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Abstract. A new adaptive Fundamental Solution Method (FSM) for the
approximate solution of scalar elliptic boundary value problems is presented.
The construction of the basis functions is based on the Adaptive Cross
Approximation (ACA) of the fundamental solutions of the corresponding
elliptic operator. An algorithm for an immediate computer implementation
of the method is formulated. A series of numerical examples for the Laplace
and Helmholtz equations in three dimensions illustrates the efficiency of the
method. Extensions of the method to elliptic systems are discussed.
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ÒÄÆÉÖÌÄ. ßÀÒÌÏÃÂÄÍÉËÉÀ ×ÖÍÃÀÌÄÍÔÖÒÉ ÀÌÏÍÀáÓÍÄÁÉÓ ÀáÀËÉ
ÀÃÀÐÔÉÖÒÉ ÌÄÈÏÃÉÓ (FSM) ÂÀÌÏÚÄÍÄÁÀ ÓÊÀËÀÒÖËÉ ÄËÉ×ÓÖÒÉ ÓÀÓÀ-
ÆÙÅÒÏ ÀÌÏÝÀÍÄÁÉÓ ÌÉÀáËÏÄÁÉÈÉ ÀÌÏáÓÍÉÓÈÅÉÓ. ÓÀÁÀÆÉÓÏ ×ÖÍØÝÉ-
ÄÁÉÓ ÀÂÄÁÀ ÄÌÚÀÒÄÁÀ ÛÄÓÀÁÀÌÉÓÉ ÄËÉ×ÓÖÒÉ ÏÐÄÒÀÔÏÒÉÓ ×ÖÍÃÀÌÄÍÔÖ-
ÒÉ ÀÌÏÍÀáÓÍÄÁÉÓ ÀÃÀÐÔÉÖÒ ãÅÀÒÄÃÉÍ ÀÐÒÏØÓÉÌÀÝÉÀÓ (ACA). ×ÏÒÌÖ-
ËÉÒÄÁÖËÉÀ ÀÌ ÌÄÈÏÃÉÓ ÖÛÖÀËÏ ÊÏÌÐÉÖÔÄÒÖËÉ ÂÀÍáÏÒÝÉÄËÄÁÉÓ
ÀËÂÏÒÉÈÌÉ. ÌÄÈÏÃÉÓ Ä×ÄØÔÖÒÏÁÀ ÉËÖÓÔÒÉÒÄÁÖËÉÀ ÓÀÌÂÀÍÆÏÌÉ-
ËÄÁÉÀÍÉ ËÀÐËÀÓÉÓÀ ÃÀ äÄËÌäÏËÝÉÓ ÂÀÍÔÏËÄÁÄÁÉÓÈÅÉÓ ÌÏÚÅÀÍÉËÉ
ÒÉÝáÅÉÈÉ ÌÀÂÀËÉÈÄÁÉÈ. ÂÀÍáÉËÖËÉÀ ÀÌ ÌÄÈÏÃÉÓ ÂÀÍÆÏÂÀÃÄÁÉÓ
ÛÄÓÀÞËÄÁËÏÁÀ ÄËÉ×ÓÖÒÉ ÓÉÓÔÄÌÄÁÉÓÈÅÉÓ.
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1. Introduction

The Fundamental Solution Method (FSM) is also known as the Method of
Fundamental Solutions, Charge Simulation Method or as a special version
of the Boundary Collocation Method. It resembles a Trefftz method [7],
which means that the solution to a Dirichlet boundary value problem in
Ω ⊂ R3, Γ = ∂Ω

Lu(x) = 0 for x ∈ Ω,

u(x) = g(x) for x ∈ Γ,

is approximated by a linear combination of L-harmonic functions. As the
name indicates, the method uses fundamental solutions for basis functions,
whose singularities are located outside Ω. It was introduced by Kupradze
and Aleksidze [4] in 1963 for treating the Laplace equation. First inves-
tigations from a numerical point of view were performed by Mathon and
Johnston [5] in 1977. Comprehensive summaries of the attributes of the
FSM were written, among others, by Smyrlis [6] and Bogomolny [3].

Two peculiar aspects of the Fundamental Solution Method are an ex-
tremely fast convergence, but also a very high condition number of the
system matrix, both with respect to a number of collocation points. We
address the problem of high condition numbers by adaptively choosing a
smaller number of collocation points while keeping the local error below a
given threshold, but not necessarily equal to zero, for the remaining collo-
cation points. Thus an approximation is obtained, while condition numbers
are kept lower due to smaller system matrices. The quality of the approxi-
mation is comparable to that of classical FSM. By means of this approach
the problems that are too big for classical FSM can be treated. The adap-
tive strategy features are new basis functions which vanish at collocation
points already treated and thus do not alter the corresponding local approx-
imation. The construction of these basis functions uses concepts from the
Adaptive Cross Approximation (ACA) [2].

In Section 2 we formulate a model problem and present the classical
(collocation-based) Fundamental Solution Method. Section 3 briefly sum-
marizes the Adaptive Cross Approximation. The approximation algorithm
presented therein leads directly to the construction of basis functions for
the Adaptive Fundamental Solution Method in Section 4. In Section 5 we
present numerical results for the adaptive method applied to the Laplace
and Helmholtz equations, respectively.

2. Formulation of the Problem

We consider the following Dirichlet boundary value problem for an elliptic
equation in R3

Lu(x) = 0 for x ∈ Ω,

u(x) = g(x) for x ∈ Γ,
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where L is an elliptic second order differential operator and Ω ⊂ R3 is a
Lipschitz domain with the boundary Γ. In the classical setting, the Dirichlet
datum g is assumed to be continuous on Γ and the solution u is assumed to
be smooth, i.e.

u ∈ C2(Ω) ∩ C(Ω) .

In this paper, we will consider the Laplace operator
Lu = −∆u

and the Helmholtz operator
Lu = −∆u− κ2u .

For these operators, the corresponding fundamental solution u∗, i.e. the
solution of the equation

Lu∗ = δ (2)
in the distributional sense is known and given by

u∗(x) =
1

4π

1

|x|
for the Laplace operator, and

u∗(x) =
1

4π

eıκ|x|

|x|
for the Helmholtz operator. In (2) δ denotes the Dirac δ-distribution.

2.1. Fundamental solution method. Let X ⊂ Γ be a discrete set of
N pairwise different control (collocation) points on the boundary Γ and
Y ⊂ R3\Ω a discrete set of N pairwise different singularity points. Consider
a system of basis functions

Φ =
{
φ1, . . . , φN

}
, φℓ(x) = u∗(x− yℓ), yℓ ∈ Y, ℓ = 1, . . . , N.

Since yℓ ̸∈ Ω, ℓ = 1, . . . , N , every basis function φℓ is L-harmonic in Ω and
the function

uN (x) =
N∑
ℓ=1

αℓφℓ(x) = Φ(x)a , a = (α1, . . . , αN )⊤ ∈ RN

can be considered as an approximation of the solution u of the boundary
value problem (1). The most simple choice for the coefficients αℓ is the
point collocation for the boundary condition

uN (x) = g(x) for x ∈ X.

This can be equivalently formulated as a linear system for obtaining N
coefficients αl:

N∑
ℓ=1

αℓφℓ(xk) = g(xk) for k = 1, . . . , N
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or, in a matrix form,
Fa = g , (3)

where
F =

(
φℓ(xk)

)N
k,ℓ=1

∈ RN×N , a ℓ = αℓ, g
ℓ
= g(xℓ), 1 ≤ ℓ ≤ N.

The main properties of the FSM can be summarised as follows.
1. Since no topology of the discrete point sets X and Y is required,

the FSM can be considered as a meshfree numerical method.
2. The entries of the matrix F in (3) are easy to compute as opposed

to matrix entries coming from Boundary Element Methods (BEM).
3. The dimension of the matrix F is comparable to those of the BEM

(e.g. N ∼ 104 − 105 for 3D problems).
4. The matrix F is fully populated as in the BEM and Mem(F ) =

O(N2).
5. The condition number of the matrix F grows exponentially, i.e.

cond(F ) = O(qN ) for some q > 1.
For large N the application of a direct solver to the system (3) is expen-
sive, while an iterative solver does not converge due to the extremely high
condition number of the matrix F .

However, the numerical results for small systems show an exponential
convergence of the method not only for the solution u itself but also for its
gradient

gradu =
( ∂u

∂x1
,
∂u

∂x2
,
∂u

∂x3

)⊤

and even for its Hessian matrix

Hu =
( ∂2u

∂xk∂xℓ

)3

k,ℓ=1
,

i.e.
O(|u(x)− uN (x)|) = O

(∣∣grad(u(x)− uN (x))
∣∣)

= O
(∣∣∣∣H(u(x)− uN (x))

∣∣∣∣
F

)
= O(q−N )

for x ∈ Ω. Note that the derivatives of the approximate solution uN can be
easily computed analytically.

2.2. Choice of pseudo boundary. In the theoretical analysis of Funda-
mental Solution Methods one introduces the concept of pseudo-boundaries,
i.e. surfaces where the singularity points are located. Pseudo-boundaries
fulfilling the so-called embracing condition provide for the suitability of
corresponding fundamental solutions as basis functions [6]. However, one
still has great freedom in choosing an actual pseudo-boundary and in the
subsequent choice of the location of singularity points.
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Here we briefly present the definition and the central theorem for pseudo-
boundaries. A thorough overview can be found in [6].

Definition 1 (Segment condition). Let Ω ⊂ Rd be an open set. Ω fulfills
the segment condition, if for every x ∈ ∂Ω there exist a neighborhood U(x)
of x and a nonzero vector ξ(x) ∈ Rd such that if y ∈ U(x) ∩ Ω, then
y + tξ(x) ∈ Ω, ∀t ∈ (0, 1).

Definition 2 (Embracing boundary). Let Ω,Ω′ ⊂ Rd be open and con-
nected. Ω′ embraces Ω, if:

1. Ω ⊂ Ω′;
2. For each connected component V of Rd \ Ω there is an open con-

nected component V ′ of Rd \ Ω ′ such that V ′ ⊂ V .

Theorem 1. If Ω ⊂ Rd fulfills the segment condition and Ω′ ⊂ Rd embraces
Ω, then for d ≥ 3 and l ≥ 0 the space X spanned by finite linear combinations
of Fundamental solutions

uN (x) =

N∑
j=1

αju
∗(x− yj)

with singularities yj ∈ ∂Ω′ is dense in

Yl =
{
v ∈ C2(Ω) : ∆v = 0 in Ω

}
∩ Cl(Ω)

with respect to the norm of Cl(Ω). For d = 2 the density result holds true
for X ⊕ {c · 1|Ω : c ∈ R}.

Proof. The proof can be found in [6]. �

Similar results exist for the operators ∆m, m > 1, and ∆ − κ2, κ > 0,
[6, 3].

One can prove in the two-dimensional case that an increase in the distance
between the boundary ∂Ω and the pseudo-boundary ∂Ω′ leads both to a
better approximation and to a larger condition number of F . This can also
be observed in three-dimensional settings.

For simple domain shapes the common choice of the singularity points
consists in shifting collocation points along the outer normal. This strategy
may fail for more complex domains. On the other hand, the construction of
pseudo boundaries by means of distance functions may be computationally
expensive.

In what follows, we will introduce a new method with the same conver-
gence properties but almost without disadvantages of the FSM, i.e. without
necessity of numerical solving of big, dense and badly conditioned systems
of linear equations. Our main tool is the Adaptive Cross Approximation.
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3. Adaptive Cross Approximation

The initial analytical form of the ACA algorithm was been designed to
interpolate and, hopefully, to approximate a given function K : X×Y → R
of two variables x and y by a degenerate function Sn, i.e.

K(x, y) ≈ Sn (x, y) =

n∑
ℓ=1

uℓ(x)vℓ(y),

where ul : X → R, vl : Y → R, l = 1, . . . , n. The construction runs as
follows. Let X ⊂ X ⊂ R3 and Y ⊂ Y ⊂ R3 be discrete point sets.

Algorithm 1.
1. initialization

1.1 set initial residual and initial approximation
R0(x, y) = K(x, y), S0(x, y) = 0;

1.2 choose initial pivot position
x0 ∈ X, y0 ∈ Y, R0(x0, y0) ̸= 0.

2. recursion for k = 0, 1, . . . .
2.1 new residual

Rk+1(x, y) = Rk(x, y)−
Rk(x, yk)Rk(xk, y)

Rk(xk, yk)
;

2.2 new approximation

Sk+1(x, y) = Sk(x, y) +
Rk(x, yk)Rk(xk, y)

Rk(xk, yk)
;

2.3 new pivot position
xk+1 ∈ X, yk+1 ∈ Y, Rk+1(xk+1, yk+1) ̸= 0.

After n ≥ 1 steps of the ACA-Algorithm 1, we obtain a sequence of
residuals R0, . . . , Rn and a sequence of approximations S0, . . . , Sn with the
following properties.

1. Approximation property for k = 0, . . . , n

Rk(x, y) + Sk(x, y) = K(x, y), x ∈ X, y ∈ Y ; (4)
2. Interpolation property for k = 1, . . . , n and ℓ = 0, . . . , k − 1

Rk(x, yℓ) = Rk(xℓ, y) = 0, x ∈ X, y ∈ Y

or
Sk(x, yℓ) = K(x, yℓ), x ∈ X, Sk(xℓ, y) = K(xℓ, y), y ∈ Y ;

3. Harmonicity property for k = 0, . . . , n.
If

LxK(x, y) = 0, x ∈ Ω,

then
LxRk(x, y) = LxSk(x, y) = 0, x ∈ Ω;
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4. Non-recursive representation for k = 1, . . . , n

Sk(x, y) = u⊤
k (x)V

−1
k wk(y), Vk ∈ Rk×k, uk(x), wk(y) ∈ Rk (5)

with
uk(x) =

(
K(x, y0), . . . ,K(x, yk−1)

)⊤
,

wk(y) =
(
K(x0, y), . . . ,K(xk−1, y)

)⊤
and

Vk =
(
K(xi, yj)

)k−1

i,j=0

The above properties, except the last one, can be easily seen. The proof of
the non-recursive representation is more technical and can be found in [2].

4. Adaptive FSM

In this section, we formulate a new adaptive FSM for the boundary value
problem (1). Let u∗ be the fundamental solution of the differential operator
L, X ⊂ Γ a discrete set of the control points, Y ⊂ R3\Ω a discrete set of the
singularity points and ε an upper threshold for the error in the collocation
points.

Algorithm 2.
1. initialization

1.1 initial error and initial pivot position
Error1 = Maxx∈X |g(x)|, x1 = ArgMaxx∈X |g(x)|;

1.2 initial residual
R1(x, y) = u∗(x− y);

1.3 first basis function

φ1(x) =
R1(x, y1)

R1(x1, y1)
;

1.4 first approximation
u1(x) = α1φ1(x), α1 = g(x1).

2. recursion for k = 1, 2, . . .
2.1 new error and new pivot position

Errork+1 = Maxx∈X |g(x)− uk(x)|, xk+1 = ArgMaxx∈X |g(x)− uk(x)|;
2.2 stopping criteria

Stop if Errork+1 ≤ ε or k = # of points in X;
2.3 next residual

Rk+1(x, y) = Rk(x, y)−
Rk(x, yk)Rk(xk, y)

Rk(xk, yk)
; (6)

2.4 next basis function

φk+1(x) =
Rk+1(x, yk+1)

Rk+1(xk+1, yk+1)
; (7)
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2.5 next approximation
uk+1(x) = uk(x) + αk+1φk+1(x), αk+1 = g(xk+1)− uk(xk+1).

After n steps of the above algorithm, we obtain the following approxi-
mation:

un(x) =
n∑

k=1

αkφk(x). (8)

The basis functions φk are L-harmonic for all k = 1, . . . , n

Lφk(x) = 0 for x ∈ Ω.

Therefore, the function un is likewise L-harmonic
Lun(x) = 0 for x ∈ Ω.

The function un fulfills the boundary condition pointwise at the pivot points
un(xk) = g(xk) for k = 1, . . . , n

and approximates the boundary condition in the other points
|un(x)− g(x)| ≤ ε for x ∈ X \ {x1, . . . , xn}.

Later on, our numerical examples will show that the number n of steps
required to obtain a given accuracy is rather small compared to, and seems
to be independent of, the number of control points N , i.e. n ≪ N . Due
to the ACA interpolation property of the residuals Rk, the basis functions
φk , k ≥ 2 vanish at all previous pivot points

φk(xℓ) = 0, ℓ = 1, . . . , k − 1, k = 2, . . . , n

and due to the construction,
φk(xk) = 1, k = 1, . . . , n.

Thus, the coefficients αk in (8) can be easily computed as in Step 2.5 of
the Algorithm 2 without the need to solve a system of equations, or more
precisely by solving a small system

Fa = g , F =
(
φℓ(xk)

)n
k,ℓ=1

∈ Rn×n, a, g ∈ Rn

with the following triangular matrix

F =


1 0 0 . . . 0

φ1(x2) 1 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
φ1(xn) φ2(xn) φ3(xn) . . . 1

 .

However, the price for the above simple and efficient algorithm is a more
complicated evaluation of the basis functions φk and hence of the approxi-
mation un at a given point x ∈ Ω. We use the non-recursive representation
(5) of the ACA approximation Sn, the approximation property (4), and the
definition of the basis function in Step 2.4 of the Algorithm 2 to obtain

φ1(x) =
u∗(x− y1)

u∗(x1 − y1)
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and for k = 2, . . . , n

φk(x) =
u∗(x− yk)− u⊤

k (x)zk
u∗(xk − yk)− u⊤

k (xk)zk
(9)

with

uk(x) =
(
u∗(x− y1), . . . , u

∗(x− yk−1)
)⊤

,

zk = V −1
k wk(yk) , (10)

wk(yk) =
(
u∗(x1 − yk), . . . , u

∗(xk−1 − yk)
)⊤

and
Vk =

(
u∗(xi − yj)

)k−1

i,j=1
.

The vectors zk ∈ Rk−1, as well as the normalizing constants (u∗(x1−y1))
−1

and (u∗(xk − yk)− u⊤
k (xk)zk)

−1 can be precomputed during the algorithm
as follows. Let

V2 = L2U2 = 1 · u∗(x1 − y1)

be the LU-decomposition of the 1 × 1-matrix V2. Then, making use of the
LU-decomposition of the (k − 1)× (k − 1)-matrix

Vk = LkUk, k = 2, . . . , n− 1,

we get for the k × k-matrix Vk+1

Vk+1 =

(
Lk 0
a⊤ 1

)(
Uk b
0 c

)
with

Lkb = wk(yk), a⊤Uk = u⊤
k (xk), c = u∗(xk − yk)− a⊤b.

For the vectors zk, we get

zk = U−1
k L−1

k wk(yk) = U−1
k b.

From equations (6) and (7), we can see that

Rk+1(x, y) = Rk(x, y)−Rk(xk, y)R
−1
k (xk, yk)Rk(x, yk)

= Rk(x, y)−Rk(xk, y)φk(x)

= u∗(x− y)−
k∑

j=1

Rj(xj , y)φj(x) ∀k > 0

and thus

u∗(x− y) = Rk+1(x, y) +
k∑

l=1

Rl(xl, y)φl(x) ∀k ≥ 0.
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This leads tou∗(x1 − y1) · · · u∗(x1 − yk)
... . . . ...

u∗(xk − y1) · · · u∗(xk − yk)



=


1 0 · · · 0

φ1(x2) 1 · · · 0
. . . . . . . . . . . . . . . . . . . . . . . .
φ1(xk) φ2(xk) · · · 1



×


R1(x1, y1) R1(x1, y2) · · · R1(x1, yk)

0 R2(x2, y2) · · · R2(x2, yk)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 · · · Rk(xk, yk)

 .

Due to the uniqueness of the LU decomposition with unit diagonal entries,
we see that

Ln = F.

A numerical evaluation of the basis function φk in (9) requires the scalar
product u⊤

k (x)zk and, therefore O(k) arithmetical operations. The approx-
imate solution un will require O(n2) arithmetical operations for every eval-
uation.

The adaptive Fundamental Solution Method allows us to elaborate alter-
native strategies for choosing singularity points yi. Instead of introducing
fixed pairs (xi, yi) of collocation and singularity points we may equip a
simply shaped pseudo-boundary, e.g. an ellipsoid with a large number of
uniformly distributed candidate points. The adaptive FSM can be tuned to
pick from those candidates a singularity point that maximizes the current
basis function’s pivot element Rk+1(xk+1, y) in (7).

5. Numerical Examples

In order to investigate the features of the adaptive Fundamental Solution
Method, we perform numerical experiments for the BVP (1) with Laplace
or Helmholtz operators. We compare the results of classical FSM, adaptive
FSM with the given thresholds as well as a threshold-free adaptive method.
For the latter method we store the maximal local error of an iteration step
and terminate, if no improvement is achieved after a given number of further
iterations. By dropping the coefficients associated with these additional
steps, we restore the currently best result (with respect to local errors).

The indicated condition numbers are calculated by using LAPACK rou-
tines [1]. Condition numbers of respective system matrices are labeled
condsys, while those of matrices required for evaluation of basis function
in the adaptive method are labeled condLU. In the latter case we only in-
dicate condition numbers of the respective largest matrix, i.e. the matrix
used in the evaluation of the basis function with highest index.
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Table 1. Laplace equation in the unit ball, N = 5120.

threshold max.err. rel.err. condsys condLU # nodes
classical 8.80 · 10−10 1.01 · 10−11 1.42 · 1021 - 5120
10−4 9.78 · 10−5 1.08 · 10−6 1.91 · 102 4.53 · 1010 415
10−6 1.01 · 10−6 1.10 · 10−8 3.26 · 102 8.00 · 1012 711
10−8 1.05 · 10−8 1.13 · 10−10 4.94 · 102 7.26 · 1014 1069
10−10 1.09 · 10−10 1.11 · 10−12 6.09 · 102 9.81 · 1016 1531

5.1. Laplace equation. We consider the model problem

−∆v(x) = 0 for x ∈ Ω,

v(x) = g(x) for x ∈ ∂Ω,

with the known analytical solution

v(x) = sin(2πx1)x2e
−2πx3 , g = v

∣∣
Γ
,

in order to display some general observations regarding the adaptive FSM,
which are also relevant for other equation types we have already considered.

Performance of the adaptive FSM. As one can see in Table 1, the adaptive
method uses only a small number of collocation points which increases upon
setting a lower threshold. The accuracy of the full FSM can be achieved
even with a relatively small subset of collocation points. This reduction
leads to condition numbers of the involved matrices which are significantly
lower than those of the full method’s system matrix. Since the approxi-
mation space of the adaptive method is always a subset of the full FSM
approximation space, the outperformance in the last row in the table can
only be explained by a loss of accuracy due to high condition numbers.

Evolution of maximal local error. The strategy of the adaptive method con-
sists in eliminating the currently largest residual of all collocation points,
while not altering those at collocation points already treated. However,
there is no guarantee that after any elimination step the new maximal
error is actually smaller than the previous one. In fact, as the maximal
error asymptotically decreases during the elimination process, short-term
increases are rather typical (cf. Figure 1 for a brick-shaped domain).

For tight thresholds the adaptive method uses a number of collocation
points comparable to that of classical FSM. For very large problems this
may lead to errors in the evaluation of basis functions (evaluation of zk in
(10)) and ultimately to an asymptotic increase of the maximal local error.
For these cases it is handy to store information about the “best” step so
far and restore the corresponding result. Thus, although the threshold is
not met, the results in these extreme cases are far better than those of the
classical method.
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Figure 1. Evolution of maximal local error for a Laplace
equation on a brick-shaped domain.

Distribution of errors. Both methods, classical and adaptive FSM, control
errors at the collocation points only. Therefore there arises the question,
how the errors behave inside the domain and on the boundary between the
collocation points.

Fundamental solutions and the derived basis functions of the adaptive
method are L-harmonic. Due to the maximum principle for the Laplace
equations the error assumes its maximum on the boundary of Ω. This can
be illustrated in an error plot along a line segment through the domain
(cf. Figure 2). The gradient and the Hessian errors show similar behavior.

Looking at the error on the boundary in case of the adaptive method, one
observes a pattern of low error speckles (cf. Figure 3). These correspond to
the collocation points where local errors have been eliminated. In this exam-
ple, the singularity points were located on an ellipsoidal pseudo-boundary
adapted to the domain’s shape. One can observe a higher concentration of
speckles in regions located closer to the pseudo-boundary. This is in agree-
ment with the theory of classical FSM, where a lower distance between the
boundaries leads to higher stability, but to slower convergence [6].

5.2. Helmholtz equation. We perform experiments for the Helmholtz
equation

∆v(x) + κ2v(x) = 0, κ = 2n, n = 1, . . . , 5 for x ∈ Ω,

v(x) = g(x) for x ∈ ∂Ω,
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Figure 4. Approximations of unit sphere with 20, 80 and
320 triangles, respectively.

with the known analytical solution

v(x) = exp
(
− κ√

2
ix1

)
x2 sin

( κ√
2
x3

)
, g = v

∣∣
Γ
.

Here Ω is the unit ball; its surface Γ is approximated by triangulated surface
meshes. These meshes are obtained by a quasi-uniform refinement starting
from an icosahedron (cf. Figure 4). The collocation points are derived as
barycenters of the mesh triangles, singularity points are obtained by shifting
the collocation points along the surface normal. Although Fundamental
Solution Methods do not require an actual mesh, we will stick to this term,
since the collocation points are derived from meshes.

Table 2. Helmholtz equation, varying κ, N = 20480.

κ rel. err. rel. err. steps required
classical FSM ada 10−11 (thres. 10−11)

1 4.57 · 10−13 1.42 · 10−11 976
2 2.92 · 10−13 7.84 · 10−12 1019
4 6.46 · 10−13 6.18 · 10−12 1102
8 1.43 · 10−12 5.85 · 10−12 1277
16 3.00 · 10−12 5.94 · 10−12 1792
32 1.80 · 10−11 2.59 · 10−11 3653 (no thres.)

Performance of the adaptive FSM. As one could expect, for both, classi-
cal and adaptive FSM, the quality of results gets worse with increasing κ
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Table 3. Helmholtz equation, κ = 8, N = 1280.

threshold max.err. rel.err. condsys condLU # nodes
classical 3.96 · 10−10 1.43 · 10−10 3.11 · 1013 - 1280
10−8 1.20 · 10−8 7.40 · 10−9 8.36 · 102 2.67 · 1010 721
10−9 1.43 · 10−9 8.69 · 10−10 9.18 · 102 2.73 · 1011 872
10−10 5.39 · 10−10 1.86 · 10−10 1.01 · 103 4.94 · 1012 1042
10−11 3.94 · 10−10 1.47 · 10−10 1.08 · 103 1.44 · 1014 1200
10−12 3.96 · 10−10 1.43 · 10−10 1.11 · 103 2.64 · 1014 1276
10−13 3.96 · 10−10 1.43 · 10−10 1.12 · 103 2.66 · 1014 1278

Table 4. Helmholtz equation, κ = 8, N = 20480.

threshold max.err. rel.err. condsys condLU # nodes
classical 2.08 · 10−12 1.43 · 10−12 1.26 · 1021 - 20480
10−10 9.86 · 10−11 6.06 · 10−11 3.13 · 103 2.72 · 1012 1086
10−11 1.01 · 10−11 5.85 · 10−12 3.43 · 103 1.70 · 1013 1277
10−12 1.02 · 10−12 6.15 · 10−13 3.65 · 103 1.80 · 1014 1493
10−13 1.08 · 10−13 5.97 · 10−14 3.98 · 103 2.36 · 1015 1753
none 7.83 · 10−14 4.80 · 10−14 4.00 · 103 3.99 · 1015 1781

(cf. Table 2). While classical FSM suffers from a loss of approximation qual-
ity, the adaptive method compensates for this by the use of a larger number
of basis functions. For strict thresholds, the adaptive method achieves the
accuracy of the classical method on coarser meshes (cf. Table 3) and even
outperforms it on fine meshes (cf. Table 4). On such meshes, the classical
FSM suffers from extremely high condition numbers condsys of the system
matrix leading to a loss of accuracy.

Number of required collocation points. Of interest is the observation when
the number of available collocation points increases, the number of steps
required in the adaptive method to reach a certain threshold does not seem
to grow (cf. Figure 5). As is seen from Table 5 on smaller clusters, where
the threshold is reached faster, the results are worse. This is due to the
fact, that on finer meshes the adaptive FSM has more points to choose
from during the error elimination steps. Nevertheless, any threshold can
be achieved theoretically by eliminating all (or almost all) errors at the
collocation points. In this case, the adaptive method is equivalent to the
full FSM.

Effects of large condition numbers. Figure 6 shows the loss of accuracy in
the classical Fundamental Solution Method. When the number of colloca-
tion points grows beyond a critical value, the error starts to grow slowly.
While this growth does not necessarily lead to very large errors, if a better
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Figure 5. Number of iteration steps required to reach a
certain threshold for a varying number of collocation
points.

Table 5. Helmholtz equation, κ = 8, different geometries,
threshold = 10−12.

N steps required rel.err. rel.err. classical FSM
1280 1276 1.43 · 10−10 1.43 · 10−10

5120 1523 6.47 · 10−13 5.85 · 10−13

20480 1493 6.15 · 10−13 1.43 · 10−12

81920 1505 5.92 · 10−13 -

approximation is desired, one has to repeat the calculation with fewer col-
location points. In the same figure, the growth of the condition number is
indicated. To the same problem the adaptive FSM is applied (cf. Figure 7).
It can be seen that there exists a critical step after which the maximal lo-
cal error will grow due to the loss of accuracy in floating point operations.
However, we can still use stored data from the previous steps in order to
obtain a better result.

6. Conclusion and Outlook

When applied to large problems, the Fundamental Solution Method fea-
tures system matrices with extremely large condition numbers. We have
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Figure 6. Full FSM: Condition number and loss of accu-
racy for large numbers of collocation points.
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presented an adaptive method in which dimensions and the condition num-
bers of the matrices involved are reduced by several orders. Numerical
results show that the quality of approximations is comparable to that of the
classical method. Also, the new method leads to reasonable results even in
scenarios, where the classical method fails.

Future work will include the extension of the adaptive method to vector-
valued problems with a special focus on elastostatics. We are also planning
to investigate the convergence of the method in a theoretical context.
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