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Abstract. The paper deals with the three-dimensional Robin type
boundary value problem (BVP) of piezoelasticity for anisotropic inhomoge-
neous solids and develops the generalized potential method based on the use
of localized parametrix. Using Green’s integral representation formula and
properties of the localized layer and volume potentials, we reduce the Robin
type BVP to the localized boundary-domain integral equations (LBDIE)
system. First we establish the equivalence between the original boundary
value problem and the corresponding LBDIE system. We establish that
the obtained localized boundary-domain integral operator belongs to the
Boutet de Monvel algebra and by means of the Vishik-Eskin theory based
on the Wiener-Hopf factorization method, we derive explicit conditions un-
der which the localized operator possesses Fredholm properties and prove
its invertibility in appropriate Sobolev-Slobodetskii and Bessel potential
spaces.
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ÒÄÆÉÖÌÄ. ÍÀÛÒÏÌÉ ÄÞÙÅÍÄÁÀ ËÏÊÀËÉÆÄÁÖËÉ ÐÀÒÀÌÄÔÒÉØÓÉÓ ÌÄÈÏ-
ÃÉÓ ÂÀÍÅÉÈÀÒÄÁÀÓ ÐÉÄÆÏ-ÃÒÄÊÀÃÏÁÉÓ ÈÄÏÒÉÉÓ ÒÏÁÄÍÉÓ ÔÉÐÉÓ ÓÀÌ-
ÂÀÍÆÏÌÉËÄÁÉÀÍÉ ÀÌÏÝÀÍÉÓÈÅÉÓ ÀÒÀÄÒÈÂÅÀÒÏÅÀÍÉ ÀÍÉÆÏÔÒÏÐÖËÉ
ÓáÄÖËÄÁÉÓ ÛÄÌÈáÅÄÅÀÛÉ. ÂÒÉÍÉÓ ÉÍÔÄÂÒÀËÖÒÉ ßÀÒÌÏÃÂÄÍÉÓ ×ÏÒÌÖ-
ËÉÓÀ ÃÀ ËÏÊÀËÉÆÄÁÖËÉ ÐÏÔÄÍÝÉÀËÄÁÉÓ ÈÅÉÓÄÁÄÁÉÓ ÂÀÌÏÚÄÍÄÁÉÈ
ÒÏÁÄÍÉÓ ÔÉÐÉÓ ÀÌÏÝÀÍÀ ÃÀÉÚÅÀÍÄÁÀ ËÏÊÀËÉÆÄÁÖË ÓÀÓÀÆÙÅÒÏ-ÓÉÅÒ-
ÝÖË ÉÍÔÄÂÒÀËÖÒ ÂÀÍÔÏËÄÁÀÈÀ ÓÉÓÔÄÌÀÆÄ, ÒÏÌËÉÓ ÛÄÓÀÁÀÌÉÓÉ
ÏÐÄÒÀÔÏÒÉ ÄÊÖÈÅÍÉÓ ÁÖÔÄ ÃÄ ÌÏÍÅÄËÉÓ ÀËÂÄÁÒÀÓ. ÛÄÓßÀÅËÉËÉÀ
ÒÏÁÄÍÉÓ ÔÉÐÉÓ ÀÌÏÝÀÍÉÓÀ ÃÀ ÌÉÙÄÁÖË ËÏÊÀËÉÆÄÁÖË ÓÀÓÀÆÙÅÒÏ-
ÓÉÅÒÝÖË ÉÍÔÄÂÒÀËÖÒ ÂÀÍÔÏËÄÁÀÈÀ ÓÉÓÔÄÌÉÓ ÄØÅÉÅÀËÄÍÔÏÁÀ. ÛÄÌ-
ÃÄÂ, ÅÉÛÉÊ-ÄÓÊÉÍÉÓ ÈÄÏÒÉÉÓ ÂÀÌÏÚÄÍÄÁÉÈ, ÒÏÌÄËÉÝ Ä×ÖÞÍÄÁÀ ÅÉÍÄÒ-
äÏ×ÉÓ ×ÀØÔÏÒÉÆÀÝÉÉÓ ÌÄÈÏÃÓ, ÃÀÃÂÄÍÉËÉÀ ÐÉÒÏÁÄÁÉ, ÒÏÌËÉÓ
ÃÒÏÓÀÝ ËÏÊÀËÉÆÄÁÖË ÓÀÓÀÆÙÅÒÏ-ÓÉÅÒÝÖËÉ ÉÍÔÄÂÒÀËÖÒÉ ÏÐÄÒÀ-
ÔÏÒÉ ÀÒÉÓ ×ÒÄÃäÏËÌÖÒÉ ÃÀ ÍÀÜÅÄÍÄÁÉÀ ÌÉÓÉ ÛÄÁÒÖÍÄÁÀÃÏÁÀ ÛÄÓÀÁÀ-
ÌÉÓ ÓÏÁÏËÄÅ-ÓËÏÁÏÃÄÝÊÉÓÀ ÃÀ ÁÄÓÄËÉÓ ÐÏÔÄÍÝÉÀËÈÀ ÓÉÅÒÝÄÄÁÛÉ.
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1. Introduction

In the present paper, we consider the three-dimensional Robin type boun-
dary value problem (BVP) of piezoelasticity for anisotropic inhomogeneous
solids and develop the generalized potential method based on the use of
localized parametrix.

Note that the operator, generated by the system of piezoelasticity for in-
homogeneous anisotropic solids, is the second order non-self-adjoint strongly
elliptic partial differential operator with variable coefficients. In the refer-
ence [22] the Dirichlet problem of piezoelasticity theory was analyzed by the
LBDIE approach. The same method for the case of scalar elliptic second
order partial differential equations with variable coefficients is justified in
[13]–[21], [39].

Due to a great theoretical and practical importance, the problems of
piezoelasticity became very popular among mathematicians and engineers
(for details see, e.g., [51], [43], [27]–[35]). The BVPs and various types of in-
terface problems of piezoelasticity for homogeneous anisotropic solids, when
the material parameters are constants and the corresponding fundamental
solution is available in explicit form, have been investigated in [5], [6], [7],
[8], [9], [42], [10] by means of the conventional classical potential methods.

Unfortunately, this classical potential method is not applicable in the case
of inhomogeneous solids since for the corresponding system of differential
equations with variable coefficients a fundamental solution is not available
in explicit form, in general. Therefore, in our analysis we apply the so-called
localized parametrix method which leads to the localized boundary-domain
integral equations system.

Our main goal here is to show that solutions of the boundary value prob-
lem can be represented by localized potentials and that the corresponding
localized boundary-domain integral operator (LBDIO) is invertible, which
seems to be very important from the numerical analysis viewpoint, since
they lead to very convenient numerical schemes in applications (for details
see [38], [46], [47], [49], [50]).

Towards this end, using Green’s representation formula and properties of
the localized layer and volume potentials, we reduce the Robin type BVP of
piezoelasticity to the localized boundary-domain integral equations (LBDIE)
system. First, we establish the equivalence between the original boundary
value problem and the corresponding LBDIE system which proved to be a
quite nontrivial problem playing a crucial role in our analysis. Afterwards,
we state that the localized boundary-domain integral operator associated
with the Robin type BVP belongs to the Boutet de Monvel algebra of
pseudo-differential operators. Finally, with the help of the Vishik–Eskin
theory based on the factorization Wiener–Hopf method, we investigate the
Fredholm properties of the localized boundary-domain integral operator and
prove its invertibility in the appropriate Sobolev–Slobodetskii and Bessel
potential spaces.
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2. Reduction to LBDIE System and the Equivalence Theorems

2.1. Formulation of the boundary value problem and localized Gre-
en’s third formula. Consider the system of statics of piezoelasticity for
an inhomogeneous anisotropic medium [43]:

A(x, ∂x)U +X = 0, (2.1)

where U := (u1, u2, u3, u4)
⊤, u = (u1, u2, u3)

⊤ is the displacement vector,
u4 = φ is the electric potential, X = (X1, X2, X3, X4)

⊤, (X1, X2, X3)
⊤ is a

given mass force density, X4 is a given charge density, A(x, ∂x) is a formally
non-self-adjoint matrix differential operator

A(x, ∂x) =
[
Ajk(x, ∂x)

]
4×4

: =

[
[∂i (cijlk(x) ∂l)]3×3 [∂i(elij(x)∂l)]3×1

[−∂i(eikl(x) ∂l)]1×3 ∂i(εil(x) ∂l)

]
4×4

,

where ∂x = (∂1, ∂2, ∂3), ∂j = ∂xj = ∂/∂xj . Here and in what follows,
the Einstein summation by repeated indices from 1 to 3 is assumed if not
otherwise stated.

The variable coefficients involved in the above equations satisfy the sym-
metry conditions:

cijkl = cjikl = cklij ∈ C∞, eijk = eikj ∈ C∞, εij = εji ∈ C∞,

i, j, k, l = 1, 2, 3.

In view of these symmetry relations, the formally adjoint differential oper-
ator A∗(x, ∂x) reads as

A∗(x, ∂x) =
[
A∗

jk(x, ∂x)
]
4×4

: =

[
[∂i (cijlk(x) ∂l)]3×3 [−∂i(elij(x)∂l)]3×1

[∂i(eikl(x) ∂l)]1×3 ∂i(εil(x) ∂l)

]
4×4

.

Moreover, from physical considerations it follows that (see, e.g., [43]):

cijkl(x) ξij ξkl > c0 ξij ξij for all ξij = ξji ∈ R, (2.2)
εij(x) ηi ηj > c1 ηi ηi for all η = (η1, η2, η3) ∈ R3, (2.3)

with some positive constants c0 and c1.
By virtue of inequalities (2.2) and (2.3) it can easily be shown that the

operator A(x, ∂x) is uniformly strongly elliptic, that is, there is a constant
c > 0 such that

ReA(x, ξ) ζ · ζ > c |ξ|2 |ζ|2 for all ξ ∈ R3 and for all ζ ∈ C4, (2.4)
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where A(x, ξ) is the principal homogeneous symbol matrix of the operator
A(x, ∂x) with opposite sign,

A(x, ξ) =
[
Ajk(x, ξ)

]
4×4

: =

[
[cijlk(x) ξi ξl]3×3 [elij(x) ξi ξl]3×1

[−eikl(x) ξi ξl]1×3 εil(x) ξi ξl

]
4×4

. (2.5)

Here and in the sequel, the symbol a · b for a, b ∈ C4 denotes the scalar

product of two vectors, a · b =
4∑

j=1

ajbj , where the overbar denotes complex

conjugation.
In the theory of piezoelasticity, the components of the three-dimensi-

onal mechanical stress vector acting on a surface element with a normal
n = (n1, n2, n3) have the form

σij ni = cijlk ni ∂luk + elij ni ∂lφ for j = 1, 2, 3,

while the normal component of the electric displacement vector (with op-
posite sign) reads as

−Di ni = −eikl ni ∂luk + εil ni ∂lφ.

Let us introduce the following matrix differential operator:

T = T (x, ∂x) =
[
Tjk(x, ∂x)

]
4×4

: =

[
[cijlk(x)ni ∂l]3×3 [elij(x)ni ∂l]3×1

[−eikl(x)ni ∂l]1×3 εil(x)ni ∂l

]
4×4

. (2.6)

For a four–vector U = (u, φ)⊤, we have

T U =
(
σi1 ni, σi2 ni, σi3 ni, −Di ni

)⊤
. (2.7)

Clearly, the components of the vector T U given by (2.7) have the following
physical sense: the first three components correspond to the mechanical
stress vector in the theory of electro-elasticity and the forth one is the nor-
mal component of the electric displacement vector (with opposite sign). In
Green’s formulae there also appear the following boundary operator associ-
ated with the adjoint differential operator A∗(x, ∂x):

M = M(x, ∂x) =
[
Mjk(x, ∂x)

]
4×4

: =

[
[cijlk(x)ni ∂l]3×3 [−elij(x)ni ∂l]3×1

[eikl(x)ni ∂l]1×3 εil(x)ni ∂l

]
4×4

. (2.8)
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Introduce the following matrices associated with the boundary operators
(2.6) and (2.8)

T (x, ξ) =
[
Tjk(x, ξ)

]
4×4

: =

[
[cijlk(x)ni ξl]3×3 [elij(x)ni ξl]3×1

[−eikl(x)ni ξl]1×3 εil(x)ni ξl

]
4×4

, (2.9)

M(x, ξ) =
[
Mjk(x, ξ)

]
4×4

: =

[
[cijlk(x)ni ξl]3×3 [−elij(x)ni ξl]3×1

[eikl(x)ni ξl]1×3 εil(x)ni ξl

]
4×4

. (2.10)

Further, let Ω = Ω+ be a bounded domain in R3 with a simply connected
boundary ∂Ω = S ∈ C∞, Ω = Ω∪S. Throughout the paper, n = (n1, n2, n3)
denotes the unit normal vector to S directed outward with respect to the
domain Ω. Set Ω− := R3 \ Ω.

By Hr(Ω) = Hr
2 (Ω) and Hr(S) = Hr

2 (S), r ∈ R, we denote the Bessel po-
tential spaces on a domain Ω and on a closed manifold S without boundary,
while D(R3) and D(Ω) denote classes of infinitely differentiable functions
in R3 with a compact support in R3 and Ω respectively, and S(R3) stands
for the Schwartz space of rapidly decreasing functions in R3. Recall that
H0(Ω) = L2(Ω) is a space of square integrable functions in Ω.

For the vector U = (u1, u2, u3, u4)
⊤ the inclusion U = (u1, u2, u3, u4)

⊤ ∈
Hr means that all components uj , j = 1, 4, belong to the space Hr.

Let us denote by U+ ≡ {U}+ and U− ≡ {U}− the traces of U on S from
the interior and exterior of Ω, respectively.

We also need the following subspace of H1(Ω):

H1,0(Ω;A)

:=
{
U = (u1, u2, u3, u4)

⊤ ∈ H1(Ω) : A(x, ∂x)U ∈ L2(Ω)
}
. (2.11)

For arbitrary complex-valued vector-functions U = (u1, u2, u3, u4)
⊤ and

V = (v1, v2, v3, v4)
⊤ from the space H2(Ω), we have the following Green’s

formulae [9]:∫
Ω

[
A(x, ∂x)U · V + E(U, V )

]
dx =

∫
S

{
T U

}+ · {V }+ dS, (2.12)

∫
Ω

[
A(x, ∂x)U · V − U ·A∗(x, ∂x)V

]
dx

=

∫
S

[{
T U

}+ · {V }+ − {U}+ ·
{
MV

}+
]
dS, (2.13)

where

E(U, V ) = cijlk ∂iuj ∂lvk+elij (∂lu4 ∂ivj−∂iuj ∂lv4)+εjl ∂ju4 ∂lv4. (2.14)
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Note that by means a standard limiting procedure the above Green’s
formulae can be generalized to Lipschitz domains and to vector–functions
U ∈ H1(Ω) and V ∈ H1(Ω) with A(x, ∂x)U ∈ L2(Ω) and A∗(x, ∂x)V ∈
L2(Ω). By virtue of Green’s formula (2.12), we can determine a generalized
trace vector T +U ≡ {T U}+ ∈ H−1/2(∂Ω) for a function U ∈ H1,0(Ω;A),

⟨T +U, V +⟩∂Ω :=

∫
Ω

A(x, ∂x)U · V dx+

∫
Ω

E(U, V ) dx, (2.15)

where V ∈ H1(Ω) is an arbitrary vector-function.
Here, the symbol ⟨ · , · ⟩S denotes the duality between the spacesH−1/2(S)

and H1/2(S) which extends the usual L2 inner product

⟨f, g⟩S =

∫
S

N∑
j=1

fj gj dS for f, g ∈ L2(S).

Assume that the domain Ω is filled with an anisotropic inhomogeneous
piezoelectric material and let us formulate the Robin type boundary value
problem:

Find a vector-function U = (u1, u2, u3, u4)
⊤ ∈ H1,0(Ω, A) satisfying the

differential equation
A(x, ∂x)U = f in Ω (2.16)

and the Robin type boundary condition
T +U + βU+ = Ψ0 on S, (2.17)

where Ψ0 = (Ψ01 ,Ψ02 ,Ψ03 ,Ψ03)
⊤ ∈ H−1/2(S), f = (f1, f2, f3, f4)

⊤ ∈
H0(Ω) and β = [βjk]4×4 is a positive definite constant matrix.

Equation (2.16) is understood in the distributional sense, while the Robin
type boundary condition (2.17) is understood in the functional sense defined
in (2.15).

Remark 2.1. From the conditions (2.2) and (2.3) it follows that for complex-
valued vector-functions the sesquilinear form E(U, V ) defined by (2.14) sat-
isfies the inequality

ReE(U,U) ≥ c (sij sij + ηjηj) ∀U = (u1, u2, u3, u4)
⊤ ∈ H1(Ω)

with sij = 2−1(∂iuj(x) + ∂jui(x)) and ηj = ∂ju4(x), where c is some pos-
itive constant. Therefore, the first Green’s formula (2.12) along with the
Lax–Milgram lemma imply that the above-formulated Robin type BVP is
uniquely solvable in the space H1,0(Ω;A) (see, e.g., [36], [26], [37]).

As it has already been mentioned, our goal here is to develop the LBDIE
method for the Robin type boundary value problem.

To this end, we define a localized matrix parametrix associated with
the fundamental solution F1(x) := −[ 4π |x| ]−1 of the Laplace operator
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∆ = ∂21 + ∂22 + ∂23 ,
P (x) ≡ Pχ(x) := Fχ(x) I

= χ(x)F1(x) I = − χ(x)

4π |x|
I with χ(0) = 1, (2.18)

where Fχ(x) = χ(x)F1(x), I is the unit 4 × 4 matrix and χ is a localizing
function (see Appendix A),

χ ∈ Xk
1+, k ≥ 4. (2.19)

Throughout the paper, we assume that the condition (2.19) is satisfied and
χ has a compact support if not otherwise stated.

Denote by B(y, ε) a ball centered at the point y, of radius ε > 0 and let
Σ(y, ε) := ∂B(y, ε).

In Green’s second formula (2.13), let us take in the place of V (x) suc-
cessively the columns of the matrix P (x − y), where y is an arbitrar-
ily fixed interior point in Ω, and write the identity (2.13) for the region
Ωε := Ω \ B(y, ε) with ε > 0 such that B(y, ε) ⊂ Ω. Keeping in mind that
P⊤(x− y) = P (x− y), we arrive at the equality∫

Ωε

[
P (x− y)A(x, ∂x)U(x)−

[
A∗(x, ∂x)P (x− y)

]⊤
U(x)

]
dx

=

∫
S

[
P (x−y)

{
T (x, ∂x)U(x)

}+−
{
M(x, ∂x)P (x−y)

}⊤ {U(x)}+
]
dS

−
∫

Σ(y,ε)

[
P (x−y) T (x, ∂x)U(x)−

{
M(x, ∂x)P (x−y)

}⊤
U(x)

]
dΣ(y, ε). (2.20)

The direction of the normal vector on Σ(y, ε) is chosen as outward with
respect to B(y, ε).

It is evident that the operator

AU(y) : = lim
ε→0

∫
Ωε

[
A∗(x, ∂x)P (x− y)

]⊤
U(x) dx

= v.p.
∫
Ω

[
A∗(x, ∂x)P (x− y)

]⊤
U(x) dx (2.21)

is a singular integral operator; here and in the sequel, “v.p.” denotes the
Cauchy principal value integral. If the domain of integration in (2.21) is the
whole space R3, we employ the notation AU ≡ AU , i.e.,

AU(y) := v.p.
∫
R3

[
A∗(x, ∂x)P (x− y)

]⊤
U(x) dx. (2.22)

Note that
∂2

∂xi ∂xl

1

|x− y|
= −4π δil

3
δ(x− y) + v.p. ∂2

∂xi ∂xl

1

|x− y|
, (2.23)
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where δil is the Kronecker delta, while δ( · ) is the Dirac distribution. The
derivatives in the left-hand side of (2.23) are understood in the distributional
sense. In view of (2.18) and taking into account that χ(0) = 1, we can write
the following equality in the distributional sense:[

A∗(x, ∂x)P (x− y)
]⊤

=


[ ∂

∂xi

(
cijlk(x)

∂

∂xl
Fχ(x−y)

)]
3×3

[ ∂

∂xi

(
eikl(x)

∂

∂xl
Fχ(x−y)

)]
3×1[

− ∂

∂xi

(
elij(x)

∂

∂xl
Fχ(x−y)

)]
1×3

∂

∂xi

(
εil(x)

∂

∂xl
Fχ(x−y)

)

4×4

=


[
cijlk(x)

∂2

∂xi∂xl
Fχ(x−y)

]
3×3

[
eikl(x)

∂2

∂xi∂xl
Fχ(x−y)

]
3×1[

− elij(x)
∂2

∂xi∂xl
Fχ(x−y)

]
1×3

εil(x)
∂2

∂xi∂xl
Fχ(x−y)


4×4

+


[ ∂

∂xi
cijlk(x)

∂

∂xl
Fχ(x−y)

]
3×3

[ ∂

∂xi
eikl(x)

∂

∂xl
Fχ(x−y)

]
3×1[

− ∂

∂xi
elij(x)

∂

∂xl
Fχ(x−y)

]
1×3

∂

∂xi
εil(x)

∂

∂xl
Fχ(x−y)


4×4

=

 [
cijlk(x) kil(x, y)

]
3×3

[
eikl(x) kil(x, y)

]
3×1[

− elij(x) kil(x, y)
]
1×3

εil(x) kil(x, y)


4×4

+


[ ∂

∂xi
cijlk(x)

∂

∂xl
Fχ(x−y)

]
3×3

[ ∂

∂xi
eikl(x)

∂

∂xl
Fχ(x−y)

]
3×1[

− ∂

∂xi
elij(x)

∂

∂xl
Fχ(x−y)

]
1×3

∂

∂xi
εil(x)

∂

∂xl
Fχ(x−y)


4×4

,

where

kil(x, y) : =
δil
3
δ(x− y) + v.p. ∂

2Fχ(x− y)

∂xi∂xl

=
δil
3
δ(x− y)− 1

4π
v.p. ∂2

∂xi∂xl

1

|x− y|
+mil(x, y),

mil(x, y) : = − 1

4π

∂2

∂xi∂xl

χ(x− y)− 1

|x− y|
.

Therefore,[
A∗(x, ∂x)P (x− y)

]⊤
= b(x) δ(x− y) + v.p.

[
A∗(x, ∂x)P (x− y)

]⊤
= b(x) δ(x− y) +R(x, y)

− v.p. 1

4π

[ [
cijlk(x)ϑil(x, y)

]
3×3

[
eikl(x)ϑil(x, y)

]
3×1[

− elij(x)ϑil(x, y)
]
1×3

εil(x)ϑil(x, y)

]
4×4
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= b(x) δ(x− y) +R(1)(x, y)

− v.p. 1

4π

[ [
cijlk(y)ϑil(x, y)

]
3×3

[
eikl(y)ϑil(x, y)

]
3×1[

− elij(y)ϑil(x, y)
]
1×3

εil(y)ϑil(x, y)

]
4×4

,

where

b(x) = 1

3

[
[cljlk(x)]3×3 [elkl(x)]3×1

[−ellj(x)]1×3 εll(x)

]
4×4

, (2.24)

ϑil(x, y) =
∂2

∂xi∂xl

1

|x− y|
, i, l = 1, 2, 3, (2.25)

R(x, y) =

[ [
cijlk(x)mil(x, y)

]
3×3

[
eikl(x)mil(x, y)

]
3×1[

− elij(x)mil(x, y)
]
1×3

εil(x)mil(x, y)

]
4×4

+


[ ∂

∂xi
cijlk(x)

∂Fχ(x− y)

∂xl

]
3×3

[ ∂

∂xi
eikl(x)

∂Fχ(x− y)

∂xl

]
3×1[

− ∂

∂xi
elij(x)

∂Fχ(x− y)

∂xl

]
1×3

∂

∂xi
εil(x)

∂Fχ(x− y)

∂xl


4×4

,

R(1)(x, y) = R(x, y)

− 1

4π

[ [
cijlk(x, y))ϑil(x, y)

]
3×3

[
elij(x, y)ϑil(x, y)

]
3×1[

− eikl(x, y)ϑil(x, y)
]
1×3

εil(x, y)ϑil(x, y)

]
4×4

,

cijlk(x, y) := cijlk(x)− cijlk(y), elij(x, y) := elij(x)− eikl(y),

εil(x, y) := εil(x)− εil(y).

Evidently, the entries of the matrix-functions R(x, y) and R(1)(x, y) possess
weak singularities of type O(|x− y|−2) as x→ y. Therefore, we get

v.p. [A∗(x, ∂x)P (x− y)]⊤ = R(x, y)

+ v.p. 1

4π

[
−
[
cijlk(x)ϑil(x, y)

]
3×3

−
[
elij(x)ϑil(x, y)

]
3×1[

eikl(x)ϑil(x, y)
]
1×3

−εil(x)ϑil(x, y)

]
4×4

, (2.26)

v.p. [A∗(x, ∂x)P (x− y)]⊤ = R(1)(x, y)

+ v.p. 1

4π

[
−
[
cijlk(y)ϑil(x, y)

]
3×3

−
[
elij(y)ϑil(x, y)

]
3×1[

eikl(y)ϑil(x, y)
]
1×3

−εil(y)ϑil(x, y)

]
4×4

. (2.27)

Further, by direct calculations one can easily verify that

lim
ε→0

∫
Σ(y,ε)

P (x− y) T (x, ∂x)U(x) dΣ(y, ε) = 0, (2.28)
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lim
ε→0

∫
Σ(y,ε)

{
M(x, ∂x)P (x− y)

}⊤
U(x) dΣ(y, ε)

=
1

4π


[
cijlk(y)

∫
Σ1

ηiηl dΣ1

]
3×3

[
eikl(y)

∫
Σ1

ηlηi dΣ1

]
3×1[

− elij(y)

∫
Σ1

ηiηl dΣ1

]
1×3

εil(y)

∫
Σ1

ηiηl dΣ1


4×4

U(y)

=
1

4π


[
cijlk(y)

4π δil
3

]
3×3

[
eikl(y)

4π δli
3

]
3×1[

− elij(y)
4π δil
3

]
1×3

εil(y)
4π δil
3


4×4

U(y)

= b(y)U(y), (2.29)

where Σ1 is a unit sphere, η = (η1, η2, η3) ∈ Σ1 and b is defined by (2.24).
Passing to the limit in (2.20) as ε → 0 and using the relations (2.21),

(2.28) and (2.29), we obtain

b(y)U(y) +AU(y)− V (T +U)(y) +W (U+)(y)

= P
(
A(x, ∂x)U

)
(y), y ∈ Ω, (2.30)

where A is a localized singular integral operator given by (2.21), while V ,
W and P are the localized single layer, double layer and Newtonian volume
potentials,

V (g)(y) := −
∫
S

P (x− y) g(x) dSx, (2.31)

W (g)(y) := −
∫
S

[
M(x, ∂x)P (x− y)

]⊤
g(x) dSx, (2.32)

P(h)(y) :=

∫
Ω

P (x− y)h(x) dx. (2.33)

Let us also introduce the scalar volume potential

P(µ)(y) :=
∫
Ω

Fχ(x− y)µ(x) dx (2.34)

with µ being a scalar density function.
If the domain of integration in the Newtonian volume potential (2.33) is

the whole space R3, we employ the notation P h ≡ Ph, i.e.,

P(h)(y) :=

∫
R3

P (x− y)h(x) dx. (2.35)

Mapping properties of the above potentials are investigated in [16].
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We refer the relation (2.30) as Green’s third formula. By a standard lim-
iting procedure we can extend Green’s third formula (2.30) to the functions
from the space H1,0(Ω, A). In particular, it holds true for solutions of the
above formulated Robin type BVP. In this case, the generalized trace vector
T +U is understood in the sense of definition (2.15).

For U = (u1, . . . , u4)
⊤ ∈ H1(Ω), one can also derive the following rela-

tion:

AU(y) = −b(y)U(y)−W (U+)(y) +QU(y), ∀ y ∈ Ω, (2.36)

where

QU(y) :=


[ ∂

∂yi
P(cijlk ∂luk)(y) +

∂

∂yi
P(elij∂lu4)(y)

]
3×1

− ∂

∂yi
P(eikl∂luk)(y) +

∂

∂yi
P(εil∂lu4)(y)


4×4

. (2.37)

and P is defined in (2.34).
In what follows, for our analysis we need the explicit expression of the

principal homogeneous symbol matrix S (A)(y, ξ) of the singular integral
operator A. This matrix coincides with the Fourier transform of the sin-
gular matrix kernel defined by (2.26). Let F denote the Fourier transform
operator,

Fz→ξ[g] =

∫
R3

g(z) ei z·ξ dz,

and set

hil(z) : = v.p.ϑil(x, t) = v.p. ∂2

∂zi∂zl

1

|z|
,

ĥil(ξ) : = Fz→ξ(hil(z)), i, l = 1, 2, 3.

In view of (2.23) and taking into account the relations Fz→ξδ(z) = 1 and
Fz→ξ(|z|−1) = 4π|ξ|−2 (see, e.g., [25]), we easily derive

ĥil(ξ) := Fz→ξ(hil(z)) = Fz→ξ

(4πδil
3

δ(z) +
∂2

∂zi ∂zl

1

|z|

)
=

4πδil
3

+ (−iξi)(−iξl)Fz→ξ

( 1

|z|

)
=

4πδil
3

− 4πξiξl
|ξ|2

.

Now, for arbitrary y ∈ Ω and ξ ∈ R3 \ {0}, due to (2.27), we get

S (A)(y, ξ) = − 1

4π
Fz→ξ

[ [
cijlk(y)hil(z)

]
3×3

[
eikl(y)hil(z)

]
3×1[

− elij(y)hil(z)
]
1×3

εil(y)hil(z)

]
4×4

= − 1

4π

 [
cijlk(y) ĥil(z)

]
3×3

[
eikl(y) ĥil(z)

]
3×1[

− elij(y) ĥil(z)
]
1×3

εil(y) ĥil(z)


4×4
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= −b(y) + 1

|ξ|2

[ [
cijlk(y) ξiξl

]
3×3

[
elij(y) ξlξi

]
3×1[

− eikl(y) ξiξl
]
1×3

εil(y) ξiξl

]
4×4

=
1

|ξ|2
A(y, ξ)− b(y). (2.38)

As we can see, the entries of the principal homogeneous symbol matrix
S(A)(y, ξ) of the operator A are even rational homogeneous functions in
ξ of order 0. It can easily be verified that both the characteristic function
of the singular kernel in (2.27) and the Fourier transform (2.38) satisfy the
Tricomi condition, i.e., their integral averages over the unit sphere vanish
(cf. [40]).

Denote by ℓ0 the extension operator by zero from Ω = Ω+ onto Ω− =
R3 \ Ω. It is evident that for the function U ∈ H1(Ω) we have

(AU)(y) = (Aℓ0U)(y) for y ∈ Ω.

Introduce the notation

(Kℓ0U)(y) := (b(y)− I)U(y) + (Aℓ0U)(y) for y ∈ Ω, (2.39)

and for our further purposes we rewrite the third Green’s formula (2.30) in
a more convenient form

[I + K]ℓ0U (y)− V (T +U)(y) +W (U+)(y)

= P(A(x, ∂x)U)(y), y ∈ Ω, (2.40)

where I is the identity operator.
The relation (2.38) implies that the principal homogeneous symbols of

the singular integral operators K and I + K read as

S(K)(y, ξ) = |ξ|−2A(y, ξ)− I ∀ y ∈ Ω, ∀ ξ ∈ R3 \ {0}, (2.41)
S(I + K)(y, ξ) = |ξ|−2A(y, ξ) ∀ y ∈ Ω, ∀ ξ ∈ R3 \ {0}. (2.42)

It is evident that the symbol matrix (2.42) is uniformly strongly elliptic due
to (2.4)

Re
(
S(I + K)(y, ξ) ζ, ζ

)
= |ξ|−2 Re

(
A(y, ξ) ζ, ζ

)
≥ c |ζ|2 (2.43)

∀ y ∈ Ω, ∀ ξ ∈ R3 \ {0}, ∀ ζ ∈ C3,

where c is the same positive constant as in (2.4).
From (2.39) it follows that (see, e.g., [3], [26, Theorem 8.6.1]) if χ ∈ Xk

with integer k > r + 2, then

rΩK ℓ0 : Hr(Ω) −→ Hr(Ω), r > 0, (2.44)

since the symbol (2.41) is rational and the operator with the kernel func-
tion either R(x, y) or R(1)(x, y) maps Hr(Ω) into Hr+1(Ω) (cf. [16, Theo-
rem 5.6]). Here and throughout the paper, rΩ denotes the restriction oper-
ator to Ω.
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Assuming that U ∈ H2(Ω) and applying the differential operator T (x, ∂x)
to Green’s formula (2.40) and using the properties of localized potentials
described in Appendix B (see Theorems B.1–B.4) we arrive at the relation:

T +Kℓ0U + ( I − d)(T +U)−W ′(T +U) + L(U+)

= T +P(A(x, ∂x)U) on S, (2.45)
where the localized boundary integral operators W ′ and L := L+ are gen-
erated by the localized single- and double-layer potentials and are defined
in (B.3) and (B.4), the matrix d is defined by (B.17), while

T +Kℓ0U ≡
{
T (K ℓ0U)

}+ on S, (2.46)

T +P(A(x, ∂x)U) ≡
{
T P(A(x, ∂x)U)

}+ on S. (2.47)

2.2. LBDIE formulation of the Robin type problem and the equiv-
alence theorem. Let U ∈ H2(Ω) be a solution to the Robin type BVP
(2.16), (2.17) with ψ0 ∈ H

1
2 (S) and f ∈ H0(Ω). As we have derived above,

there hold the relations (2.40) and (2.45), which now can be rewritten in
the form

[I + K]ℓ0U +W (Φ) + V (βΦ) = P(f) + V (Ψ0) in Ω, (2.48)
T +Kℓ0U + L(Φ) + (d − I)β Φ+W ′βΦ

= T +P(f) + (d − I)Ψ0 +W ′(Ψ0) on S, (2.49)

where Φ := U+ ∈ H
3
2 (S).

One can consider these relations as a LBDIE system with respect to the
unknown vector-functions U and Φ. Now we prove the following equivalence
theorem.

Theorem 2.2. Let χ ∈ X4
1+. The Robin type boundary value problem

(2.16), (2.17) is equivalent to LBDIE system (2.48), (2.49) in the following
sense:

(i) If a vector-function U ∈ H2(Ω) solves the Robin type BVP (2.16),
(2.17), then it is unique and the pair (U,Φ) ∈ H2(Ω)×H

3
2 (S) with

Φ = U+ , (2.50)
solves the LBDIE system (2.48), (2.49) and, vice versa;

(ii) If a pair (U,Φ) ∈ H2(Ω)×H
3
2 (S) solves the LBDIE system (2.48),

(2.49), then it is unique and the vector-function U solves the Robin
type BVP (2.16), (2.17), and relation (2.50) holds.

Proof. (i) The first part of the theorem is trivial and directly follows form
the relations (2.40), (2.45), (2.50) and Remark 2.1.

(ii) Now, let a pair (U,Φ) ∈ H2(Ω) × H
3
2 (S) solve the LBDIE system

(2.48), (2.49). We apply the differential operator T to equation (2.48), take
its trace on S and compare with (2.49) to obtain

T +U + βΦ = Ψ0 on S. (2.51)
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Further, since U ∈ H2(Ω), we can write the third Green’s formula (2.40)
which in view of (2.51) can be rewritten as

[I + K] ℓ0U + V (βΦ)− V (Ψ0) +W (U+) = P(A(x, ∂x)U) in Ω. (2.52)

From (2.48) and (2.52) it follows that

W (U+ − Φ)− P
(
A(x, ∂x)U − f

)
= 0 in Ω, (2.53)

whence by Lemma 6.4 in [16] we conclude

A(x, ∂x)U = f in Ω and U+ = Φ on S.

Therefore, from (2.51) we get

T +U + βU+ = Ψ0 on S. (2.54)

Thus U solves the Robin type BVP (2.16), (2.17) and, in addition, equation
(2.50) holds.

The uniqueness of a solution to the LBDIE system (2.48), (2.49) in the
class H2(Ω) × H

3
2 (S) directly follows from the above-proven equivalence

result and the uniqueness theorem for the Robin type problem (2.16), (2.17)
(see Remark 2.1). �

3. Invertibility of the LBDIO Corresponding to the Robin
Type BVP

From Theorem 2.2 it follows that the LBDIE system (2.48), (2.49) with a
special right-hand side is uniquely solvable in the class H2(Ω, A)×H3/2(S).
Here, our main goal is to investigate Fredholm properties of the localized
boundary-domain integral operator generated by the left-hand side expres-
sions in (2.48), (2.49) in appropriate functional spaces.

To this end, let us consider the LBDIE system for the unknown pair
(U,Φ) ∈ H2(Ω)×H3/2(S),

(I + K)ℓ0U +W (Φ) + V (βΦ) = F1 in Ω, (3.1)
T +Kℓ0U + L(Φ) + (d − I)βΦ+W ′(βΦ) = F2 on S, (3.2)

where F1 ∈ H2(Ω) and F2 ∈ H1/2(S).
Introduce the notation

B := I + K. (3.3)
In view of (2.42), the principal homogeneous symbol matrix of the operator
B reads as

S(B)(y, ξ) = |ξ|−2A(y, ξ) for y ∈ Ω, ξ ∈ R3 \ {0}. (3.4)

The entries of the matrix S(B)(y, ξ) are even rational homogeneous func-
tions of order 0 in ξ. Moreover, due to (2.4), the matrix S(B)(y, ξ) is
uniformly strongly elliptic,

Re
(
S(B)(y, ξ)ζ, ζ

)
≥ c |ζ|2 for all y ∈ Ω, ξ ∈ R3 \ {0} and ζ ∈ C3.
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Consequently, B is a uniformly strongly elliptic pseudodifferential operator
of zero order (i.e., a singular integral operator) and the partial indices of
factorization of the symbol (3.4) are equal to zero (cf. Lemma 1.20 in [12]).

Now we present some auxiliary material needed for our further anal-
ysis. Let ỹ ∈ ∂Ω be some fixed point and consider the frozen symbol
S(B)(ỹ, ξ) ≡ S(B̃)(ξ), where B̃ denotes the operator B written in a cho-
sen local coordinate system. Further, let ̂̃B denote the pseudodifferential
operator with the symbol

Ŝ(B̃)(ξ′, ξ3) := S(B̃)
(
(1 + |ξ′|)ω, ξ3

)
with ω =

ξ′

|ξ′|
, ξ = (ξ′, ξ3), ξ′ = (ξ1, ξ2).

The principal homogeneous symbol matrix S(B̃)(ξ) of the operator ̂̃B can
be factorized with respect to the variable ξ3,

S(B̃)(ξ) = S(−)(B̃)(ξ)S(+)(B̃)(ξ), (3.5)
where

S(±)(B̃)(ξ) =
1

ξ3 ± i |ξ′ |
Ã(±)(ξ′, ξ3),

Ã(±)(ξ′, ξ3) are the “plus” and “minus” polynomial matrix factors of the first
order in ξ3 of the positive definite polynomial symbol matrix Ã(ξ′, ξ3) ≡
Ã(ỹ, ξ′, ξ3) (see Theorem 1 in [23], Theorem 1.33 in [45], Theorem 1.4 in
[24]), i.e.

Ã(ξ
′
, ξ3) = Ã(−)(ξ′, ξ3) Ã

(+)(ξ′, ξ3) (3.6)
with det Ã(+)(ξ′, τ) ̸= 0 for Im τ > 0 and det Ã(−)(ξ′, τ) ̸= 0 for Im τ < 0.
Moreover, the entries of the matrices Ã(±)(ξ′, ξ3) are homogeneous functions
in ξ = (ξ′, ξ3) of order 1.

Denote by a(±)(ξ′) the coefficients of ξ43 in the determinants detÃ(±)(ξ′, ξ3).
Evidently,

a(−)(ξ′) a(+)(ξ′) = det Ã(0, 0, 1) > 0 for ξ′ ̸= 0. (3.7)

It is easy to see that the inverse factor-matrices [Ã(±)(ξ′, ξ3)]
−1 have the

following structure:[
Ã(±)(ξ′, ξ3)

]−1
=

1

det Ã(±)(ξ′, ξ3)

[
p(±)

ij
(ξ′, ξ3)

]
4×4

, (3.8)

where [p(±)
ij

(ξ′, ξ3)]4×4 is the matrix of co-factors corresponding to the ma-
trix Ã(±)(ξ′, ξ3). They can be written in the form

p(±)
ij

(ξ′, ξ3) = c(±)
ij

(ξ′) ξ33 + b(±)
ij

(ξ′) ξ23 + d(±)
ij

(ξ′) ξ3 + e
(±)
ij (ξ′) (3.9)

with c(±)
ij

, b(±)
ij

, d(±)
ij

, and e(±)
ij

, i, j = 1, 2, 3, 4, being homogeneous functions
in ξ′ of order 0, 1, 2 and 3, respectively.
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Denote by Π+ the Cauchy type integral operator

Π+(f)(ξ) =
i

2π
lim

t→0+

+∞∫
−∞

h(ξ′, η3) dη3
ξ3 + i t− η3

, ξ = (ξ′, ξ3), ξ′ = (ξ1, ξ2), (3.10)

which is well defined for any ξ ∈ R3 for a bounded smooth function h(ξ′, · )
satisfying the relation h(ξ′, η3) = O(1 + |η3|)−ν with some ν > 0.

The following lemma holds (see [22]).

Lemma 3.1. Let χ ∈ Xk
1+ with integer k > s+2 and let ℓ0 be the extension

operator by zero from R3
+ onto the half-space R3

−. The operator

r
R3
+

̂̃Bℓ0 : Hs(R3
+) −→ Hs(R3

+)

is invertible for all s ≥ 0, where r
R3
+

is the restriction operator to the half-
space R3

+.
Moreover, for f ∈ Hs(R3

+) with s ≥ 0, the unique solution of the equation

r
R3
+

̂̃Bℓ0U = f, (3.11)

can be represented in the form

U+ := ℓ0u = F−1
{[

Ŝ(+)(B̃)
]−1

Π+
([

Ŝ(−)(B̃)
]−1F(ℓf)

)}
, (3.12)

where ℓf ∈ Hs(R3) is an arbitrary extension of f onto the whole space R3.

Lemma 3.2. Let the factor matrix Ã(+)(ξ′, τ) be as in (3.6), and let a(+)

and c(+)
ij

be as in (3.7) and (3.9), respectively. Then the following equality
holds

1

2πi

∫
γ−

[
Ã(+)(ξ′, τ)

]−1
dτ =

1

a(+)(ξ′)

[
c(+)
ij

(ξ′)
]
4×4

, (3.13)

and
det

[
c(+)
ij

(ξ′)
]
4×4

̸= 0 for ξ′ ̸= 0. (3.14)
Here γ− is a contour in the lower complex half-plane enclosing all roots of
the polynomial det Ã(+)(ξ′, τ) with respect to τ .

It is well known that the differential operator T (x, ∂x) covers the operator
A(x, ∂x) on the boundary S (see, e.g., [1], [11], [41], [48]), i.e., the problem

Ã
(
ξ′, i

d

dt

)
v(ξ′, t) = 0, t ∈ R+ = (0,+∞), (3.15)

T̃
(
ξ′, i

d

dt

)
v(ξ′, t)

∣∣∣∣
t=0

= 0 (3.16)

has only the trivial solution in the Schwartz space S(R+) of infinitely
smooth, rapidly decreasing vector-functions at infinity. Here, Ã(ξ′, ξ3) :=

A(ỹ, ξ′, ξ3) and T̃ (ξ′, ξ3) := T (ỹ, ξ′, ξ3) correspond, respectively, to the
“frozen” differential and co-normal operators at the point ỹ ∈ ∂Ω.
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The above covering condition implies the following assertion.

Lemma 3.3. Let γ− be as in Lemma 3.2. The matrix∫
γ−

T̃ (ξ′, τ)
[
Ã(+)(ξ′, τ)

]−1
dτ (3.17)

is non-singular for all ξ′ ̸= 0.

Proof. Let us consider the following matrix:∫
γ−

e−iτt
[
Ã(+)(ξ′, τ)

]−1
dτ, 0 < t <∞, (3.18)

and denote by v(1)(ξ′, t), v(2)(ξ′, t), v(3)(ξ′, t), and v(4)(ξ′, t), the columns of
the matrix (3.18).

Clearly, v(k)(ξ′, · ) ∈ S(R+), k = 1, 2, 3, 4.
First we show that v(k)(ξ′, · ), k = 1, 4, are linearly independent solutions

of equation (3.15). Indeed, by direct differentiation it can be easily seen that
the vector-functions v(k)(ξ′, t), k = 1, 4, solve the equation

Ã(+)
(
ξ′, i

d

dt

)
v(ξ′, t) = 0, 0 < t <∞. (3.19)

In view of the decomposition

Ã
(
ξ′, i

d

dt

)
= Ã(−)

(
ξ′, i

d

dt

)
Ã(+)

(
ξ′, i

d

dt

)
, (3.20)

it follows that v(k)(ξ′, t), k = 1, 4, are solutions of equation (3.15).
Now let us show that the vector-functions v(k)(ξ′, · ), k = 1, 4, are linearly

independent. Assume that for some scalar constants αk, k = 1, 4, the
equality

α1 v
(1)(ξ′, t) + α2 v

(2)(ξ′, t) + α3 v
(3)(ξ′, t) + α4 v

(4)(ξ′, t) = 0 (3.21)

holds. Note that the matrix-function (3.18) is continuous at t = 0. There-
fore from (3.21) by passing to the limit, as t → 0, we obtain the following
linear algebraic system of equations with respect to α = (α1, α2, α3, α4)

⊤,( ∫
γ−

[
Ã(+)(ξ′, τ)

]−1
dτ

)
α = 0. (3.22)

Due to Lemma 3.2,

det
( ∫
γ−

[
Ã(+)(ξ′, τ)

]−1
dτ

)
̸= 0 for all ξ′ ̸= 0,

and consequently α = (α1, α2, α3, α4)
⊤ = 0, implying that v(k)(ξ′, · ), k =

1, 4, are linearly independent solutions of equation (3.15).
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Further, let us consider an arbitrary solution of equation (3.15) belonging
to the class S(R+),

v(ξ′, t) =
4∑

k=1

ak v
(k)(ξ′, t), (3.23)

where a1, a2, a3, a4 are the scalar constants. If (3.23) satisfies in addition
the condition (3.16), then due to the covering condition it should be identical
zero. Substituting (3.23) into (3.16), we arrive at the following system of
linear algebraic equations with respect to a = (a1, a2, a3, a4)

⊤:(∫
γ−

T̃ (ξ′, τ)
[
Ã(+)(ξ′, τ)

]−1
dτ

)
a = 0. (3.24)

Since this system should possess only the trivial solution, we conclude that

det
( ∫
γ−

T̃ (ξ′, τ)
[
Ã(+)(ξ′, τ)

]−1
dτ

)
̸= 0 for all ξ′ ̸= 0,

which completes the proof. �
Now, with the above auxiliary results in hand, we can investigate the

invertibility of the localized boundary-domain integral operator generated
by the left-hand side expressions in the system (3.1), (3.2). We denote this
operator by R ,

R :=

[
rΩBℓ0 −rΩW + rΩV β

T +Kℓ0 L+ (d − I) +W ′β

]
8×8

.

Let us introduce the following boundary operators depending on the param-
eter t ∈ [0, 1],

Tt = Tt(x, ∂x) := (1− t)I∂n + tT (x, ∂x),

Mt = Mt(x, ∂x) := (1− t)I∂n + tM(x, ∂x).
(3.25)

Now we can prove the following assertion.
Theorem 3.4. Let a localizing function χ ∈ X∞

1+, r ≥ 1, and the conditions

det T̃t(ξ′,−i |ξ′|) ̸= 0, detM̃t( ξ
′,−i |ξ′|) ̸= 0, (3.26)

be satisfied for all ξ′ ̸= 0 and for all t ∈ (0, 1], where the matrices T̃t(ξ′, ξ3)
and M̃t(ξ

′, ξ3) are defined as follows:
T̃t(ξ′, ξ3) := (1− t)ξ3I + tT̃ (ξ′, ξ3),

M̃t(ξ
′, ξ3) := (1− t)ξ3I + tM̃(ξ′, ξ3).

(3.27)

Then the operator
R : Hr+1(Ω)×Hr+1/2(S) −→ Hr+1(Ω)×Hr−1/2(S) (3.28)

is invertible.
Proof. We prove the theorem in four steps, where we show that
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Step 1: the operator rΩBℓ0 : Hs(Ω) → Hs(Ω) for s ≥ 0 is Fredholm with
zero index;

Step 2: the operator R in (3.28) is Fredholm;
Step 3: IndR = 0;
Step 4: the operator R is invertible.

Step 1. Since (3.4) is a rational function in ξ, we can apply the theory
of pseudodifferential operators with the symbol satisfying the transmission
conditions (see [25], [3], [44], [45], [4]). With the help of the local principal
(see [2] and Lemma 23.9 in [25]) and the above Lemma 3.1 we can deduce
that the operator

B := rΩB ℓ0 : Hs(Ω) −→ Hs(Ω)

is Fredholm for all s ≥ 0.
To show that IndB = 0, we use the fact that the operators B and Bt =

rΩ(I + tK)ℓ0, where t ∈ [0, 1], are homotopic. Note that B = B1. The
principal homogeneous symbol of the operator Bt has the form

S(Bt)(y, ξ) = I + tS(K)(y, ξ) = (1− t)I + tS(B)(y, ξ).

It is easy to see that the operator Bt is uniformly strongly elliptic,
Re

(
S(Bt)(y, ξ)ζ, ζ

)
= (1− t)|ζ|2 + tRe

(
S(B)(y, ξ)ζ, ζ

)
≥ c1 |ζ|2

for all y ∈ Ω, ξ ̸= 0, ζ ∈ C3, and t ∈ [0, 1], c1 = min{1, c}, where c is the
constant involved in (2.4).

Since S(Bt)(y, ξ) is rational, even and homogeneous of order zero in ξ,
as above, we again conclude that the operator

Bt : H
s(Ω) −→ Hs(Ω)

is Fredholm for all s ≥ 0 and for all t ∈ [0, 1]. Therefore IndBt is the same
for all t ∈ [0, 1]. On the other hand, due to the equality B0 = rΩ I, we get

IndB = IndB1 = IndBt = IndB0 = 0.

Step 2. To investigate Fredholm properties of the operator R we apply
the local principle (cf. e.g., [25], § 19 and § 22). Due to this principle,
we have to show that the operator R is locally Fredholm at an arbitrary
“frozen” interior point ỹ ∈ S, and secondly that the so-called general-
ized Šapiro–Lopatinskiĭ condition for the operator R holds at an arbitrary
“frozen” point ỹ ∈ S. To obtain the explicit form of this condition we pro-
ceed as follows. Let U be a neighborhood of a fixed point ỹ ∈ Ω and let
ψ̃0, φ̃0 ∈ D(U) be infinitely differentiable scalar functions such that

supp ψ̃0 ∩ supp φ̃0 ̸= ∅, ỹ ∈ supp ψ̃0 ∩ supp φ̃0,

and consider the operator ψ̃0R φ̃0. We consider separately two possible
cases: ỹ ∈ Ω and ỹ ∈ S.

Case 1). Let ỹ ∈ Ω. Then we can choose a neighborhood Uj of the point
ỹ such that U ⊂ Ω. Therefore the operator ψ̃0R φ̃0 has the same Fredholm
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properties as the operator ψ̃0B φ̃0 (see the similar arguments in the proof
of Theorem 22.1 in [25]). Then owing to Step 1, we conclude that ψ̃0R φ̃0

is the locally Fredholm operator at interior points of Ω.
Case 2). Now let ỹ ∈ S. Then at this point we have to “froze” the

operator ψ̃0 R φ̃0, which means that we can choose a neighborhood U of the
point ỹ sufficiently small such that at the local co-ordinate system with the
origin at the point ỹ and the third axis coinciding with the normal vector
at the point ỹ ∈ S, the following decomposition

ψ̃0R φ̃0 = ψ̃0

( ̂̃
R+ Ñ + M̃

)
φ̃0, (3.29)

holds, where Ñ is a bounded operator with a small norm

Ñ : Hr+1(R3
+)×Hr+1/2(R2) −→ Hr+1(R3

+)×Hr−1/2(R2),

while M̃ is a bounded operator

M̃ : Hr+1(R3
+)×Hr+1/2(R2) −→ Hr+2(R3

+)×Hr+1/2(R2);

the operator ̂̃
R is defined in the upper half-space R3

+ as follows

̂̃
R :=

 r+
̂̃Bℓ0 r+

̂̃
W

(
̂̃T +K̃)ℓ0

̂̃L
 with r+ = r

R3
+

and possesses the following mapping propertŷ̃
R : Hr+1(R3

+)×Hr+1/2(R2) −→ Hr+1(R3
+)×Hr−1/2(R2). (3.30)

The operators with “hat” involved in the expression of ̂̃
R, are defined as

follows: for the operator G̃, the operator ̂̃
G denotes that in Rn (n = 2, 3)

constructed by the symbol

Ŝ(G̃)(ξ) := S(G̃)
((
1 + |ξ′|

)
ω, ξ3

)
if n = 3

and
Ŝ(G̃)(ξ) := S(G̃)

((
1 + |ξ′|

)
ω
)

if n = 2,

where ω = ξ′

|ξ′| , ξ = (ξ′, ξn), ξ′ = (ξ1, . . . , ξn−1).
The generalized Šapiro–Lopatinskiĭ condition is related to the invertibil-

ity of the operator (3.30). Indeed, let us write the system corresponding to
the operator ̂̃

R:

r+
̂̃Bℓ0Ũ + r+

̂̃
W Φ̃ = F̃1 in R3

+ , (3.31)

(
̂̃T +K̃)ℓ0Ũ +

̂̃L Φ̃ = F̃2 on R2 , (3.32)

where F̃1 ∈ H2(R3
+), F̃2 ∈ H1/2(R2).
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Note that the operator r+ ̂̃Bℓ0 is a singular integral operator with even
rational elliptic principal homogeneous symbol. Then due to Lemma 3.1,
the operator

r+
̂̃Bℓ0 : Hr+1(R3

+) −→ Hr+1(R3
+)

is invertible. Therefore from equation (3.31) we can define Ũ . (3.31)

ℓ0Ũ = ℓ0
[
r+

̂̃Bℓ0]−1
f̃ =

= F−1
{[

Ŝ
(+)

(B̃)
]−1

Π+
([

Ŝ
(−)

(B̃)
]−1F(ℓf̃)

)}
, (3.33)

where f̃ = F̃1−r+
̂̃
W Φ̃, ℓ is an extension operator from R3

+ to R3 preserving
the function space, while ℓ0 is an extension operator R3

+ to R3
− by zero, the

operator Π+ involved in (3.33) is defined in (3.10); here Ŝ
(±)

(·) denote the
so-called “plus” and “minus” factors in the factorization of the correspond-
ing symbol Ŝ(·) with respect to the variable ξ3. Note that the function ℓ0Ũ
in (3.33) does not depend on the extension operator ℓ.

Substituting (3.33) into (3.32), we get the following pseudodifferential
equation with respect to the unknown function Φ̃:

−(
̂̃T +K̃)F−1

{[
Ŝ

(+)

(B̃)
]−1

Π+
([

Ŝ
(−)

(B̃)
]−1F(

̂̃
W Φ̃)

)}
+

̂̃L Φ̃

= F̃ on R2, (3.34)
where

F̃ = F̃2 − ̂̃T +K̃ℓ0
[
r+

̂̃Bℓ0]−1
F̃1.

It can be shown that
T̃

+

K̃ v (y′) =
[
F−1

ξ→y

[
T̃ (−iξ)S(K̃)(ξ)F(v)(ξ)

]]
y3=0+

= F−1
ξ′→y′

[
Π′[T̃ (−iξ)S(K̃)(ξ)F(v)(ξ)

]]
, (3.35)

where the operator Π′ is defined as follows:

Π′(g)(ξ′) =
1

2π

+∞∫
−∞

g(ξ′, ξ3) dξ3 for g ∈ L1(R3)

while (for details see [21], Appendix C)

Π′(g)(ξ′) = lim
x3→0+

r+F −1
ξ3→x3

[g(ξ′, ξ3)] = − 1

2π

∫
γ−

g(ξ′, ζ) dζ,

if the following conditions hold:
(i) g(ξ′, ξ3) is rational in ξ3 and the denominator does not vanish for

nonzero real ξ = (ξ′, ξ3) ∈ R3 \ {0},
(ii) g(ξ′, ξ3) is homogeneous of order m ∈ Z := {0,±1,±2, . . . } in ξ =

(ξ′, ξ3), and
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(iii) g(ξ′, ξ3) is infinitely differentiable with respect to real ξ = (ξ′, ξ3)
for ξ′ ̸= 0,

and γ− is a contour in the lower complex half-plane orientated counter-
clockwise and enclosing all the poles of the rational function g.

It is clear that if g(ξ′, ζ) is analytic with respect to ζ in the lower half-
plane (Im ζ < 0), then

Π′(g)(ξ′) = 0 for all ξ′.
Further, we can represent the double-layer potential as

W (φ) = P
(
M⊤(Φ⊗ δS)

)
, (3.36)

where the distribution M⊤(Φ⊗ δS) is supported on the boundary S and is
defined by the relation⟨

M⊤(Φ⊗ δS), ψ)
⟩
R3 := ⟨Φ,Mψ⟩S ∀ψ ∈ D(R3).

In the case if S = R2 is the boundary of the half-space, the distribution
Φ̃ ⊗ δS is the direct product Φ̃ ⊗ δS = Φ̃(x1, x2) × δ(x3) and in view of
(3.35), we can write

(
̂̃T +K̃)F−1

ξ→x̃

{[
Ŝ

(+)

(B̃)(ξ)
]−1

Π+
([

Ŝ
(−)

(B̃)
]−1F(

̂̃
W Φ̃)

)
(ξ)

}
(ỹ′)

= F−1
ξ′→ỹ′

{
Π′

[ ̂̃T Ŝ(K̃)
[
Ŝ

(+)

(B̃)
]−1

×Π+
([

Ŝ
(−)

(B̃)
]−1

Ŝ(P̃)
̂̃M⊤)]

(ξ′)Fx̃′→ξ′Φ̃
}
. (3.37)

By virtue of the above relations, equation (3.34) can be rewritten in the
form

F−1
ξ′→y′

[
ê (ξ′)F(Φ̃)(ξ′)

]
= F̃ (y′) on R2, (3.38)

where
ê(ξ′) = e

(
(1 + |ξ′|)ω

)
, ω =

ξ′

|ξ′|
(3.39)

with e( · ) being a homogeneous matrix function of order 1 given by the
equality

e(ξ′) =−Π′
{
T̃ S(K̃)

[
S

(+)

(B̃)
]−1

Π+
([

S
(−)

(B̃)
]−1

S(P̃)M̃⊤
)}

(ξ′)

+S(L̃)(ξ′) ∀ ξ′ ̸= 0. (3.40)
If det e(ξ′) is different from zero for all ξ′ ̸= 0, then det ê(ξ′) ̸= 0 for all
ξ′ ∈ R2, and the corresponding pseudodifferential operator

Ê : Hs(R2) −→ Hs−1(R2),

generated by the left hand-side expression in (3.38), is invertible for all
s ∈ R. In particular, it follows that the system of equations (3.31), (3.32) is
uniquely solvable with respect to (Ũ , Φ̃) in the space H2(R3

+)×H3/2(R2) for
arbitrary right-hand sides (F̃1, F̃2) ∈ H2(R3

+) × H1/2(R2). Consequently,
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the operator ̂̃
R in (3.30) is invertible, which implies that the operator (3.29)

possesses left and right regularizers. In turn, this yields that the operator
(3.28) possesses left and right regularizers, as well. Thus the operator (3.28)
is Fredholm if the matrix

e(ξ′) = −Π′
{
T̃ S(K̃)

[
S

(+)

(B̃)
]−1

×Π+
([

S
(−)

(B̃)
]−1

S(P̃)M̃⊤
)}

(ξ′) +S(L̃)(ξ′) (3.41)

is non-singular for all ξ′ ̸= 0. This condition is called the Šapiro–Lopatinskiĭ
condition (cf. [25], Theorems 12.2 and 23.1, and also formulas (12.27),
(12.25)). Let us show that in our case the Šapiro–Lopatinskiĭ condition
holds. To this end, let us note that the principal homogeneous symbols
S(K̃), S(B̃), S(P̃), and S(L̃) of the operators K, B, P, and L in the
chosen local co-ordinate system involved in formula (3.41) read as:

S(K̃)(ξ) = |ξ|−2Ã(ξ)− I,

S(B̃)(ξ) = |ξ|−2Ã(ξ), S(P̃)(ξ) = −|ξ|−2I,

S(L̃)(ξ′) = 1

2|ξ′|
T̃ (ξ′,−i|ξ′|)M̃⊤(ξ′,−i|ξ′|),

ξ = (ξ′, ξ3), ξ′ = (ξ1, ξ2).

(3.42)

Recall that the matrices S(+)(B̃) and (−)(B̃) are the so-called “plus” and
“minus” factors in the factorization of the symbol S(B̃) with respect to the
variable ξ3.

We rewrite (3.40) in the form

e(ξ′) = −Π′
{
T̃
(
S(B̃)− I

)[
S(+)(B̃)

]−1

×Π+
([

S(−)(B̃)
]−1

S(P̃)M̃⊤
)}

(ξ′) +S(L̃)(ξ′)

= e1(ξ
′) + e2(ξ

′) +S(L̃)(ξ′), (3.43)

where S(L̃)(ξ′) is defined in (3.42) and

e1(ξ
′) = −Π′

{
T̃ S(B̃)

[
S(+)(B̃)

]−1

×Π+
([

S(−)(B̃)
]−1

S(P̃)M̃⊤
)}

(ξ′), (3.44)

e2(ξ
′) = Π′

{
T̃
[
S(+)(B̃)

]−1
Π+

([
S(−)(B̃)

]−1
S(P̃)M̃⊤

)}
(ξ′). (3.45)

By direct calculations we get

Π+
([

S(−)(B̃)
]−1

S(P̃)M̃⊤
)
(ξ′)

=
i

2π
lim

t→0+

+∞∫
−∞

(
[S(−)(B̃)]−1S(P̃)

)
(ξ′, η3)M̃⊤(−iξ′,−iη3)

ξ3 + i t− η3
dη3
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= − i

2π
lim

t→0+

+∞∫
−∞

[S(−)(B̃)]−1(ξ′, η3)M̃⊤(−iξ′,−iη3)
(ξ3 + i t− η3)(|ξ′|2 + η23)

dη3

=
i

2π
lim

t→0+

∫
γ−

[S(−)(B̃)]−1(ξ′, τ)M̃⊤(−iξ′,−iτ)
(ξ3 + i t− τ)(|ξ′|2 + τ2)

dτ

=
1

2π
lim

t→0+

2πi[S(−)(B̃)]−1(ξ′,−i|ξ′|)M̃⊤(ξ′,−i|ξ′|)
(ξ3 + i t+ i|ξ′|) 2 (−i|ξ′|)

= − [S(−)(B̃)]−1(ξ′,−i|ξ′|)M̃⊤(ξ′,−i|ξ′|)
2 |ξ′| (ξ3 + i| ξ′|)

. (3.46)

Now, from (3.44) by virtue of (3.46), we derive

e1(ξ
′) = −Π′

{
T̃ S(−)(B̃)S(+)(B̃)

[
S(+)(B̃)

]−1

×Π+
([

S(−)(B̃)
]−1

S(P̃)M̃⊤
)}

(ξ′)

= −Π′
{
T̃ S(−)(B̃)Π+

([
S(−)(B̃)

]−1
S(P̃)M̃⊤

)}
(ξ′)

= Π′
{
T̃ (−iξ′,−iξ3)S(−)(B̃)(ξ′, ξ3)

×
( [S(−)(B̃)]−1(ξ′,−i|ξ′|)M̃⊤(ξ′,−i|ξ′|)

2 |ξ′| (ξ3 + i| ξ′|)

)}
(ξ′)

= −iΠ′
{
T̃ (ξ′, ξ3)S

(−)(B̃)(ξ′, ξ3)

ξ3 + i|ξ′|

}
(ξ′)

×
( [S(−)(B̃)]−1(ξ′,−i|ξ′|)M̃⊤(ξ′,−i|ξ′|)

2 |ξ′|

)
=

i

2π

∫
γ−

T̃ (ξ′, τ)S(−)(B̃)(ξ′, τ)

τ + i| ξ′|
dτ

×
( [S(−)(B̃)]−1(ξ′,−i|ξ′|)M̃⊤(ξ′,−i|ξ′|)

2 |ξ′|

)
= −T (ξ′,−i|ξ′|)S(−)(B̃)(ξ′,−i |ξ′|)

× [S(−)(B̃)]−1(ξ′,−i|ξ′|)M̃⊤(ξ′,−i|ξ′|)
2 |ξ′|

= − 1

2 |ξ′|
T̃ (ξ′,−i|ξ′|)M̃⊤(ξ′,−i|ξ′|). (3.47)

Quite similarly, from (3.45), with the help of (3.46) and Lemma 3.2, we find
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e2(ξ
′) = Π′

{
T̃ [S(+)(B̃)]−1Π+

([
S(−)(B̃)

]−1
S(P̃)M̃⊤

)}
(ξ′)

= −Π′
{
T̃ (−iξ′,−iξ3)

[
S(+)(B̃)

]−1
(ξ′, ξ3)

×
( [S(−)(B̃)]−1(ξ′,−i|ξ′|)M̃⊤(ξ′,−i|ξ′|)

2|ξ′| (ξ3 + i|ξ′|)

)}
(ξ′)

= iΠ′
{
T̃ (ξ′, ξ3)

[S(+)(B̃)]−1(ξ′, ξ3)

ξ3 + i| ξ′|

}
(ξ′)

×
( [S(−)(B̃)]−1(ξ′,−i|ξ′|)M̃⊤(ξ′,−i|ξ′|)

2 |ξ′|

)
=

i

2|ξ′|

(
− 1

2π

∫
γ−

T̃ (ξ′, τ) [S(+)(B̃)]−1(ξ′, τ)

τ + i| ξ′|
dτ

)
×
[
S(−)(B̃)

]−1
(ξ′,−i|ξ′|)M̃⊤(ξ′,−i|ξ′|)

= − i

4π |ξ′|

∫
γ−

T̃ (ξ′, τ)
[
Ã(+)(ξ′, τ)

]−1
dτ

× (−2 i |ξ′|)
[
A−(ξ′,−i |ξ′|)

]−1 M̃⊤(ξ′,−i|ξ′|)

= −
(

1

2π

∫
γ−

T̃ (ξ′, τ)
[
Ã(+)(ξ′, τ)

]−1
dτ

)
×
[
Ã(−)(ξ′,−i |ξ′|)

]−1 M̃⊤(ξ′,−i|ξ′|). (3.48)
Therefore, in view of relations (3.43), (3.42), (3.47), and (3.48) we finally

obtain

e(ξ′) = −
(

1

2π

∫
γ−

T̃ (ξ′, τ)
[
Ã(+)(ξ′, τ)

]−1
dτ

)
×
[
Ã(−)

(
ξ′,−i |ξ′|

)]−1 M̃⊤(ξ′,−i|ξ′|).
Since

det
( ∫
γ−

T̃ (ξ′, τ)
[
Ã(+)(ξ′, τ)

]−1
dτ

)
̸= 0 for all ξ′ ̸= 0

due to Lemma 3.3, and det Ã(−)(ξ′,−i |ξ′|) ̸= 0 and detM̃(ξ′,−i |ξ′|) ̸= 0
for all ξ′ ̸= 0 in accordance with (3.6) and (3.26), respectively, we deduce
that

det e(ξ′) ̸= 0 for all ξ′ ̸= 0.

Therefore for the operator R the Šapiro–Lopatinskiĭ condition holds and
the operator

R : Hr+1(Ω)×Hr+1/2(S) −→ Hr+1(Ω)×Hr−1/2(S)
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is Fredholm for r ≥ 1.

Step 3. We can now show that IndR = 0. To this end, for t ∈ [0, 1] let
us consider the operator

Rt :=

[
rΩBtℓ0 rΩWt + rΩV β

t (T +K)ℓ0 Lt + (d − I) +W ′β

]
(3.49)

with Bt = I + tK and prove that it is homotopic to the operator R = R1,
where

Wt(g)(y) := −
∫
S

[
Mt(x, ∂x)P (x−y)

]⊤
g(x) dSx, y ∈ S, t ∈ [0, 1], (3.50)

and

Ltg(y) :=
[
Tt(y, ∂y)Wt g(y)

]+
, y ∈ S, t ∈ [0, 1], (3.51)

with Tt(y, ∂y) and Mt(y, ∂y) defined in (3.25). Clearly, L = L 1.
We have to check that for the operator R t the Šapiro–Lopatinskiĭ condi-

tion is satisfied for all t ∈ [0, 1]. Indeed, in this case the matrix associated
with the Šapiro–Lopatinskiĭ condition reads as (cf. (3.40))

et(ξ
′) = −Π′

{
T̃t
(
S(B̃t)− I

)[
S(+)(B̃t)

]−1

×Π+
([

S(−)(B̃t)
]−1

S(P̃)M̃⊤
t

)}
(ξ′) +S(L̃t)(ξ

′)

= e
(1)
t (ξ′) + e

(2)
t (ξ′) +S(L̃t)(ξ

′), (3.52)

where

e
(1)
t (ξ′) = −Π′

{
T̃tS(B̃t)

[
S(+)(B̃t)

]−1

×Π+
([

S(−)(B̃t)
]−1

S(P̃)M̃⊤
t

)}
(ξ′)

= − 1

2 |ξ′|
T̃t(ξ′,−i|ξ′|)M̃⊤

t

(
ξ′,−i|ξ′|

)
,

e
(2)
t (ξ′) = Π′

{
T̃t
[
S(+)(B̃t)

]−1
Π+

([
S(−)(B̃t)

]−1
S(P̃)M̃t

)}
(ξ′),

S(L̃t)(ξ
′) =

1

2 |ξ′|
T̃t(ξ′,−i|ξ′|)M̃⊤

t

(
ξ′,−i|ξ′|

)
. (3.53)

We have to show that et(ξ′) is non-singular for all ξ′ ̸= 0 and t ∈ [0, 1].
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By direct calculations, we get

e
(2)
t (ξ′) = Π′

{
T̃t
[
S(+)(B̃t)

]−1
Π+

([
S(−)(B̃t)

]−1
S(P̃)M̃⊤

t

)}
(ξ′)

= −Π′
{
T̃t(−iξ′,−iξ3)

[
S(+)(B̃t)

]−1
(ξ′, ξ3)

×
( [S(−)(B̃t)]

−1(ξ′,−i|ξ′|)M̃⊤
t (ξ

′,−i|ξ′|)
2 |ξ′|(ξ3 + i| ξ′|)

)}
(ξ′)

= iΠ′
{
T̃t(ξ′, ξ3)[S(+)(B̃t)]

−1(ξ′, ξ3)

ξ3 + i| ξ′|

}
(ξ′)

×
( [S(−)(B̃t)]

−1(ξ′,−i|ξ′|)M̃⊤
t (ξ

′,−i|ξ′|)
2 |ξ′|

)
=

i

2 |ξ′|

(
− 1

2π

∫
γ−

T̃t(ξ′, τ)[S(+)(B̃t)]
−1(ξ′, τ)

τ + i| ξ′|
dτ

)
×
[
S(−)(B̃t)

]−1
(ξ′,−i|ξ′|)M̃⊤

t

(
ξ′,−i|ξ′|

)
= − i

4π |ξ′|

∫
γ−

T̃t(ξ′, τ)
[
Ã

(+)
t (ξ′, τ)

]−1
dτ

(
− 2 i |ξ′|

)
×
[
Ã

(−)
t (ξ′,−i|ξ′|)

]−1M̃⊤
t

(
ξ′,−i|ξ′|

)
= −

(
1

2π

∫
γ−

T̃t(ξ′, τ)
[
Ã

(+)
t (ξ′, τ)

]−1
dτ

)
×
[
Ã

(−)
t (ξ′,−i|ξ′|)

]−1M̃⊤
t

(
ξ′,−i|ξ′|

)
, (3.54)

where Ãt(ξ) = (1− t)|ξ|2I + tÃ(ξ) and Ãt(ξ
′, ξ3) = Ã

(−)
t (ξ′, ξ3)Ã

(+)
t (ξ′, ξ3),

Ã
(±)
t (ξ′, ξ3) are the “plus” and “minus” polynomial matrix factors in ξ3 of

the polynomial symbol matrix Ãt(ξ
′, ξ3).

Analogously to Lemma 3.3, we can prove that the matrix∫
γ−

T̃t(ξ′, τ)
[
Ã

(+)
t (ξ′, τ)

]−1
dτ

is non-singular for all ξ′ ̸= 0 and for all t ∈ [0, 1].
Therefore, by (3.52), (3.54) and (3.26) we have

det et(ξ′) = det e(2)t (ξ′) ̸= 0 for all ξ′ ̸= 0 and for all t ∈ [0, 1], (3.55)

which implies that for the operator Rt the Šapiro–Lopatinskiĭ condition is
satisfied.

Hence the operator

Rt : Hr+1(Ω)×Hr+1/2(S) −→ Hr+1(Ω)×Hr−1/2(S)

is Fredholm for all r ≥ 1 and for all t ∈ [0, 1].
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Further, we prove that the index of the operator

R0 =

[
rΩI ℓ0 rΩW0 + rΩV β

0 L0 + (d − I) +W ′β

]
: Hr+1(Ω)×Hr+1/2(S)

−→ Hr+1(Ω)×Hr−1/2(S)

is zero. Towards this end, first we show that the index of the operator Lt

equals zero for all t ∈ [0, 1].
The principal homogeneous symbol matrix of the operator L t reads as

S(L̃t)(ξ
′) =

1

2 |ξ′|
T̃t
(
ξ′,−i|ξ′|

)
M̃⊤

t

(
ξ′,−i|ξ′|

)
and is elliptic due to (3.26). Consequently, the operator Lt : H

s+1/2(S) →
Hs−1/2(S) with s ∈ R is Fredholm for all t ∈ [0, 1]. Moreover, the principal
part of the operator L0 : H1/2(S) → H−1/2(S) is selfadjoint due to the
equality

L0g = L∆g,

where L∆ stands for the trace of the normal derivative of the localized
harmonic double-layer potential,

L∆g(y) = −
{

∂

∂n(y)

∫
S

∂P (x− y)

∂n(x)
g(x) dSx

}+

.

Therefore,

IndL = IndL1 = IndLt = IndL0 = 0 for all t ∈ [0, 1] and for all s ∈ R,

implying that the index of the operator R0 equals zero. Since the family of
the operators Rt for t ∈ [0, 1] are homotopic, we conclude that

IndR = IndR1 = IndRt = IndR0 = 0 for all t ∈ [0, 1] and for all r ≥ 1.

Step 4. From the equivalence Theorem 2.2 it follows that KerR = {0} in
the space Hr+1(Ω)×Hr+1/2(S) for all r ≥ 1 and, consequently, the operator

R : Hr+1(Ω)×Hr+1/2(S) −→ Hr+1(Ω)×Hr−1/2(S)

is invertible for all r ≥ 1. �

Corollary 3.5. Let a localizing function χ ∈ X4
1+ and the condition (3.26)

be fulfilled. Then the operator

R : H2(Ω)×H3/2(S) −→ H2(Ω)×H1/2(S)

is invertible.

Proof. It is word for word repeats the above proof with r = 1. �
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4. Appendix A: Classes of Localizing Functions

Here we introduce the classes of localizing functions used in the main
text of the paper (for details see the reference [16]).

Definition A.1. We say χ ∈ Xk for integer k ≥ 0 if χ(x) = χ̆(|x|), χ̆ ∈
W k

1 (0,∞) and ϱχ̆(ϱ) ∈ L1(0,∞). We say χ ∈ Xk
+ for integer k ≥ 1 if

χ ∈ Xk, χ(0) = 1 and σχ(ω) > 0 for all ω ∈ R, where

σχ(ω) :=



χ̂s(ω)

ω
> 0 for ω ∈ R \ {0},

∞∫
0

ϱχ̆ (ϱ) dϱ for ω = 0,

(A.1)

and χ̂s(ω) denotes the sine-transform of the function χ̆

χ̂s(ω) :=

∞∫
0

χ̆(ϱ) sin(ϱω) dϱ. (A.2)

We say χ ∈ Xk
1+ for integer k ≥ 1 if χ ∈ Xk

+ and

ωχ̂s(ω) ≤ 1, ∀ω ∈ R. (A.3)

Evidently, we have the following embeddings: Xk1 ⊂ Xk2 and Xk1
+ ⊂

Xk2
+ , Xk1

1+ ⊂ Xk2
1+ for k1 > k2. The class Xk

+ is defined in terms of the
sine-transform. The following lemma provides us with an easily verifiable
sufficient condition for non-negative non-increasing functions to belong to
this class (for details see [16]).

Lemma A.2. Let k ≥ 1. If χ ∈ Xk, χ̆(0) = 1, χ̆(ϱ) ≥ 0 for all ϱ ∈ (0,∞),
and χ̆ is a non-increasing function on [0,+∞), then χ ∈ Xk

+.

The following examples for χ are presented in [16],

χ1(x) =


[
1− |x|

ε

]k
for |x| < ε,

0 for |x| ≥ ε,
(A.4)

χ2(x) =

exp
[ |x|2

|x|2 − ε2

]
for |x| < ε,

0 for |x| ≥ ε,

(A.5)

χ3(x) =


(
1− |x|

ε

)2(
1− 2

|x|
ε

)
for |x| < ε,

0 for |x| ≥ ε.
(A.6)

One can notice that χ1 ∈ Xk
+, while χ2 ∈ X∞

+ due to Lemma A.2, and
χ3 ∈ X2

+. Moreover, χ1 ∈ Xk
1+ for k = 2 and k = 3, and χ3 ∈ X2

1+, while
χ1 ̸∈ X1

1+ and χ2 ̸∈ X∞
1+ (for details see [16]).
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5. Appendix B: Properties of Localized Potentials

Here we collect some theorems describing mapping properties of the lo-
calized potentials. The proofs can be found in [16] (see also [26], Chapter 8
and the references therein).

Here we employ the notation V , W , and P introduced in the main text
for the localized layer and volume potentials, see (2.31)–(2.33). Further,
let us introduce the boundary operators generated by the localized layer
potentials associated with the localized parametrix P (x− y) ≡ Pχ(x− y),

Vg(y) := −
∫
S

P (x− y) g(x) dSx, y ∈ S, (B.1)

Wg(y) := −
∫
S

[
M(x, ∂x)P (x− y)

]⊤
g(x) dSx, y ∈ S, (B.2)

W ′g(y) := −
∫
S

[
T (y, ∂y)P (x− y)

]
g(x) dSx, y ∈ S, (B.3)

L±g(y) :=
[
T (y, ∂y)Wg(y)

]±
, y ∈ S, (B.4)

where T (x, ∂x) and M(x, ∂x) are defined in (2.6) and (2.8).

Theorem B.1. The following operators are continuous:

P : H̃s(Ω) −→ Hs+2,s(Ω;∆), −1

2
< s <

1

2
, χ ∈ X1, (B.5)

: Hs(Ω) −→ Hs+2,s(Ω;∆), −1

2
< s <

1

2
, χ ∈ X1, (B.6)

: Hs(Ω) −→ H
5
2−ε, 12−ε(Ω;∆),

1

2
≤s< 3

2
, ∀ ε∈(0, 1), χ∈X2, (B.7)

where ∆ is the Laplace operator.

Theorem B.2. The following operators are continuous:

V : Hs− 3
2 (S) −→ Hs(R3), s <

3

2
, if χ ∈ X1, (B.8)

: Hs− 3
2 (S) −→ Hs,s−1(Ω±;∆),

1

2
< s <

3

2
, if χ ∈ X2, (B.9)

W : Hs− 1
2 (S) −→ Hs(Ω±), s <

3

2
, if χ ∈ X2, (B.10)

: Hs− 1
2 (S) −→ Hs,s−1(Ω±;∆),

1

2
< s <

3

2
, if χ ∈ X3. (B.11)

Theorem B.3. If χ ∈ Xk has a compact support and −1
2 ≤ s ≤ 1

2 , then
the following localized operators are continuous:

V : Hs(S) −→ Hs+ 3
2 (Ω±) for k = 2, (B.12)

W : Hs+1(S) −→ Hs+ 3
2 (Ω±) for k = 3. (B.13)



88 O. Chkadua, D. Natroshvili

Theorem B.4. Let ψ ∈ H− 1
2 (S) and φ ∈ H

1
2 (S). Then the following jump

relations hold on S:

V +ψ = V −ψ = Vψ, χ ∈ X1, (B.14)
W±φ = ∓dφ+Wφ, χ ∈ X2, (B.15)
T ±V ψ = ±dψ +W ′ψ, χ ∈ X2, (B.16)

where

d(y) := 1

2

[
[cijlk(y)ni nl]3×3 [elij(y)ni nl]3×1

[−eikl(y)ni nl]1×3 εil(y)ni nl

]
4×4

, y ∈ S, (B.17)

and d(y) is strongly elliptic due to (2.4) .

Theorem B.5. Let − 1
2 ≤ s ≤ 1

2 . The following operators

V : Hs(S) −→ Hs+1(S), χ ∈ X2, (B.18)
W : Hs+1(S) −→ Hs+1(S), χ ∈ X3, (B.19)
W ′ : Hs(S) −→ Hs(S), χ ∈ X3, (B.20)

L± : Hs+1(S) −→ Hs(S), χ ∈ X3, (B.21)

are continuous.
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