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Abstract. The nonautonomous delay differential system
x′(t) = f(t, x(t− τ)),

is considered, where τ > 0, f : R×Rn → Rn is a continuous vector function
such that

f(t+ 4τ, x) = f(t, x), f(t, x) = ∇xF (t, x).

Using the critical point theory, the conditions ensuring the existence of a
nontrivial 4τ -periodic solution of that system are established in the case,
where F (t, x) is superquadratic in x.
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ÒÄÆÉÖÌÄ. ÂÀÍáÉËÖËÉÀ ÀÒÀÀÅÔÏÍÏÌÉÖÒÉ ÃÀÂÅÉÀÍÄÁÖËÉ ÃÉ×ÄÒÄÍ-
ÝÉÀËÖÒÉ ÓÉÓÔÄÌÀ

x′(t) = f(t, x(t− τ)),

ÓÀÃÀÝ τ > 0, áÏËÏ f : R ×Rn → Rn ÖßÚÅÄÔÉ ÅÄØÔÏÒÖËÉ ×ÖÍØÝÉÀÀ
ÉÓÄÈÉ, ÒÏÌ

f(t+ 4τ, x) = f(t, x), f(t, x) = ∇xF (t, x).

ÊÒÉÔÉÊÖËÉ ßÄÒÔÉËÉÓ ÈÄÏÒÉÉÓ ÂÀÌÏÚÄÍÄÁÉÈ ÃÀÃÂÄÍÉËÉÀ ÐÉÒÏÁÄÁÉ,
ÒÏÌËÄÁÉÝ ÖÆÒÖÍÅÄËÚÏ×ÄÍ ÀÙÍÉÛÍÖËÉ ÓÉÓÔÄÌÉÓ 4τ -ÐÄÒÉÏÃÖËÉ ÀÌÏ-
ÍÀáÓÍÉÓ ÀÒÓÄÁÏÁÀÓ ÉÌ ÛÄÌÈáÅÄÅÀÛÉ, ÒÏÝÀ F (t, x) ÀÒÉÓ x-ÉÓ ÌÉÌÀÒÈ
ÓÖÐÄÒÊÅÀÃÒÀÔÖËÉ.
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1. Introduction

This paper studies the existence of periodic solutions for the first-order
delay differential equations (with superquadratic growth conditions)

x′(t) = f(t, x(t− τ)), (1.1)
where f ∈ C(R×Rn, Rn) and τ > 0 is a given constant.

The results on the existence of periodic solutions for a functional differ-
ential equation were obtained by several authors, but there are only a few
results on periodic solutions to delay differential equations using critical
point theory. We refer the reader to [3–7,9–13] and the references therein.

In this paper, we study periodic solutions of (1.1) under some superquad-
ratic condition. We apply critical point theory directly in the study of
periodic orbits of the system (1.1); we do not reduce the original existence
problem (1.1) to an existence problem for an associated Hamiltonian system.

Throughout this paper, we always assume that:
(F1) f is periodic with respect to the first variable with the period 4τ

and is odd with respect to the phase variables, i.e.,
f(t+ 4τ, x) = f(t, x), f(t,−x) = −f(t, x)

for every t ∈ R and x ∈ Rn;
(F2) there exists a continuously differentiable τ -periodic function F (t, x) ∈

C1(R×Rn, R+) with respect to t, such that ∇xF = f .
For our first result we assume the following:
(H1) there is a constant ν > 2 such that

0 < νF (t, x) ≤ (x, f(t, x)) whenever x ̸= 0.

Here and in the sequel, ( · , · ) : Rn ×Rn → R denotes the standard
inner product in Rn and | · | the induced norm.

(H2) there is a constant a1 > 0 such that
|f(t, x)| ≤ a1(x, f(t, x)), ∀ |x| ≥ 1.

Remark 1. Set a2 = min
|x|=1, t∈[0,τ ]

F (t, x), a3 = max
|x|≤1, t∈[0,τ ]

F (t, x). We have

from (F2) and (H1) that
F (t, x) ≥ a2|x|ν , ∀ |x| ≥ 1

and
F (t, x) ≥ a2|x|ν − a3, ∀x ∈ Rn.

Remark 2. Choose q > 2. By (F2) and (H1), for any ε > 0, there exists
a4 > 0 such that

F (t, x) ≤ ε|x|2 + a4|x|q, ∀ (t, x) ∈ [0, τ ]×Rn.

Theorem 1.1. Assume (F1)–(F2) and (H1)–(H2). Then the system (1.1)
possesses a nontrivial 4τ -periodic solution.
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It is easy to see that (H1) does not include nonlinearities like
F (t, x) = |x|2

(
ln(1 + |x|p)

)q
, p, q > 1. (1.2)

In the theorem below we study periodic solutions of (1.1) under some su-
perquadratic condition which covers a case like (1.2). We assume F satisfies
the following conditions:

(V1) F (t, x) ≥ 0, for all (t, x) ∈ [0, 4τ ]×Rn;
(V2) F (t, x) = o(|x|2) as |x| → 0 uniformly in t;

(V3)
F (t,x)
|x|2 → +∞ as |x| → +∞ uniformly in t;

(V4) there exist positive constants β > 1, 1 < λ < 1 + β−1
β , c1, c2, c3

and c4 such that
(x, f(t, x))− 2F (t, x) ≥ c1|x|β − c2, (t, x) ∈ [0, 4τ ]×Rn, (1.3)

|f(t, x)| ≤ c3|x|λ + c4, (t, x) ∈ [0, 4τ ]×Rn. (1.4)

Theorem 1.2. Assume (F1)–(F2) and (V1)–(V4). Then (1.1) possesses a
nontrivial 4τ -periodic solution.

This paper is motivated by [6] where the existence and multiplicity of
periodic solutions for the delay differential equations

x′(t) = −f(x(t− τ))

have been discussed.
The paper is organized as follows. In Section 2, we establish a variational

structure for (1.1) with a periodic boundary value condition, and we show
that the existence of 4τ -periodic solutions is equivalent to the existence of
critical points of some variational functional defined on a suitable Hilbert
space. Our main results will be proved in Section 3.

2. Variational Structure

By means of the transformation

t =
2τ

π
s, x(t) = y(s) (2.1)

the system (1.1) receives the form

y′(s) = g
(
s, y

(
s− π

2

))
,

where
g(s, y) =

2τ

π
f
(2τ
π

s, y
)
,

and g is 2π-periodic with respect to the first variable. Therefore, without
loss of generality, one can assume that τ = π

2 and f is 2π-periodic with
respect to the first variable. Thus (1.1) transforms to

x′(t) = f
(
t, x

(
t− π

2

))
, (2.2)
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and we seek for 2π-periodic solutions of (2.2) which, of course, correspond
to 4τ -periodic solutions of (1.1).

Let C∞(S1, Rn) denote the space of 2π-periodic C∞ functions on R with
values in Rn. Any x ∈ C∞(S1, Rn) has the following Fourier expansion in
the sense that it is convergent in the space L2(S1, Rn),

x(t) =
a0√
2π

+
1√
π

+∞∑
k=1

(ak cos kt+ bk sin kt), (2.3)

where a0, ak, bk ∈ Rn (k = 1, 2, . . . ).
Let x ∈ L2(S1, Rn). If for every z ∈ C∞(S1, Rn),

2π∫
0

(
x(t), z′(t)

)
dt = −

2π∫
0

(
y(t), z(t)

)
dt,

then y is called a weak derivative of x denoted by y = ẋ(t). Here and in
the sequel, ( · , · ) : Rn ×Rn → R denotes the standard inner product in Rn

and | · | the induced norm.
Let H 1

2 (S1, Rn) be the closure of C∞(S1, Rn) with respect to the Hilbert
norm

∥x∥
H

1
2 (S1,Rn)

=

[
|a0|2 +

+∞∑
k=1

(1 + k)
(
|ak|2 + |bk|2

)] 1
2

. (2.4)

Now H
1
2 (S1, Rn) can also be obtained by interpolation from the Sobolev

spaces H1(S1, Rn) and L2(S1, Rn). More specifically, for any x ∈ L2(S1, Rn),
if x has a Fourier expansion with the convergence in the space L2(S1, Rn),
then x has a representation as in (2.3). Thus, x ∈ H

1
2 (S1, Rn), if and only

if x ∈ L2(S1, Rn), and

|a0|2 +
+∞∑
k=1

(1 + k)
(
|ak|2 + |bk|2

)
< +∞.

For any x, y ∈ H
1
2 (S1, Rn), ⟨ · , · ⟩ can be explicitly expressed by

⟨x, y⟩
H

1
2 (S1,Rn)

= (a0, a0) +

+∞∑
k=1

(1 + k)
(
(ak, ak) + (bk, bk)

)
, (2.5)

where

y(t) =
a0√
2π

+
1√
π

+∞∑
k=1

(ak cos kt+ bk sin kt).

From the definition of H 1
2 (S1, Rn), we have

|a0|2 +
+∞∑
k=1

(1 + k)
(
|ak|2 + |bk|2

)
< +∞. (2.6)
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Furthermore, let L∞
2π(R,Rn) denote the space of 2π-periodic essentially

bounded (measurable) functions from R into Rn equipped with the norm
∥x∥L∞

2π
:= ess sup

{
|z(t)| : t ∈ [0, 2π]

}
.

Set
E =

{
x ∈ H

1
2 (S1, Rn) : x

(
t+

π

2

)
= −x

(
t− π

2

)}
.

Lemma 2.1. Let E =
{
x ∈ H

1
2 (S1, Rn) : x(t+ π

2 ) = −x(t− π
2 )
}

. Then

E =

{
x(t) =

1√
π

+∞∑
k=1

(
a2k−1 cos(2k − 1)t+ b2k−1 sin(2k − 1)t

)}
, (2.7)

where a2k−1, b2k−1 ∈ Rn.

Proof. For

x(t) =
a0√
2π

+
1√
π

+∞∑
k=1

(ak cos kt+ bk sin kt) ∈ E,

we have x(t) = −x(t+ π), and this implies
a0 = −a0, ak = (−1)k+1ak, bk = (−1)k+1bk,

so (2.7) holds.
We define

⟨Ax, y⟩ = 1

2

2π∫
0

(
ẋ
(
t+

π

2

)
, y
)
dt, ∀x, y ∈ E, (2.8)

Φ(x) =

2π∫
0

F (t, x(t)) dt (2.9)

and

I(x) =

2π∫
0

[
1

2

(
ẋ
(
t+

π

2

)
, x(t)

)
− F (t, x(t))

]
dt =

1

2
⟨Ax, x⟩ − Φ(x), (2.10)

where ẋ(t) denotes the weak derivative of x(t). Then A has a sequence of
eigenvalues

· · · ξ(−m) ≤ · · · ≤ ξ(−2) ≤ ξ(−1) < 0 < ξ(1) ≤ ξ(2) ≤ · · · ≤ ξ(m) · · ·
with ξ(m) → ∞ and ξ(−m) → −∞ as m → ∞. Let φj be the eigenvector of
A corresponding to ξ(j), j = ±1,±2, . . . ,±m, . . . . Set

E0 = ker(A),
E− = the negative eigenspace of A,

E+
k = the positive eigenspace of A.

Then E = E− ⊕ E0 ⊕ E+. �
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From the argument in [1, 2], we have

Lemma 2.2. Assume (F1)–(F2) and (H1)–(H2) (or (F1)–(F2) and (V1)–
(V4)) hold. Then the functional I is continuously differentiable on
H

1
2 (S1, Rn) and I ′(x) is defined by

⟨I ′(x), y⟩
H

1
2 (S1,Rn)

=

2π∫
0

(
ẋ
(
t+

π

2

)
−f(t, x), y

)
dt, y ∈ H

1
2 (S1, Rn). (2.11)

In addition, we need the following observations, which are necessary in
the proof of Theorem 1.1 and Theorem 1.2.

Lemma 2.3. A is self-adjoint on E and Φ′(x) ∈ E for ∀x ∈ E.

Proof. For any x, y ∈ E, by the Riesz representation theorem, Ax can be
viewed as a function belonging to E ⊆ H

1
2 (S1, Rn) such that ⟨Ax, y⟩ =

(Ax)(y).
Combining (2.8) and y(t) = −y(t− π), we have

⟨Ax, y⟩E =

2π∫
0

(
ẋ
(
t+

π

2

)
, y(t)

)
dt = −

2π∫
0

(
x
(
t+

π

2

)
, ẏ(t)

)
dt =

= −
2π∫
0

(
x(t), ẏ

(
t− π

2

))
dt =

2π∫
0

(
x(t), ẏ

(
t+

π

2

))
dt = ⟨x,Ay⟩E .

Thus A is self-adjoint on E.
Now ∀x ∈ E and y ∈ H

1
2 (S1, Rn), we have from (F1), (F2) and (2.9)

that

⟨
Φ′(x(t+ π)), y

⟩
E
=

2π∫
0

f
(
(t, x(t+ π)), y(t)

)
dt =

=

2π∫
0

f
(
(t,−x(t)), y(t)

)
dt = −

2π∫
0

f
(
(t, x(t)), y(t)

)
dt = −

⟨
Φ′(x(t)), y

⟩
E
.

Thus Φ′(x) ∈ E for ∀x ∈ E. �

Lemma 2.4. The existence of 2π-periodic solutions x(t) for (2.2) is equiv-
alent to the existence of critical points of the functional I.

Lemma 2.5 ( [8]). Let E be a real Hilbert space with E = E1 ⊕ E2 and
E1 = (E2)

⊥. Suppose I ∈ C1(E,R) satisfy the (PS) condition, and
(C1) I(u) = 1

2 (Lu, u)+b(u), where Lu=L1P1u+L2P2u, Li : Ei 7−→ Ei is
bounded and self-adjoint, Pi is the projector of E onto E(i), i=1, 2;

(C2) b′ is compact;



130 Chengjun Guo, Donal O’Regan, Chengjiang Wang and Ravi P. Agarwal

(C3) there exist a subspace Ẽ ⊂ E and sets S ⊂ E, Q ⊂ Ẽ and constants
α̃ > ω such that
(i) S ⊂ E1 and I|S ≥ α̃;
(ii) Q is bounded and I|∂Q ≤ ω;
(iii) S and ∂Q link.

Then I possesses a critical value c ≥ α given by

c = inf
g∈Γ

sup
u∈Q

I(g(1, u)),

where

Γ ≡
{
g ∈ C([0, 1]× E,E) : g satisfies (Γ1)–(Γ3)

}
,

(Γ1) g(0, u) = u;
(Γ2) g(t, u) = u for u ∈ ∂Q;
(Γ3) g(t, u) = eθ(t,u)Lu + χ(t, u), where θ(t, u) ∈ C([0, 1] × E,R) and χ

is compact.

3. Proof of the Main Results

In order to prove Theorem 1.1 and Theorem 1.2, the following result
in [8, p. 36, Proposition 6.6] will be used.

Proposition 3.1. There is a positive constant cθ such that for x ∈ E the
inequality

∥x∥Lθ
2π

≤ cθ∥x∥
H

1
2 (S1,Rn)

(3.1)

holds, where θ ∈ [1,+∞).

Lemma 3.1. Under the conditions of Theorem 1.1, I satisfies the (PS)
condition.

Proof. Assume that {xn}n∈N in H
1
2 (S1, Rn) is a sequence such that

{I(xn)}n∈N is bounded and I ′(xn) → 0, as n → +∞. Then there exists a
constant d1 > 0 such that

|I(xn)| ≤ d1, ∥I ′(xn)∥
(H

1
2 (S1,Rn))∗

→ 0 as n → ∞, (3.2)

where (H
1
2 (S1, Rn))∗ denotes the dual space of H 1

2 (S1, Rn).
We first prove that {xn}n∈N is bounded. Since xn ∈ H

1
2 (S1, Rn), we

have xn = x0
n + x+

n + x−
n ∈ E0 ⊕ E+ ⊕ E−.



Periodic Solutions of Superquadratic Nonautonomous DSs with a Delay 131

From (F2), (H1) and (2.8)–(2.10), noting Remark 1, there exist two pos-
itive constants d2 and d3 such that

2d1 ≥ 2I(xn)− ⟨I ′(xn), xn⟩ =
2π∫
0

[(
xn, f(t, xn)

)
− 2F (t, xn)

]
dt =

=

2π∫
0

[(
xn, f(t, xn)

)
− νF (t, xn) + (ν − 2)F (t, xn)

]
dt ≥

≥
2π∫
0

[
d2(ν − 2)|xn(t)|ν − d3

]
dt. (3.3)

This implies
2π∫
0

|xn(t)|ν dt ≤
2d1 + 2πd3
d2(ν − 2)

= M̃∗
0 . (3.4)

Consider {∥x0
n∥H 1

2 (S1,Rn)
}n∈N. Arguing indirectly, we suppose{

∥x0
n∥H 1

2 (S1,Rn)

}
n∈N is unbounded. Then we have ∥x0

n∥H 1
2 (S1,Rn)

→ ∞.
Note dim(E0) < +∞, and this implies that there are constants b1 and b2
such that

b1∥x0
n∥Lν

2π
≤ ∥x0

n∥H 1
2 (S1,Rn)

≤ b2∥x0
n∥Lν

2π
. (3.5)

From (3.5), we have

∥xn∥Lν
2π

≥ ∥x0
n∥Lν

2π
→ +∞ as ∥x0

n∥H 1
2 (S1,Rn)

→ +∞. (3.6)

We have from (3.4) and (3.6) that

M̃∗
0 ≥

2π∫
0

|xn(t)|ν dt≥
2π∫
0

|x0
n(t)|ν dt−→+∞, as ∥x0

n∥H 1
2 (S1,Rn)

→+∞. (3.7)

This is a contradiction. Hence {∥x0
n∥H 1

2 (S1,Rn)
}n∈N is bounded. Therefore

there exists a constant M̃∗
1 > 0 such that

∥x0
n∥H 1

2 (S1,Rn)
≤ M̃∗

1 . (3.8)

We have from (H1) and (3.3) that

2d1 ≥ 2I(xn)− ⟨I ′(xn), xn⟩ =

=

2π∫
0

[(
xn, f(t, xn)

)
− 2F (t, xn)

]
dt ≥

2π∫
0

(
1− 2

ν

)(
xn, f(t, xn)

)
dt. (3.9)
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This implies from (H2) and (3.9) that

M̃∗
2 =

2νd1
(ν − 2)

≥
2π∫
0

(
xn, f(t, xn)

)
dt ≥ 1

a1

∫
|xn|≥1

|f(t, xn)| dt. (3.10)

We now show that
∥xn∥L∞

2π
≤ M̃∗

3 . (3.11)
If not, by passing to a subsequence, without the loss of generality, assume
that there exist tn and t̃n such that

|xn(tn)| = M∗
n, lim

n→∞
M∗

n = ∞, |xn(t̃n)| =
M̃∗

0 M̃
∗
4

2π
,

where M̃∗
4 ≥ 2 is a constant such that M̃∗

0 M̃
∗
4

2π ≥ 1, and M̃∗
0 M̃

∗
4

2π ≤ |xn(t)| ≤
M∗

n for t ∈ (t̃n, tn) ⊆ [0, 2π]. (In fact, suppose we cannot find a t̃n such

that |xn(t̃n)| ≤ M̃∗
0 M̃

∗
4

2π . Then from (3.4) we have M̃∗
0 ≥

2π∫
0

|xn(t)|ν dt ≥
2π∫
0

|xn(t)| dt ≥ M̃∗
0 M̃

∗
4 , a contradiction.)

From (F2) and (H1), noting Remark 2, for any ε̃ > 0, there exists a
constant d̃4 > 0 such that

|f(t, x)| ≤ ε̃|x|+ d̃4, ∀ |x| < 1, uniformly in t. (3.12)
Set

Λn =

2π∫
0

∣∣∣ẋn

(
s+

π

2

)
− f(s, xn(s))

∣∣∣ ds.
We have from (2.11) and (3.2) that lim

n→∞
Λn = 0.

Hence, by the periodicity of xn(t) and f(t, xn(t)) with respect to t, (3.10)
and (3.12), there exists a constant d4 > 0 such that

M∗
n − M̃∗

0 M̃
∗
4

2π
= |xn(tn)| −

∣∣xn(t̃n)
∣∣ = tn∫

t̃n

d

ds
|xn(s)| ds ≤

≤
tn∫

t̃n

|ẋn(s)| ds ≤
2π∫
0

|ẋn(s)| ds =
2π∫
0

∣∣∣ẋn

(
s+

π

2

)∣∣∣ ds =
=

2π∫
0

∣∣∣ẋn

(
s+

π

2

)
− f(s, xn(s)) + f(s, xn(s))

∣∣∣ ds ≤
≤

2π∫
0

∣∣∣ẋn

(
s+

π

2

)
− f(s, xn(s))

∣∣∣ ds+ 2π∫
0

∣∣f(s, xn(s))
∣∣ ds =
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=

[ ∫
|xn|≥1

∣∣f(s, xn(s))
∣∣ ds+ ∫

|xn|<1

∣∣f(s, xn(s))
∣∣ds]+ Λn ≤

≤ (a1M̃
∗
2 + d4) + Λn, (3.13)

where a1, d4 and M̃∗
2 are constants independent on n. However, we have

Λn → 0 and M∗
n → ∞, as n → ∞, which leads to a contradictions. Hence

there exist two positive constants ℓ, M̃∗
3 such that

∥xn∥L∞
2π

≤ (a1M̃
∗
2 + d4) + ℓ+

M̃∗
0 M̃

∗
4

2π
= M̃∗

3 . (3.14)

This shows that (3.11) holds.
Using (H1), (H2), (2.9) and (3.11), there exists a constant C̃3 > 0 such

that

∥x+
n ∥H 1

2 (S1,Rn)
≥ ⟨I ′(xn), x

+
n ⟩ = ⟨Ax+

n , x
+
n ⟩ −

2π∫
0

[(
x+
n , f(t, xn)

)]
dt ≥

≥ ⟨Ax+
n , x

+
n ⟩ −

( ∫
|xn|≥1

+

∫
|xn|<1

)
|x+

n | |f(t, xn)| dt ≥

≥ ⟨Ax+
n , x

+
n ⟩ −

∫
|xn|≥1

|x+
n | |f(t, xn)| dt− C̃3, (3.15)

∥x−
n ∥H 1

2 (S1,Rn)
≥ −⟨I ′(xn), x

−
n ⟩ = −⟨Ax−

n , x
−
n ⟩+

2π∫
0

[(
x−
n , f(t, xn)

)]
dt ≥

≥ −⟨Ax−
n , x

−
n ⟩ −

( ∫
|xn|≥1

+

∫
|xn|<1

)
|x+

n | |f(t, xn)| dt ≥

≥ −⟨Ax−
n , x

−
n ⟩ −

∫
|xn|≥1

|x−
n | |f(t, xn)| dt− C̃3. (3.16)

From (3.11), (3.12) and (3.15), (3.16), we have

∥x+
n ∥H 1

2 (S1,Rn)
+ ∥x−

n ∥H 1
2 (S1,Rn)

≥

≥ ⟨Ax+
n , x

+
n ⟩ − ⟨Ax−

n , x
−
n ⟩ − 2∥xn∥L∞

2π

∫
|xn|≥1

|f(t, xn)| dt− 2C̃3 ≥

≥ ξ1∥x+
n ∥2

H
1
2 (S1,Rn)

− ξ−1∥x−
n ∥2

H
1
2 (S1,Rn)

− 2a1M̃
∗
2 M̃

∗
3 − 2C̃3, (3.17)

where ξ1 is the smallest positive eigenvalue and ξ−1 is the largest negative
eigenvalue of the operator A, respectively.
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From (3.8) and (3.17), there exists a positive constant D̃2 > 0 such that

D̃2

(
∥x+

n ∥H 1
2 (S1,Rn)

+ ∥x−
n ∥H 1

2 (S1,Rn)
+ ∥x0

n∥H 1
2 (S1,Rn)

)
≥

≥ ∥x+
n ∥H 1

2 (S1,Rn)
+ ∥x−

n ∥H 1
2 (S1,Rn)

+ ξM̃∗
1 ∥x0

n∥H 1
2 (S1,Rn)

≥

≥ ∥x+
n ∥H 1

2 (S1,Rn)
+ ∥x−

n ∥H 1
2 (S1,Rn)

+ ξ∥x0
n∥2

H
1
2 (S1,Rn)

≥

≥ ξ1∥x+
n ∥2

H
1
2 (S1,Rn)

− ξ−1∥x−
n ∥2

H
1
2 (S1,Rn)

+

+ ξ∥x0
n∥2

H
1
2 (S1,Rn)

− 2a1M̃
∗
2 M̃

∗
3 − 2C̃3 ≥

≥ ξ∥xn∥2
H

1
2 (S1,Rn)

− 2a1M̃
∗
2 M̃

∗
3 − 2C̃3, (3.18)

here ξ = min{ξ1,−ξ−1}. We have from (3.18) that

ξ∥xn∥2
H

1
2 (S1,Rn)

− D̃2∥xn∥
H

1
2 (S1,Rn)

− 2a1M̃
∗
2 M̃

∗
3 − 2C̃3 < 0.

This implies that {∥xn∥
H

1
2 (S1,Rn)

}n∈N is bounded. Going, if necessary, to
a subsequence, we can assume that there exists x ∈ Ek such that xkn ⇀ x

as n → +∞ in H
1
2 (S1, Rn), which implies xn → x uniformly on [0, 2π].

Hence (I ′(xn)− I ′(x))(xn − x) → 0 and ∥xn − x∥L2
2π

→ 0. Set

Φ =

2π∫
0

(
f(t, xn(t))− f(t, x(t)), xn(t)− x(t)

)
dt.

It is easy to check that Φ → 0, as n → +∞. Moreover, an easy computation
shows that(

I ′(xn)− I ′(x)
)
(xn − x) =

⟨
A(xn − x), (xn − x)

⟩
− Φ.

By (2.5), (2.8) and (2.10), this implies ∥xn − x∥
H

1
2 (S1,Rn)

→ 0. �

Proof of Theorem 1.1. The proof will be divided into two steps.

Step 1. Choose q>2. By (H1), for any ε̂>0, there exists M̂ >0 such that

F (t, x) ≤ ε̂|x|2 + M̂ |x|q, ∀ (t, x) ∈ [0,
π

2
]×Rn. (3.19)

From (3.1) and (3.19), for x ∈ E1 = E+, there exists a positive constant cq
such that

I(x) =
1

2
⟨Ax, x⟩ −

2π∫
0

F (t, x) dt ≥ 1

2
⟨Ax, x⟩ −

(
ε̂∥x∥2L2

2π
+ M̂∥x∥q

Lq
2π

)
≥

≥ ξ1
2
∥x∥2

H
1
2 (S1,Rn)

− cq

(
ε̂∥x∥2

H
1
2 (S1,Rn)

+ M̂∥x∥q
H

1
2 (S1,Rn)

)
. (3.20)
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Choose ε̂ = ξ1
8cq

, ρ = ( ξ1
8cpM̂

)
1

q−2 and denote by Bρ the closed ball in
H

1
2 (S1, Rn) of radius ρ centered at the origin. Let S = ∂Bρ ∩ E1, then

I(x) ≥ α̃ = ξ1ρ
2

4 for all x ∈ S, and (C3)(i) of Lemma 2.5 holds.

Step 2. Let e ∈ E+ with ∥e∥
H

1
2 (S1,Rn)

= 1 and E2 = E− ⊕ E0, Q =

E− ⊕ E0 ⊕ span{e}.
For x = x0 + x− ∈ E2, then

I(x+ γe) =
1

2
⟨A(x+ γe), (x+ γe)⟩ −

2π∫
0

F (t, x+ γe) dt =

=
γ2

2
⟨Ae, e⟩+ 1

2
⟨Ax−, x−⟩ −

2π∫
0

F (t, x+ γe) dt. (3.21)

By (H1), it is clear that I(x) ≤ 0 on x ∈ E2. Since E0 is finite dimensional,
there exists b̂1 > 0 such that

∥A∥ 1
2 ∥e∥

H
1
2 (S1,Rn)

≤ b̂1∥e∥L2 , ∥A∥ 1
2 ∥x0∥

H
1
2 (S1,Rn)

≤ b̂1∥x0∥L2 (3.22)

for all x0 ∈ E0. Moreover, by (H1),

F (t, x) ≥ b̂21|x|2 − b̂2, ∀ (t, x) ∈
[
0,

π

2

]
×Rn. (3.23)

We have from (3.23) that
2π∫
0

F (t, γe+ x) dt ≥ b̂21∥γe+ x∥2L2 − b̂22π ≥

≥ b̂21
(
∥x0∥2L2 + ∥x−∥2L2 + γ2∥e∥2L2

)
− b̂22π. (3.24)

By (2.10) and (3.24), for all γ > 0 and x ∈ E2 we get

I(x+ γe) ≤ 1

2

⟨
A(x+ γe), (x+ γe)

⟩
−

2π∫
0

F (t, x+ γe) dt ≤

≤ γ2

2
⟨Ae, e⟩+ 1

2
⟨Ax−, x−⟩ − ∥A∥

(
∥x0∥2

H
1
2 (S1,Rn)

+ γ2
)
+ b̂22π ≤

≤ ∥A∥γ2

2
+
ξ−1

2
∥x−∥2

H
1
2 (S1,Rn)

−∥A∥
(
∥x0∥2

H
1
2 (S1,Rn)

+γ2
)
+b̂22π ≤

≤ −∥A∥γ2

2
+

ξ−1

2
∥x−∥2

H
1
2 (S1,Rn)

+ b̂22π. (3.25)

Let

γ1 = 2

√
b̂2π

∥A∥
and γ2 = 2

√
b̂2π

−ξ−1
.
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Then I(x + γe) ≤ 0 if either γ ≥ γ1, or ∥x∥
H

1
2 (S1,Rn)

≥ γ2. Consequently,
I|∂Q ≤ 0, where Q = {γe; γ ∈ [0, γ1]} ⊕ (Bγ2 ∩ E2). By Lemma 2.5, S and
∂Q link and (C3)(ii) and (C3)(iii) of Lemma 2.5 hold.

From (H1), (C1) and (C2) of Lemma 2.5 are true, so by Lemma 2.5, I
has a nonconstant critical point x∗ such that I(x∗) ≥ α̃ > 0. Now x∗ is a
2π-solution of (2.2), hence x∗ is a 4τ -solution of (1.1). �
Lemma 3.2. Under the conditions of Theorem 1.2, I satisfies the (PS)
condition.
Proof. We have from (F2), (2.8)–(2.10) and (1.3) of (V4) that

2d1 ≥ 2I(xn)− ⟨I ′(xn), xn⟩ =
2π∫
0

[
(xn, f(t, xn))− 2F (t, xn)

]
dt ≥

≥
2π∫
0

[
c1|xn(t)|β − c2

]
dt. (3.26)

This implies
2π∫
0

|xn(t)|β dt ≤
2d1 + 2πc2

c1
= M̃0. (3.27)

Consider {∥x0
n∥H 1

2 (S1,Rn)
}n∈N. Arguing indirectly, we suppose{

∥x0
n∥H 1

2 (S1,Rn)

}
n∈N is unbounded. Then we have ∥x0

n∥H 1
2 (S1,Rn)

→ ∞.

Note that dim(E0) < +∞, and this implies that there are constants b̃1 and
b̃2 such that

b̃1∥x0
n∥Lβ

2π
≤ ∥x0

n∥H 1
2 (S1,Rn)

≤ b̃2∥x0
n∥Lβ

2π
. (3.28)

From (3.28), we have
∥xn∥Lβ

2π
≥ ∥x0

n∥Lβ
2π

→ +∞ as ∥x0
n∥H 1

2 (S1,Rn)
→ +∞. (3.29)

We have from (3.27) and (3.29) that

M̃0≥
2π∫
0

|xn(t)|β dt≥
2π∫
0

|x0
n(t)|β dt−→+∞ as ∥x0

n∥H 1
2 (S1,Rn)

→+∞. (3.30)

This is a contradiction. Hence {∥x0
n∥H 1

2 (S1,Rn)
}n∈N is bounded. Therefore

there exists a constant M̃1 > 0 such that
∥x0

n||H 1
2 (S1,Rn)

≤ M̃1. (3.31)

Let α = β−1
β(λ−1) , then{

1 < λ < 1 + β−1
β , 0 < (λα−1)

α < 1,

λα− 1 = α− 1
β , α > 1.

(3.32)
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Using (3.1) and (3.32), we have (here 1
α + 1

σ = 1)

∥x+
n ∥H 1

2 (S1,Rn)
≥

⟨
I ′(xn), x

+
n

⟩
≥ ⟨Ax+

n , x
+
n ⟩ −

2π∫
0

|x+
n | |f(t, xn)| dt ≥

≥ ⟨Ax+
n , x

+
n ⟩ −

( 2π∫
0

|f(t, xn)|α dt

) 1
α
( 2π∫

0

|x+
n |σ dt

) 1
σ

≥

≥ ⟨Ax+
n , x

+
n ⟩ −

( 2π∫
0

|f(t, xn)|α dt

) 1
α

cσ∥x+
n ∥H 1

2 (S1,Rn)
, (3.33)

∥x−
n ∥H 1

2 (S1,Rn)
≥ −

⟨
I ′(xn), x

−
n

⟩
≥ −⟨Ax−

n , x
−
n ⟩ −

2π∫
0

|x−
n | |f(t, xn)| dt ≥

≥ −⟨Ax−
n , x

−
n ⟩ −

( 2π∫
0

|f(t, xn)|α dt

) 1
α
( 2π∫

0

|x−
n |σ dt

) 1
σ

≥

≥ −⟨Ax−
n , x

−
n ⟩ −

( 2π∫
0

|f(t, xn)|α dt

) 1
α

cσ∥x−
n ∥H 1

2 (S1,Rn)
. (3.34)

By (1.4) of (V4) and (3.1), there exist two constants C̃1 > 0 and C̃2 > 0
such that

2π∫
0

|f(t, xn)|α dt ≤
2π∫
0

[
|c3|xn|λ + c4

]α
dt ≤

2π∫
0

cα3 |xn|λα dt+ C̃1 ≤

≤ cα3

( 2π∫
0

|xn|β dt
) 1

β
( 2π∫

0

|xn|(λα−1) β
β−1 dt

)1− 1
β

+ C̃1 =

= cα3

( ∫
|xn|≥1

|xn|β dt
) 1

β
( ∫
|xn|≥1

|xn|(λα−1) β
β−1 dt

)1− 1
β

+ C̃1+

+ cα3

( ∫
|xn|<1

|xn|β dt
) 1

β
( ∫
|xn|<1

|xn|(λα−1) β
β−1 dt

)1− 1
β

≤

≤ cα3 (c β(λα−1)
β−1

)λα−1

( 2π∫
0

|xn|β dt
) 1

β

∥xn∥λα−1

H
1
2 (S1,Rn)

+ C̃1 + C̃2. (3.35)

From (3.27) and (3.33)–(3.35), we have
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∥x+
n ∥H 1

2 (S1,Rn)
+ ∥x−

n ∥H 1
2 (S1,Rn)

≥ ⟨Ax+
n , x

+
n ⟩ − ⟨Ax−

n , x
−
n ⟩−

−
( 2π∫

0

|f(t, xn)|α dt

) 1
α

cσ

(
∥x+

n ∥H 1
2 (S1,Rn)

+ ∥x−
n ∥H 1

2 (S1,Rn)

)
≥

≥ ξ1∥x+
n ∥2

H
1
2 (S1,Rn)

− ξ−1∥x−
n ∥2

H
1
2 (S1,Rn)

−

− 2cσ

[
D̃0∥xn∥λα−1

H
1
2 (S1,Rn)

+ C̃1 + C̃2

] 1
α ∥xn∥

H
1
2 (S1,Rn)

, (3.36)

where

D̃0 = cα3
(
c β(λα−1)

β−1

)λα−1
(M̃0)

1
β .

From (3.31) and (3.36), there exists a positive constant D̃1 > 0 such that

D̃1

(
∥x+

n ∥H 1
2 (S1,Rn)

+ ∥x−
n ∥H 1

2 (S1,Rn)
+ ∥x0

n∥H 1
2 (S1,Rn)

)
≥

≥ ∥x+
n ∥H 1

2 (S1,Rn)
+ ∥x−

n ∥H 1
2 (S1,Rn)

+ ξM̃1∥x0
n∥H 1

2 (S1,Rn)
≥

≥ ∥x+
n ∥H 1

2 (S1,Rn)
+ ∥x−

n ∥H 1
2 (S1,Rn)

+ ξ∥x0
n∥2

H
1
2 (S1,Rn)

≥

≥ ξ1∥x+
n ∥2

H
1
2 (S1,Rn)

− ξ−1∥x−
n ∥2

H
1
2 (S1,Rn)

+ ξ∥x0
n∥2

H
1
2 (S1,Rn)

−

− 2cσ

[
D̃0∥xn∥λα−1

H
1
2 (S1,Rn)

+ C̃1 + C̃2

] 1
α ∥xn∥

H
1
2 (S1,Rn)

≥

≥ ξ
(
∥x+

n ∥2
H

1
2 (S1,Rn)

+ ∥x−
n ∥2

H
1
2 (S1,Rn)

+ ∥x0
n∥2

H
1
2 (S1,Rn)

)
−

− 2cσ

[
D̃0∥xn∥λα−1

H
1
2 (S1,Rn)

+ C̃1 + C̃2

] 1
α ∥xn∥

H
1
2 (S1,Rn)

. (3.37)

From (3.37), we have

D̃1 ≥ ξ∥xn∥
H

1
2 (S1,Rn)

− 2cσ

[
D̃0∥xn∥λα−1

H
1
2 (S1,Rn)

+ C̃1 + C̃2

] 1
α

.

Since 0 < (λα−1)
α < 1, this implies that {∥xn∥

H
1
2 (S1,Rn)

}n∈N is bounded.
Using an argument similar to that in the proof of Lemma 3.1, we have
∥xn − x∥

H
1
2 (S1,Rn)

→ 0. �

Proof of Theorem 1.1. The proof will be divided into two steps.
Step 1. By (V2), (V3) and (1.4) of (V4), for any ε > 0, there exists M =
M(ε) > 0 such that

F (t, x) ≤ ε|x|2 +M |x|λ+1, ∀ (t, x) ∈
[
0,

π

2

]
×Rn. (3.38)



Periodic Solutions of Superquadratic Nonautonomous DSs with a Delay 139

From (3.1) and (3.38), for x ∈ E1 = E+, we have

I(x) =
1

2
⟨Ax, x⟩ −

2π∫
0

F (t, x) dt ≥

≥ ξ1
2
∥x∥2

H
1
2 (S1,Rn)

−
(
ε∥x∥2

H
1
2 (S1,Rn)

+ cλ+1M∥x∥λ+1

H
1
2 (S1,Rn)

)
. (3.39)

Choose ε = ξ1
8 , ρ = ( ξ1

8Mcλ+1
)

1
λ−1 and denote by Bρ the closed ball in

H
1
2 (S1, Rn) of radius ρ centered at the origin. Let S = ∂Bρ ∩ E1, then

I(x) ≥ α̃ = ξ1ρ
2

4 for all x ∈ S, and (C3)(i) of Lemma 2.5 holds.

Step 2. Let e ∈ E+ with ∥e∥
H

1
2 (S1,Rn)

= 1 and E2 = E− ⊕ E0.
For x = x0 + x+ ∈ E2, then

I(x+ γe) =
1

2

⟨
A(x+ γe), (x+ γe)

⟩
−

2π∫
0

F (t, x+ γe) dt =

=
γ2

2
⟨Ae, e⟩+ 1

2
⟨Ax−, x−⟩ −

2π∫
0

F (t, x+ γe) dt. (3.40)

By (V1), it is obvious that I(x) ≤ 0 on x ∈ E2. Since E0 is finite dimen-
sional, there exists â1 > 0 such that

∥A∥ 1
2 ∥e∥

H
1
2 (S1,Rn)

≤ â1∥e∥L2 ,

∥A∥ 1
2 ∥x0∥

H
1
2 (S1,Rn)

≤ â1∥x0∥L2

(3.41)

for all x0 ∈ E0. Moreover, by (V2) and (V3), there exists a positive constant
â2 such that

F (t, x) ≥ â21|x|2 − â2, ∀ (t, x) ∈ [0, π]×Rn. (3.42)

It follows from (3.42) that
2π∫
0

F (t, γe+ x) dt ≥ â21∥γe+ x∥2L2 − â22π ≥

≥ â21
(
∥x0∥2L2 + ∥x−∥2L2 + γ2∥e∥2L2

)
− â22π. (3.43)

By (3.43), for all γ > 0 and x ∈ E2 we get

I(x+ γe) ≤ 1

2

⟨
A(x+ γe), (x+ γe)

⟩
−

2π∫
0

F (t, x+ γe) dt ≤

≤ γ2

2
⟨Ae, e⟩+ 1

2
⟨Ax−, x−⟩ − ∥A∥

(
∥x0∥2

H
1
2 (S1,Rn)

+ γ2
)
+ â22π ≤
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≤ ∥A∥γ2

2
+

ξ−
2

∥x−∥2
H

1
2 (S1,Rn)

− ∥A∥
(
∥x0∥2

H
1
2 (S1,Rn)

+ γ2
)
+ â22π ≤

≤ −∥A∥γ2

2
+

ξ−
2

∥x−∥2
H

1
2 (S1,Rn)

+ â22π. (3.44)

Let

γ1 = 2

√
â2π

∥A∥
and γ2 =

√
2â2π

−ξ−
.

Then I(x+ γe) ≤ 0, if either γ ≥ γ1, or ∥x∥2
H

1
2 (S1,Rn)

≥ γ2. Consequently,
I|∂Q ≤ 0, where Q = {γe; γ ∈ [0, γ1]} ⊕ (Bγ2 ∩ E2). By the definition of
linking, S and ∂Q link and (C3)(ii) and (C3)(iii) of Lemma 2.5 hold.

From (V2)–(V3), (C1) and (C2) of Lemma 2.5 are true, thus by Lem-
ma 2.5, I has a nonconstant critical point x∗ such that I(x∗) ≥ α̃ > 0. Now
x∗ is a 2π-solution of (2.2), hence x∗ is a 4τ -solution of (1.1). �
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