¢, that depend only on k. Moreover, o) (y) = 0 unless
% < |yl <1 and f*)(y) =0 unless 1 < |y| < 2.
Hence, for 1 =1,2,...,

sup [2'Dioe| < Cap, (B.4)
z€R, 0<e<1

where C, 3 is a (finite) constant that depends only on the smooth functions
a, 8 and the index [.

Lemma B.2. Suppose g € W' (R). Then ||$:g —gllwr — 0 as e \, 0.
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Proof. Suppose g € W(R). Then, by definition, g(x) € L1(R) and |[g||lw =
llgllz,- It is immediately clear from the definition of the L; norm that

¢eg € L1(R) and ||¢eg — gllz, — 0 as e \, 0. That is, ||¢pcg — gllw — 0 as
€\ 0, as required.
Now suppose g € W"(R) and 1 < k < r. Then

ka(qbeg) - :lxkgHL1 = H(bs(xkg) - xkgHL1 — 0 as € \,0.
Further, suppose that g € W"(R), and 1 < j < k <r. Then

_7 .
Di(¢eg) = )+ ( )D;@ - DIl

=1
We now show that for 1 <1 <5<k <,

|e*DLo.- D1 g, = [ |e*DLo. - D gl da
R

:/|kai¢>€ ‘ D?C‘*lg| dz since D.¢.=0 outside F,
E.
< Capl / |zF " Di~lg|dz from (B.4)

E.
— 0 as €\ 0,

since *~!'DJ~!'g € L;(R). Hence,
|+ DL (eg) — =" Digll,,

J
< [[+*6.(Dig) ~a*Digl,, + Y (7) I DLoc - D2 e,
=1

i,
= (2" Dig) ~ a*Dlg, + 3 (1) e Db D],
1=1
— 0 as € \(0.
That is, ||@ —gllw- — 0, as € \, 0, as required. O

Remark B.3. The significance of Lemma B.2 is that we can effectively as-
sume for the ensuing density arguments that any function in L;(R) has
both compact support and is also identically zero in the neighborhood of
the origin. (To see this, we simply approximate g € L1 (R) by h = ¢.g.)

Following, for example [1], we now introduce the concept of a mollifier.
Let J be a nonnegative, real-valued function in C§°(R) satisfying the two
conditions, J(z) = 0 if |z| > 1, and [ J(z)dz = 1.

R
For 6 > 0, we define Js(z) = 6~ 1J(2/8). Then Js(x) € C$*(R) and:
(a) Js(x) =0 if |z| > ¢ and
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(b) [ Js(z)de =1.
R

As § N\, 0, the mollifier Js(x) approaches the delta-function supported on
x = 0. Formally, we define the convolution

(s s u)(w) = [ Jsta = yuly) dy
R
Suppose v € L;(R) and has compact support. Then:

(i) (Js xv) € C§°(R);
(ii) (Js*xv) € Li(R) and ||Js *v||L, < [|v]L,;
(iii) if Dv € L1(R), then D(Js * v) = J5 * Dv;
(iv) }ig}) ||Js * v —v|, =0.
As a simple consequence of the above, we observe that if D?v € Ly (R), then
| D?(Js % v) = D[, = ||(Js * D?v) = D7ol|
— 0 as § /0,
and,1 thus, ||Js % v —v||yr1 — 0 as § \, 0 in the (unweighted) Sobolev space
WrL(R).

Lemma B.4. Suppose ?z(t) € W"(R), and further that h(x) has a compact
support and is identically zero in a neighborhood of x = 0. Then

[ 75 % h =Rl — 0 as §\,0.

Proof. Suppose that h(z) has compact support and is identically zero in a
neighborhood of = 0. Then there exist positive real numbers ¢ and R
such that

supphg{xGR: e§|:c\§R}.
Suppose 6 < min{e/2,1}. Then

suppjg*hg{xeR: S\x|§(R+1)}.

DO ™

Now let H(x) be any function with
supp H C {:17 eR: % <|z| < (RJrl)},

and H(t) € W"(R). Then for any integers j, k such that 0 < j < k <7, we
have

enk ) .
(5) 107 Hlz, < 2" DI H|lz, < (R+ DYDY H]| s,
Therefore,

€ T . . .
(5) 1D/ HlL, < 2" D/ H], < (R+ 1| DH|L,,
and summing over all 0 < j < k < r, we have

EN" r
(5) 1w < 1HI. < 0+ DR+ 17 Hlwes,
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where || - ||y~1 denotes the (unweighted) Sobolev norm, and || - ||« is defined
by equation (B.3).
Thus, since
|[Js * h — k||~ — 0 as &6 \,O,
we have
[[Js %« h — h|l. as § 0.
Finally, from equation (B.3),

175 % T — hllwr — 0 as 6,0,

as required. (I

APPENDIX C. MATRIX FACTOR ESTIMATES FROM DUDUCHAVA

In this appendix we follow the approach taken by Duduchava [6], and
derive some asymptotic estimates for certain matrices arising during factor-
ization.

Given A}(€,€,) € Wit2 (R), we have the factorization

Ai(w,t) = (A" (w, 1)) " diag (%)K(W)Ai(w,t), (C.1)

where A% € W]\',J;QN(R), and have analytic extensions with respect to &,, to

the upper half-plane and to the lower half-plane, respectively. Moreover (see

[10, p. 37]), since , ligl Aj(w,t) = I, there exist factors A% € W2y (R)
—+oo

such that

Jim A% (w,t) = 1. (C.2)
We now define
A (w,t) = (t +4) A% (w, 1) (t i) ~C. (C.3)

We begin with two technical lemmas that will be useful later. Let T
denote the unit circle in the complex plane.

Lemma C.1. Let 0 < v < 1. Suppose ¢(t) € W™T2(R) and ¢y (t) :=
tkDFo(t) = O([t|7Y) as |t| = oo, for k=0,1,...,r + 2. Define

B(z) = (i1 ), 2 €T\ (1), @e(1) = lim By (2).

Then for j =0,1,...,7r+1, ®; € H,(T), where H,(T) denotes the Hélder
space of order v. Moreover, ®;(1) = 0.

Proof. Choose any z € T. Then z = ¢ for some 6 € [—7,7), and it is
straightforward to show that

i1+z——cot(e)
1—z 2/

Hence, for j =0,1,...,7 4+ 1, we can write

B;(2) = b, ( — cot (g)) = 1(6).
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In particular, as § — 0, so, z — 1, and we obtain ®;(1) = 0. Now,

di,[)j o d¢] dT L 9
W—ﬁ@7 where 7 := COt(Q)

By hypothesis,

do, ) V
% :O(|T|7V 1) :O(|9| “) as |0 — 0.

Moreover, by the direct calculation,

dr 1

T 00 o] — 0.
0~ 2sin?(Z) (1017%) as 10

Combining these results,

% =0(|6]""") as |6] - 0. (C.4)

Suppose now z1, zo € T. Then, by relabeling, if necessary, we can suppose
|Zl — 1| S ‘Zz — 1‘7

and we consider three cases:

Case 1: |z1 — 22| < |21 — 1] < |z — 1];
Case 2: |z1 — 1] < |z1 — 23] < |22 — 1};
Case 3: |z1 — 1] < |z — 1] < |71 — 22).

We begin with Case 1 and apply the Mean Value Theorem to ;:

@;(21) — ®;(22)| = [¥;(61) — (62)]

d .
=% )| o0l (loal < 101 < Jon]),

where, due to the constraints applicable in this case, #; and 5 must have
the same sign. Hence, from (C.4),

D.i(21) —Pi(2) < CO'|z* —1]V"1 - |21 — 23] for some constant ¢
j j

z1 — 2z \ 17V
:O’(7| ! 2|> ‘Zl_ZQID

1
21 — Z2|\ 17V
<o)

< 'z — 22]”.
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For Case 2,

|@)(21) = j(22)] < [®j(21)| + [®;(22))|
(= eor ()| s~ ot ()]
< C‘ cot, (%1) - + C‘ cot (0—22) -
<2C10,1" +2C62]"
<4C|z1 —1|" +4C|ze — 1)¥

But in this case, |21 — 1| < |21 — 22| and, moreover,
|Z2 — 1| S ‘ZQ — Zl| + |21 — ].| S 2‘2’1 — ZQ|.
Therefore,
|<I>j(z1) — (I)J(ZQ)| S 12 C|Zl — ZQ|V.
Finally, turning to Case 3,

|@5(21) = j(22)] < [®5(21)] + [®;(22)]

=[os(=eot ()| s (ot (3))]
< C‘ cot (%) - + C‘ cot (9—22)
<2C10," +2C|02]"

<4C|z1 — 1" +4C|z — 1Y

< 8Clz — za|”. O

i %4

Lemma C.2. Let 0 < v < 1 and ¢(t) € W"2(R). Suppose
bi(t) =t DE(t) = O([t|™) as [t| = oo, for k=0,1,...,7+2.
Then
t*DFSre(t) = O(t|™") as |t| — oo, for k=0,1,...,r+1.
Proof. By definition, for £k =0,1,...,7 + 2,

o)
4

T —

tk i
t* DESe i (t) 1= —Dk/
£Sro(t) == —D)|

kT ok
— t— / 7(DT¢)(T) dr (see [8, Chapter I, Section 4.4 p. 31])
i T —

— 00

= i on(7) dr,
T T—1

where, in the last step, we use the identity

th=7F 4 (t =)t P20 o R PR,
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and repeat integration by parts.
For any t € R, we define the change of variable
t—i
z:= :
t+1
where, of course, z € T. Note that, as t — +oo, we have z — 1. As
previously, we define

1
(or equivalently ¢ =1 1 tz ),

Dp(z) := (bk(i 11_2)

By Lemma C.1, &4 € H,(T) with ®3(1) =0, for k =0,1,...,r+ 1.

With this change of variable,
1 [ee]
1 (7)o
T T—1

- L / 1=z &w) g,

l—w w—2z

_1 / 2u(®) gy - L / LLCFY
7 w—z ) w—1
Jw|=1 |Jw]=1
= (S1®k)(2) — (SrPx)(1).
But the operator St is bounded on H,(T), and hence
t* Dy Sro(t) = O(|]z — 1|Y) = O(|t| ™),

as t — 00 (z — 1). This completes the proof of the lemma. O

t*DFSpo(t) =

Our first task is to obtain some asymptotic estimates for the non-diagonal
elements of Af Due to the similarity of calculations, it is enough to prove
this result for the matrix AT. For brevity, we will ignore any constant terms
that do affect the proof.

Lemma C.3. Suppose 1 < j,k < N with j # k. Then

D(A7)jk(w,t) = O(Jt|~771),
forq=0,1,...,74+2, and some o > 0.
Proof. We begin by noting that from the definition of A7,

(AT )jge = (4097 * (AL jk-

Firstly, we suppose that Re({; — (x) < 0. Then, in this case we can
simply take
o =—Re(( — ),

so that o > 0. Since (A%);x € W"T2(R), the required result follows imme-
diately. Note that, taking ¢ = 0,

Jim (A7) k(w, 1) = 0. (C.5)
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Secondly, suppose that j # k and Re({; — () > 0. From equation (C.1),

AT~ A = diag (ifi)ﬁ(w)A’iAg s
= [ ding (ifi)n(w) — 1] A" +diag (g)”(w)(A’:Ag;_A*,)
= [ ding (ifz)ﬁ(‘d) — 1] A" +diag (g)”w)A*_(A;;_J)

= b1 (t) + b2 (t)(AG — I).
Consider now

t+1
t—1

b (1) = | diag ( )”(w) —1]Ar(w,t).

We note that, as ¢t — £o0o,
af 3 tHie@ 9 —g—1
Dt[dlag (t ) I} =0(|t|77 1),
DY [A% (w,6)] = (1] ™%) (since A” € WEiA(R)),
forq=0,1,...,7r+ 2. Hence, as t — Fo0,
Db (t) = O(Jf] =), (C.6)

Consider now the second term,

N
a4 = D)), = > (520D (A3 (w.8) — 1), (O
s=1
where, by definition,
AN COR
b (1) == (t - Z) A* (w, 1),
Since A* € Wi 2 (R) we immediately have
D{(b2)(t) = O(|t| 7). (C.7)
Moreover, from estimates (A.6) and (A.7),
DJ(Aj — D)y = O(Jt] 4 ReSr#ReGuenty, (C8)

where € is an arbitrarily small positive number that takes account of the
logarithmic terms in the matrices By (t) used in the construction of Af.
(See (A.12).) Using estimates (C.7) and (C.8),

N

Z O(|t|_q_Re ¢s+Re Ck-i-e—l)

D [ba( A5 - D],

w
I
—

I
] =

O(|t|RR€(Ck—Cj)—fH'E—{Re(Cs—Cj)-‘rl})

V)
Il
—

- O(|t‘—Re(Cj—Ck)—Q+6—5o). (C.9)
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Let v = Re((; — (k) + o — €. By assumption, Re(¢; — {x) > 0 and hence
we can choose any € such that 0 < € < dg to ensure that v > 0. Moreover,
Re({; — k) + 60 < 1, and hence v < 1.

Combining estimates (C.6) and (C.9),

D{(A% — A% )jn(w,t) = O(Jt|7"7),

forq=0,1,...,7+2, where 0 < v < 1.
For the fixed w, we can now apply Lemma C.2 with

o(t) = (A} = AL)jk(w, ).
Let 0 := 89 — €. Then
1
Di(A%)jn(w, 1) = Df 5 (I + Se)(A% = AL) 5w, 1)
= o(‘trRe(Cer)fafq),

Finally,

D{(A])jr(w,t) = O(|t~771), (C.10)
forq=0,1,...,r+1,and o > 0. |

Lemma C.4. Suppose 1 < j,k < N with j # k. Then

Jm (A7 (1)), = 0.

Proof. The proof of the lemma follows directly from the estimates (C.5) and
(C.10). (Of course, using estimate (C.10), we take ¢ = 0.) O

Remark C.5. From equation (C.2), (A%);,; = 1, and hence,

lim
t—+oo

lim (Af(w,1)) ;=1L 1<j<N.

t—+oo 7,

Thus, the proof of Lemma C.3 can readily be extended to obtain (c.f. (A.8))

D(AT (w,t) = 1) = O(|t| =9
forgq=0,1,...,r+1and o > 0.
Lemma C.6. Suppose 1 < j,k < N. Let

Af(w,t) = BT (1) (AT (w,t) — ) Be(t) + 1
Then
(A;E(w,t))j’k e W"(R).

Proof. From Remark C.5,

D} (A} (w,t) = I) = O(|t|~79),
for ¢ > 0. Hence, from the definition of AQi,

DY (A5 (w,t) = 1) = O(t] =7 ),

for g =0,1,...,7+1 and any ¢’ such that 0 < ¢/ < o. The required result
now follows from Lemma 2.2. O
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