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Abstract. A mixed problem with the third kind condition on one part of
boundary and with the Dirichlet condition on the rest part of the boundary
formulated for the Poisson equation, is considered in a unit square. To
obtain an approximate solution, we suggest the two-stage finite-difference
correction method. It is proved that the solution of the corrected scheme
converges at the rate O(hm) in the discrete L2-norm, when the solution
of the initial problem belongs to the Sobolev space Wm

2 (Ω) with exponent
m ∈ (2, 4].
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ÒÄÆÉÖÌÄ. ÄÒÈÄÖËÏÅÀÍ ÊÅÀÃÒÀÔÛÉ ÂÀÍáÉËÖËÉÀ ÐÖÀÓÏÍÉÓ ÂÀÍÔÏËÄÁÉÓÀ-
ÈÅÉÓ ÃÀÓÌÖËÉ ÛÄÒÄÖËÉ ÀÌÏÝÀÍÀ, ÌÄÓÀÌÄ ÂÅÀÒÉÓ ÐÉÒÏÁÉÈ ÓÀÆÙÅÒÉÓ ÄÒÈ

ÍÀßÉËÆÄ ÃÀ ÃÉÒÉáËÄÓ ÐÉÒÏÁÉÈ ÓÀÆÙÅÒÉÓ ÃÀÒÜÄÍÉË ÍÀßÉËÆÄ. ÌÉÀáËÏÄÁÉ-
ÈÉ ÀÌÏáÓÍÉÓÀÈÅÉÓ ÛÄÌÏÈÀÅÀÆÄÁÖËÉÀ ÓÀÓÒÖË-ÓáÅÀÏÁÉÀÍÉ ÏÒÓÀ×ÄáÖÒÉÀÍÉ

ÊÏÒÄØÝÉÉÓ ÌÄÈÏÃÉ. ÃÀÌÔÊÉÝÄÁÖËÉÀ ÊÏÒÄØÔÉÒÄÁÖËÉ ÓØÄÌÉÓ ÀÌÏÍÀáÓÍÉÓ
ÊÒÄÁÀÃÏÁÀ O(hm) ÓÉÜØÀÒÉÈ ÃÉÓÊÒÄÔÖËÉ L2 ÍÏÒÌÉÓ ÌÉÌÀÒÈ, ÈÖ ÂÀÌÏÓÀÅÀËÉ

ÓÀÓÀÆÙÅÒÏ ÀÌÏÝÀÍÉÓ ÀÌÏÍÀáÓÍÉ ÌÉÄÊÖÈÅÍÄÁÀ m ∈ (2, 4] ÌÀÜÅÄÍÄÁËÉÀÍ Wm
2 (Ω)

ÓÏÁÏËÄÅÉÓ ÓÉÅÒÝÄÓ.
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1. Introduction

For finite-difference schemes, just as for any numerical method, the ques-
tion of accuracy is significant. One of the approaches for obtaining high
accuracy solutions is the method of corrections by differences of higher or-
der, offered empirically by L. Fox [4]. This idea is simple, but its theoretical
foundation is connected with significant difficulties. This is evidenced in
the works due to Volkov, in which the grounding of the method is given for
the Laplace and Poisson equations (see e.g. [10, 11]); besides, the problem
data are chosen in such a way that an exact solution belongs to the Holder
class of functions C6,λ.

When investigating difference schemes by the energetic method, it is
desirable to take into account two points:

– the use of Taylor’s formula for determination of an approximation
error increases the requirement for the smoothness of an unknown
solution;

– an unimprovable rate of convergence on the class Wm
2 can be reached

only by appropriate a priori estimates.
To overcome such difficulties in the last 30 years A. A. Samarskii and

other authors (see e.g. [7, 5, 9]) worked out the methodology allowing one
to obtain the estimates of convergence rate of difference schemes, in which
the convergence rate is consistent with the smoothness of the solution sought
for. For the elliptic problems such estimates have the form

∥Uh − u∥W s
2 (ω) ≤ chm−s∥u∥Wm

2 (Ω).

In the present work we consider the Poisson’s equation under the third
kind boundary condition on one part of boundary and with the Dirichlet
condition on the rest part of the boundary. As the first approximation, the
solution of the difference scheme ΛU = φ is considered which has the second
order of approximation. Using the basic solution U of the first approxima-
tion, the correcting addend R for the right-hand side of the difference scheme
is constructed. By means of the methodology for obtaining the consistent
estimates, it is proved that the solution U of the corrected difference scheme
ΛU = φ + R converges at rate O(hm) in the discrete L2-norm, when the
exact solution belongs to the Sobolev space Wm

2 (Ω), m ∈ (2, 4].
For determination of the convergence of the offered method we essentially

use the convergence estimates obtained in the first and second stages with
discrete W 2

2 and L2-norms, respectively.

2. Statement of the Problem

Let Ω = {x = (x1, x2) : 0 < xα < 1} be a unit square with boundary Γ.
Let Γ−1 = {(0, x2) : 0 < x2 < 1}, Γ0 = Γ \ Γ−1. Let Dν denote the differ-
ential operator Dν = ∂|ν|/(∂xν1

1 ∂xν2
2 ), where ν = (ν1, ν2) are multiindices

with nonnegative integer components, and |ν| = ν1 + ν2. By W s
2 (Ω), s ≥ 0,
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we denote the Sobolev space with the norm defined by

∥u∥2W s
2 (Ω) =

s∑
k=1

|u|2Wk
2 (Ω), |u|2Wk

2 (Ω) =
∑
|ν|=k

∥Dνu∥2L2(Ω),

when s is an integer. If s is a noninteger, let s = s+ε, where s is the integer
part of s, and 0 < ε < 1. In this case, the norm is defined by

∥u∥2W s
2 (Ω) = ∥u∥2W s

2 (Ω) + |u|2W s
2 (Ω),

where

|u|2W s
2 (Ω) =

∫
Ω

∫
Ω

|Dνu(x)−Dνu(t)|2

|x− t|2+2ε
dx dt.

In particular, for s = 0, we have W 0
2 = L2.

In this paper, we investigate certain two-stage finite difference method
for the following mixed boundary value problem:

∆u = −f, x ∈ Ω, (2.1)

u = 0, x ∈ Γ0,
∂u

∂x1
= σu− g(x2), x ∈ Γ−1. (2.2)

We assume that the solution of the problem (2.1), (2.2) belongs to the
space Wm

2 (Ω), m > 2.
Let h = 1/n; ~ = h/2 if x1 = 0, ~ = h if x1 ̸= 0.
We introduce the mesh domains ωα = {xα = iα : iα = 1, . . . , n − 1},

ω = ω1 × ω2, ω−
α = ωα ∪ {0}, ω+

α = ωα ∪ {1}, ωα = ωα ∪ {0; 1}, γ−1 =
{(0, x2) : x2 ∈ ω2}, γ0 = γ \ γ−1, ω = ω1 × ω2, γ = Γ ∩ ω.

We define the difference quotients in xα direction as follows:

vxα =
(I(+α) − I)v

h
, vxα =

(I − I(−α))v

h
,

where Iv := v, I(±α) = v(x± hrα) and rα is the unit vector on the xα axis.
On the set of mesh functions given on the mesh ω and vanishing on γ0,

we define the inner product

(y, v) =
∑

ω∪γ−1

~hy(x)v(x).

The norm ∥y∥ = (y, y)1/2 turns this set into normalized space which we
denote by Hh.

Let
(y, v)ω̃ =

∑
ω̃

h2y(x)v(x), ∥y∥ω̃ = (y, y)
1/2
ω̃ , ω̃ ⊆ ω.

Denote
∥y∥2W 2

2 (ω) = ∥yx1x1∥2 + ∥yx2x2∥2 + 2∥yx1x2∥2ω+
1 ×ω+

2
.
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3. Finite Difference Method

We need the following averaging operators for functions defined on Ω:

T1v(x) =
1

h2

x1+h∫
x1−h

(
h− |x1 − ξ1|

)
v(ξ1, x2) dξ1, x ∈ ω,

T1v(x) =
2

h2

x1+h∫
x1

(h+ x1 − ξ1)v(ξ1, x2) dξ1, x ∈ γ−1,

T2v(x) =
1

h2

x2+h∫
x2−h

(
h− |x2 − ξ2|

)
v(x1, ξ2) dξ2, x ∈ ω ∪ γ−1.

In the Hilbert space Hh we define the difference operators:

∂x1y = yx1 , Λ1y =

yx1x1 , x ∈ ω
2

h
(yx1 − σy), x ∈ γ−1,

Λ2y =
(
1 + σ

h

3

)
yx2x2 ,

◦
Λ2y = yx2x2 .

We approximate problem (2.1), (2.2) by the following finite-difference
scheme

ΛU := Λ1U + Λ2U = −φ, x ∈ ω ∪ γ−1, (3.1)
where

φ := T1T2f + δ(x1)T2g −
h2

4
δ(x1)gx2x2 ,

δ(x1) =


2

h
, x1 = 0,

0, x1 ̸= 0.

Using obtained solution U on the second stage of the method we correct
the right-hand side of the scheme and then we solve on the same mesh the
following difference scheme

ΛU = −φ, x ∈ ω ∪ γ−1, (3.2)
where

φ = φ+
h2

6

(
Λ1

◦
Λ2U + δ(x1)gx2x2

)
.

The following theorem represents the main result of this paper.

Theorem 3.1. Let the solution of problem (2.2) belong to the space Wm
2 (Ω),

m > 2. Then the convergence rate of the corrected difference scheme (3.2)
in the discrete L2-norm is defined by the estimate

∥U − u∥L2(ω) ≤ chm∥u∥Wm
2 (Ω), 2 < m ≤ 4, (3.3)

where the positive constant c does not depend on u and h.
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4. Auxiliary Results

Let Z = U−u, where U is a solution of the difference scheme (3.1), while
u is a solution of the differential problem (2.1), (2.2).

Lemma 4.1. The error of the difference scheme (3.1) Z = U−u represents
a solution of the following problem

ΛZ = η1 + η2, Z ∈ Hh, (4.1)
where

η1 =

Λ1(T2u− u), x ∈ ω,

Λ1

(
T2u− u− h2

12
ux2x2

)
, x ∈ γ−1,

η2 =

(T1u− u)x2x2 , x ∈ ω,(
T1u− u− h

2

∂u

∂x1
+

h

6
ux1

)
x2x2

, x ∈ γ−1.

Proof. From equation (2.1) we have:
(T2u)x1x1 + (T1u)x2x2 = −T1T2f, x ∈ ω, (4.2)

or, the same,
ux1x1 + ux2x2 + η1 + η2 = −T1T2f, x ∈ ω. (4.3)

Acting on the equation (2.1) by operator T1T2 we obtain
2

h
T2

(
ux1 −

∂u

∂x1

)
+ (T1u)x2x2 = −T1T2f, x ∈ γ−1. (4.4)

Rewriting the addend of the left-hand side of this equality we get
2

h
T2

(
ux1 −

∂u

∂x1

)
=

2

h
T2

(
ux1 − σu

)
+

2

h
T2g = Λ1T2u+

2

h
T2g

= Λ1u+ η1 +
h

6
(ux1x2x2 − σux2x2) +

2

h
T2g, (4.5)

(T1u)x2x2 =
(
1 + σ

h

3

)
ux2x2 −

σh

3
ux2x2

+
(
T1u− u− h

2

∂u

∂x1
+

h

6
ux1

)
x2x2

+
(h
2

∂u

∂x1
− h

6
ux1

)
x2x2

= Λ2u+ η2 −
σh

3
ux2x2 +

(h
2

∂u

∂x1
− h

6
ux1

)
x2x2

. (4.6)

Summing up equalities (4.5), (4.6) we find

2

h
T2

(
ux1 −

∂u

∂x1

)
+ (T1u)x2x2

= Λ1u+ Λ2u+ η1 + η2 +
2

h
T2g +

h

2

( ∂u

∂x1
− σu

)
x2x2
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and according to (4.4) we have

Λ1u+ Λ2u+ η1 + η2 +
2

h
T2g −

h

2
gx2x2 = −T1T2f, x ∈ γ−1. (4.7)

The equalities (4.3), (4.7) can be rewritten as follows

Λ1u+ Λ2u+ η1 + η2 = −φ, x ∈ ω ∪ γ−1. (4.8)

Subtraction of (4.8) from (3.1) proves (4.1). �

Let Z = U − u, where U is a solution of the problem (3.2), and u is a
solution of the differential problem (2.1), (2.2).

Lemma 4.2. The error of the solution of difference scheme (3.2) Z = U−u
represents a solution of the following problem

ΛZ = Λ1ζ1 + Λ2ζ2 +
h2

6
Λ1

◦
Λ2(u− U), (4.9)

where

ζ1 = T2u− u− h2

12
ux2x2 +

h5

720
δ(x1)Λ2

( ∂u

∂x1

)
x1

, x ∈ ω ∪ γ−1,

ζ2 =


T1u− u− h2

12
ux1x1 , x ∈ ω,

T1u− u− h

6

∂u

∂x1
− h

6
ux1 −

h3

180

( ∂u

∂x1

)
x1x1

, x ∈ γ−1.

Proof. (4.2) can be easily rewritten as follows

ux1x1 + ux2x2 +
h2

6
ux1x1x2x2 + Λ1ζ1 + Λ2ζ2 = −T1T2f, x ∈ ω. (4.10)

Summing up (4.7) and identity
◦
Λ2

(2h
6

∂u

∂x1
− 2h

6
ux1

)
+

h2

6
Λ1

◦
Λ2u = −2h

6
gx2x2

we obtain

Λ1u+ Λ1ζ1 + Λ2u+
◦
Λ2ζ2 +

h2

6
Λ1

◦
Λ2u

= −T1T2f − 2

h
T2g +

h

6
gx2x2 , x ∈ γ−1. (4.11)

Then (4.10), (4.11) can be rewritten as follows

Λ1u+ Λ2u+
h2

6
Λ1ux2x2 + Λ1ζ1 + Λ2ζ2

= −T1T2f − δ(x1)T2g +
h2

12
δ(x1)gx2x2 , x ∈ ω ∪ γ−1. (4.12)

Subtracting (4.12) from (3.2) we conclude that the lemma is valid.
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Lemma 4.3. For solutions of the problems (4.1) and (4.9) the following a
priori estimates

∥Z∥W 2
2 (ω) ≤ c

(
∥η1∥+ ∥η2∥

)
, (4.13)

∥Z∥ ≤ c
(
∥ζ1∥+ ∥ζ2∥+ ∥Zx2x2∥

)
(4.14)

are valid.

The proof follows from the facts that Λ1, Λ2 and, therefore, Λ are self-
adjoint and negative definite (see e.g. [8, Ch. IV, § 2]):

∥ΛZ∥ ≥ c∥Z∥W 2
2 (ω),

∥Λ−1Λ1∥ ≤ 1, ∥Λ−1Λ2∥ ≤ 1.

To determine the rate of convergence of the two-stage finite difference
method with the help of Lemma 4.3, it is sufficient to estimate the terms
on the right-hand sides of (4.13), (4.14).

Lemma 4.4. Assume that the linear functional l(u) is bounded in W s
2 (E),

where s = s + ε, s is an integer, 0 < ε ≤ 1, and l(P ) = 0 for every
polynomial P of degree ≤ s in two variables. Then, there exists a constant
c, independent of u, such that |l(u)| ≤ c|u|W s

2 (E).

This lemma is a particular case of the Dupont–Scott approximation the-
orem [3] and represents a generalization of the Bramble–Hilbert lemma [2]
(see also [8]).

Proof of Theorem 3.1. Functionals ηα, ζα, α = 1, 2, are bounded when u ∈
Wm

2 (Ω), m > 2, and they vanish on polynomials up to the third order.
Using the well-known methodology (see e.g. [8, 1]), which is based on the
Lemma 4.4, we have for them the following estimates

|ηα| ≤ chm−3|u|Wm
2 (e), 2 < m ≤ 4,

|ζα| ≤ chm−1|u|Wm
2 (e), 2 < m ≤ 4,

where symbol e denotes those elementary cells on which functionals ηα, ζα,
are defined:

e = e(x) =

{{
(ξ1, ξ2) : |xα − ξα| < h, α = 1, 2

}
, if x ∈ ω,{

(ξ1, ξ2) : 0 < ξ1 < 2h, |x2 − ξ2| < h
}
, if x ∈ γ−1.

As a result we have

∥ηα∥2 =
∑

ω∪γ−1

~h|ηα|2

≤ c
∑

ω∪γ−1

h2m−4|u|2Wm
2 (e) ≤ ch2m−4|u|2Wm

2 (Ω), 2 < m ≤ 4,
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∥ζα∥2 =
∑

ω∪γ−1

~h|ζα|2

≤ c
∑

ω∪γ−1

h2m|u|2Wm
2 (e) ≤ ch2m|u|2Wm

2 (Ω), 2 < m ≤ 4.

These estimates with the Lemma 4.3 accomplish the proof of the Theo-
rem 3.1. �

5. Numerical Experiments

Now, we present some numerical results to demonstrate the convergence
order of the proposed method. The experimental order of convergence in
the discrete L2 and maximum norms are computed by formulas

Ord(Y ) = log2
∥Yh − u∥
∥Yh/2 − u∥

, Ord(Y ) = log2
∥Yh − u∥∞
∥Yh/2 − u∥∞

,

where u is the exact solution of original problem, while Yh denotes the
solution of the difference scheme on the grid with step h.

Below, in the examples the symbols U , U denote solutions of the differ-
ence schemes (3.1), (3.2), respectively.

Let Ω = {x = (x1, x2) : |x1| < 1, 0 < x2 < 1} and Γ be its boundary;
Γ−1 = {(−1, x2) : 0 < x2 < 1}, Γ0 = Γ \ Γ−1.

Consider the problem

∆u = −f, x ∈ Ω,

u = 0, x ∈ Γ0,
∂u

∂x1
= 3u− g(x2), x ∈ Γ−1,

where

f(x) =

{(
π2(x3

1 − x1 + 1)− 6x1

)
sin(πx2), x ∈ (−1, 0)× (0, 1),

π2(1− x1) sin(πx2), x ∈ [0, 1)× (0, 1),

g(x2) = sin(πx2).
The exact solution is

u(x) =

{
(x3

1 − x1 + 1) sin(πx2), x ∈ [−1, 0)× [0, 1],

(1− x1) sin(πx2), x ∈ [0, 1]× [0, 1].
(5.1)

The right-hand side is calculated by the computer algebra system (CAS)
MuPAD.

For x1 = 0:

φ = T1T2f =
(
π2 − π2h3

20
+ h

)
λ2 sin(πx2).

For x1 = h, 2h, 3h, . . . :

φ = T1T2f = π2(1− x1)λ
2 sin(πx2).
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For x1 = −h,−2h,−3h, . . . ,−(n− 1)h:

T1T2f = [π2(x3
1 + 1− x1)− 6x1 +

π2h2

2
x1]λ

2 sin(πx2).

For x = −1:

T1T2f =
(
π2h

(h2

10
− h

2
+

2

3

)
− 2h+ π2 + 6

)
λ2 sin(πx2),

T2g = λ2 sin(πx2), gx2x2 = −π2λ2 sin(πx2).

The results of calculations are given by Tables 1, 2.

Table 1. Experimental order of convergence with respect
to the norm of L2.

h ∥Uh − u∥ ∥Ũh − u∥ Ord(U) Ord(Ũ)

1

4
1.6881 e−02 9.2278 e−04

2.0151 4.0074
1

8
4.1762 e−03 5.7377 e−05

2.0140 4.0245
1

16
1.0340 e−03 3.5256 e−06

2.0087 4.0178
1

32
2.5695 e−04 2.1765 e−07

2.0048 4.0103
1

64
6.4024 e−05 1.3507 e−08

2.0025 4.0055
1

128
1.5978 e−05 8.4099 e−10

Remark. The function defined by formula (5.1) belongs to the class W 3.5
2 (Ω).

The order of convergence obtained experimentally, and equaled 4, may point
at the fact that condition u ∈ Wm

2 (Ω) in the Theorem 3.1 is sufficient, not
necessary.

6. Conclusion

We consider a mixed boundary-value problem for the 2D Poisson’s equa-
tion in a square which is solved by the finite-difference scheme with ap-
proximation of order O(h2) based on a 5-point stencil. Using the obtained
solution, we correct the right-hand side of the scheme and repeatedly solve
the scheme on the same mesh with the same stencil. Using the methodol-
ogy of obtaining the consistent estimates, worked by Samarskiǐ et al., it is
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Table 2. Experimental order of convergence with respect
to the maximum norm.

h ∥Uh − u∥∞ ∥Ũh − u∥∞ Ord(U) Ord(Ũ)

1

4
2.8838 e−02 1.6708 e−03

1.9843 3.8432
1

8
7.2884 e−03 1.1641 e−04

1.9960 3.9825
1

16
1.8271 e−03 7.3647 e−06

1.9990 3.9902
1

32
4.5710 e−04 4.6344 e−07

1.9997 3.9989
1

64
1.1430 e−04 2.8988 e−08

1.9997 3.9997
1

128
2.8579 e−05 1.8121 e−09

proved that the solution of the corrected difference scheme converges at rate
O(hm) in the discrete L2(ω)-norm, when the exact solution belongs to the
Sobolev space Wm

2 (Ω), m ∈ (2, 4]. For determination of the convergence of
the offered method we essentially use the convergence estimates obtained in
the first and second stages with discrete W 2

2 and L2 - norms, respectively.
The method can be generalized for an elliptic differential equation with

mixed derivatives and a system of equations, and also for the case of other
type boundary conditions.
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