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Abstract. This paper considers the factorization of elliptic symbols
which can be represented by matrix-valued functions. Our starting point
is a Fundamental Factorization Theorem, due to Budjanu and Gohberg [2].
We critically examine the work of Shamir [15], together with some correc-
tions and improvements as proposed by Duduchava [6]. As an integral part
of this work, we give a new and detailed proof that certain sub-algebras of
the Wiener algebra on the real line satisfy a sufficient condition for a right
standard factorization. Moreover, assuming only the Fundamental Factor-
ization Theorem, we provide a complete proof of an important result from
Shargorodsky [16], on the factorization of an elliptic homogeneous matrix-
valued function, useful in the context of the inversion of elliptic systems of
multidimensional singular integral operators in a half-space.
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ÒÄÆÉÖÌÄ. ÓÔÀÔÉÀÛÉ ÂÀÍáÉËÖËÉÀ ÉÓÄÈÉ ÄËÉ×ÓÖÒÉ ÓÉÌÁÏËÏÄÁÉÓ
×ÀØÔÏÒÉÆÀÝÉÀ, ÒÏÌËÄÁÉÝ ÛÄÉÞËÄÁÀ ßÀÒÌÏÃÂÄÍÉËÉ ÉØÍÀÓ ÌÀÔÒÉÝÖ-
ËÉ ÌÍÉÛÅÍÄËÏÁÄÁÉÓ ÌØÏÍÄ ×ÖÍØÝÉÄÁÉÈ. ÜÅÄÍÉ ÀÌÏÓÀÅÀËÉ ßÄÒÔÉËÀ
ÁÉãÀÍÖÓ ÃÀ ÂÏäÁÄÒÂÉÓ ×ÖÍÃÀÌÄÍÔÖÒÉ ×ÀØÔÏÒÉÆÀÝÉÉÓ ÈÄÏÒÄÌÀ (Éá.
[2]). ÜÅÄÍ ÊÒÉÔÉÊÖËÀÃ ÂÀÍÅÉáÉËÀÅÈ ÛÀÌÉÒÉÓ ÍÀÛÒÏÌÓ [15] ÃÖÃÖÜÀ-
ÅÀÓ ÌÉÄÒ ÛÄÔÀÍÉËÉ ÝÅËÉËÄÁÄÁÉÓÀ ÃÀ ÂÀÖÌãÏÁÄÓÄÁÄÁÉÓ ÂÀÈÅÀËÉÓßÉ-
ÍÄÁÉÈ. ÀÌ ÍÀÛÒÏÌÉÓ ÂÀÍÖÚÏ×ÄËÉ ÍÀßÉËÉÀ ÜÅÄÍÓ ÌÉÄÒ ÌÏÚÅÀÍÉËÉ
ÀáÀËÉ ÃÀ ÃÄÔÀËÖÒÉ ÃÀÌÔÊÉÝÄÁÀ ÉÌ ×ÀØÔÉÓÀ, ÒÏÌ ÅÉÍÄÒÉÓ ÀËÂÄÁÒÉÓ
ÆÏÂÉÄÒÈÉ ØÅÄÀËÂÄÁÒÄÁÉ ÍÀÌÃÅÉË ßÒ×ÄÆÄ ÀÊÌÀÚÏ×ÉËÄÁÄÍ ÍÀÌÃÅÉËÉ
ÓÔÀÍÃÀÒÔÖËÉ ×ÀØÔÏÒÉÆÀÝÉÉÓ ÓÔÀÍÃÀÒÔÖË ÐÉÒÏÁÀÓ. ÀÌÉÓ ÂÀÒÃÀ,
ÌáÏËÏÃ ×ÖÍÃÀÌÄÍÔÖÒ ×ÀØÔÏÒÉÆÀÝÉÉÓ ÈÄÏÒÄÌÀÆÄ ÃÀÚÒÃÍÏÁÉÈ ÜÅÄÍ
ÌÏÂÅÚÀÅÓ ÓÒÖËÉ ÃÀÌÔÊÉÝÄÁÀ ÛÀÒÂÏÒÏÃÓÊÉÓ ÌÍÉÛÅÍÄËÏÅÀÍÉ ÛÄÃÄÂÉ-
ÓÀ [16] ÄËÉ×ÓÖÒÉ ÄÒÈÂÅÀÒÏÅÀÍÉ ÌÀÔÒÉÝÖËÉ ÌÍÉÛÅÍÄËÏÁÄÁÉÓ ÌØÏÍÄ
×ÖÍØÝÉÄÁÉÓ ×ÀØÔÏÒÉÆÀÝÉÉÓ ÛÄÓÀáÄÁ, ÒÏÌÄËÉÝ ÓÀÓÀÒÂÄÁËÏÀ ÍÀáÄ-
ÅÀÒÓÉÅÒÝÄÛÉ ÌÒÀÅÀËÂÀÍÆÏÌÉËÄÁÉÀÍÉ ÓÉÍÂÖËÀÒÖËÉ ÉÍÔÄÂÒÀËÖÒÉ
ÏÐÄÒÀÔÏÒÄÁÉÓ ÛÄÁÒÖÍÄÁÉÓÀÓ.
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1. Introduction

This paper considers the factorization of elliptic symbols which can be
represented by matrix-valued functions. Our starting point is a Fundamen-
tal Factorization Theorem due to Budjanu and Gohberg [2]. We critically ex-
amine the work of Shamir [15], together with some corrections and improve-
ments as proposed by Duduchava [6]. We shall call the combined efforts of
these two latter authors the Shamir–Duduchava factorization method.

One important application of the Shamir–Duduchava factorization me-
thod has been given by Shargorodsky [16]. Our primary goal is to provide,
in a single place, a complete proof of Shargorodsky’s result on the factor-
ization of a matrix-valued elliptic symbol, assuming only the Fundamental
Factorization Theorem. As an integral part of this work, we will give a new
and detailed proof that certain sub-algebras of the Wiener algebra on the
real line satisfy a sufficient condition for the right standard factorization.

2. Background

Let Γ denote a simple closed smooth contour dividing the complex plane
into two regions D+ and D−, where for a bounded contour we identify D+

with the domain contained within Γ. We shall be especially interested in
the case where Γ = Ṙ, the one point compactification of the real line. In
this situation, of course, D± are simply the upper and lower half-planes,
respectively. Let G± denote the union D± ∪ Γ.

2.1. Factorization. Suppose we are given a nonsingular matrix-valued fun-
ction A(ζ) =

(
ajk(ζ))

N
j,k=1, then we define a right standard factorization, or

simply the factorization as a representation of the form
A(ζ) = A−(ζ)D(ζ)A+(ζ) (ζ ∈ Γ), (2.1)

where D(ζ) is strictly diagonal with non-zero elements djj = ((ζ−λ+)/(ζ−
λ−))κj for j = 1, . . . , N . The exponents κ1 ≥ κ2 ≥ · · · ≥ κN are integers
and λ± are certain fixed points chosen in D±, respectively. (In passing, we
note that if Γ = Ṙ, it is customary to take λ± = ±i.) A±(ζ) are square
N ×N matrices that are analytic in D± and continuous in G±. Moreover,
the determinant of A+(A−) is nonzero on G+(G−).

As one would expect, interchanging the matrices A−(ζ) and A+(ζ) in
(2.1) gives rise to a left standard factorization. In either a right or a left
factorization, the integers κj = κj(A) are uniquely determined (see [9]) by
the matrix A(ζ). Further, if the matrix A(ζ) admits a factorization for
a pair of points λ±, then it admits a factorization of the same type for
any pair of points µ± ∈ D±, in that the right or left indices, denoted by
{κj(A), j = 1, . . . , N}, are independent of the points λ±.

2.2. Banach algebras of continuous functions. Let U(Γ) denote a Ba-
nach algebra of continuous functions on Γ which includes the set of all
rational functions R(Γ) not having any poles on Γ. Further we insist that
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U(Γ) is inverse closed in the sense that if a(ζ) ∈ U(Γ) and a(ζ) does not
vanish anywhere on Γ, then a−1(ζ) ∈ U(Γ). Of course, U(Γ) ⊂ C(Γ), where
C(Γ) is the Banach algebra of all continuous functions on Γ, with the usual
supremum norm.

Consider the region G+. By R+(Γ) we denote the set of all rational
functions not having any poles in this domain and by C+(Γ) the closure
of R+(Γ) in C(Γ) with respect to the norm of C(Γ). It is easy to see
that C+(Γ) is a subalgebra of C(Γ) consisting of those functions that have
analytic continuation to D+ and which are continuous on G+. We can now
define U+(Γ) = U(Γ) ∩ C+(Γ). Again, it is straightforward to show that
U+(Γ) is a subalgebra of U(Γ). (Similar definitions of C−(Γ) and U−(Γ)
follow by considering the region G−.)

2.3. Splitting algebras. It turns out that the ability to factorize a given
matrix is intimately linked to the ability to express U(Γ) as a direct sum of
two subalgebras - one containing analytic functions defined on D+ and the
other analytic functions on D−. To ensure the uniqueness of this partition
we let Ů−(Γ) denote the subalgebra of U−(Γ) consisting of all functions that
vanish at the chosen point λ− ∈ D−. We now say that a Banach algebra
U(Γ) splits if we can write

U(Γ) = U+(Γ)⊕ Ů−(Γ).

The prototypical example of a splitting algebra is the Wiener algebra,
W (T), of all functions defined on T, the unit circle |ζ| = 1, of the form

a(ζ) =
∞∑

j=−∞
ajζ

j

( ∞∑
j=−∞

|aj | <∞
)

with the norm ∥a(ζ)∥ =
∞∑

j=−∞
|aj |. The Banach algebras W±(T) have a

simple characterization. For example, W+(T) consists of all functions in
W (T) that can be expanded as an absolutely converging series in nonneg-
ative powers of ζ. However, the algebra C(T) does not split. (For more
details see [2].)

2.4. R-algebras. We say that a Banach algebra U(Γ) of complex-valued
functions continuous on Γ is an R-algebra if the set of all rational functions
R(Γ) with poles not lying on Γ is contained in U(Γ) and this set is dense,
with respect to the norm of U(Γ). In passing, we note that any R-algebra
of continuous functions is inverse closed. (See, for example, [4, Chapter 2,
Section 3, p. 44].) Following Theorem 5.1, p. 20 [3], we have:

Theorem 2.1 (Fundamental Factorization Theorem). Let U(Γ) be an ar-
bitrary splitting R-algebra. Then every nonsingular matrix-valued function
A(ζ) ∈ UN×N (Γ) admits a right standard factorization with factors A±(ζ)
in the subalgebras U±

N×N (Γ).
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2.5. Wiener algebras on the real line. Let L1(R) denote the usual con-
volution algebra of Lebesgue integrable functions on the real line. For any
g ∈ L1(R), we define the Fourier Transform of g as the function Fg, or ĝ,
given by

(Fg)(t) = ĝ(t) :=
1√
2π

∞∫
−∞

g(x)eixt dx.

We let C∞
0 (R) denote the algebra of continuous functions f on R which

vanish at ±∞. It is well known (see, for example, [13, Chapter 9, Theo-
rem 9.6, p. 182]) that if g ∈ L1(R), then

ĝ ∈ C∞
0 (R), ∥ĝ∥∞ ≤ ∥g∥1. (2.2)

The Wiener algebra W (R) is the set of all functions of the form f = ĝ+c,
where g ∈ L1(R) and c is a constant. The norm on W (R) is given by

∥f∥W (R) = ∥g∥1 + |c|.

Suppose f1 = ĝ1 + c1, f2 = ĝ2 + c2 ∈W (R). Then since ĝ1ĝ2 = ĝ1 ∗ g2 (see,
for example, [13, Chapter 9, Theorem 9.2, p. 179]), it is straightforward to
show that W (R) is a Banach algebra.

We will also consider certain subalgebras of the Wiener algebra W (R).
For r = 0, 1, 2, . . . we define W r(R) to be the set of functions f such that

(1− it)kDkf(t) ∈W (R) (k = 0, 1, . . . , r),

where Dk is the kth order derivative. (Of course, W 0(R) is simply W (R).)
We shall show that W r(R) is a Banach algebra and, moreover, is a splitting
R-algebra.

2.6. Homogeneity, differentiability and ellipticity. Suppose ξ =
(ξ1, . . . ξn) ∈ Rn for some integer n ≥ 2. It will be convenient to write
ξ = (ξ′, ξn), where ξ′ ∈ Rn−1. We assume that Rn has the usual Euclidean
norm, and we let Sn−1 denote the set {ξ ∈ Rn | ξ21 + · · ·+ ξ2n = 1}.

We further suppose that A0(ξ
′, ξn) is an N ×N matrix-valued function

defined on Rn, which is homogeneous of degree 0. In addition, we will as-
sume that the elements of the matrix A0(ξ

′, ξn) belong to Cr+2(Sn−1), for
some non-negative integer r, where Cr(Sn−1) denotes the set of r times con-
tinuously differentiable functions on the domain Sn−1. Finally, we assume
that A0(ξ

′, ξn) is elliptic, in that
inf

ξ∈Sn−1

∣∣ detA0(ξ)
∣∣ > 0.

2.7. The matrices E± and E. We will be particularly interested in the
behavior of A0(ξ

′, ξn) as ξn → ±∞.
Our approach is effectively to fix ξ′, and thereby consider factorization

in the one-dimensional (scalar) variable ξn. Since A0(ξ
′, ξn) is homogeneous

of degree zero,
lim

ξn→±∞
A0(ξ

′, ξn) = A0(0, . . . , 0,±1),
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for fixed ξ′. We define
E± := A0(0, . . . , 0,±1) and E := E−1

+ E−. (2.3)

2.8. The matrices B±. It is a standard result that any E ∈ CN×N can
be expressed in the Jordan Canonical Form

h1Eh
−1
1 = J := diag [J1, . . . , Jl],

where the Jordan block Jk = Jk(λk) is a matrix of order mk with eigenvalue
λk on every diagonal entry, 1 on the super-diagonal and 0 elsewhere. The
matrix h1 is invertible and

m1 + · · ·+ml = N.

The Jordan matrix J is unique up to the ordering of the blocks Jk, k =
1, . . . , l.

Let Bm(z) be the m×m matrix (bjk(z))
m
j,k=1 given by

bjk(z) :=


0, j < k,

1, j = k,

zj−k

(j − k)!
, j > k.

We now define
K := diag [K1, . . . ,Kl], (2.4)

where Kk := λkB
mk(1). By construction, K is a lower triangular matrix

whose block structure and diagonal elements are identical to those of J .
A routine inspection of the equation

Kku = λku

shows that the eigenspace associated with the eigenvalue λk has dimension
one. Therefore (see [5, p. 191]), the matrix Kk is similar to the Jordan block
Jk(λk) for k = 1, . . . , l. Thus K is similar to J , and we have

J = h2K h−1
2 ,

for some nonsingular matrix h2. Hence we can write
E = hK h−1, where h := h−1

1 h2. (2.5)
For any z1, z2 ∈ C and positive integer m, it is easy to show that the

matrix-valued functions Bm(z) satisfy
Bm(z1 + z2) = Bm(z1)B

m(z2), Bm(0) = I. (2.6)
In particular, taking z2 = −z1, gives

Bm(−z1) =
[
Bm(z1)

]−1
. (2.7)

In the analysis that follows we will use the logarithm function on the
complex plane. Unless specifically stated to the contrary, we will always
take the principal branch of the logarithm Log z defined by

Log z = log |z|+ i arg z, −π < arg z ≤ π,
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for any non-zero z ∈ C. In other words, we assume that the discontinuity
in arg z occurs across the negative real axis.

For any t ∈ R, we now define the complex-valued functions

α±(t) := (2πi)−1 log(t± i). (2.8)

Then

lim
t→+∞

[
α+(t)− α−(t)

]
= 0, lim

t→−∞

[
α+(t)− α−(t)

]
= 1. (2.9)

Corresponding to the block decomposition in (2.4), we set

B±(t)=diag
[
Bm1

(
(2πi)−1 log(t±i)

)
, . . . , Bml

(
(2πi)−1 log(t±i)

)]
. (2.10)

We note, in passing, that in the special case that l = N , then B±(t) = I.
Following [15], we now give a simple test for membership of W r(R) for

continuously differentiable functions.

Lemma 2.2. Let r = 0, 1, 2, . . . and suppose the function b(t) ∈ Cr+1(R)
has the property that, for some δ > 0,

Dkb(t) = O
(
|t|−k−δ

)
, k = 0, 1, . . . , (r + 1),

then b(t) ∈W r(R).

Proof. We follow the approach given in [15]. For 0 ≤ k ≤ r, we define

gk(t) = (1− it)kb(k)(t).

Our goal is to show that gk(t) ∈W (R).
Differentiating with respect to t,

g′k(t) = −ik(1− it)k−1b(k)(t) + (1− it)kb(k+1)(t).

Then, by hypothesis, gk and g′k are continuous. Moreover, as |t| → ∞, we
have gk(t) = O(|t|−δ) and g′k(t) = O(|t|−1−δ). Hence g′k(t) ∈ L2(R).

On applying the Fourier transform (Ft→ξ) to the function g′k(t), we ob-
tain ξ ĝk(ξ) ∈ L2(R). But using the Cauchy–Schwarz inequality∫

|ξ|≥ϵ

|ĝk(ξ)| dξ =
∫

|ξ|≥ϵ

1

|ξ|
|ξ ĝk(ξ)| dξ ≤

( ∫
|ξ|≥ϵ

1

|ξ|2
dξ

) 1
2

∥ξ ĝk∥L2 <∞.

Hence, ĝk(ξ) is absolutely integrable everywhere outside a neighborhood
(−ϵ, ϵ) of zero. On the other hand, for small |ξ|, from [17, Theorem 127,
p. 173 ], ĝk(ξ) = O(|ξ|δ−1) and hence ĝk(ξ) is absolutely integrable inside
(−ϵ, ϵ).

Thus, ĝk(ξ) ∈ L1(R). We now define a new function hk(x) = ĝk(−x).
Then, by construction, hk(x) ∈ L1(R) and taking the Fourier transform
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(Fx→t) of hk(x), we obtain

ĥk(t) =
1√
2π

∞∫
−∞

ĝk(−x)eixtdx

=
1√
2π

∞∫
−∞

ĝk(x)e
−ixtdx

= gk(t).

Now ĥk(t) ∈ W (R), and hence, gk(t) ∈ W (R). This completes the proof of
the lemma. �

2.9. Key theorem from Shamir. The next theorem (see [15, Appendix,
pp. 122–123]) considers some properties of a certain matrix-valued function
derived from an elliptic homogeneous matrix-valued function of degree zero.
Together with Theorem 2.1, it will provide the starting point for proving
our second result.

Theorem 2.3. Suppose that A0(ξ
′, ξn) ∈ Cr+3

N×N (Sn−1) is a matrix-valued
function which is homogeneous of degree 0 and elliptic. Suppose that the
Jordan form of A−1

0 (0, . . . , 0, 1)A0(0, . . . , 0,−1) has blocks Jk(λk) of size
mk for k = 1, . . . , l. Let the matrix c := A−1

0 (0, . . . , 0, 1), and the constant
invertible matrix h be as in equation (2.5). Then, for the fixed ξ′ ̸= 0,

lim
ξn→+∞

h−1cA0(ξ
′, ξn)h = I,

lim
ξn→−∞

h−1cA0(ξ
′, ξn)h = diag

[
λ1B

m1(1), . . . , λlB
ml(1)

]
.

Further, let ζ = (ζ1, . . . , ζN ), where

ζq = − logλj
2πi

for
j−1∑
k=1

mk < q ≤
j∑

k=1

mk, q = 1, . . . , N, (2.11)

and define
(ξn ± i)ζ := diag

[
(ξn ± i)ζ1 , . . . , (ξn ± i)ζN

]
.

Then, for the fixed ξ′ ̸= 0,

A∗
0(ξ

′, ξn) := (ξn − i)−ζB−(ξn)h
−1

× cA0(ξ
′, ξn)hB

−1
+ (ξn)(ξn + i)ζ ∈W r+2

N×N (R),

and
lim

ξn→±∞
A∗

0(ξ
′, ξn) = I. (2.12)

Proof. A detailed proof of this theorem is given in Appendix A. �

Remark 2.4. Note that in (2.11), the definition of ζq, q = 1, . . . , N includes
a multiplicative factor of (−1) not given in [15].
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Remark 2.5. Since we are assuming that for every non-zero z ∈ C we have
−π < arg z ≤ π, it follows immediately that

−1

2
≤ Re ζj <

1

2
, j = 1, . . . , N.

and hence
δ0 := min

1≤j,k≤N
(1− Re ζk + Re ζj) > 0. (2.13)

3. Statement of results

Theorem 3.1. For r = 0, 1, 2, . . . ,W r(R) is a splitting R-algebra.

Our second result considers the factorization of an elliptic matrix-valued
function of degree µ, and it confirms the isotropic case of Lemma 1.9,
p. 60 [16].

Theorem 3.2. Let r := [n/2]+1. Suppose that A ∈ Cr+3
N×N (Rn) is a matrix-

valued function which is homogeneous of degree µ and elliptic. Then, for
the fixed ω ∈ Sn−2,

Aω(ξ) = A
(
|ξ′|ω1, . . . , |ξ′|ωn−1, ξn

)
admits the factorization

Aω(ξ) =
(
ξn − i|ξ′|

)µ/2
A−

ω (ξ)D(ω, ξ)A+
ω (ξ)

(
ξn + i|ξ′|

)µ/2
,

where (A−
ω (ξ))

±1 and (A+
ω (ξ))

±1 are homogeneous matrix-valued functions
of order 0 that, for the fixed ξ′ ̸= 0, satisfy estimates of the form∑

0≤q≤r

ess sup
ξn∈R

∣∣ξqnDq
ξn

(
A±

ω (ξ
′, ξn)

)
j,k

∣∣ < +∞, 1 ≤ j, k ≤ N. (3.1)

Further, they have analytic extensions with respect to ξn in the lower half-
plane and the upper half-plane, respectively.
D(ω, ξ) is a lower triangular matrix with elements(ξn − i|ξ′|

ξn + i|ξ′|

)κk(ω)+ζk

on its diagonal. Its off-diagonal terms are homogeneous of degree 0, and
they satisfy an estimate of the form (3.1). The integer

κ(ω) :=
N∑

k=1

κk(ω)

=
1

2π
∆ arg det

[(
|ξ′|2 + ξ2n

)−µ/2
Aω(ξ

′, ξn)
]∣∣∣∣+∞

ξn=−∞
−

N∑
k=1

Re ζk
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depends continuously on ω∈Sn−2. The partial sums
M∑
k=1

κj(ω), 1≤M<N ,
are upper semicontinuous,

ζk = − logλj
2πi

for
j−1∑
ν=1

mν < k ≤
j−1∑
ν=1

mν , k = 1, . . . , N,

λj are eigenvalues of the matrix A−1(0, . . . , 0,+1)A(0, . . . , 0,−1) to which
there correspond Jordan blocks of dimension mj.

4. Proof of the First Result

The objective of this section is to prove Theorem 3.1. Let θ± denote the
characteristic functions of R±, respectively.

Lemma 4.1. The Wiener algebra W (R) is an R-algebra.

Proof. An abbreviated proof of this lemma is given in [4, Chapter 2, Sec-
tion 4, pp. 62–63]. A more detailed proof is included here, both for complete-
ness and to introduce some analysis that will be useful when considering the
subalgebras W r(R) for r ≥ 1.

We begin by showing that W (R) contains all rational functions with poles
off Ṙ. Firstly, we note the identities

(t− z+)
−1 = Fx→t

(√
2π i θ−(x) e−iz+x

)
, Im z+ > 0,

(t− z−)
−1 = −Fx→t

(√
2π i θ+(x) e−iz−x

)
, Im z− < 0,

where the functions θ−(x)e−iz+x and θ+(x)e−iz−x ∈ L1(R). Secondly, since
all functions in W (R) are bounded at infinity, any rational function in W (R)
must be such that the degree of the numerator must be less than or equal
to the degree of the denominator. (In particular, non-constant polynomial
functions are not included in W (R).) Finally, the fact that W (R) contains
all rational functions with poles off Ṙ now follows directly, because W (R)
is an algebra, and we have the usual partial fraction decomposition over C.

We now wish to show that rational functions with poles off Ṙ are dense
in W (R). Suppose f ∈ W (R) is arbitrary and r ∈ W (R) is rational. By
definition, we can write f(t) = ĝ(t)+c and r(t) = ŝ(t)+d, where g, s ∈ L1(R)
and c, d ∈ C. Let C∞

c (R) denote the set of smooth functions with compact
support in R. Then C∞

c (R) is dense in L1(R) and
∥f − r∥W := ∥g − s∥L1 + |c− d|

≤ ∥g − h∥L1 + ∥h− s∥L1 + |c− d| (where h ∈ C∞
c (R))

= ∥g − h∥L1 + ∥θ+h+ θ−h− θ+s− θ−s∥L1 (taking d = c)

≤ ∥g − h∥L1 + ∥θ+h− θ+s∥L1 + ∥ θ−h− θ−s∥L1 .

Of course, the approximations to θ+h and θ−h, by θ+s and θ−s, respec-
tively, are independent but similar. Hence, to prove that W (R) is an R-
algebra, it is enough for us to show that we can approximate θ+(x)h(x),
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where h ∈ C∞
c (R), arbitrarily closely in the L1(R) norm by a function

θ+(x)s(x) such that θ̂+s is rational and has no poles in the upper half-
plane.

For x ≥ 0, we let y = e−x and define

ψ(y) :=

{
h(− log(y))/y if y ∈ (0, 1],

0 if y = 0.

Since h(x) has compact support, ψ(y) is identically zero in some interval
[0, ν), where ν > 0. Thus, by construction, ψ(y) ∈ C∞[0, 1].

Hence, given any ϵ > 0, we can choose a Bernstein polynomial (see [12])
(BMψ)(y), of degree M =M(ϵ) such that

sup
y∈[0,1]

∣∣ψ(y)− (BMψ)(y)
∣∣ < ϵ

=⇒ sup
y∈[0,1]

∣∣∣ψ(y)− M∑
k=0

bky
k
∣∣∣ < ϵ for certain bk ∈ C, k = 0, 1, 2, . . . ,M

=⇒ sup
x∈[0,∞)

∣∣∣h(x)ex −
M∑
k=0

bke
−kx

∣∣∣ < ϵ.

We let S(x) =
M∑
k=0

bke
−kx and observe, therefore, that our proposed approx-

imant to θ+h(x) is θ+S(x)e−x.
Of course, the Fourier transform of θ+S(x)e−x is a rational function with

no poles in the upper half-plane, since for k = 1, 2, 3, . . . we have

̂θ+e−kx =
i√
2π

1

t+ ik
.

Finally, we take θ+s(x) := θ+S(x)e−x and then

∥θ+h− θ+s(x)∥L1 =

∞∫
0

|h(x)− S(x)e−x| dx

=

∞∫
0

|h(x)ex − S(x)| e−x dx

≤ ϵ

∞∫
0

e−x dx

= ϵ.

This completes the proof that W (R) is an R-algebra. �

Remark 4.2. Suppose now that f = ĝ ∈W (R). From the proof of the above
lemma, we can show that θ̂+g ∈ C+(Ṙ). (See section 2.2.) Indeed, applying
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inequality (2.2), we have∥∥θ̂+g − θ̂+s(x)
∥∥
∞ ≤ ∥θ+g − θ+s(x)∥L1 .

Since θ̂+s(x) ∈ R+(Ṙ), we immediately have θ̂+g ∈ C+(Ṙ), because C+(Ṙ)
is the closure of R+(Ṙ) with respect to the supremum norm. It follows in
an exactly similar way that θ̂−g ∈ C−(Ṙ).

Lemma 4.3. The Wiener algebra W (R) splits.

Proof. An abbreviated proof of this lemma is given in [4, Chapter 2, Sec-
tion 4, p. 63]. A more detailed proof is included here for completeness.

Our method of proof is a direct construction. Suppose f = ĝ+ c ∈W (R)
then, since g = θ+g + θ−g, we have

f = θ̂+g + θ̂−g + c

=
(
θ̂+g + c+

)
+
(
θ̂−g + c−

)
where c = c+ + c−, and c− is chosen such that

(θ̂−g)(−i) + c− = 0.

But since g ∈ L1(R), we have θ±g ∈ L1(R). Moreover, from Remark 4.2,
we have θ̂±g ∈ C±(Ṙ) and thus

θ̂±g ∈W (R) ∩ C±(Ṙ).

In other words, we have the required decomposition, and thus

W (R) =W+(R)⊕ W̊−(R)

where W̊−(R) = {h ∈W−(R) : h(−i) = 0}. This completes the proof that
W (R) splits. �

Remark 4.4. For any φ ∈ S(R), we now define three integral operators:

Π±φ(t) =
(±1)

2πi
lim
ϵ→0

∞∫
−∞

φ(τ)

τ − (t± iϵ)
dτ, SRφ(t) =

1

πi

∞∫
−∞

φ(τ)

τ − t
dτ.

For more details see [7] and [8]. Each of these operators is bounded on S(R).
Moreover (see [7, Chapter II Section 5, pp. 70–71]),

Π±φ̂ = θ̂±φ.

But since S(R) is dense in W0(R) := {f ∈ W (R) : f = ĝ, g ∈ L1(R)},
each of the singular integral operators can be extended, by continuity, to a
bounded operator on W0(R).

Finally, we have the well-known formulae

Π+ +Π− = I, Π+ =
1

2
(I + SR), Π− =

1

2
(I − SR).
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Lemma 4.5. For r = 1, 2, 3, . . . , W r(R) is a Banach algebra with a norm
that is equivalent to the norm

∥f∥W r = ∥f∥W +
r∑

k=1

∥∥(1− it)kDkf(t)
∥∥
W
.

Proof. The proof that W r(R) is a Banach algebra is straightforward. How-
ever, as an illustration, we will prove that given f1, f2 ∈ W r(R), the prod-
uct f1f2 ∈ W r(R) and ∥f1f2∥W r ≤ Cr∥f1∥W r∥f2∥W r , for some constant
Cr that depends only on r.

The existence of a norm ∥ · ∥′W r equivalent to ∥ · ∥W r and such that
∥f1f2∥′W r ≤ ∥f1∥′W r∥f2∥′W r is then guaranteed by [14, Theorem 10.2, p. 246].

Suppose f1, f2 ∈W r(R). Then, for any integer p satisfying 1 ≤ p ≤ r,

(1− it)pDp
t [f1(t)f2(t)] =

p∑
k=0

(
p

k

)[
(1− it)kDkf1

] [
(1− it)p−kDp−kf2

]
.

We assume that W (R) is a Banach algebra and therefore, f1f2 ∈W (R) and
(1− it)pDp[f1(t)f2(t)] ∈W (R). Hence, f1f2 ∈W r(R), as required.

By definition,

∥f1f2∥W r = ∥f1f2∥W +
r∑

k=1

∥∥(1− it)kDk[f1f2]
∥∥
W

= ∥f1f2∥W

+
r∑

k=1

∥∥∥∥ k∑
j=0

(
k

j

)[
(1− it)jDjf1

] [
(1− it)k−jDk−jf2

]∥∥∥∥
W

≤ ∥f1∥W ∥f2∥W

+
r∑

k=1

k∑
j=0

(
k

j

)∥∥(1− it)jDjf1
∥∥
W

∥∥(1− it)k−jDk−jf2
∥∥
W

≤ Cr∥f1∥W r∥f2∥W r ,

where the strictly positive constant Cr depends only on the integer r. This
completes the proof of the lemma. �

We now show that W r(R) splits. To do this, we will need two interme-
diate lemmas.

Lemma 4.6. Suppose f(t), Df(t) ∈ W (R) and lim
t→±∞

f(t) = 0. Then
Π±Df(t) = DΠ±f(t).

Proof. From [8, Chapter I, Section 4.4, p. 31], we have
DSRf(t) = SRDf(t)

But, from Remark 4.4 we have Π± = 1
2 (I ± SR), respectively, and so

DΠ±f(t) = Π±Df(t). �
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Lemma 4.7. Suppose f(t), tf(t) ∈ W (R) and lim
t→±∞

f(t) = 0. Let [tI,Π±]

denote the commutator of tI and Π±. Then [tI,Π±]f ∈ C.

Proof. Suppose f(t), tf(t) ∈W (R). Then

[tI,Π+]f = (tIΠ+ −Π+tI)f

=
1

2

(
t(I + SR)− (I + SR)tI

)
f (by Remark 4.4)

=
1

2
(tSR − SRt)f

=
t

πi

∞∫
−∞

f(τ)

τ − t
dτ − 1

πi

∞∫
−∞

τf(τ)

τ − t
dτ

=
1

πi

∞∫
−∞

(t− τ)f(τ)

τ − t
dτ

=
(−1)

πi

∞∫
−∞

f(τ) dτ

∈ C.

Finally, we note that [tI,Π−] = [tI, I−Π+] = [tI, I]− [tI,Π+] = 0− [tI,Π+]
and, hence, [tI,Π−] ∈ C. This completes the proof of the lemma. �

Lemma 4.8. For r = 0, 1, 2, . . . the algebra W r(R) splits.

Proof. Suppose f(t) ∈W r(R) for some nonnegative integer r. Since f(t) ∈
W (R), it is enough to consider the case where lim

t→±∞
f(t) = 0. Moreover,

by Remarks 4.2 and 4.4, we can write

f(t) = Π+f(t) + Π−f(t), Π±f ∈W (R) ∩ C±(Ṙ).

Thus, to complete the proof, we have to show that Π±f(t) ∈ W r(R).
That is, we have prove that for k = 0, 1, . . . r we have (1− it)kDkΠ±f(t) =
i−k(t+ i)kDkΠ±f(t) ∈W (R).

We now proceed by induction on r. Our inductive hypothesis is that for
any f ∈W r(R), we have (t+i)rDrΠ±f(t) = (Π±(t+i)rDrf(t)+c) ∈W (R).
We have previously proved this result for r = 0. Suppose that the inductive
hypothesis holds for k = 0, . . . , (r − 1).

From Lemma 4.6,

(t+ i)rDrΠ±f = t · (t+ i)r−1DrΠ±f + i · (t+ i)r−1DrΠ±f

= t · (t+ i)r−1Dr−1Π±(Df) + i · (t+ i)r−1Dr−1Π±(Df).
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But since Df ∈W r−1(R), applying the inductive hypothesis, we get
(t+ i)rDrΠ±f

= t ·Π±(t+ i)r−1Dr−1(Df) + i ·Π±(t+ i)r−1Dr−1(Df) + c

= t ·Π±(t+ i)r−1Drf + i ·Π±(t+ i)r−1Drf + c.

Hence, using Lemma 4.7 (applied to (t+ i)r−1Drf), we obtain
(t+ i)rDrΠ±f = Π±t(t+ i)r−1Drf +Π±i(t+ i)r−1Drf + c′

= Π±(t+ i)rDrf + c′

∈W (R).

This completes the proof by induction. So, finally, for k = 0, 1, . . . , r, we
have (1 − it)kDkΠ±f(t) ∈ W (R) and thus, for r = 0, 1, 2, . . . , the algebra
W r(R) splits. �

Our final objective in this section is to show that W r(R) is an R-algebra
for r = 1, 2, 3, . . . , noting that in Lemma 4.1 we have proved this result for
the special case W (R), corresponding to r = 0.

In Appendix B we show that the Fourier transforms of smooth functions
with a compact support and which are zero in a neighborhood of x = 0, are
dense in the space W r(R). Then, proceeding analogously to Lemma 4.1, it
is enough for us to show that we can approximate θ̂+h, where h ∈ C∞

c (R)
and is zero near 0, arbitrarily closely in the W r(R) norm by the function
θ̂+s, that is rational and has no poles in the upper half- plane.

As previously, for x ≥ 0, we set y = e−x and define

ψ(y) =

{
h(− log(y))/y if y ∈ (0, 1],

0 if y = 0.

Since h(x) has compact support, ψ(y) is identically zero in some interval
[0, ν), where ν > 0. Thus, by construction, ψ(y) ∈ C∞[0, 1].

Remark 4.9. The motivation for choosing the Bernstein polynomial,
(BMψ)(y), can be found in [12], as the approximant to ψ(y) in Lemma 4.1,
is that we can simultaneously choose M =M(ϵ) such that for 1 ≤ j ≤ r

sup
y∈[0,1]

∣∣ψ(y)− (BMψ)(y)
∣∣ < ϵ and sup

y∈[0,1]

∣∣Dj
yψ(y)−Dj

y(BMψ)(y)
∣∣ < ϵ.

Given y = e−x, we can consider ψ(y) in terms of x, as given by the
equation ψ(y) = exh(x). The following lemma expresses the derivatives of
ψ(y) in terms of the derivatives of h(x).

Lemma 4.10.
Dj

yψ(y) = (−1)je(j+1)x(Dx + 1) · · · (Dx + j)h(x) for j = 1, 2, . . . .

Proof. Note that by definition, y = e−x and ψ(y) = exh(x). We use proof
by induction on j.
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Suppose j = 1. Then Dxψ(y) = Dyψ(y) · (dy/dx) and, hence.
Dyψ(y) = −exDx(e

xh) = −ex(exh+ exDxh) = (−1)e2x(Dx + 1)h,

completing the first step of the inductive proof.
Now suppose the result is true for j = m. Then, by the inductive hy-

pothesis,

Dx[D
m
y ψ(y)] = Dx

[
(−1)me(m+1)x(Dx + 1) · · · (Dx +m)h(x)

]
.

Hence,
Dm+1

y ψ(y)(dy/dx) = (−1)m(m+ 1)e(m+1)x(Dx + 1) · · · (Dx +m)h(x)

+ (−1)me(m+1)xDx(Dx + 1) · · · (Dx +m)h(x).

Therefore,

Dm+1
y ψ(y) = (−1)m+1e(m+2)x[m+ 1 +Dx](Dx + 1) · · · (Dx +m)h(x)

= (−1)m+1(m+ 1)e(m+2)x(Dx + 1) · · · (Dx +m)(Dx +m+ 1)h(x),

proving the result for j = m+1. This completes the proof by induction. �
Motivated by Lemma 4.10, for j = 0, 1, 2, . . . , we now define:

hj(x) =

{
(Dx + 1) · · · (Dx + j)h(x) if j > 0,

h(x) if j = 0.

Hence, we can write
Dj

yψ(y) = (−1)je(j+1)xhj(x), j = 0, 1, 2 . . . . (4.1)
In exactly the same way, given y = e−x and (BMψ)(y) = S(x), we define

T (x) = S(x)e−x. Hence, (BMψ)(y) = exT (x) and
Dj

y(BMψ)(y) = (−1)je(j+1)x(Dx + 1) · · · (Dx + j)T (x) for j = 1, 2, . . . .

Analogously, for j = 0, 1, 2, . . . we define:

Tj(x) =

{
(Dx + 1) · · · (Dx + j)T (x) if j > 0,

T (x) if j = 0.

Hence, we can similarly write
Dj

y(BMψ)(y) = (−1)je(j+1)xTj(x), j = 0, 1, 2 . . . , (4.2)
and we can now express our approximations in terms of the variable x.

Remark 4.11. Using equations (4.1) and (4.2), we can now reformulate the
Bernstein polynomial, (BMψ)(y), approximations to ψ(y) and its deriva-
tives as

sup
x∈[0,∞)

∣∣exh0(x)− exT0(x)
∣∣ < ϵ. (4.3)

and for 1 ≤ j ≤ r,
sup

x∈[0,∞)

∣∣e(j+1)xhj(x)− e(j+1)xTj(x)
∣∣ < ϵ.
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Lemma 4.12. For r = 1, 2, 3, . . . W r(R) is an R-algebra.

Proof. Our proposed approximant to θ+h(x) is θ+S(x)e−x. From Appendix
B, to show convergence to θ̂+h in ∥ · ∥W r , it suffices to show the convergence
to θ+h, xk(θ+h) and Dj

x(x
k(θ+h)) in ∥ · ∥L1 for all 1 ≤ j ≤ k ≤ r.

Of course, one important consequence of the fact that our smooth func-
tion h is zero in the neighborhood of 0 is that it implies that θ+h is also
smooth.

We have already seen in Lemma 4.1 that∥∥θ+h(x)− θ+S(x)e−x
∥∥
L1
< ϵ.

Similarly, for 1 ≤ k ≤ r, we have

∥∥θ+xkh(x)− θ+xkS(x)e−x
∥∥
L1

=

∞∫
0

∣∣xkh(x)− xkS(x)e−x
∣∣ dx

=

∞∫
0

|exh(x)− S(x)|xke−x dx

=

∞∫
0

∣∣exh0(x)− exT0(x)
∣∣xke−x dx

≤ ϵ

∞∫
0

xke−x dx by (4.3)

= (k!) ϵ, since
∞∫
0

xke−xdx = k! .

Suppose that j ≥ 1. Clearly, there exist constants {cl : 0 ≤ l ≤ j}, that
depend only on j such that

Dj
xh =

j∑
l=0

clhl, Dj
xT =

j∑
l=0

clTl,

where h0 = h, and hl = (Dx+1) · · · (Dx+l)h for l > 0, and T0 = T = Se−x,
and Tl = (Dx + 1) · · · (Dx + l)T for l > 0.

Hence, for 1 ≤ j ≤ k ≤ r,∥∥θ+xkDj
xh− θ+xkDj

x(Se
−x)

∥∥
L1

=
∥∥∥θ+xk j∑

l=0

cl(hl − Tl)
∥∥
L1

≤
j∑

l=0

|cl| ·
∥∥θ+xk(hl − Tl)

∥∥
L1
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=

j∑
l=0

|cl|
∞∫
0

∣∣xk(hl(x)− Tl(x))
∣∣ dx

=

j∑
l=0

|cl|
∞∫
0

∣∣e(l+1)xhl(x)− e(l+1)xTl(x)
∣∣e−(l+1)xxk dx

≤ ϵ

j∑
l=0

|cl|
∞∫
0

e−(l+1)xxk dx by (4.11)

≤ ϵ

j∑
l=0

|cl|
k!

(l + 1)k+1
.

Therefore, W r(R) is an R-algebra, as required. �

5. Proof of the Second Result

The objective of this section is to prove Theorem 3.2. In determining
certain asymptotic estimates for matrices arising during factorization, we
follow the approach of Duduchava [6]. (For full details, see Appendix C.)

Proof. We begin by defining

A0(ξ
′, ξn) :=

(
|ξ′|2 + |ξn|2

)−µ/2
A(ξ′, ξn). (5.1)

For the fixed ξ′ ̸= 0, we set

ω :=
ξ′

|ξ′|
; t :=

ξn
|ξ′|

.

From Theorem 2.3, for the fixed ω ∈ Sn−2,
A∗

0(ω, t) = (t− i)−ζB−(t)h
−1cA0(ω, t)hB

−1
+ (t)(t+ i)ζ ∈W r+2

N×N (R).

Moreover, from Lemmas 4.8 and 4.12, W r+2(R) is a splitting R-algebra.
Hence, by Theorem 2.1, the matrix A∗

0(ω, t) admits a right standard factor-
ization.

Therefore, we can write,
cA0(ω, t) = hB−1

− (t)(t− i)ζA∗
0(ω, t)(t+ i)−ζB+(t)h

−1

= hB−1
− (t)(t− i)ζ

[
(A∗

−(ω, t))
−1 diag

( t− i

t+ i

)κ(ω)

A∗
+(ω, t)

]
× (t+ i)−ζB+(t)h

−1,

where the factors (A∗
±)

±1 ∈ W r+2
N×N (R), and have analytic extensions with

respect to ξn, to the lower half-plane and the upper half-plane, respectively.
Moreover (see [10, p. 37]), since lim

t→±∞
A∗

0(ω, t) = I, there exist factors
A∗

± ∈W r+2
N×N (R) such that

lim
t→±∞

A∗
±(ω, t) = I. (5.2)
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We now define
A±

1 (ω, t) := (t± i)ζ A∗
±(ω, t) (t± i)−ζ . (5.3)

Hence, as the diagonal matrices commute,

cA0(ω, t) = hB−1
− (t)(A−

1 (ω, t))
−1 diag

( t− i

t+ i

)κ(ω)+ζ

A+
1 (ω, t)B+(t)h

−1.

From equation (5.3),

(A±
1 )j,k = (t+ i)ζj−ζk (A∗

±)j,k.

Suppose j ̸= k. Then, from Lemma C.4,
lim

t→±∞
(A±

1 (w, t))j,k = 0 (j ̸= k).

Given this result for the off-diagonal terms of A±
1 (w, t) and equations (5.2)

and (5.3), we have
lim

t→±∞
A±

1 (w, t) = I.

Further, if we set
A±

0 (ω, t) := A±
1 (ω, t)B±(t)h

−1,

then we can write

cA0(ω, t) = (A−
0 (ω, t))

−1 diag
( t− i

t+ i

)κ(ω)+ζ

A+
0 (ω, t).

Now, by definition,
A±

0 = A±
1 B±h

−1

=
[
(A±

1 − I) + I
]
B±h

−1

= B±
[
B−1

± (A±
1 − I)B± + I

]
h−1

= B±A
±
2 h

−1,

where we now define
A±

2 (ω, t) := B−1
± (t) (A±

1 (ω, t)− I)B±(t) + I. (5.4)

Remark 5.1. We have already noted that the factors (A∗
±)

±1 have analytic
extensions with respect to ξn, to the lower half-plane and to the upper half-
plane, respectively. From definitions (5.3) and (5.4), it is clear that this
property is likewise shared by the factors (A±

1 )
±1 and (A±

2 )
±1.

Remark 5.2. From Lemma C.6,[
(A±

2 )
±1

]
j,k

∈W r(R) for 1 ≤ j, k ≤ N.

In particular, each element of the matrices (A±
2 )

±1 satisfies a condition of
the form: ∑

0≤q≤r

ess sup
ξn∈R

∣∣ξqnDq
ξn
(A±

2 (ξ
′, ξn))j,k

∣∣ < +∞.
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Finally, we have the required factorization, namely,

cA0(ω, t) = h(A−
2 )

−1B−1
− diag

( t− i

t+ i

)κ(ω)+ζ

B+A
+
2 h

−1

= h(A−
2 )

−1d(ω, t)A+
2 h

−1, (5.5)
where

d(ω, t) := B−1
− (t) diag

( t− i

t+ i

)κ(ω)+ζ

B+(t).

Remark 5.3. Note that, by construction, the matrix-valued functionsB±(ξn)
commute with the diagonal matrix (ξn ± i)ζ . (To see this, choose an ar-
bitrary block Jk(λk). On this block, (ξn ± i)ζ acts like a scalar, since the
relevant components of the vector ζ are all equal to −(logλk)/(2πi).)

By Remark 5.3, equation (2.10) which defines B±(t), together with the
properties of the blocks (see equations (2.6) and (2.7)), we can write

d(ω, t) = diag
( t− i

t+ i

)κ(ω)+ζ

B−1
− (t)B+(t)

= diag
( t− i

t+ i

)κ(ω)+ζ

× diag
[
Bm1

( 1

2πi
log t+ i

t− i

)
, . . . , Bml

( 1

2πi
log t+ i

t− i

)]
.

Remark 5.4. We notice that, by definition,

t =
ξn
|ξ′|

and t+ i

t− i
=
ξn + i|ξ′|
ξn − i|ξ′|

.

Hence, the functions of t or (t+ i)/(t− i) are homogeneous in the variable
ξ = (ξ′, ξn).

It remains to consider the sum and partial sums of the factorization
indices. For the fixed ξ′, our final factorization (see equation (5.5)) is

cA0(ω, t) = h(A−
2 )

−1d(ω, t)A+
2 h

−1.

Hence, since c, h are constant matrices and lim
t→±∞

A±
2 = I, we have

∆ arg det
[(
|ξ′|2 + |ξn|2

)−µ/2
Aω(ξ

′, ξn)
]∣∣∣∣ξn=+∞

ξn=−∞

= ∆ arg detA0(ξ
′, ξn)

∣∣∣ξn=+∞

ξn=−∞
(see equation (5.1))

= ∆ arg det d(ω, t)
∣∣∣t=+∞

t=−∞
. (5.6)

Now, d(ω, t) is a lower triangular matrix, and hence its determinant is the
product of the entries on its main diagonal. Thus

det d(ω, t) =
N∏

k=1

(
t− i

t+ i

)κk(ω)+ζk

.
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Therefore (see [7, Chapter II, Section 6, p. 88]),

1

2π
∆ arg det d(ω, t)

∣∣∣∣t=+∞

t=−∞
=

N∑
k=1

κk(ω) +
N∑

k=1

Re ζk. (5.7)

From equations (5.6) and (5.7), we have

1

2π
∆ arg det

[(
|ξ′|2 + |ξn|2

)−µ/2
Aω(ξ

′, ξn)
]∣∣∣∣ξn=+∞

ξn=−∞

=
N∑

k=1

κk(ω) +
N∑

k=1

Re ζk.

The remaining assertions in Theorem 3.2 concerning the continuity of the
sum and the semicontinuity of the partial sums of the factorization indices,
can be found in [15, Theorem 3.1, p. 113]. �

Appendix A. Proof of the Key Theorem from Shamir

We shall give a proof of Theorem 2.3 in two steps:
(i) E−1

+ E− is similar to diag [λ1, . . . , λN ];
(ii) The general case.

Our overall approach will be to reduce the general case to a simpler case.
We begin by establishing some simple decay estimates.

Lemma A.1. Suppose that A0(ξ
′, ξn) ∈ Cr+3

N×N (Sn−1) is a matrix-valued
function which is homogeneous of degree 0. Then, for the fixed ξ′ ̸= 0,

Dk
ξn

[
A0(ξ

′, ξn)− E±
]
= O

(
|ξn|−k−1

)
, ξn → ±∞, 0 ≤ k ≤ (r + 3), (A.1)

where these estimates are uniform for ξ′ ∈ Sn−2.

Proof. Suppose that ξn → ∞. Then since A0 is homogeneous of degree 0,

A0(ξ
′, ξn)− E+ = A0(ξ

′ξ−1
n , 1)−A0(0, 1)

=
n−1∑
j=1

∂A0

∂ξj
(0, 1)

ξj
ξn

+O
(
|ξn|−2

)
= O

(
|ξn|−1

)
, ξn → ∞.

This completes the proof for k = 0.
For 1 ≤ k ≤ (r + 3), we can ignore the constant matrix E+, and we

readily obtain

Dk
ξnA0(ξ

′, ξn) = Dk
ξnA0(ξ

′ξ−1
n , 1) = O

(
|ξn|−k−1

)
, ξn → ∞.

Of course, estimates for the case ξn → −∞ follow in exactly the same way.
This completes the proof of the lemma. �
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Let us consider the first step. We assume that the invertible matrix
E−1

+ E− is similar to diag [λ1, . . . , λN ]. In this formulation the eigenvalues
λj , j = 1, . . . , N are listed according to their multiplicity and, of course, are
all non-zero.

We now define ζ = (ζ1, . . . , ζN ) by

ζj = − logλj
2πi

, j = 1, . . . , N. (A.2)

Remark A.2. The definition of ζ, given by equation (A.2), includes a multi-
plicative factor (−1) is not shown in [15]. As will be seen, this modification
allows us to correct an error in the treatment of the discontinuity across the
negative real axis. (See [15, Lemma 4.2].)

Lemma A.3. Suppose that A0(ξ
′, ξn) ∈ Cr+3

N×N (Sn−1) is a matrix-valued
function which is homogeneous of degree 0 and elliptic. Suppose further
that for some invertible constant matrix h1,

E = E−1
+ E− = h1 diag [λ1, . . . , λN ]h−1

1 . (A.3)

If ζj = − log λj

2πi for j = 1, . . . N , ζ = (ζ1, . . . , ζN ) and c := A−1
0 (0, . . . , 0, 1),

then for the fixed ξ′ ̸= 0,
A∗

0(ξ
′, ξn) := (ξn − i)−ζh−1

1 cA0(ξ
′, ξn)h1(ξn + i)ζ ∈W r+2

N×N (R),
and

lim
ξn→±∞

A∗
0(ξ

′, ξn) = I.

Proof. By hypothesis, we have
E = E−1

+ E− = h1 diag [λ1, . . . , λN ]h−1
1 .

If we define Ã0(ξ
′, ξn) := h−1

1 cA0(ξ
′, ξn)h1, we may assume, without loss of

generality, that
E+ = I, E− = diag [λ1, . . . , λN ].

We define a new matrix-valued function
A∗

0(ξ
′, ξn) = (ξn − i)−ζÃ0(ξ

′, ξn)(ξn + i)ζ . (A.4)
Then, for ξn > 0, we can write

A∗
0(ξ

′, ξn)=(ξn−i)−ζ
[
Ã0(ξ

′, ξn)−E+

]
(ξn+i)

ζ+(ξn−i)−ζE+(ξn+i)
ζ

and similarly for ξn < 0, we have
A∗

0(ξ
′, ξn)=(ξn−i)−ζ

[
Ã0(ξ

′, ξn)−E−
]
(ξn+i)

ζ+(ξn−i)−ζE−(ξn+i)
ζ .

Since the matrices (ξn − i)−ζ and (ξn + i)ζ are diagonal, we can write a
typical element of the first summand as

(ξn − i)−ζj
[
Ã0(ξ

′, ξn)− E±
]
jl
(ξn + i)ζl

= O
(
|ξn|− Re ζj−1+Re ζl

)
= O

(
|ξn|−δ0

)
(A.5)

using Lemma A.1 and equation (2.13).
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Now suppose 1 ≤ k ≤ (r + 3) and α ∈ C. Then

Dk
ξn(ξn ± i)α = Cα,k(ξn ± i)α−k,

where Cα,k, k = 1, 2, . . . are certain constants. Moreover, from Lemma A.1,

Dk
ξn

[
Ã0(ξ

′, ξn)− E±
]
= O

(
|ξn|−k−1

)
as ξn → ±∞.

Hence, for k = 0, 1, . . . , r + 3, we can write

Dk
ξn

{
(ξn − i)−ζj

[
Ã0(ξ

′, ξn)− E±
]
jl
(ξn + i)ζl

}
= O

(
|ξn|− Re ζj+Re ζl−k−1

)
= O

(
|ξn|−δ0−k

)
. (A.6)

We now consider the second summand, which is diagonal as it is the
product of diagonal matrices. For any α ∈ C and ξn → ±∞, it will be
useful to factorize (ξn ± i)α using the following identity:

(ξn ± i)α = (ξn ± i0)α(1± iξ−1
n )α

noting, as expected, that the decomposition on the right-hand side preserves
the modulus and argument of the left-hand side.

For ξn > 0, the (j, j) entry of the second summand is given by

(ξn−i)−ζj 1 (ξn+i)
ζj = (ξn−i0)−ζj (ξn+i0)

ζj 1 (1−iξ−1
n )−ζj (1+iξ−1

n )ζj

= (1− iξ−1
n )−ζj (1 + iξ−1

n )ζj ,

since the product of the first two terms is 1.
Similarly, for ξn < 0, we have

(ξn − i)−ζjλj(ξn + i)ζj

= (ξn − i0)−ζj (ξn + i0)ζjλj(1− iξ−1
n )−ζj (1 + iξ−1

n )ζj

= e−ζj log |ξn|eiζjπeζj log |ξn|eiζjπλj(1− iξ−1
n )−ζj (1 + iξ−1

n )ζj

= e2πiζjλj(1− iξ−1
n )−ζj (1 + iξ−1

n )ζj

= (1− iξ−1
n )−ζj (1 + iξ−1

n )ζj

since λj = elog λj = e−2πiζj for j = 1, . . . , N from equation (A.2).
So, for the second summand, combining the results for ξn → ±∞, for

|ξn| > 1 we have

(ξn − i)−ζE±(ξn + i)ζ − I = (1− iξ−1
n )−ζ(1 + iξ−1

n )ζ − I.

So, expanding the factors on the right-hand side in powers of ξ−1
n , we have

(ξn − i)−ζE±(ξn + i)ζ − I =
∞∑
l=1

Alξ
−l
n for |ξn| > 1.

Thus, on differentiating k times with respect to ξn, we obtain

Dk
ξn

{
(ξn − i)−ζE±(ξn + i)ζ − I

}
= O

(
|ξn|−1−k

)
(A.7)
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for k = 0, 1, . . . , (r + 3). Combining estimates (A.6) and (A.7), we obtain

Dk
ξn

{
A∗

0(ξ
′, ξn)− I

}
= O

(
|ξn|−δ0−k

)
, |ξn| → ∞. (A.8)

From Lemma 2.2, we have A∗
0(ξ

′, ξn) ∈W r+2
N×N (R). This completes the proof

of the first step. �

With these preparations complete, we now turn to the general case. For
convenience, we now restate Theorem 2.3.

Lemma A.4. Suppose that A0(ξ
′, ξn) ∈ Cr+3

N×N (Sn−1) is a matrix-valued
function which is homogeneous of degree 0 and elliptic. Suppose that the
Jordan form of A−1

0 (0, . . . , 0, 1)A0(0, . . . , 0,−1) has blocks Jk(λk) of size mk

for k = 1, . . . , l. Let ζ = (ζ1, . . . ζN ), where

ζq = − logλj
2πi

for
j−1∑
p=1

mp < q ≤
j∑

p=1

mp, q = 1, . . . , N.

Let c := A−1
0 (0, . . . , 0, 1). Then for the fixed ξ′ ̸= 0,

A∗
0(ξ

′, ξn) := (ξn − i)−ζB−(ξn)h
−1

× cA0(ξ
′, ξn)hB

−1
+ (ξn)(ξn + i)ζ ∈W r+2

N×N (R), (A.9)

and
lim

ξn→±∞
A∗

0(ξ
′, ξn) = I.

Proof. By hypothesis, and using equation (2.5), we have

E = E−1
+ E− = hdiag

[
λ1B

m1(1), . . . , λlB
ml(1)

]
h−1,

for some invertible matrix h. If we define Ã0(ξ
′, ξn) := h−1cA0(ξ

′, ξn)h, we
may assume, without loss of generality, that

E+ = I, E− = diag
[
λ1B

m1(1), . . . , λlB
ml(1)

]
.

Mimicing the approach in the first case, we define

ζ ′j = − logλj
2πi

, −1

2
≤ Re ζ ′j <

1

2
, where j = 1, . . . , l.

Moreover, we calculate

min
1≤j,k≤l

(1− Re ζ ′k + ℜζ ′j) = δ0 > 0. (A.10)

We now define

ζq = ζ ′j for
j−1∑
p=1

mp < q ≤
j∑

p=1

mp, q = 1, . . . , N.

Now we can set ζ = (ζ1, . . . , ζN ), exactly as in the first case.
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Remark A.5. When regarded as a function of z ∈ C, the matrix-valued
functions B±(z) are analytic in the regions Im z > 0 and Im z < 0, respec-
tively. Note also that, by construction, the matrix-valued functions B±(ξn)
commute with the diagonal matrix (ξn ± i)ζ . (To see this, choose an arbi-
trary block Jk. On this block, (ξn ± i)ζ acts like a scalar, since the relevant
components of the vector ζ are all equal to − log λk

2πi .)

As previously (see equation (A.4)), we define a new matrix-valued func-
tion

A∗
0(ξ

′, ξn) = (ξn − i)−ζB−(ξn)Ã0(ξ
′, ξn)B

−1
+ (ξn)(ξn + i)ζ . (A.11)

Now, since E+ = I, using the established properties of Bm(α±), we have

lim
ξn→∞

B−(ξn)Ã0(ξ
′, ξn)B

−1
+ (ξn)

= lim
ξn→∞

B−(ξn)B
−1
+ (ξn)

= lim
ξn→∞

B−(ξn) diag
[
Bm1

(
− α+(ξn)

)
, . . . , Bml

(
− α+(ξn)

)]
= lim

ξn→∞
diag

[
Bm1

(
α−(ξn)−α+(ξn)

)
, . . . , Bml

(
α−(ξn)−α+(ξn)

)]
= diag

[
Bm1(0), . . . , Bml(0)

]
= I.

On the other hand, since E− = diag [λ1Bm1(1), . . . , λlB
ml(1)],

lim
ξn→−∞

B−(ξn)Ã0(ξ
′, ξn)B

−1
+ (ξn)

= lim
ξn→−∞

B−(ξn) diag
[
λ1B

m1(1), . . . , λlB
ml(1)

]
B−1

+ (ξn)

= lim
ξn→−∞

B−(ξn) diag
[
λ1B

m1(1− α+), . . . , λlB
ml(1− α+)

]
= lim

ξn→−∞
diag

[
λ1B

m1(1−α++α−), . . . , λlB
ml(1−α++α−)

]
= diag

[
λ1B

m1(0), . . . , λlB
ml(0)

]
= diag

[
λ1I

m1 , . . . , λlI
ml

]
,

where Im is an m×m block identity matrix.
So, as in Lemma A.3, we can see that

lim
ξn→±∞

A∗
0(ξ

′, ξn)

= lim
ξn→±∞

(ξn − i)−ζB−(ξn)Ã0(ξ
′, ξn)B

−1
+ (ξn)(ξn + i)ζ = I. (A.12)

To show that Dk
ξn
A∗

0(ξ
′, ξn), k = 1, . . . , (r + 3) satisfies estimates of

the form given in equation (A.8), we follow exactly the approach taken
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in Lemma A.3

A∗
0(ξ

′, ξn) = (ξn − i)−ζB−(ξn)Ã0(ξ
′, ξn)B

−1
+ (ξn)(ξn + i)ζ

= (ξn − i)−ζB−(ξn)(Ã0(ξ
′, ξn)− E±)B

−1
+ (ξn)(ξn + i)ζ

+ (ξn − i)−ζB−(ξn)E±B
−1
+ (ξn)(ξn + i)ζ ,

where

B−(ξn)E±B
−1
+ (ξn)

= E± diag
[
Bmj

(
log ξn − i

ξn + i

)]
= E± diag

[
Bmj

(
log 1− i/ξn

1 + i/ξn

)]
.

The presence of the logarithmic terms in the matrices B± adds only a
minor complication. For any fixed positive integer m, we have

Dξn

[
log(ξn ± i)

]m
= m

[
log(ξn ± i)

]m−1
(ξn ± i)−1.

But since
lim

ξn→±∞

[log(ξn ± i)]p

(ξn ± i)ϵ
= 0,

for any fixed integer p and any ϵ > 0, we can effectively repeat the proof of
Lemma A.3 with any δ′ satisfying 0 < δ′ < δ0.

From Lemma 2.2, we have A∗
0(ξ

′, ξn) ∈ W r+2
N×N (R). This completes the

proof of the general case. �

Appendix B. Function Approximation in W r(R)

The goal in this appendix is to prove that the Fourier transforms of
smooth functions which have compact support and are zero in a neighbor-
hood of x = 0, are dense in the space W r(R). To show this, we use the
standard approach of cut-off functions and convolution with a mollifier. In
simple terms, this analysis is required because we are effectively working in
a weighted Sobolev space. (See, for example, [1]).

Lemma B.1. Suppose f ∈W r(R) and 0 ≤ j ≤ k ≤ r. Then

Dkf, tjDkf and Dk(tjf) ∈W (R).

In addition, if f = ĝ, then ∥xkg∥L1 = ∥Dkf∥W ,

∥Dj(xkg)∥L1 = ∥tjDkf∥W and ∥xkDjg∥L1 = ∥Dk(tjf)∥W .

Proof. Since W (R) is an R-algebra and 0 ≤ j ≤ k,
tj

(1− it)k
∈W (R). (B.1)

By definition, (1− it)kDkf ∈W (R) and it follows from (B.1) that

tjDkf =
tj

(1− it)k
(1− it)kDkf ∈W (R). (B.2)
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Moreover, from (B.2),

Dktjf =

j∑
l=0

clt
j−lDk−lf ∈W (R),

where cl are some constants. (Note that j ≤ k implies that j − l ≤ k − l.)
From [11, Proposition 2.2.11, p. 100],

Fx→t

[
(ix)kg(x)

]
= Dkĝ.

Hence,
∥xkg∥L1

= ∥Dkĝ∥W = ∥Dkf∥W .

Let hk(x) := xkg(x). Then, again from [11, Proposition 2.2.11, p. 100],

Fx→tD
jhk = (−it)j ĥk,

and thus
∥Dj(xkg)∥L1 = ∥tj x̂kg∥W = ∥tjDkf∥W .

Finally,

∥xkDjg∥L1 = ∥x̂kDjg∥W = ∥DkD̂jg∥W = ∥Dk(tjf)∥W .

This completes the proof of the lemma. �

Suppose ĝ(t) ∈W r(R). Then, by definition,

∥ĝ∥W r = ∥g∥L1 +
r∑

k=1

∥(Dx + 1)k(xkg(x))∥L1 .

Hence,

∥ĝ∥W r ≤ ∥g∥L1 +

r∑
k=1

{
∥xkg∥L1 +

k∑
j=1

(
k

j

)
∥Dj

x(x
kg)∥L1

}
.

Thus, to show the convergence to ĝ in ∥ · ∥W r , it suffices to show the
convergence to g, xkg and Dj

x(x
kg) in ∥ · ∥L1 for all 1 ≤ j ≤ k ≤ r.

Note that for j ≥ 1,

Dj
x(x

kg) =

j∑
l=0

(
j

l

)
(Dl

xx
k)(Dj−l

x g).

Hence, we have

∥ĝ∥W r ≤ Cr

∑
0≤j≤k≤r

∥xkDj
xg∥L1 := Cr∥g∥∗, (B.3)

where Cr is a constant that depends only on r. So, an alternative sufficient
condition for the convergence to ĝ in ∥ · ∥W r is the convergence to xkDj

xg
in ∥ · ∥L1 for all 0 ≤ j ≤ k ≤ r.



140 Tony Hill

We now define a cut-off function that is zero in a neighborhood of x = 0,
and is also equal to zero when |x| is sufficiently large. Firstly, we define two
smooth functions

α(x) =

{
0 if |x| ≤ 1/2,

1 if |x| ≥ 1,

and

β(x) =

{
1 if |x| ≤ 1,

0 if |x| ≥ 2.

Then, for 0 < ϵ < 1, we define the smooth cut-off function ϕϵ by

ϕϵ(x) = α(x/ϵ)β(ϵx).

Notice that by construction,

ϕϵ(x) =


1 if |x| ∈

[
ϵ,
1

ϵ

]
,

0 if |x| ∈
[
0,
ϵ

2

)
∪
[2
ϵ
,∞

)
.

In particular, for each 0 < ϵ < 1, the function ϕϵ has compact support, and
is identically zero in the neighborhood of 0.

Therefore, for j = 1, 2, . . . , the support of Dj
xϕϵ(x) is contained in Eϵ,

where
Eϵ :=

[
− 2

ϵ
,−1

ϵ

]
∪
[
− ϵ,− ϵ

2

]
∪
[ ϵ
2
, ϵ
]
∪
[1
ϵ
,
2

ϵ

]
.

For any positive integer k, we have

Dk
xα

(x
ϵ

)
=

(1
ϵ

)k

α(k)
(x
ϵ

)
and

Dk
xβ(ϵx) = ϵkβ(k)(ϵx).

Hence, for l = 1, 2, . . . ,

xlDl
xϕϵ =

l∑
k=0

ck

[(x
ϵ

)k

α(k)
(x
ϵ

)][
(ϵx)l−kβ(l−k)(ϵx)

]
,

for certain constants ck that depend only on k. Moreover, α(k)(y) = 0 unless
1
2 ≤ |y| ≤ 1 and β(k)(y) = 0 unless 1 ≤ |y| ≤ 2.

Hence, for l = 1, 2, . . . ,

sup
x∈R, 0<ϵ<1

|xlDl
xϕϵ| ≤ Cα,β,l, (B.4)

where Cα,β,l is a (finite) constant that depends only on the smooth functions
α, β and the index l.

Lemma B.2. Suppose ĝ ∈W r(R). Then ∥ϕ̂ϵg − ĝ∥W r → 0 as ϵ↘ 0.
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Proof. Suppose ĝ ∈ W (R). Then, by definition, g(x) ∈ L1(R) and ∥ĝ∥W =
∥g∥L1 . It is immediately clear from the definition of the L1 norm that
ϕϵg ∈ L1(R) and ∥ϕϵg − g∥L1 → 0 as ϵ ↘ 0. That is, ∥ϕ̂ϵg − ĝ∥W → 0 as
ϵ↘ 0, as required.

Now suppose ĝ ∈W r(R) and 1 ≤ k ≤ r. Then∥∥xk(ϕϵg)− xkg
∥∥
L1

=
∥∥ϕϵ(xkg)− xkg

∥∥
L1

−→ 0 as ϵ↘ 0.

Further, suppose that ĝ ∈W r(R), and 1 ≤ j ≤ k ≤ r. Then

Dj
x(ϕϵg) = ϕϵ(D

j
xg) +

j∑
l=1

(
j

l

)
Dl

xϕϵ ·Dj−l
x g.

We now show that for 1 ≤ l ≤ j ≤ k ≤ r,∥∥xkDl
xϕϵ ·Dj−l

x g
∥∥
L1

=

∫
R

∣∣xkDl
xϕϵ ·Dj−l

x g
∣∣ dx

=

∫
Eϵ

∣∣xkDl
xϕϵ ·Dj−l

x g
∣∣ dx since Dl

xϕϵ=0 outside Eϵ

≤ Cα,β,l

∫
Eϵ

|xk−lDj−l
x g| dx from (B.4)

−→ 0 as ϵ↘ 0,

since xk−lDj−l
x g ∈ L1(R). Hence,∥∥xkDj

x(ϕϵg)− xkDj
xg

∥∥
L1

≤
∥∥xkϕϵ(Dj

xg)− xkDj
xg

∥∥
L1

+

j∑
l=1

(
j

l

)∥∥xkDl
xϕϵ ·Dj−l

x g
∥∥
L1

=
∥∥ϕϵ(xkDj

xg)− xkDj
xg

∥∥
L1

+

j∑
l=1

(
j

l

)∥∥xkDl
xϕϵ ·Dj−l

x g
∥∥
L1

−→ 0 as ϵ↘ 0.

That is, ∥ϕ̂ϵg − ĝ∥W r → 0, as ϵ↘ 0, as required. �

Remark B.3. The significance of Lemma B.2 is that we can effectively as-
sume for the ensuing density arguments that any function in L1(R) has
both compact support and is also identically zero in the neighborhood of
the origin. (To see this, we simply approximate g ∈ L1(R) by h = ϕϵg.)

Following, for example [1], we now introduce the concept of a mollifier.
Let J be a nonnegative, real-valued function in C∞

0 (R) satisfying the two
conditions, J(x) = 0 if |x| ≥ 1, and

∫
R
J(x) dx = 1.

For δ > 0, we define Jδ(x) = δ−1J(x/δ). Then Jδ(x) ∈ C∞
0 (R) and:

(a) Jδ(x) = 0 if |x| ≥ δ and
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(b)
∫
R
Jδ(x) dx = 1.

As δ ↘ 0, the mollifier Jδ(x) approaches the delta-function supported on
x = 0. Formally, we define the convolution

(Jδ ∗ u)(x) =
∫
R

Jδ(x− y)u(y) dy.

Suppose v ∈ L1(R) and has compact support. Then:
(i) (Jδ ∗ v) ∈ C∞

0 (R);
(ii) (Jδ ∗ v) ∈ L1(R) and ∥Jδ ∗ v∥L1 ≤ ∥v∥L1 ;
(iii) if Dv ∈ L1(R), then D(Jδ ∗ v) = Jδ ∗Dv;
(iv) lim

δ↘0
∥Jδ ∗ v − v∥L1 = 0.

As a simple consequence of the above, we observe that if Djv ∈ L1(R), then∥∥Dj(Jδ ∗ v)−Djv
∥∥
L1

=
∥∥(Jδ ∗Djv)−Djv

∥∥
L1

−→ 0 as δ ↘ 0,

and, thus, ∥Jδ ∗ v− v∥W r,1 → 0 as δ ↘ 0 in the (unweighted) Sobolev space
W r,1(R).

Lemma B.4. Suppose ĥ(t) ∈W r(R), and further that h(x) has a compact
support and is identically zero in a neighborhood of x = 0. Then∥∥Ĵδ ∗ h− ĥ

∥∥
W r → 0 as δ ↘ 0.

Proof. Suppose that h(x) has compact support and is identically zero in a
neighborhood of x = 0. Then there exist positive real numbers ϵ and R
such that

supph ⊆
{
x ∈ R : ϵ ≤ |x| ≤ R

}
.

Suppose δ ≤ min{ϵ/2, 1}. Then

suppJδ ∗ h ⊆
{
x ∈ R :

ϵ

2
≤ |x| ≤ (R+ 1)

}
.

Now let H(x) be any function with

suppH ⊆
{
x ∈ R :

ϵ

2
≤ |x| ≤ (R+ 1)

}
,

and Ĥ(t) ∈ W r(R). Then for any integers j, k such that 0 ≤ j ≤ k ≤ r, we
have ( ϵ

2

)k

∥DjH∥L1 ≤ ∥xkDjH∥L1 ≤ (R+ 1)k∥DjH∥L1 .

Therefore, ( ϵ
2

)r

∥DjH∥L1 ≤ ∥xkDjH∥L1 ≤ (R+ 1)r∥DjH∥L1 ,

and summing over all 0 ≤ j ≤ k ≤ r, we have( ϵ
2

)r

∥H∥W r,1 ≤ ∥H∥∗ ≤ (r + 1)(R+ 1)r∥H∥W r,1 ,
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where ∥ · ∥W r,1 denotes the (unweighted) Sobolev norm, and ∥·∥∗ is defined
by equation (B.3).

Thus, since
∥Jδ ∗ h− h∥W r,1 → 0 as δ ↘ 0,

we have
∥Jδ ∗ h− h∥∗ as δ ↘ 0.

Finally, from equation (B.3),

∥Ĵδ ∗ h− ĥ∥W r → 0 as δ ↘ 0,

as required. �

Appendix C. Matrix Factor Estimates from Duduchava

In this appendix we follow the approach taken by Duduchava [6], and
derive some asymptotic estimates for certain matrices arising during factor-
ization.

Given A∗
0(ξ

′, ξn) ∈W r+2
N×N (R), we have the factorization

A∗
0(ω, t) =

(
A∗

−(ω, t)
)−1 diag

( t− i

t+ i

)κ(ω)

A∗
+(ω, t), (C.1)

where A∗
± ∈W r+2

N×N (R), and have analytic extensions with respect to ξn, to
the upper half-plane and to the lower half-plane, respectively. Moreover (see
[10, p. 37]), since lim

t→±∞
A∗

0(ω, t) = I, there exist factors A∗
± ∈ W r+2

N×N (R)
such that

lim
t→±∞

A∗
±(ω, t) = I. (C.2)

We now define
A±

1 (ω, t) = (t± i)ζA∗
±(ω, t)(t± i)−ζ . (C.3)

We begin with two technical lemmas that will be useful later. Let T
denote the unit circle in the complex plane.

Lemma C.1. Let 0 < ν < 1. Suppose ϕ(t) ∈ W r+2(R) and ϕk(t) :=
tkDk

t ϕ(t) = O(|t|−ν) as |t| → ∞, for k = 0, 1, . . . , r + 2. Define

Φk(z) := ϕk

(
i
1 + z

1− z

)
, z ∈ T \ {1}, Φk(1) := lim

z→1
Φk(z).

Then for j = 0, 1, . . . , r + 1, Φj ∈ Hν(T), where Hν(T) denotes the Hölder
space of order ν. Moreover, Φj(1) = 0.

Proof. Choose any z ∈ T. Then z = eiθ for some θ ∈ [−π, π), and it is
straightforward to show that

i
1 + z

1− z
= − cot

(θ
2

)
.

Hence, for j = 0, 1, . . . , r + 1, we can write

Φj(z) = ϕj

(
− cot

(θ
2

))
:= ψj(θ).
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In particular, as θ → 0, so, z → 1, and we obtain Φj(1) = 0. Now,

dψj

dθ
=
dϕj
dτ

dτ

dθ
, where τ := − cot

(θ
2

)
.

By hypothesis,

dϕj
dτ

= O
(
|τ |−ν−1

)
= O

(
|θ|ν+1

)
as |θ| → 0.

Moreover, by the direct calculation,

dτ

dθ
=

1

2 sin2( θ2 )
= O

(
|θ|−2

)
as |θ| → 0.

Combining these results,

dψj

dθ
= O

(
|θ|ν−1

)
as |θ| → 0. (C.4)

Suppose now z1, z2 ∈ T. Then, by relabeling, if necessary, we can suppose

|z1 − 1| ≤ |z2 − 1|,

and we consider three cases:
Case 1: |z1 − z2| < |z1 − 1| ≤ |z2 − 1|;
Case 2: |z1 − 1| ≤ |z1 − z2| ≤ |z2 − 1|;
Case 3: |z1 − 1| ≤ |z2 − 1| < |z1 − z2|.

We begin with Case 1 and apply the Mean Value Theorem to ψj :∣∣Φj(z1)− Φj(z2)
∣∣ = ∣∣ψj(θ1)− ψ(θ2)

∣∣
=

∣∣∣dψj

dθ
(θ∗)

∣∣∣ · |θ1 − θ2|
(
|θ1| ≤ |θ∗| ≤ |θ2|

)
,

where, due to the constraints applicable in this case, θ1 and θ2 must have
the same sign. Hence, from (C.4),

|Φj(z1)− Φj(z2)| ≤ C ′|z∗ − 1|ν−1 · |z1 − z2| for some constant C ′

= C ′
( |z1 − z2|
|z∗ − 1|

)1−ν

|z1 − z2|ν

≤ C ′
( |z1 − z2|
|z1 − 1|

)1−ν

|z1 − z2|ν

≤ C ′|z1 − z2|ν .
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For Case 2,∣∣Φj(z1)− Φj(z2)
∣∣ ≤ |Φj(z1)|+ |Φj(z2)|

=
∣∣∣ϕj(− cot

(θ1
2

))∣∣∣+ ∣∣∣ϕj(− cot
(θ2
2

))∣∣∣
≤ C

∣∣∣ cot
(θ1
2

)∣∣∣−ν

+ C
∣∣∣ cot

(θ2
2

)∣∣∣−ν

≤ 2C|θ1|ν + 2C|θ2|ν

≤ 4C|z1 − 1|ν + 4C|z2 − 1|ν

But in this case, |z1 − 1| ≤ |z1 − z2| and, moreover,
|z2 − 1| ≤ |z2 − z1|+ |z1 − 1| ≤ 2|z1 − z2|.

Therefore, ∣∣Φj(z1)− Φj(z2)
∣∣ ≤ 12C|z1 − z2|ν .

Finally, turning to Case 3,∣∣Φj(z1)− Φj(z2)
∣∣ ≤ |Φj(z1)|+ |Φj(z2)|

=
∣∣∣ϕj(− cot

(θ1
2

))∣∣∣+ ∣∣∣ϕj(− cot
(θ2
2

))∣∣∣
≤ C

∣∣∣ cot
(θ1
2

)∣∣∣−ν

+ C
∣∣∣ cot

(θ2
2

)∣∣∣−ν

≤ 2C|θ1|ν + 2C|θ2|ν

≤ 4C|z1 − 1|ν + 4C|z2 − 1|ν

≤ 8C|z1 − z2|ν . �

Lemma C.2. Let 0 < ν < 1 and ϕ(t) ∈W r+2(R). Suppose
ϕk(t) := tkDk

t ϕ(t) = O
(
|t|−ν

)
as |t| → ∞, for k = 0, 1, . . . , r + 2.

Then
tkDk

t SRϕ(t) = O
(
|t|−ν

)
as |t| → ∞, for k = 0, 1, . . . , r + 1.

Proof. By definition, for k = 0, 1, . . . , r + 2,

tkDk
t SRϕ(t) :=

tk

πi
Dk

t

∞∫
−∞

ϕ(τ)

τ − t
dτ

=
tk

πi

∞∫
−∞

(Dk
τϕ)(τ)

τ − t
dτ (see [8, Chapter I, Section 4.4 p. 31])

=
1

πi

∞∫
−∞

ϕk(τ)

τ − t
dτ,

where, in the last step, we use the identity
tk = τk + (t− τ)(tk−1 + tk−2τ + · · ·+ tτk−2 + τk−1),
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and repeat integration by parts.
For any t ∈ R, we define the change of variable

z :=
t− i

t+ i

(
or equivalently t = i

1 + z

1− z

)
,

where, of course, z ∈ T. Note that, as t → ±∞, we have z → 1. As
previously, we define

Φk(z) := ϕk

(
i
1 + z

1− z

)
.

By Lemma C.1, Φk ∈ Hν(T) with Φk(1) = 0, for k = 0, 1, . . . , r + 1.
With this change of variable,

tkDk
t SRϕ(t) =

1

πi

∞∫
−∞

ϕk(τ)

τ − t
dτ

=
1

πi

∫
|w|=1

1− z

1− w

Φk(w)

w − z
dw

=
1

πi

∫
|w|=1

Φk(w)

w − z
dw − 1

πi

∫
|w|=1

Φk(w)

w − 1
dw

= (STΦk)(z)− (STΦk)(1).

But the operator ST is bounded on Hν(T), and hence
tkDk

t SRϕ(t) = O
(
|z − 1|ν

)
= O

(
|t|−ν

)
,

as t→ ±∞ (z → 1). This completes the proof of the lemma. �

Our first task is to obtain some asymptotic estimates for the non-diagonal
elements of A±

1 . Due to the similarity of calculations, it is enough to prove
this result for the matrix A+

1 . For brevity, we will ignore any constant terms
that do affect the proof.

Lemma C.3. Suppose 1 ≤ j, k ≤ N with j ̸= k. Then
Dq

t (A
±
1 )j,k(ω, t) = O

(
|t|−σ−q

)
,

for q = 0, 1, . . . , r + 2, and some σ > 0.

Proof. We begin by noting that from the definition of A+
1 ,

(A+
1 )j,k = (t+ i)ζj−ζk(A∗

+)j,k.

Firstly, we suppose that Re(ζj − ζk) < 0. Then, in this case we can
simply take

σ = −Re(ζj − ζk),

so that σ > 0. Since (A∗
+)j,k ∈W r+2(R), the required result follows imme-

diately. Note that, taking q = 0,
lim

t→±∞
(A+

1 )j,k(ω, t) = 0. (C.5)
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Secondly, suppose that j ̸= k and Re(ζj − ζk) ≥ 0. From equation (C.1),

A∗
+ −A∗

− = diag
( t+ i

t− i

)κ(ω)

A∗
−A

∗
0 −A∗

−

=
[

diag
( t+ i

t− i

)κ(ω)

− I
]
A∗

−+diag
( t+i
t−i

)κ(ω)

(A∗
−A

∗
0−A∗

−)

=
[

diag
( t+ i

t− i

)κ(ω)

− I
]
A∗

−+diag
( t+i
t−i

)κ(ω)

A∗
−(A

∗
0−I)

:= b1(t) + b2(t)(A
∗
0 − I).

Consider now

b1(t) :=
[

diag
( t+ i

t− i

)κ(ω)

− I
]
A∗

−(ω, t).

We note that, as t→ ±∞,

Dq
t

[
diag

( t+ i

t− i

)κ(ω)

− I
]
= O

(
|t|−q−1

)
,

Dq
t

[
A∗

−(ω, t)
]
= O

(
|t|−q

)
(since A∗

− ∈W r+2
N×N (R)),

for q = 0, 1, . . . , r + 2. Hence, as t→ ±∞,
Dq

t b1(t) = O
(
|t|−q−1

)
. (C.6)

Consider now the second term,[
b2(A

∗
0 − I)

]
j,k

=

N∑
s=1

(b2)j,s(t)
(
A∗

0(ω, t)− I
)
s,k

(t)

where, by definition,

b2(t) :=
( t+ i

t− i

)κ(ω)

A∗
−(ω, t).

Since A∗
− ∈W r+2

N×N (R) we immediately have

Dq
t (b2)(t) = O

(
|t|−q

)
. (C.7)

Moreover, from estimates (A.6) and (A.7),
Dq

t (A
∗
0 − I)s,k = O

(
|t|−q−Re ζs+Re ζk+ϵ−1

)
. (C.8)

where ϵ is an arbitrarily small positive number that takes account of the
logarithmic terms in the matrices B±(t) used in the construction of A∗

0.
(See (A.12).) Using estimates (C.7) and (C.8),

Dq
t

[
b2(A

∗
0 − I)]

]
j,k

=

N∑
s=1

O
(
|t|−q−Re ζs+Re ζk+ϵ−1

)
=

N∑
s=1

O
(
|t|RRe(ζk−ζj)−q+ϵ−{Re(ζs−ζj)+1})

= O
(
|t|− Re(ζj−ζk)−q+ϵ−δ0

)
. (C.9)
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Let ν = Re(ζj − ζk) + δ0 − ϵ. By assumption, Re(ζj − ζk) ≥ 0 and hence
we can choose any ϵ such that 0 < ϵ < δ0 to ensure that ν > 0. Moreover,
Re(ζj − ζk) + δ0 ≤ 1, and hence ν < 1.

Combining estimates (C.6) and (C.9),
Dq

t (A
∗
+ −A∗

−)j,k(ω, t) = O
(
|t|−ν−q

)
,

for q = 0, 1, . . . , r + 2, where 0 < ν < 1.
For the fixed ω, we can now apply Lemma C.2 with

ϕ(t) = (A∗
+ −A∗

−)j,k(ω, t).

Let σ := δ0 − ϵ. Then

Dq
t (A

∗
+)j,k(ω, t) = Dq

t

1

2
(I + SR)(A

∗
+ −A∗

−)j,k(ω, t)

= O
(
|t|− Re(ζj−ζk)−σ−q

)
.

Finally,
Dq

t (A
+
1 )j,k(ω, t) = O

(
|t|−σ−q

)
, (C.10)

for q = 0, 1, . . . , r + 1, and σ > 0. �

Lemma C.4. Suppose 1 ≤ j, k ≤ N with j ̸= k. Then
lim

t→±∞

(
A±

1 (ω, t)
)
j,k

= 0.

Proof. The proof of the lemma follows directly from the estimates (C.5) and
(C.10). (Of course, using estimate (C.10), we take q = 0.) �

Remark C.5. From equation (C.2), lim
t→±∞

(A∗
±)j,j = 1, and hence,

lim
t→±∞

(
A±

1 (ω, t)
)
j,j

= 1, 1 ≤ j ≤ N.

Thus, the proof of Lemma C.3 can readily be extended to obtain (c.f. (A.8))
Dq

t (A
±
1 (ω, t)− I) = O

(
|t|−σ−q

)
for q = 0, 1, . . . , r + 1 and σ > 0.

Lemma C.6. Suppose 1 ≤ j, k ≤ N . Let
A±

2 (ω, t) = B−1
± (t)

(
A±

1 (ω, t)− I
)
B±(t) + I

Then (
A±

2 (ω, t)
)
j,k

∈W r(R).

Proof. From Remark C.5,
Dq

t

(
A±

1 (ω, t)− I
)
= O

(
|t|−σ−q

)
,

for σ > 0. Hence, from the definition of A±
2 ,

Dq
t

(
A±

2 (ω, t)− I
)
= O

(
|t|−σ′−q

)
,

for q = 0, 1, . . . , r+ 1 and any σ′ such that 0 < σ′ < σ. The required result
now follows from Lemma 2.2. �
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