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Abstract. This is a survey of results on Wiener’s test for the regularity
of a boundary point in various nonstandard situations. In particular, higher
order elliptic operators, linear elasticity system, Zaremba boundary value
problem for the Laplacian are treated.

2010 Mathematics Subject Classification. 35J40, 31B15, 31B25.
Key words and phrases. Wiener test, higher order elliptic equations,
elasticity systems, Zaremba problem, weighted positivity, capacity.

®9boydg. dodmbomygmos Lobsd@g@m FadGomols @gygmommdols go-
byl 3M0GgM0gdmsb ©szo3ToMmgdgmo Fggagdo Lbgosbbgs s@sli@eb-
sMB e LodgeEosTo. 3gddme, yobboggmos do@amo Moyols gemogliy-
M0 M39058mMgd0, (OR0g0 O om0l mgmeools sbFmamgdsms Lols-
B93> 5 boMgddsl Lobsbmgdm sdm3sbs madgslosbolmgols.



Chapter 1

Historical background and structure
of the paper

In 1924 Wiener [71] gave his famous criterion for the so called regularity of
a boundary point.

A point O at the boundary 02 of a domain 2 C R™ is called regular
if solutions of the Dirichlet problem for the Laplace equation in €2 with the
Dirichlet data, continuous at O, are continuous at this point. (I do not
want to explain in which sense the solution is understood — this is not
quite trivial and is also due to Wiener [72].)

Before Wiener’s result only some special facts concerning the regularity
were known. For example, since (by Riemann’s theorem) an arbitrary Jor-
dan domain in R? is conformally homeomorphic to the unit disc, it follows
that any point of its boundary is regular.

As for the n-dimensional case, it was known for years that a boundary
point O is regular provided the complement of 2 near O is so thick that
it contains an open cone with O as a vertex (Poincaré [62], Zaremba [73]).
Lebesgue noticed that the vertex of a sufficiently thin cusp in R3 is irregular
[30]. Therefore it became clear that, in order to characterize the regularity,
one should find proper geometric or quasi-geometric terms describing the
massiveness of R™\(2 near O.

To this end Wiener introduced the harmonic capacity cap(K) of a com-
pact set K in R™, which corresponds to the electrostatic capacity of a body
when n = 3. Up to a constant factor, the harmonic capacity in the case
n > 2 is equal to

inf{ /\gradu\Qdac cu€CEMRY), u>1on K}.
R’!L
For n = 2 this definition of capacity needs to be altered.

The notion of capacity enabled Wiener to state and prove the following
result.
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Theorem (Wiener). The point O at the boundary of the domain w C R™,
n > 2, is reqular if and only if

> 2Dk cap(By-i \ ) = o0, (1.0.1)
E>1

We assume that O is the origin of a coordinate system and use the
notation B, = {x € R : |z| < p}. It is straightforward that (1.0.1) can be
rewritten in the integral form

/ cap(Bo \ Q) do _ (1.0.2)

cap(B,) o

Wiener’s theorem was the first necessary and sufficient condition char-
acterizing the dependence of properties of solutions on geometric properties
of the boundary. The theorem strongly influenced potential theory, par-
tial differential equations, and probability theory. Especially striking was
the impact of the notion of the Wiener capacity, which gave an adequate
language to answer many important questions. During the years many at-
tempts have been made to extend the range of Wiener’s result to different
classes of linear equations of the second order, although some of them were
successful only in the sufficiency part. I mention here three necessary and
sufficient conditions.

First, for uniformly elliptic operators with measurable bounded coeffi-
cients in divergence form

u— Y (aij(x)tz, )a, - (1.0.3)

4,j=1

Littman, Stampacchia and Weinberger [32] proved that the regularity of
boundary point is equivalent to the Wiener condition (1.0.1).

Second, in 1982 Fabes, Jerison and Kenig [13] gave an interesting analog
of the Wiener criterion for a class of degenerate elliptic operators of the
form (1.0.3).

The third criterion for regularity, due to Dal Maso and Mosco [9], con-
cerns the Schrédinger operator

u— —Au+ pu in Q,

where p is a measure. It characterizes both the geometry of 2 and the
potential p near the point O.

It seems worthwhile to mention a recently solved problem, which re-
mained open for twenty five years. I mean the question of the regularity of
a boundary point for the non-linear operator

u — div (| grad ulP~* gradu) in Q, (1.0.4)
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where p > 1. This differential operator, often called the p-Laplacian, ap-
pears in some mechanical applications and is interesting from a pure math-
ematical point of view.

In 1970 I proved [40] that the following variant of the Wiener criterion
is sufficient for the regularity with respect to (1.0.4)

Here 1 < p < n and the p-capacity is a modification of the Wiener capacity
generated by the p-Laplacian. This result was generalized by Gariepy and
Ziemer [16] to a large class of elliptic quasilinear equations

div A(z, u, grad u) = B(z,u, grad u).

Condition (1.0.5) and its generalizations also turned out to be relevant
in studying the fine properties of elements in Sobolev spaces. See, e.g. the
book [4].

For a long time it seemed probable that (1.0.5) is also necessary for the
regularity with respect to (4), and indeed, for p > n — 1, Lindqvist and
Martio [33] proved this for the operator (1.0.4). Finally, Kilpeldinen and
Maly found a proof valid for arbitrary values of p > 1 [22].

So far I spoke only about the regularity of a boundary point for sec-
ond order elliptic equations. However, the topic could be extended to in-
clude other equations, systems, boundary conditions and function spaces.
In principle, the Wiener criterion suggests the possibility of the complete
characterization of properties of domains, equivalent to various solvability
and spectral properties of boundary value problems.

The present article is a survey of results on Wiener’s test in various
nonstandard situations. These results were obtained by myself or together
with my collaborators.

In the second chapter, following the paper [49] by V. Maz’ya, I deal
with strongly elliptic differential operators of an arbitrary even order 2m
with constant real coefficients and introduce a notion of the regularity of a
boundary point with respect to the Dirichlet problem which is equivalent
to that given by N. Wiener in the case m = 1. It is shown that a capacitary
Wiener-type criterion is necessary and sufficient for the regularity if n = 2m.
In the case n > 2m, the same result is obtained for a subclass of strongly
elliptic operators.

In Chapter 3, boundary behaviour of solutions to the polyharmonic equa-
tion is considered. First, conditions of weighted positivity of (—A)™ with
zero Dirichlet data are studied which, together with results in Chapter 2,
give Wiener-type criterion for the space dimensions n = 2m, 2m+1, 2m+2
with m > 2 and n = 4,5,6,7 with m = 2. Second, certain pointwise esti-
mates for polyharmonic Green’s function and solutions of the polyharmonic
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equation are derived for the same n and m. Here I mostly follow my pa-
per [48].

Chapter 4 addresses results by G. Luo and V. Maz’ya [33]. We con-
sider the 3D Lamé system and establish its weighted positive definiteness
for a certain range of elastic constants. By modifying the general theory
developed in Chapter 2, we then show, under the assumption of weighted
positive definiteness, that the divergence of the classical Wiener integral for
a boundary point guarantees the continuity of solutions to the Lamé system
at this point.

In Chapter 5, an analogue of the Wiener criterion for the Zaremba prob-
lem is obtained. The results are due to T. Kerimov, V. Maz’ya, and A.
Novruzov. They were announced in [20] and published with proofs in [21].

The last Chapter 6 reproduces the papers [39] and [44] by V. Maz’ya,
where various capacitary estimates for solutions of the Dirichlet problem,
Green’s function and the .#Z-harmonic measure for elliptic second order
operators in divergent form with measurable bounded coefficients.



Chapter 2

Wiener Test for Higher Order Elliptic
Equations

2.1 Introduction

Wiener’s criterion for the regularity of a boundary point with respect to
the Dirichlet problem for the Laplace equation [71] has been extended to
various classes of elliptic and parabolic partial differential equations. These
include linear divergence and nondivergence equations with discontinuous
coeflicients, equations with degenerate quadratic form, quasilinear and fully
nonlinear equations, as well as equations on Riemannian manifolds, graphs,
groups, and metric spaces (see [32], [13], [9], [33], [22], [34], [3], [4], [26], [66],
to mention only a few). A common feature of these equations is that all
of them are of second order, and Wiener-type characterizations for higher
order equations have been known so far. Indeed, the increase of the order
results in the loss of the maximum principle, Harnack’s inequality, barrier
techniques and level truncation arguments which are ingredients in different
proofs related to the Wiener test for the second order equations.

In this chapter Wiener’s result is extended to elliptic differential op-
erators L(0) of order 2m in the Euclidean space R™ with constant real
coefficients

LO)= (=)™ Y a,0°t’.

la|=|B|=m

We assume without loss of generality that ang = agq and (—=1)"L(§) > 0
for all nonzero £ € R™. In fact, the results of this paper can be extended to
equations with variable (e.g., Holder continuous) coefficients in divergence
form, but we leave aside this generalization to make our exposition more
lucid.

We use the notation 0 for the gradient (9;,,...,0,, ), where J,, is the
partial derivative with respect to x. By Q we denote an open set in R™,
and by B,(y) we denote the ball {x € R" : |z —y| < p}, where y € R". We
write B, instead of B,(0).
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Consider the Dirichlet problem

L@Owu=f feCXQ), ue H™(Q), (2.1.1)

where we use the standard notation C§°(€2) for the space of infinitely dif-

ferentiable functions in R™ with compact support in Q as well as H™(Q)
for the completion of C§°(2) in the energy norm.

Definition 2.1.1. We call the point 0 € 92 regular with respect to L(0)
if for any f € C§°(2) the solution of (2.1.1) satisfies

li =0. 2.1.2
a1 =0 212
For n =2,3,...,2m — 1, the regularity is a consequence of the Sobolev

imbedding theorem. Therefore we suppose that n > 2m. In the case of
m = 1, the above definition of regularity is equivalent to that given by
Wiener (see Section 2.6 below).

The following result which coincides with Wiener’s criterion in the case
of n =2 and m = 1, is obtained in Sections 2.8 and 2.9.

Theorem 2.1.1. Let 2m = n. Then O is regular with respect to L(D) if
and only if

/C’gm(Bp\Q)p_1 dp = oc. (2.1.3)
0

Here and elsewhere Cy,, is the potential-theoretic Bessel capacity of
order 2m (see Adams and Heard [3] and Adams and Hedberg [4]). The case
of n > 2m is more delicate because no result of Wiener’s type is valid for all
operators L(0) (see [53, Chapter 10]). To be more precise, even the vertex
of a cone may be irregular with respect to L(9)) if the fundamental solution
of L(9),

xT

F(z) = F( )\x|2m-”, z€R"\ O, (2.1.4)

|z|
changes its sign. Examples of operators L(9) with this property can be
found in Maz’ya and Nazarov [52] and Davies [10]. In the sequel, Wiener’s
type characterization of regularity for n > 2m is given for a subclass of
operators L(9) called positive with the weight F. This means that for all
real-valued v € Cg°(R" \ O),

/L(a)u(x) ~u(z)F(z) de > CZ/ }Vku(m)|2|x|2k_" dz, (2.1.5)

R klen

where Vy, is the gradient of order k, that is, where V;, = {0%} with |a| = k.
In Sections 2.5 and 2.7, we prove the following result.
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Theorem 2.1.2. Letn > 2m, and let L(0) be positive with weight F'. Then
O s regular with respect to L(9) if and only if

1
/sz(Bp \ Q)p*™ L dp = oco. (2.1.6)
0

Note that in a direct analogy with the case of the Laplacian we could
say that 0 in Theorems 2.1.1 and 2.1.2 is irregular with respect to L(9) if
and only if the set R™\  is 2m-thin in the sense of linear potential theory
(see [29], [3], [4).

Since, obviously, the second order operator L(9) is positive with the
weight F', Wiener’s result for F is contained in Theorem 2.1.2. More-
over, one can notice that the same proof with F(z) being replaced by
Green’s function of the uniformly elliptic operator u — —0,,(ai;(7)0z;u)
with bounded measurable coefficients leads to the main result in [32]. We
also note that the pointwise positivity of F' follows from (2.1.5), but the
converse is not true. In particular, the m-harmonic operator with 2m < n
satisfies (2.1.5) if and only if n = 5,6,7 for m =2 and n =2m + 1,2m + 2
for m > 2 (see [47], where the proof of the sufficiency of (2.1.6) is given for
(=A)™ with m and n as above, and also [12] dealing with the sufficiency
for noninteger powers of the Laplacian in the intervals (0,1) and [§ —1, %).

It is shown in [55] that the vertices of n-dimensional cones are regular
with respect to A2 for all dimensions. In Theorem 2.12.1, we consider the
Dirichlet problem (2.1.1) for n > 8 and for the n-dimensional biharmonic
operator with 0 being the vertex of an inner cusp. We show that condition
(2.1.6), where m = 2, guarantees that u(z) — 0 as x approaches O along any
nontangential direction. This does not mean, of course, that Theorem 2.1.2
for the biharmonic operator may be extended to higher dimensions, but
the domain ) providing the corresponding counterexample should be more
complicated than a cusp.

There are some auxiliary assertions of independent interest proved in
this paper which concern the so-called L-capacitary potential Uk of the
compact set K C R™, that is, the solution of the variational problem

inf{ /L(a)u cudr: uw e CP(R™): uw=1Iin vicinity of K}.
Rn

We show, in particular, that for an arbitrary operator L(9), the potential
U} is subject to the estimate

Uk ()| < cdist(y, K)*™ " Cs,,(K) forall y € R"\ K,

where the constant ¢ does not depend on K (see Proposition 2.2.1). The
natural analogue of this estimate in the theory of Riesz potentials is quite
obvious, and as a matter of fact, our L-capacitary potential is representable
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as the Riesz potential F' x T. However, one cannot rely upon the methods
of the classical potential theory when studying Uy, because, in general, T
is only a distribution and not a positive measure. Among the properties
of Uk resulting from the assumption of weighted positivity of L(9) are the
inequalities 0 < Ug < 2 on R™ \ K, which holds for an arbitrary compact
set K of positive capacity Ca,,. Generally, the upper bound 2 cannot be
replaced by 1 if m > 1.

In conclusion, it is perhaps worth mentioning that the present paper
gives answers to some questions posed in [47].

2.2 Capacities and the L-Capacitary Potential

Let Q be arbitrary if n > 2m and bounded if n = 2m. By Green’s m-
harmonic capacity cap,, (K, ) of a compact set K C ) we mean

|
inf{ Z % ||80‘u||2L2(Rn) : weCH (), u=1 in vicinity ofK}. (2.2.1)

lal=m

We omit the reference to Green and write cap,, (K) if Q@ = R™. It is well
known that cap,,,(K) = 0 for all K if n = 2m.

Let n > 2m. One of the equivalent definitions of the potential-theoretic
Riesz capacity of order 2m is

3 m! (63 o0 n
Com (K) :mf{ Z a”@ u||%2(Rn) cueCPRY), u>1on K}.

lor|=m

The capacities cap,,(K) and co,, (K) are equivalent; that is, their ratio is
bounded and separated from zero by constants depending only on n and m
(see [49, Section 9.3.2]).

We use the notation Cs,, (K) for the potential-theoretic Bessel capacity
of order 2m < n which can be defined by

. m! o
1nf{ > ol 10°u|3, gey : u € CE(R™), u>1on K}.
0<|a|<m

Here also the replacement of the condition v > 1 on K by v = 1 in a
neighborhood of K leads to an equivalent capacity. Furthermore, if n > 2m
and K C Bj, the Riesz and Bessel capacities of K are equivalent.

We use the bilinear form

B(u,v) = / Z aap0°u - 0%v dz. (2.2.2)

Q lal=Igl=m
The solution Ux € H™(Q2) of the variational problem

inf{%(u, u) @ u € C5°(R), u=11in a neighbourhood of K} (2.2.3)
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is called Green’s L-capacitary potential of the set K with respect to €2, and
the L-capacitary potential of K in the case of 2 = R™.

We check that the m-capacitary potential of the unit ball By in R”,
where n > 2m, is given for || > 1 by

Bl
rz n
(2) / (1 —7)m tr—m=ts gr, (2.2.4)

Up,(z) = T(m)D(—m + 2)

This function solves the m-harmonic equation in R™ \ B; because the last
integral is equal to

(=1)™=9T(m) 2j—n
22 FGm—jr w2 "

Differentiating the integral in (2.2.4), we obtain
3|I§C|U31(x)‘ =0 for k=1,...,m—1.
4B,

The coefficient at the integral in (2.2.4) is chosen to satisfy the boundary
condition
Up,(z) =1 on 0B;.

Owing to (2.2.4), we see that
0<Ug,(z) <1 on R"\ By

and that Up, is a decreasing function of |z|.
By Green’s formula

o B .
S 10°Usu ey = = [ Un@) 5 (<) U (o) s, =
lor|=m. Py
21'(3) 9 o
= - — (=AY m—n
(n —2m)L'(m)I'(—m + %) / 3\x|( ) || dsy
9B1

and by
_ 4m=IP(m)0 (=1 + 3)
B L(—-m+%)

(=2)" 2>,

we obtain the value of the m-harmonic capacity of the unit ball:

am ( I'(3)
n—2m \I'(-m+ %

cap,, B1 =

))zwn_l (2.2.5)

with w,_1 denoting the area of Bj.
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We recall that the Riesz capacitary measure of order 2m, 2m < n, is the
normalized area on 9B (see [29, Chapter 2, Section 3]). Hence, one can
verify by direct computation that

2/ l(m)I'(m — 14 %)

L(m—3)(m—1+%) Wn-t: (2.2.6)

com(B1) =

Lemma 2.2.1. For any u € C§°(Q) and any distribution ® € [C§°(2)]*,

PB(u,u®) = 2_1/u2L(3)<I>dx+
Q
+ > 0w 0vu 2, ()0 da, (2.2.7)
o 3=LIul=lul=j

where 2,,,(¢) are homogeneous polynomials of degree 2(m—j3), Py = Py,
and Pap(C) = aap for o] =B8] =m.

Proof. The left-hand side in (2.2.7) is equal to

Z aap ud*u - O°® da+
loe|=]B]=m Q

+ Z aag(/ﬁau-85u~<1>dx+
Q

jal=I8l=m
+ ﬁ!/aau~8ﬁu-8ﬁ7®dx).

| — )

s M=

We have

/u@au OPddr =271 /8a(u2)8ﬁ¢> dx—

Rn Q

_ 91 Z

a>y>0

|
— -9 95D d.
Y(a =) )

Hence by ang = aga, we obtain the identity

B(u,ud) =271 /uzL(B)Cb dx+
Q

B! o _ 18- N
Q

lal=|Bl=m  B>¥>0
+/ Z ap0%u - 0Pu - @ da.
Q lel=[Bl=m
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We need to prove that the second term can be written as

/ Z > 0Mu-0Yu- P, (0)2 da.

J=1 |ul=lv|=j

It suffices to establish such a representation for the integral

lapy = /aau Cu - PO da

with |a| > |y]. Let |a|+]|v| be even. We write o = o+, where |o| = W‘Qﬂ .

After integrating by parts, we have

iy = (—1)!7] /aau.awu.aﬂ*w do+

DY 5'7_ /30u OV 9P T e,

0<6<t

The last integral on the right is in the required form because |o| = |v|+|7| =
w. We have |y| + |0] < |a| in the remaining terms. Therefore, these
terms are subject to the induction hypothesis.

Now let |a| + || be odd. Then

oy = (=1)e /uaa(mu L95TD) dr —
R‘Il

|
=(-pl [N ﬁm“waﬂﬂ*a*%dm
2 055Za o —9)!

Integrating by parts, we obtain

Gapy = |a\+|’Y|/ Z o - 8v(ua,8 y4a— 5@)(1
B 0<5<a !
PY' ) K a+B—0—k
Z 5o Z ' ‘3u~3u~8 ® dx.
gn 0<6<a 0<r<ry Ry —r)!
Hence
|~/
. _ _o—1 . 1) K a+pB—0—k
tapy = —2 Z S(a—0)nl(7—r) /8u 0"u -0 ¢ dx.
0<6<a, 0<K<«y R™
|6+ | <&l +T7]

Every integral on the right is subject to the induction hypothesis. The result
follows. 0
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As in the introduction, by F(z) we denote the fundamental solution
L(9) in R™ subject to (2.1.4). Setting ®(x) = F(x — y), we conclude that
for all u € C§°(R™),

/L(&‘)u(x) cu(x)F(x —y)de =

R™
m

=27u)?+ [ Y. D 0Mu(@) - 0%u(z) - P (0)F(x —y) do. (2.2.8)

Rr J=1|ul=Iv|=5
Lemma 2.2.2. Let Q =R", 2m < n. Forally e R"\ K,
Uk(y) =27 Uk (y)*+
+ [ > Y 0"Uk(2)-0"Uk(x) - P (0)F(x — y)dz, (2.2.9)
B m23>1 |ul=|v|=
where the same notation as in Lemma 2.2.1 is used.

Proof. We fix an arbitrary point y in R™ \ K. Let {us}s>1 be a sequence of
functions in C§°(R™) such that u; = Uk on a neighborhood of y independent

of sand us — Uy, in H™(R™). Since Uk is smooth on R™\ K and the function
F' is smooth on R™ \ O and vanishes at infinity, we can pass to the limit in
(2.2.8), where u = us. This implies

lim [ L@)Uk (2) - ug(@)F(z - y)do = 27 Uk (y)°+

+ (>0 > 0Uk(2) - 0" Uk(2) - Pu(9)F(z —y) do, (2.2.10)

Rrn J=1 pl=lv|=i

where L(0)Uf is an element of the space H~™(R"™) dual to H™(R"™), and
the integral on the left is understood in the sense of distributions. Taking
into account that L(0)Ux = 0 on R™\ K and that us can be chosen to satisfy
us = 1 on a neighborhood of K, we write the left-hand side in (2.2.10) as

/L(@)UK(x)-F(z—y)dx: Uk (y). (2.2.11)
RTI,
The result follows. O

Corollary 2.2.1. Let 2m < n. For almost all y € R™,

|ViUk (y)| <
<o(lvww?+ [ 5 FOARGG), @2

|$ _ yln—7'—s+l
Rn 1<r,s<m
r4+s>l1
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where l =0,1,...,m

Proof. Since V;Ug vanishes almost everywhere on K, it is enough to check
(2.2.12) for y € R™ \ K. By (2.2.9), it suffices to estimate

‘vl / U (2) - Uk () - P (D) F (& — y) da, (2.2.13)
Rn
where || = |v| = jand j = 1,...,m. Let 2j < [. Since ord #,,(0) =
2(m — j), we have
‘Vlyuu(a)F(x - y)| <z - y|_n+2j_i7
and we can take
VU (2)]?

as a majorant for (2.2.13). In the case of 25 > [, integrating by parts, we
estimate (2.2.13) by

c/ ‘Vm_j (0"Uk () - 8VUK(J)))‘ ‘Vm_jHF(a: - y)’ dzx <

<61/Z |VZ+JUK va ZUK( )|d:L‘

|.’17— |n m—j+1

Rn

Since m+j > 25 > 1, the sum of the last majorant and (2.2.14) is dominated
by the right-hand side in (2.2.12). The proof is complete. O

Proposition 2.2.1. Let @ = R™ and 2m < n. For all y € R"\ K, the
following estimate holds:

ViUk (y)| < ¢; dist(y, K)*™ " cap,, K, (2.2.15)
where j = 0,1,... and c¢; does not depend on K and y.

Proof. In order to simplify the notation, we set y = 0 and § = dist(y, K).
By the well known local estimate for variational solutions of L(9)u = 0 (see
[5, Chapter 3]),

V,u(0)] < ¢;67 % /u(x)2 da, (2.2.16)
Bs
2
it suffices to prove (2.2.15) for j = 0. By (2.2.16) and Hardy’s inequality,
d
Uk (0)? < 0627’L_”/UK(56)2 H% dx <
z
Rn

< 052"‘_"/ ’VmUK(x)|2dx < cpd?™ " cap,, K. (2.2.17)

Rn
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If cap,, K > c; 6"~ 2™, then estimate (2.2.15) follows from (2.2.17).
Now, let cap,, K < ¢y '6"~2™. By virtue of (2.2.17)), we have U (0)? <
|Uk (0)|. Hence by (2.2.9),

i d
o) < e3> [ 906 S

jzl]Rn

Since by Hardy’s inequality all integrals on the right are estimated by the
mth integral, we obtain

‘x|n—2m

U (Ol <C(52m sup |vaK(‘r)‘2+/|vaK(CE)|2dx>'
z€Bs

R

We estimate the above supremum using (2.2.16) with j = 0 and with u
replaced by V,, V. Then

Uk (0)] < 6 [ |VuUk(2)|* + IV Uk (2)]” da ).
(Jeancr's | maniors)

R™\B
2

The result follows from the definition of U . O

By .# we denote the Hardy—Littlewood maximal operator, that is,

n
as@) =sp [l ay

ly—z|<p

Proposition 2.2.2. Let 2m <n and 0 <6 < 1. Also, let K be a compact
subset of B, \ By,. Then the L-capacitary potential U satisfies

MV UK (0) < cgp®™ 17" cap,, K, (2.2.18)
where I =0,1,...,m and cg does not depend on K and p.

Proof. Let r > 0. We have

Z|leK(y>|dx§c< / YUk (y)] dat

BrmBg %

+ / |ViUk (y)| dx + / |V1UK(y)|dx).

B,\Ba, BrN(B2,\By )

Since dist(y, K) > cp for y € Bz N (B, \ Bap), the first and second
integrals on the right do not exceed cr™p?™ =" cap,, K in view of (2.2.15).
Hence, for r < 65, the mean value of |VyUgk| on B, is dominated by
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cp*™ =" cap,, K. Let r > 0 £. It follows from Corollary 2.2.1 that the
integral

Il(p) = / |V1UK(y)|d.’E

BQP\BO %

is majorized by

c< / |ViUk (y)?| dy+

B2p\B, 5

n / dy/ Z |VeUk ()] [V Uk ()| dx) <

‘.’IJ _ y|n—r—s+l
1<r,s<m
B2p\By g R 00050

IV, Uk (2)| |V Uk (z)]
<ept / dr <
S TRt
|V, Uk (2)] Vs Uk ()|
S CQp Z / |$|2m r—s dz.

1<r,s<m R™

Hence by Hardy’s inequality, we obtain

Ii(p) < cp?™~! / |VmUK(x)‘2 dx < cp*™ 'cap,, K.
R"L

The proof is complete. O

2.3 Weighted Positivity of L(0)

Let 2m < n. It follows from (2.2.8) that the condition of weighted positivity
(2.1.5) is equivalent to the inequality

/Z Z OHu(x) - 0"u(z) - Py (0)F(z)dw >
rn J=1|pl=lvi=;

Veu(a)?

> o (2.3.1)

for all u € C§°(R™ \ O). Since the restriction of F' to dB; is a smooth
function of the coefficients of L(9), the last inequality implies that the set
of the operators L(9) which are positive with the weight F' is open.

Proposition 2.3.1. Inequality (2.1.5), valid for allu € C5°(R™\O), implies
m 2

-1 2 [V u(z)|
=1

dx (2.3.2)
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for all u € C§°(R™).

Proof. Let u € Cg°(R"), 0 < & < % and n.(z) = n((loge) ' log|z|), where
n € CL(RY), n(t) =0 for t > 2, and n(t) = 1 for t < 1. Clearly, n.(z) =0
for © € R™ \ B., all derivatives of 7. vanish outside B. \ B.z, and

|Vine(z)| < ¢;|loge| |77
By (2.1.5), the bilinear form % defined by (2.2.2) satisfies
“ 2 dx
%((1 = ne)u, (1 — Us)UF) 2 CZ ’Vj((l - 775)“)' W - (233)

jlen

Using the just mentioned properties of 7., we see that

(feto-wor i) fo-wrmot )

R n

dx H
< ([ 11l i) <

Rn

J
dz _
<)Y [ 1V it = O( ozl ™).

k= 1Rn

where [, T] stands for the commutator ST — T'S. Hence by (2.3.3),

m

dz

. 2
]:1Q

Since, clearly,

\%(na(u —u(0)),7e(u — u(o»p)’ <

< CZ/ |v](778|;un_2"§(0)))| dr — O(E),

,ZIBE

one can replace (1 —n.)u in the left-hand side of (2.3.4)) by v —u(0)n.. We
use the identity

%((u - U(O)Us)a (u - U(O)ns)F) =
= B(u,ul’) + u(0)2 (%’(UsJIsF) - %’(775717))*
— u(0)(# (e, (u — u(0) F) + B(u,n.F)).



Topics on Wiener Regularity for Elliptic Equations and Systems 19

It is straightforward that |# (e, (u — u(0)F| + |2B(u,n.F')| < ce. Therefore

lim inf 2 (7 (u — w(0)), e (u — u(0)) F) =
= B(u,uF) + u(0)*(B(n.,n-F) — B, IF)).

Since #(n., F') = 1 and since it follows from (2.2.8) that

Ui d
28 F) =1 <X [l iy = 0eeel ™)

I=lp\B,,
we arrive at (2.3.2). O

Proposition 2.3.2. The positivity of L(9) with the weight F implies
F(z) > 0.

Proof. Let
ue(x) = 57%77(571(2: — w)) |€]7™ exp (i, (z, §))7

where 7 is a nonzero function in C§°(R™), € is a positive number, w € 9Bj,
and £ € R". We put u, into the inequality

Re [0 3 0"u(x) 0"u(@) - Pun(0)F(x) du >

Re =1 pl=lpl=j
m ) da
Z CZ/ \VJU($)| |2
jlen
which is equivalent to (2.3.1). Taking the limits as |{| — oo, we obtain

Z aaﬁ(é)aJrﬁE_”/‘n(s_l(x—w))FF(as) dx <

loe|=[B]=m

Now the positivity of F' follows by the limit passage as € — 0. O

Remark 2.3.1. The positivity of the left-hand side in (2.3.1) is equivalent to
the inequality

S Mpp—
ER// L(i(€ —n)) f(&)f(n) d§dn >0,

R R™

valid for all nonzero f € C§°(R™). The last inequality was studied by
S. Eilertsen [12].
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2.4 More Properties of the L-Capacitary Potential

Let L(9) be positive with the weight F'. Then identity (2.2.9) implies that
the L-capacitary potential of a compact set K with positive m-harmonic

capacity satisfies
0<Uk(z) <2 on R"\ K. (2.4.1)

We show that, in general, the bound 2 in (2.4.1) cannot be replaced by 1.

Proposition 2.4.1. If L = A?™, then there exists a compact set K such

that (Ux — 1)|Rn\K changes sign in any neighborhood of a point of K.

Proof. Let C be an open cone in R? = {z = (2/,2,) : x, > 0}, and
let C. = {z: (¢7'2',z,) € C} with sufficiently small € > 0. We define
the compact set K as By \ C.. Suppose that Ug (x) — 1 does not change
sign on a §-neighborhood of the origin. Then either Ux — 1 or 1 — Uk is
a nontrivial nonnegative 2m-harmonic function on Bs N C. subject to zero
Dirichlet condition on Bs N JC., which contradicts [23, Lemma 1]. The
result follows. O

We give a lower pointwise estimate for Uy stated in terms of capacity
(cf. the upper estimate (2.2.15)).

Proposition 2.4.2. Let n > 2m, and let L(9) be positive with the weight
F. If K is a compact subset of By and y € R™\ K, then

)2m—n

Uk (y) > c(lyl +d cap,, K.

Proof. Let a be a point in the semiaxis (2, 00) which is specified later. By
(2.3.2),

U (y) > c(|y| + ad)™™ " / IV u|? da >

Baa

Zc(|y|+ad)2mn(came / Vmu|2dx). (2.4.2)
R™\ Baa

It follows from Proposition 2.2.1 that for x € R™ \ B,q,

cap,, K n—om  Cap, K
ViUk(x)| <cp r——— <2 co .
| n | (|$| _ d)n72m |$|n7m
Hence,
dx (cap,, K)?

/ ‘Vmu|2 dz < c(cap,, K)2 / |z|2n—2m =a (ad)r—2m
Rn\Bad R’"\Bad



Topics on Wiener Regularity for Elliptic Equations and Systems 21
and by (2.4.2),

Uk (y) > cap,,, K ( . (capm K )

QT+ = U a2

Choosing a to make the difference in braces positive, we complete the
proof. O

2.5 Poincaré Inequality with m-Harmonic Capacity

The material in this section will be used in the proof of sufficiency in The-
orems 2.1.1 and 2.1.2.
We say that a compact subset of the ball B, = {z : |z| < p} is m-small,
2m < n, if
cap,, (e, Ba,) < 167" p" 2™,

In the case 2m > n, only the empty subset of B, will be called m-small.
Let %, denote the mean value of u on the ball B,, i.e.

U, = (mes,, B,)"" /u(x) dz.
BP

We introduce the seminorm

- )
Nelllms, = (3202 1¥ul35,)

=1

-

Proposition 2.5.1 ([46, 10.1.2]). Let e be a closed subset of the ball B,,.

(1) For all u € C>=(B,) with dist(suppu,e) > 0 the inequality
lullzo(s,) < Clllulllm,s, (2.5.1)

is valid, where
C~2 > cp " cap,,(e, B,)

and c depends only on m and n.

(2) Ife is m-small and if inequality (2.5.1) holds for allu € C*(B,) with
dist(supp u, €) > 0, then the best constant C' in (2.5.1) satisfies

C=2 < cp" caple, B,)

The second assertion of this proposition will not be used in the sequel
and therefore it will not be proved here. Its proof can be found in [46,
pp. 405, 406]. In order to check the first assertion we need the following
auxiliary result.
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Lemma 2.5.1. Let a be a compact set in B1. There exists a constant ¢
depending on n and m and such that
¢! cap,, (e, Ba) <
< inf{”l —ullgm(py) : w€ C¥(By), dist(suppu,e) > 0} <
< ccap,, (e, Bs). (2.5.2)
Proof. To obtain the left estimate we need the following well-known asser-
tion.

There exists a linear continuous mapping A : C*¥~11(By) — Ck~11(By),
such that

(i) Av =v on By;
(ii) if dist(suppv,e) > 0, then dist(supp Av,e) > 0;
(iii) the inequality
HVZ»(AU)HLZ(Bz) < |Vl Ly () (2.5.3)
is valid with ¢ = 0,1, ..., and ¢ independent of v.

Let v = A(1 — u) and let n denote a function in C§°(Bsz) which is equal
to 1 in a neighborhood of the ball B;. Then

2
caple, B) < el Vi) [} ) < €llelim sy (25.4)

Now the left estimate in (2.5.2) follows from (2.5.3) and (2.5.4).

Next we derive the right estimate in (2.5.2). Let w € C§°(Bs), w = 1,
on a neighborhood of e.

Then

lwllzm B,y < llVmwllL,s,)-

Minimizing the last norm, we obtain
igf”l — u”%{m(Bl) < ianwaqm(Bl) < ccap(e, Ba).
Thus the proof is complete. O]

Proof of the first assertion of Proposition 2.5.1. It suffices to consider only
the case d = 1 and then use a dilation.
1) Let

1 2
N=[—— [4(2)d
(mesn By /u () x)
B

1

Since dist(supp u, e) > 0, it follows from Lemma 2.5.1 that

cap,, (e, B2) < |1 = N7 |} (s, =
:CN_2|HU|||2 +C||1_N_IUH%2(31)’

m,B1
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ie.
N? capy(e, Bo) < cllful|2 5, + N —ulypy)  (255)

m,B;

Without loss of generality we assume that w; > 0. Then
vmesy By [N = | = [[ully(y) = [UllL281) < v —llLy5,)-
Consequently,
IN —ullLys,) <IN =l + lu =y 8)) < 2llu—TallLys,)-
Hence, by (2.5.5) and the Poincaré inequality
lw =l Ly 51y < IVullLys)

we obtain
cap(e, Bo)|lull7, g,y < clllulll? 5,

which completes the proof. O

2.6 Proof of Sufficiency in Theorem 2.1.2

In the lemma below and henceforth we use the notation
M,y (u)p™" / u(z)?dr, S,={z: p<|z|<2p}.
Qns,

Lemma 2.6.1. Let 2m < n and let L(9) be positive with the weight F.
Further, let w € H™(Q) be a solution of

L(O)u=0 on QN By,. (2.6.1)

Then B(un,,un,F,) < cM,(u) for an arbitrary point y € B,, where

mo(@) =) n€CE(Ba), m=1 on By, Fy(r)=Flz—y)

Proof. By the definition of 4,
%(unp, uony) - ‘%(ua un,%Fy) =

= Y aas [ (0% mlu 0 (un, Fy) =0 07, m,\(un, Fy) ) de. (2.6.2)
la|=[Bl=m g

It follows from (2.6.1) that %(u,un>F,) = 0. The absolute value of the
right-hand side in (2.6.2) is majorized by

j=0

chQj_"/Cp\Vqu dx, (2.6.3)
/ Q
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where (,(z) = ¢(3), ¢ € C5°(51), and ¢ = 1 on supp [Vy|. The result
follows by the well-known local energy estimate (see [5, Chapter 3])

/Cp|Vju|2 dr < cp™% / u? dx. (2.6.4)
Q Qns,

Combining Proposition 2.3.1 and Lemma 2.6.1, we arrive at the following
local estimate. U

Corollary 2.6.1. Let the conditions of Lemma 2.6.1 be satisfied. Then
|Vku

Z | ‘n 2k- dr < cM, ( )a y e an Bp~ (265)

onp, k=1

We need the following Poincaré-type inequality proved in Propositi-
on 2.3.2.

Lemma 2.6.2. Let u € I(}m(Q) Then for all p > 0,
n 2m |Vk’u

M < — 2.6.6

P(u) = Capm S \Q / Z P 2k ( )

Corollary 2.6.2. Let the conditions of Lemma 2.6.1 be satisfied. Then for
all points y € 0N B, the estimate

|Viu(x cph / — | Viu(a)?
Z v< —L P
/B e s cap, (S, 2) e

ans, k=1

holds.
Proof. We combine Corollary 2.6.1 with inequality (2.6.6). O

Lemma 2.6.3. Let 2m < n, and let L(9) be positive with weight F'. Also,
let we H™(Q) satisfy L(O)u =0 on QN Ba,. Then, for all p € (0, R),

Viu(x
sup{|u(p)|2: peQﬂBp}+ / Z|;| —2k d =
onB, k=1

< eMp(u) exp (— C/Rcapm(BT \9Q) TTICZH) (2.6.7)
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Proof. Let us use the notation
Y (1) = ¥ cap,, (S, \ Q). (2.6.8)

It is sufficient to prove (2.6.7) only for p < g because in the opposite case
the result follows from Corollary 2.6.1. Denote the first and second terms on
the left in (2.6.7) by ¢, and 1, respectively. It follows from Corollary 2.6.2
that for r < R,

or + '(/JT < ("/}2r - wr> < (¢2r - wr + Yo — (Pr)-

Ym ()

This, along with the obvious inequality 7, (r) < ¢, implies

Ym ()

Or + 7/}7" S CeXp(chme(r))((p%" + 1/}27“)-

By setting r = 277R, j = 1,2,..., we arrive at the estimate
l
@a-in+trip < cexp (= Y@ R)) (e + br).
j=1

We choose [ so that [ < logz(%) <141 in order to obtain

!
b+ p < cexp (= oY Im(2 7 R)) (r + bn).
j=1
Now we notice that by Corollary 2.6.1, o +¥r < ¢cMpg(u). Assuming that

cap,, is replaced in definition (2.6.8) by the equivalent Riesz capacity cap,
and using the subadditivity of this capacity, we see that

Yp+Yp <
CgmBlgR\Q)—CgmB ]R\Q)
< cMpg(u exp(—coz 2 @I Ryr—2m 2 ) (2.6.9)

Noting that the last sum is equal to

J— l*l J—
ch(327lR \ Q)n—?"b —n+2m ch(327jR \ Q)
_ — -~ >
(2-TR)n—2m +(1-2 ); TR

R
dr
Z /Capm B \Q) rn—2m+1 - ¢
P

we obtain the result from (2.6.9). O

By (2.6.7) we conclude that (2.1.6) is sufficient for the regularity of O.
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2.7 Equivalence of Two Definitions of Regularity
Proposition 2.7.1. In the case m = 1, the regularity in the sense of
Definition 2.1.1 is equivalent to Wiener’s reqularity.

Proof. Let O be regular in the Wiener sense and let v be the solution of
(2.1.4) with m = 1. We introduce the Newton potential uy with the density
f and note that uy is smooth in a neighborhood of 9Q. Since v = v — uy is
the H'(Q)-solution of the Dirichlet problem

—Au=0 on €
v=—uy on 0F,

it follows from Wiener’s regularity that e is continuous at O (see [32, Sec-
tion 3]). Hence O is regular in the sense of Definition 2.1.1.

In order to prove the converse assertion we consider the Dirichlet prob-
lem

—Aw=0on Q, we I?Il(Q),
w(z) = (2n)"Yz[? on OQ.

We show that w is continuous at O provided O is regular in the sense of
Definition 2.1.1. In fact, since the function

2(a) = w(z) — (2n) " fof?

satisfies
~Az=1on Q, we HY(Q),

we have

z(x) = /G(x,s) ds,
Q
where G is Green’s function of the Dirichlet problem. Therefore,

z(x) = /G(m,s)h(s) der/G(x,s)(l — h(s))ds,
Q Q

where h € C§°(Q), 0 <h <1and h=1 on a domain w,w C €.
The first integral tends to zero as x — 0 by the regularity assumption.
Hence,

ds 2
1. < _— = n Q "
1r;1_s>3p |z(z)] < ¢ / w2 O((mes (Q\w)) )
QN\w
for n > 2, and

hglj})lp |2(2)] < ¢ / ‘ log (co|lz — s])| ds = O((meSQ(Q \ w))1_€>
Q\w
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for n = 2.

Since mes,, (2 \w) can be taken arbitrarily small, z(z) — 0 as x — 0. As
a result, we find that z satisfies the definition of barrier (see [29, Chapter 4,
Section 2]), and by Theorem 4.8 in [29], the regularity of O in the Wiener
sense follows. O

2.8 Regularity as a Local Property

We show that the regularity of a point O does not depend on the geometry
of 2 at any positive distance from O.

Lemma 2.8.1. Let n > 2m and let L(0) be positive with the weight F. If
O s regular for the operator L on ), then the solution uw € H™(Q) of
L(O)u = Z 0%fo on £,
{o: Ja|<m}
with fo € La(2) N C*(Q) and fo, = 0 in a neighborhood of O, satisfies
(2.1.2).

Proof. Let ¢ € C*°(2). We represent u as the sum v+w, where w € H™(Q)

and
Lop= 3 o).

{a: Ja]<m}

By the regularity of O, we have v(z) = o(1) as x — 0. We verify that w can
be made arbitrarily small by making the Lebesgue measure of the support
of 1 — ¢ sufficiently small. Let f, = 0 on By, and let y € Q, |y| < g. By
the definition of w and by (2.3.2),

> [0 0h-0r wh) do >

{a: Ja]<m} g

22*1w2(p)+62/ ||ka(x)|2 -

_2k b)
x—y"
k:lﬂ

where F,(z) = Fy(x —y) and ¢ does not depend on Q. The proof is com-
plete. O

Lemma 2.8.2. Let O be a regular point for the operator L(0) on 2, and
let Q' be a domain such that Q' N By, = QN By, for some p > 0. Then O
is reqular for the operator L(9) on .

Proof. Let u € I(;'m(Q’) satisfy L(Q)u = f on Q' with f € C§°(Q). We

introduce 1,(x) = n(2), n € C3°(Bz), n = 1 on Bs. Then nu € H™(Q)
and
L(8)(npu) = nof + [L(D),mp)u on €.
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Since the commutator [L(0),7,] is a differential operator of order 2m — 1
with smooth coefficients supported by By, \ B 3 it follows that

L©O)mpu) = > 9fa on

{a: Ja]<m}

where f, € Ly(Q)NC>(Q) and f, = 0 in a neighborhood of O. Therefore,
(npu)(x) = o(1) as = tends to O by Lemma 2.8.1 and by the regularity of O
with respect to L(9) on . O

2.9 Proof of Necessity in Theorem 2.1.2

Let n > 2m, and let condition (2.1.6) be violated. We fix a sufficiently small
€ > 0 depending on the operator L(9) and choose a positive integer N in
order to have

> 2t=2micap, (By_;\ Q) <e. (2.9.1)
j=N

By Lemma 2.8.2, it suffices to show that O is irregular with respect to
the domain R" \ K, where K = By~ \ 2. Denote by Uy the L-capacitary
potential of K. By subtracting a cut-off function n € C§°(R") used in
the proof of Lemma 2.8.2 from Ug and noting that n is equal to 1 in a
neighborhood of K, we obtain a solution of Lu = f on R™ \ K with f €
C§°(R™) and zero Dirichlet data on O(R™ \ K). Therefore, it suffices to
show that Uk (x) does not tend to 1 as  — 0. This statement results from
(2.9.1) and the inequality

MUK(0) < ey 202 cap, (By_; \ Q), (2.9.2)
j>N

which is obtained in what follows. _
We introduce the L-capacitary potential U) of the set

K9 = K0 By \ Byrs), j=N,N+1,....

We also need a partition of unity {n(j )}jz ~ subordinate to the covering of
K by the sets Bgi—; \ By-1-;. One can construct this partition of unity so
that |Vpn")| < cx2F9, k =1,2,.... We now define the function

V=> niHuY (2.9.3)

j>N

satisfying the same Dirichlet conditions as Ug. Let Q.(y) denote the

quadratic form
> [
|z — yl" 2’“
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and let I, f be the Riesz potential |z|*~™ % f, 0 < A < n. It is standard that
AMINf(0) < celrf(0) if f >0 (see the proof of [29, Theorem 1.11]). Hence,

i3 d
MQu(0) < CZ/ V()| m
kle"

This inequality and definition (2.9.3) show that

A Qv(0) < Z Z / ‘ka(j)(aC)‘Q x|ilzx2k <

J>N k=0 —
By \B2*1*J

n—2m)j j 2 dQIJ
<c 2 )’/WkU(”(M TR <

J>N i
<c Z 9(n—2m)j / |va(j)(x)|2 dz,
J>N in

the last estimate being based on Hardy’s inequality. Therefore,
MQy(0) <> 202 cap, KW, (2.9.4)
Jj=>N
Furthermore, by Proposition 2.2.2,
AV(0) <c Z 2(n=2m)j cap KW, (2.9.5)
Jj=N

We deduce similar inequalities for W = Ux — V. Note that W solves
the Dirichlet problem with zero boundary data for the equation L(0)W =
—L(9)V on R™\ K. Hence by (2.3.2), we conclude that for y € R" \ K,

27'W(y)® + cQw (y) <

< ‘ Z a0V (z) - 0P (W(z)F(z —y))dz|. (2.9.6)

Rrn lal=[8]=m

2.10 Proof of Sufficiency in Theorem 2.1.1

In the case of n = 2m, the operator L(9) is arbitrary. We introduce a
sufficiently large positive constant C' subject to a condition specified later.
We also need a fundamental solution

F(z) = slog |z| ! +\If(|%|) (2.10.1)

of L(9) in R™ (see [5]). Here » = const, and we assume that the function
W, which is defined up to a constant term, is chosen so that

F(x) > sxlog (4|x|_1) + C on Bs. (2.10.2)
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Proposition 2.10.1. Let Q be an open set in R™ of diameter dg. Then
for allu e C§° and y € Q,

/ L()u(z) - u(x)F(xd_

y) dr — 27 u(y)? >
Q
Q

m

|VU 4dQ
1 dr. (2.10.3
Q/|x ey ooy S e, 010

Everywhere in this section, by ¢ we denote positive constants independent
of Q.

Proof. Tt suffices to assume dg = 1. By Lemma 2.2.1, the left-hand side in
(2.10.3) is equal to the quadratic form

/ Z > 0"u-0"u- Py (0)F(x — y) da.

Q J=1|pl=lvl=5

By Hardy’s inequality,

<

\m@) — Y awpdula)- 0Pu) - Fla —y)da

la|=|Bl=m
|V u(z
by e
Q

Hence, there exist constants ¢; and ¢y such that

a6, (y / IV u(z)|? log (4 — y| ') do < e, (y). (2.10.4)

(Here we have used the fact that the constant C' in (2.10.2) is sufficiently
large in order to obtain the right-hand inequality). By the Hardy-type
inequality

Vju(z)?

-1
[ R on ) o

< c/ |Vmu(z)|*log (4)z — y|~') dz, (2.10.5)
we can also write

Vju(@)®

Thus the proof is complete. O
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Lemma 2.10.1. Let n = 2m, and let u € H™(Q) be subject to (2.6.1).
Then for an arbitrary pointy € B,, p <1,

u(y)2 + %’(Wp, Uonym) < CMp(u)7

where A, 1, and M,(u) are the same as in Lemma 2.5.1, F, ,(x) =

F(*%p), and F is given by (2.10.1).

Proof. We majorize the second term by repeating the proof of Lemma 2.5.1.
Then the first term is estimated by (2.10.3), where the role of § is played
by €N By,, and u is replaced by u1,. The result follows.

Combining Proposition 2.10.1 with 2N By, and u7, instead of {1 and u,
with Lemma 2.10.1, we obtain the following local estimate similar to (2.6.5).

Lemma 2.10.2. Let the conditions of Lemma 2.10.1 be satisfied. Then for
ally € QN B,, p <1, the estimate

u(y)® + / > m log (4plz —y| ") dx < cM,(u)  (2.10.7)

holds.

We now are in a position to finish the proof of sufficiency in Theo-
rem 2.1.1.

Let n = 2m, and let v € H™ () and L(0)u = 0 on QN By,. We diminish
the right-hand side in (2.10.7) replacing B, by B, \ B. with an arbitrarily
small € > 0. The obtained integral is continuous at y = 0. Hence,

S| Vieu(z) 2 _
Z ||::|n(2)k| log (4plz| ") dz < eM,(u). (2.10.8)

onB, k=1

Putting here p = 1 and v,,(r) = cap,, (S, \ Q, By,.), we estimate the left-
hand side from below by using the estimate

m

c Viu(z)|?
wws o [ SR e

ans, k=1

proved in Proposition 2.5.1. We have

D 3 vm(279) My (u) < eM (u).
i1

Hence by (2.10.7)),

o0
Zj’ym(Z_j) sup u? < cM(u).
j=1 903277‘
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Suppose that O is irregular. Assuming that

lim  sup u? > 0,
J_N)OQQB27]‘

we have -
D im(27) < 0. (2.10.9)
=1
Since
Capm(ET \ Qv B4T) Z Ca'pm(gr \ Q) Z CCQm(gr \ Q) fOI‘ T S 1

(see Section 2.2) and since the Bessel capacity is subadditive, we obtain the
estimate

(279) 2 ¢ Com(Bors \ Q) = Com (Brs \ ).
Hence and by Abel’s summation, we conclude that
ZCQm(EQ—j \Q) < 00,
j=1

that is, condition (2.10.9) is violated. The result follows. O

2.11 Proof of Necessity in Theorem 2.1.1

By G(z,y) we denote Green’s function of the Dirichlet problem for L(9) on
the ball By. Also, we use the fundamental solution f given by (2.10.1). As
is well known and easily checked, for all x and y in B 1,

|G(z,y) — F(z —y)| <<, (2.11.1)

where ¢ is a constant depending on L(9). Hence, there exists a sufficiently
small k such that for all y in the ball Bz and for all # subject to |z —y| <k,

crlog (2klz —y| ™) < G(z,y) < ez log (2k|lz —y| 1), (2.11.2)
and for all multi-indices «, 8 with |a| 4+ |3] > 0,
|0500G (2, y)| < capla —y| 1AL (2.11.3)

Moreover, G(x,y) and its derivatives are uniformly bounded for all z and y
in By with |z — y| > k. By Lemma 2.2.1, for all u € C§°(By),

m

/L(a)u -uGy dx:2_1u(y)2+/z Z Mu-0"u- P, (0)G, dz,

By By J=1pl=|v|=]
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where y € By and Gy (x) = G(z,y). Hence, using the same argument as in
Lemma 2.2.2, we see that for an arbitrary compact set K in B and for all
y € By \ K the L-capacitary potential with respect to B; satisfies

1 m
Uk(y)=>Uc@)?+ [ Y. Y. 0"Uk-0"Uk - Pu(0)Gyda. (2.11.4)

=5 . |
B, I=1 pl=lv|=j

(Note that the notation Ux was used in the case of n < 2m in a different

sense.)

Lemma 2.11.1. Let K be a compact subset ofﬁé. For ally € B\ K, the
equality
Uk (y) — 1] <1+ ¢ cap,, (K, By) (2.11.5)

holds, where (and in the sequel) by ¢ we denote positive constants indepen-
dent of K.

Proof. Since L(0)Uk = 0 on By \ By and since Uk satisfies zero Dirichlet
conditions on 9B, it is standard that

sup |Uk| <ec¢ sup |Ug|
Bi\Bj B3\B,

(see [5, Chapter 3]). Thus we only need to check (2.11.5) for y € Bz \ K.
By (2.11.4) and (2.11.3),

(Uk(y)—1)° <1- /aaga“UK -9°Uk - Gy do+
B

m—1
+c Z / ‘VjUK(x)ﬁx —y|¥ " dx.

Jj=1 By
It follows from (2.11.2) and Hardy’s inequality
/|VjUK(m)|2|x —yP T dr < c/ |VmUK(:c)|2dgc7 1<j<m,
B1 B
that
(Uk(y) - 1)2 <l-¢a / |VmUK(x)|2log (4k|z — y| ") da+
B (y)

+c/|VmUK(x)|2dx <1+ cycap,,(K, By),
By

which is equivalent to (2.11.5). O
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Lemma 2.11.2. Let n = 2m, and let K be a compact subset of By \ B%,
Then the L-capacitary potential Uy with respect to By satisfies

MV Uk (0) < ccap,,(K,Bs) for 1=0,1,...,m

Proof. Tt follows from (2.11.4) and (2.10.5) that Uk satisfies the inequalities

Uk (y )|<c<UK( /|v Usc ()] log (4] — y| ") dx),

B>
V0] < o Vi) + / > [TUslol 9.Uxlal )

|$__2An r—s—+l
1<r,s<m
r+s>l1

(cf. the proof of Corollary 2.2.1). It remains to repeat the proof of Propo-
sition 2.2.1 with the above inequalities playing the role of (2.2.12). O

Lemma 2.11.3. Let n = 2m, and let K be compact subset of Bs, § < 1,
subject to

g(m)
Com(K) < log(2) (2.11.6)

where e(m) is a sufficiently small constant independent of K and §. Then
there exists a constant c¢(m) such that cap,, (K, Bas) < ¢(m)Capm (K).

Proof. Let 6§ 'K denote the image of K under the 6~ !-dilation. Clearly,
cap,, (K, Bas) = cap,,(0 'K, By). By using a cutoff function, one shows
that cap,, (6 1K, By) does not exceed

cmf{ > IViulg, @ :

0<k<m
u € C§°(R™), n =11in a neighborhood of 61K}.
Now we recall that by allowing the admissible functions to satisfy the in-

equality U > 1 on K in the last infimum, one arrives at the capacity of
1K equivalent to Cy,,(6 1 K). Hence, it is enough to verify that

Com(07'K) < Oy (K). (2.11.7)

We denote by Ppu the 2m-order Bessel potential of measure p and by
Gam the kernel of the integral operator P. Let ux be the corresponding
equilibrium measure of K. Since K C By and § < 1, we obtain for all y € K
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except for a subset of K with zero capacity Ca,,

/sz(éfl(x —y)) dpr(z) > c/log (Olz —y|™") dux () >
K

K

> c(/log (2lz —y| ™) duk (z) — Com(K) log(25_1)> 2
K

== Z Ganla = ) (o) = 2(m) ) 2 co(1 —elm).

Thus, for the measure u® = ¢y (1 — e(m)) " g (5¢) which is supported
by 6 1K, we have Pu'® > 1 on 6~'K outside a subset with zero capacity
C5,,,. Therefore,

Com (071 K) < (Pu®, ) =

=062(1—E(m))_z//sz(d‘l(:c—y)) dpk (@) dpg (),  (2.11.8)

where <Pu(5), ,u(5)> denotes the energy of 1Y), Now we note that
Gom, (5_1(30 — y)) < clog (46|x — y|_1) <
< clog (4|x — y|71) <aGom(r —y)

for  and y in K. This and (2.11.8), combined with the fact that the energy
of pk is equal to Cy,y, (K), complete the proof of the lemma. O

Suppose that O is regular with respect to the set 2. Assuming that
1
— dr
Com (B, \ Q) Y < 00, (2.11.9)
0

we arrive at a contradiction. We fix a sufficiently small € > 0 and choose a
positive integer N so that

i Com(Ba-i \ Q) < e. (2.11.10)
j=N

Let K = By~ \ Q, and let Uy, denote the L-capacitary potential of K
with respect to B;. We note that using (2.10.3) one can literally repeat the
proof of locality of the regularity property given in Lemma 2.10.1. There-
fore, O is regular with respect to By \ K, which implies Ux(x) — 1 as
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x — O. Tt suffices to show that this is not the case. It is well known that
(67) implies

> jCam(KEW) < ce,

j=N
where KU) = {x € K : 27177 < |2| < 2!}, and ¢ depends only on n. A
proof can be found in [19, p. 240] for m = 1, and no changes are necessary
to apply the argument for m > 1. Hence, by Lemma 2.11.3, we obtain

> jeap,, (KY),Bya-y) < c=. (2.11.11)
i2N

We use the partition of unity {n“)};>y introduced at the beginning of
Section 2.9, and by UY) we denote the L-capacitary potential of K) with
respect to Bg2—;. We also need the function V' defined by (2.9.3) with the
new U, Let

. m (@) 2 4-7
Ty =3 [0, 27,

— —2k _ :
= lz —y|" |z -yl

By (2.10.5),

4—j

. . 2
T (y) :c/’VmU(])(m)|2log dz,

lz -yl
B,
and therefore for r <1,

) . 24—J
[ 7O () dy < VU9 (2)|* log —— da <
[T a e [ 909 10 2o <

B, Bgfj

24-7
< clog (

)Cap (K(j),BQ2—j).

Hence, bearing in mind that suppn) C Bgi—; \ By-1-;, we have
A (DT (0) < ¢ cap,, (KY), By2-5). (2.11.12)
Furthermore, by (2.11.4) and Lemma 2.11.1,
%(n(j)U(j))(O) <

<9 (1 +¢gcap,, (K9, B2Q_j)>///(n<j>T<j>)(o) + et (DT (0).

Since we may have cap,,(k), By>—;) < (2¢0)~" by choosing a sufficiently
small £, we obtain

A (DU (0) < der.at (1 T)(0),
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and by (2.11.12),

A (DU (0) < ¢ cap,, (K9, By-s), (2.11.13)
which implies
AMV(0) < ¢ cap (KY), Baay). (2.11.14)
j>N

We introduce the function
Ui Vku _
.- [ |'(|)_'% tog (4l — 4/ dy
k=15,

By (2.10.5),

Ty(y) < c / (Vo V(@) log (d]z — y|~Y) dy <

B1
N1 2 -
<3 [ IVt PU @) o (4~ ) da
JZNpg
Hence, for r <1,
7 [Ty <
BT‘
N 4
<c v (,,(a>U<]>)(x)|210g| |+rd1'_
jZNle—j\Bz—1—7
<ed [ | VaPUD)(2)]" do (2.11.15)
j=>N B
Clearly,
/ VDU @) dr <
) VU9 (@)
< C/\anf (@)’U dx—!—cz Ty de.  (2.11.16)

Owing to Hardy’s inequality, each term in the last sum is majorized by

c/ |VmU(j)(x)|2 dx = ccap,,(KY, By_;).
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By Lemma 2.10.2, the first integral in the right-hand side of (2.11.16) is
dominated by

c22mi / U (@) da < et (CDUD)(0),

supp ()

where () is a function in C§°(Bgi—; \ By-1-5) equal to 1 on the support
of n). Now we note that (2.11.13) is also valid with 7 replaced by ¢\7).
Hence,

/ Vo (DUD) (@) [* dae < ccap,, (KW, By-), (2.11.17)

By
which, combined with (2.11.15), yields
MTy(0) < e jeap(KY), Byay). (2.11.18)
j=N

We turn to estimate the function W = Ugx — V', which solves the Dirichlet
problem for the equation

L(OW = —L()V on By \ K. (2.11.19)

It follows from (2.10.3) that for y € B; \ K,

27 W (y)? + c/ (VmW(x))2 log (4]z — y| ™) dzx <
By
< Z aapd*V(z) - 0°(W(z)F(z —y)) dz. (2.11.20)
B, lal=1Bl=m

Hence by (2.10.1),

W(y)2 + / (vmW(l'))Q log <4|.T - y‘il) dr <
B
dz

|z —y[n—m

< ( [ 19V @l
By

m—1
dzr
+/|VmV(x)| Z VW (z)] WJF
B k=1

+ / ViV (@) [V W ()| log (4]z — y| ™) dm). (2.11.21)
B,
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Since both |Ugk| and |V| are bounded by a constant depending on L,
the same holds for |WW|. Thus, the integral on the right containing |W]| is

majorized by
dx
C/|va($)\ EET=T

B,

Obviously, two other integrals in the right-hand side of (2.11.21) are not
greater than

1 (VW (x 2 4 3
vl 2<Z/ o et [ (W) g )

By Hardy’s inequality, we can remove the sum in k enlarging the constant
c. Hence by (2.11.21),

dz <

4
le —yl  —

< c(/|VmV(x)| m_djn_m +Tv(y))-
B1

Thus by Ux =V + W, we arrive at

W(y)2+/(VmW(x))210g

By

4
Uk (9)? + ¢ / (U (2))* og 2 da <

<c(V( + Ty (y /\VV e |n m)

The left-hand side is not less than c|Uk (y)| by (2.11.4). Therefore,

B,

MUk (0) gc(///v2(o)+///Tv / ViV (@ |n )

By Lemma 2.11.1, |[V| < ¢. This, along with (2.11.14) and (2.11.18), implies

MV2(0) + 4Ty (0 Zycap K(]) , By2-).
j>N

It follows from the definition of V' and from Lemma 2.11.2 that

NnVD] 4, < o 3 gtnm / IV (DU ()] der <

|x|n m

B jzN By2—j

<c Z cap,, (KW, By2—;).

Jj=N
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Finally,
MUK (0) < ¢y jeap,,(KY), Bymy),
j>N
and the contradiction required is a consequence of (2.11.12). The necessity
of (2.1.3) for the regularity of O follows.

2.12 The Biharmonic Equation in a Domain with In-
ner Cusp (n > 8)

Let the bounded domain 2 be described by the inequality z, < f(z'),
2’ = (x1,...,2,—1) on By, where f is a continuous function on the ball
{2’ : |2'| < 1}, subject to the conditions: f(0) =0, f is smooth for 2’ # 0,
and % is a decreasing function of |2’| which tends to +oo as |2'| — 0.

These conditions show that at the point O the surface 02 has a cusp
that is directed inside 2.

Theorem 2.12.1. Let n > 8, and let u solve the Dirichlet problem

A2 = f, ue HX(Q),
where f € C3°(Q). If
1
/04(§p\9) b _ o, (2.12.1)

pn—3
0

then u(x) — 0 as x tends to O along any nontangential direction.

Proof. By v, we denote the external normal to 992 at the point x € (B N
90)\ O. We introduce the function family {f.} by f-(z') = (f(2') —¢&)4 +e.
Replacing x,, < f(z') in the definition of Q by z,, < f-(z'), we obtain the
family of domains €2, such that O € Q. and Q2. | Q ase | 0.

By the implicit function theorem, the set E.={x: x,=f(z')=¢}isa
smooth (n — 2)-dimensional surface for sufficiently small . In a neighbor-
hood of any point of E., the boundary of €. is diffeomorphic to a dihedral
angle. It follows from our conditions on f that the two hyperplanes , which
are tangent to 02 at any point of the edge F., form a dihedral angle with
opening > 37“ (from the side of Q). Then, as is well known, the solution of
the Dirichlet problem

A%u, = f, u. € H™(Qe),
satisfies the estimate

Vjuc(z)| = O(dist(z, E.) 7 1), (2.12.2)
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where A > 2Z (see, e.g., [54, Theorem 10.5] combined with [24, Section 7.1]).
The value of A can be made more precise, but this is irrelevant for us. In
fact, we only need (80) to justify the integration by parts in what follows.

By y we denote a point on the semiaxis ' = 0, z, < 0, at a small
distance from O. Let (r,w) be spherical coordinates centered at y, and let
G denote the image of Q. under the mapping = — (¢,w), where t = —logr.
For u,(x) written in the coordinates (¢, w), we use the notation v(¢,w). Also,
let 6, denote the Laplace-Beltrami operator on 9By, and let d;, 92, and so
on, denote partial derivatives with respect to ¢t. Since

A = e* (02 — (n—2)0; + 6.,
we have A? = e** A, where

A= ((0:+2)—(n—2)(0 +2) +6.) (87 — (n—2)0 + 6,) =
= O} 42026, + 62 — 2(n — 4)(0? + 8;0,,) — 2(n — 4)d,+
+ (n? — 10n + 20)07 + 2(n — 2)(n — 4)9;.

Consider the integral

Ilz/Azus Oue _do :/Av-atvdtdw.
Qe

Oor rn—=>
G

Integratig by parts in the right-hand side, we obtain

I = 2(n — 4) / ((@%)2 + (grad,, 9,0)% + (n — 2)@@)2) dt dw—
G

1

) / ((@1;)2 + 2(grad, 0yv)? + ((5wv)2) cos(v, t) ds.

oG

Since the angle between v and the vector z —y does not exceed 7 , we have
cos(v,t) < 0 and therefore,

2(n — 4) / ((Btv)2 + (grad,, 9,0)% + (n — 2)(3tv)2> dtdw < Ip. (2.12.3)
G

We make use of another integral

d
L= /A2u€~u5 s /Av-v dt dw. (2.12.4)
QE

G
We remark that y € €. implies

2 [ Q- vdtdw= [ (v(+00,w))” dw = wp_1(ue(y))>.
fouie |

0B,
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After integrating by parts in (2.12.4), we obtain

[ (08072 + 60)? + 2grad 0 + 200 — 2)grad, 0~
G
— (n? —10n + 20)(8tv)2> dt dw + wy,—1(n —2)(n — 4)(ue(y))? < L.

Combining this inequality with (2.12.3), we arrive at

/ (Z(n — 3)(8%0)% + 2(n — 2)(grad,, 9,v)*+
G

+2(6,0)2 + 4(n — 4)(grad,, v)? + 8(n — 3)(6tv)2) dt dw+
+ 2w 1(n —2)(n — 4)(uc(y))? < I) + 2Is.

Coming back to the coordinates x, we obtain
Vu.)?\ dx
(el + [ (Voo + ) <

r pn—4 —
Q.

< c/f(r due | 2u8) %. (2.12.5)

or
Q.

Since u. — u in H™(R"™), we can here replace u. by u and €. by Q.

Now let 1, and (, be the cutoff functions used in the proof of Lem-
ma 2.5.1. Since A%(un,) = fn, + [A%, n,Ju and f = 0 near O, we see that
for Yn € (_gao)v

(u(y))2+/((vz(unp)fJr (V(unp))Q) dz

712 7/.77,74 —
Q
O(un,) 9 dx
< _—
- C/ (T or + 2w7ﬂ>[A 2 e rn—4
Qe

Integrating by parts in the right-hand side, we majorize it by (2.6.3), and
therefore it follows from (2.6.4) that

5 <cM,(u). (2.12.6)

sup |u(0,yn)\2+/<(V2u)z+ (Vu)2) dx

n—4
_£<y <0 T
2 n B,

r

We fix a sufficiently small § and introduce a cone Cyp = {z : x, >0, |2| <
Oz, }. Clearly, for all r € (0, p),

sup  |ul? < c<|u(0, 77")|2 +r%  sup |Vu|2),
(0B-)\Co (0B-)\Cp
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the function u being extended by zero outside 2. Hence and by the well-
known local estimate

d
r? sup |Vuf*<c / |Vu(z)|? % ,

(0B,)\Ce |z

(B2r\35)\cg
we obtain
dx
sup |ul? Sc( sup |u(0,yn)\2+/\V(JC)|2 ”)
Bp\Co 0>yn>—54 2 |z|

Making use of (2.12.6), we arrive at

|Vul?\ dx
sup \u|2+/(|V2u|2+ )T < eM,(u).
s, o) et = e
P

Repeating the proof of Lemma 2.6.2, we find that for p € (0, R) and for
small R, the inequality

Vul|? dz
sup IUI2+/ (IVzul2 +] 2| ) Tt =
B%\Ce |$| |x‘

B,

< cMp(u)exp (— c /R capy(B- \ Q) Tffl,)

holds. The result follows. O






Chapter 3

Boundary Behavior of Solutions to
the Polyharmonic Equations

The polyharmonic equation is, obviously, a particular case of general equa-
tions in Chapter 1. However, the results for this equation obtained previ-
ously can be made more explicit.

3.1 Weighted Positivity of (—A)™

Henceforth as above 2 is an open subset of R” with boundary 92 and O is

a point of the closure Q. In the sequel, ¢ is a positive constant depending

only on m and n, and w,_1 is the (n — 1)-dimensional measure of 9B;.
We shall deal with solution of the Dirichlet problem

(=A)"u = f, uwe H™(Q). (3.1.1)
By I" we denote the fundamental solution of the operator (—A)™,

ylzPm= for 2m < n,

I'z) = 9
(z) v log m for 2m =n,

where & is a positive constant and
v h=2"" Y m —Dl(n—2)(n —4) - (n — 2m)wp_1
for n > 2m, and
“1Tem— 2
Y2 m = D)) wpe
for n = 2m.
Proposition 3.1.1. Let n > 2m and let

/u(x)(—A)mu(:U)F(ac —p)dx >0 (3.1.2)
Q

45
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for all u € C§°(Q) and for at least one point p € Q. Then
n=2m, 2m+1, 2m+2 for m > 2

and
n=4,56,7 for m=2.

Proof. Assume that n > 2m + 3 for m > 2 and n > 8 for m = 2. Denote
by (r,w), r > 0, w € OB;(p), the spherical coordinates with center p, and
by G the image of Q under the mapping © — (t,w), t = —logr. Since

r*Au=r>""(rd,) (r" 2 (ro,)u) + .y,

where §,, is the Beltrami operator on 9B (p), we have

A =e(02 = (n—2)0; +0,) = th{<8t - 2)2 —A},

2
where 5
A=—5,+ @ : (3.1.3)
Hence
p2mpAm —ni'[l{(at— ”—_2+2j)2 —A}. (3.1.4)
Jj=0 2

Let u be a function in C§°(2) which depends only on |z — p|. We set
w(t) = u(z). Clearly,

/ (—A)"u(z)u(z)D(z — p) dx = / w(t)@(%)w(t) dt, (3.1.5)
Q R
where
PN = (—1)"ywp-1 l:I A+2))(A—n+2+2j) =
j=0

= (1) wn A —n+2) TT O+ 25)(h —n — 2m + 2 + 2j).

j=1
Let
2m—1
PN) = (1) waa A"+ Y apdP.
k=1
We have

as = (A"t2(N)

1 m—1 1 1
- Y ().
A=0 2-—n f 27 n—2-2m+2j
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Hence by n > 2m + 3,

1 n—2-m
2 n—-2 n-2m <~ 2jn—2-2m+2j)
1

We choose a real-valued function n € C§°(1,2) normalized by

JEC R
R1

and we set u(x) = n(et), where ¢ is so small that suppu C €. The quadratic
form on the right-hand side of (3.1.5) equals

/ (2™ wn-a[n™ (et)[* + mZ az(~1)e2 |5 ® (et)|*) dt =
k=1

R1
= —aze + O0(%) < 0,

which contradicts the assumption (3.1.2). O
Now we prove the converse statement.
Proposition 3.1.2. Let I'y(z) = T'(x — p), where p € Q. If

n=2m, 2m+1, 2m+2 for m > 2,
n=4,56,7 for m=2,
n=2,3,4 for m=1,

then for all u € C§°(Q),

[-87) e - pde >
Q

’H’L
> 91 2 |Viu(x

> |x—p|2(m ) I(z—p)dz. (3.1.6)

(In the case n = 2m, the constant 2 in the definition of T is greater than
| — p| for all x € suppu.)

Proof. We preserve the notation introduced in the proof of Proposition 3.1.1.
We note first that (3.1.6) becomes identity when m = 1. The subsequent
proof will be divided into four parts.

(i) The case n =2m + 2.
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By (3.1.4),
m—1 m—1
r A" =TT @0 —m+2j — A2) [] (0 —m +2j + A2),
j=0 j=0

where A = —4,, + m?2, and A? is defined by using spherical harmonics. By
setting k = m — j in the second product, we rewrite the right-hand side as

m—1 m
[T @ —m+2j—A%) [[ (0 +m — 2k + A%).
=0 k=1

This can be represented in the form
m—1
1
(0 —m— A2)(0, —m+ A7) ] (&7
j=1
where %; = Az +m— 2j. Therefore,

9 m—1
2" A" = (8 +0, —2m ) El (02 — 2?) =

m—

= (02 +6,) H

+(—1)m2mat SR B B
0<j<m—1 '
ki<-<kj

We extend w by zero outside 2 and introduce the function w defined by
w(t,w) = u(x). We write the left-hand side of (3.1.6) in the form (I + I»),
where + is the constant in the definition of T,

@m'h)= [0 > (=) BRw-w dtdw,
0<j<m—1
k1<---<kj

and
m—

L=(-1)" /62+5 H — B)w - wdt dw.
G

Since the operators %; are symmetric, it follows that

m L= O / O By, - By, w)? dw dt =

0<j<m—1 3
k1<--<kj R 9B,

) / \(81”‘j‘1<%’k1 - B, w) (00, w)

0<j<m—1
ki <---<k;j 0B

dw.

‘ 2
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Since u € C§°(Q2), we have w(t,w) = u(p) + O(e™") as t — 400, and this
can be differentiated. Therefore, all terms with j < m — 1 are equal to zero,
and we find

f=m [ (@ o) oo, do =
0B,

= mu?(p) / | By - By 11| dw.
0B

By #; = (—0., —|—m2)% + m — 27, we have

L =4 'm[(m — 1)!]2w2m+1u2(p).

Since in the case n = 2m + 2,

. _ 2
7t =22"" [ (m = 1)) want 1,

we conclude that
I = (27) Y2 (p). (3.1.7)
We now wish to obtain the lower bound for I5. Let w denote the Fourier
transform of w with respect to t. Then

m—1
L= / /()\2 —d.) [T+ ZDa(\w) - 58, w) dAdw.
9B R! J=1

Clearly,
—m+2>2m Y(m?—4,)?,

=

HBj = (m2 — bw)

and
N+ B> 4m (N +1—6,),

the operators being compared with respect to their quadratic forms. Thus

m\ 2m—2
— I
( 2 ) 2

> / A2 =0, N +1=6,)" o\ w) - B\ w) d\dw >

BBl xR

Y

> (l0cwldim-1c) + I Verolim-1(e)):

where H™! is the Sobolev space. This is equivalent to the inequality

|Vku
I >C/Z |:C7p|n 2k

which, along with (3.1.7), completes the proof for n = 2m + 2.
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(ii) The case n =2m + 1.

We shall treat this case by descent from n =2m+2 ton =2m+ 1. Let
z = (z,8), where x € Q, s € R!, and let ¢ = (p,0), where p € Q, 0 € RL.
We introduce a cut-off function n € C§°(—2,2) which satisfies 7(s) = 1 for
|s]<land 0 <7n<1onR. Let

Us(2) = u(z)n(es)

and let T(™) denote the fundamental solution of (—A)™ in R™.
By integrating

(_AZ)MF(n+1) (Z7q) = 5(Z - Q)7
with respect to s € R!, we have
™ (z,y) = /F(’Hl)(z,q) ds. (3.1.8)
R1
From part (i) of the present proof we obtain

(=AU (2)U- ()P (2 — q) dz >

QxRL

IV
l\D\H

VU, (2
/ Z 2 — q‘2(m+1 B dz.

QxR k=1

By letting e — 0, we find

/ (=A™ u(z) - u(z)D Y (2 — ) ds dx >
QxR1L

Z Viu(@ dsdx.

>
= — 12 +1k)
o le P

1
2
QxR
The result follows from (3.1.8).
(iii) The case m =2, n=717.

By (3.1.4),

30ws | A%u(x) - u(z)(z —p)de =
/

= /(wtt — bwy 4 d.w) (wy + wy — 6w + d,w) dt dw.
Q
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Since w(t,w) = u(p) + O(e™ ) as t — +o0, the last integral equals

/(wft —5w? — 6wy w 42w 6, w+ (Sw)? —6w(5ww) dt dw+15weu®(p).
Q

After integrating by parts, we rewrite this in the form

/ (w?t(6ww)2 + 2(Vowy)? + 6(Vow)? + wf) dt dw + 15weu?(p).
Q
Using the variables (r,w), we find that the left-hand side exceeds

C/((Au(x))2 n ‘Au(x)|2)dx+15w6u2(p).
Q

|z —pl3 |z — pl

Since

92 ou Ou
2 _ 2 ) —— EP
Vaul® — (Au)® = A((Vu)?) 9z:0; (axi a:cj)’

it follows that

de< Mdm c Mdm
/ _!‘ + ! 7

|z —p[3 |z — pl |z — pl
Q

which completes the proof.
(iv) The case n = 2m.

By (3.1.4),

m—1

r2eam =TT {(@ = m+1+2)? = (m = 1) + 0.} =

j=0
m—1 m—1 L

=J[ G—-m+1+2j—&2) [[ (0 —m+1+2j+&2),
j=0 j=0

where & = —4,, + (m — 1)2. We introduce k = m — 1 — j in the second

product and obtain
m—1

remam = I @ - #2),

J
Jj=0

where #; :m—1—2j+£%. Hence

/ (—A)™u(x) - u(z)T(z — p) dx =

Q

m—1
=v/ [[ (-0 + Z))w- (0 + tyw dtdw, (3.1.9)
G J1=0
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where ¢ = log 2. Since w(t,w) = u(p) + O(e™*) and

m—1 m
[[o+7h=3 (o S F2 7,
7=0 7=0 k1<--<kj

the right-hand side in (3.1.9) can be rewritten as

v S 0TI Ty T wd T (L )Ty, - Ty w) dtdw =

0<j<m—1
k1<—-<k;
=7 S O Ty Fryw) (L +t) dt dw+
0<j<m—1
k1 <-<k;
+% Z (m_j>at(8gn_l_jyk1 "'ykjw)Q dt dw.
G 0<J<m 1
k1<--<k;

The second integral in the right-hand side equals

. . —1—4 2
t—l>l+moo Z (m = §)0| 07" Fy -+ Fiyw|” dw =
0B1(0) LT

SN D SRR R

9B (p) k1< <km_1

and since (Z,,_1w)(t,w) = O(e™!), the last expression is equal to

. li? / (Zo- - ﬁm_gw)Q dw = (2" (m — 1)!)2wn_1u2(p).
— 00
0B (p)

Hence

/(—Amu(m) cu(x)T(z —p)da =

Q

7u2(p)+v/(€+t) S @ Ty Fryw)” dtdw.
G 0<j<m—1
ki <--<kj

Since .7, 1 > ¢(—8)2 and .Fy, > ¢(—6+1)2 for k < m—1, the last integral
majorizes

c/(£+t) Z (8{‘(—5)%10)2 dt dw >

5 1<p4v<m—1
|Vku
>
c/log —p| E |$ |2(m ) dx,
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which completes the proof. O

3.2 Local Estimates

We are in a position to obtain a growth estimate for the solution formulated
in terms of a Wiener type m-capacitary integral. Before stating the result
we note that the function v,,(p) is measurable not only for n > 2m when it
is monotonous, but also for n = 2m. In fact, one can easily show that the
function

(£.00) 57— cap,a(5,\ 2. Bay)

is continuous. Hence, being monotonous in p, the function of two variables
(p, 1) — cap,,, (S, \ ©, By,) satisfies the so-called Carathéodory conditions
which imply the measurability of +,,(p) in the case n = 2m (see [7], [68,
p. 152]).

Theorem 3.2.1. Let m andn be as in Proposition 3.1.2 and let the function
u € H™(Q) satisfy A™u =0 on QN Bar. Then, for all p € (0, R),

Viu
supp{|U(P)|2¢ pEQNB,} + / Z||;|n ap dr <
QNB,

< eMp(u) exp ( - C/R%(T) d:) (3.2.1)

p

Proof. For n > 2m, estimate (3.2.1) is contained in Lemma 2.6.2, Chap-
ter 2. In the general case n > 2m, the proof is the same and is given here
for readers convenience.

It is sufficient to assume that 2p < R, since in the opposite case the
result follows from Corollary 2.6.1. Denote the first and the second terms
on the left by ¢, and v,, respectively. From Lemma 2.5.1 it follows that
for r < R,

©Or + wr S ’}/mL(’I“) (w2r wr) S (w2r wr + Y2r — Sor)~

7()

This, along with the obvious inequality v, (r) < ¢, implies

507“ + ¢r S Cefco'ym(r) (SDQT + w2r)~
By setting r = 279R, j = 1,2,..., we arrive at the estimate

¢
Po-tR + Ya-tp < CEXP ( - CZ%n@_jR))((PR +Yr).

Jj=1
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We choose ¢ so that R

in order to obtain

y4
P+ < cexp ( — ¢ va(Q’jR))(wR +¥R).

j=1
Now we notice that by Corollary 2.6.1,

YR+ Yr < cMpg.
It remains to use the inequality

J4

R
. d
S @Rz 10T - a
P

j=1
which follows from the subadditivity of the Riesz capacity. O

Now we obtain a positive estimate for a function, m-harmonic in Q\ B,,.

Theorem 3.2.2. Let m and n be the same as in Proposition 3.1.2 and let

URS I(}(Q) satisfy
ATy =0 on Q\ B,.

Then for an arbitrary p € Q\ B,,

[p|

< c(,0) (2) e (< [0 D). B22)

T
p

Proof. Let w denote the Kelvin transform of u, i.e. the function

w(y) =y u(55)

|y/?

defined on the image IQ of  under the inversion z — y = z|z|~2. It is
well known that

A (P 25 ) = 2 A ().

[yl? [y?
(A simple way to check this formula is to introduce the variables (¢,w), and
to use (3.1.4).) Consequently,

/w(y)A;”w(y) dy = /u(x)A;”u(m) dx (3.2.3)

I0 Q
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o o
and therefore w € H™(IQ)) and u € H™(Q) simultaneously.

By Corollary 2.6.1,
: d
-
[ wwa) e (=[50 T)
\B

1
lal

D=

w(g)] < c(pn

2
P

D=

for all ¢ € I2 N B, which is equivalent to the inequality
q
()| <
lql?
vy
< c<p” / IyIQ(Qm’”)uz(%> dy) exp ( C/’Ym(T) T)-
Yy T

B2 \B Pl

|2m7n

lq

o
D=

By putting p = 1|¢| 2, z = y|y| =2, we complete the proof. O

By (3.2.3) and Theorem 9.3.2.1 in [46] mentioned at the beginning of
Section 3.2, one can find that cap,,(IK,Bas) is equivalent to p>(m=—") x
)

cap,, (K, Ba) for K C S,. Hence the function
P

Y (P) = PQm_n Capm(Sp \ 19, B4p)

satisfies the equivalence relation
Ym(p) ~ p" 2" cap,,(S1 \ Q. Bs)

which, together with the easily checked property of the capacity
cap,, (S, \ ©, Byp) ~ cap,, (S, \ ©),

valid for n > 2m (see [46, Proposition 9.1.1.3]), implies

Ip|
i (7) ~/vm<7>@

T

bt
D=

p

]

Here |p| > p and ¢, co are positive constants depending on n and m.
Furthermore, by the definition of w,
M (w) ~ p" 2" Mp(u),
P
and the result follows from (3.2.1) applied to w.

By a standard argument, Theorems 3.2.1 and 3.2.2 yield the following
variant of the Phragmén—Lindel6f principle.
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Corollary 3.2.1. Let m and n be the same as in Proposition 3.1.2 and let
Cu e H™(Q) for all ¢ € C*(R"™), ¢ =0, near O. If

Ay =0 on QN By,

then either u € IZT(Q) and

1
d
limsup sup |u(x)|exp (c/vm(T) T) < oo (3.2.4)
p—0  B,NQ T
p
or
1
lim inf p" 2™ M, (u) - ()dl >0 (3.2.5)
im inf o »(u) exp ¢ [ ym(r) — : 2.
P

3.3 Estimates for the Green Function

Let G,, be the Green function of the Dirichlet problem for (—A)™, i.e. the
solution of the equation

(=AL)"Gm(z,y) = 0(z —y), y€Q,

[e]
with zero Dirichlet data understood in the sense of the space H™.

Theorem 3.3.1. Let n = 5,6,7 for m =2 and n = 2m + 1,2m + 2 for
m > 2. There exists a constant ¢ which depends only on m, such that

|Gnl@,y) —Alz =y S edy™ " for |z —y| < dy,
|Gin(@,y)| < clw—yl*™ ™" for |z —y| > dy,
where d,, = dist(y, 02).

Proof. Let Q, ={z € Q: |z—y| <dy}and aQy ={z € Q: |[x—y| < ady}.
We introduce the cut-off function € C§°[0,1) equal to 1 on the segment
[0, ]. Put

H(x,y) = Gm(z,y) - n(lx;/y)F(x — ).

Clearly, the function  — (—A,)™H (z,y) is supported by ©,\271Q, and
the inequality
‘A?H(m, y)} < cd;"

holds.
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By Corollary 2.6.1 applied to the function z — H (z,y), we have
Hip.? <2 [(-8)"Hiz.y) - Hoy)e - p)do.
Qy

Therefore,

sup H(p,y)® <2 sup [Hip.y)| sup [ |ATH(9)|Do— p)do, (33.0)
PESY, PESY, pGQQyQ
Y

and hence,
sup |H(p,y)| <cd," sup /F(m —p)dx < cdim_”. (3.3.2)
pGZQy pGQQyQ

Y

Since A'H(p,y) = 0 for p ¢ Q,, we obtain from (3.3.2) and Corol-
lary 3.2.1, where O is replaced by p, that for p & 2Q,,

d n—2m B
Hp,y)l <e(=2=)" " sup [H(zy)| < cp— gl
|p_y| €20,

The result follows. O
The just proven theorem, along with Corollary 2.6.1, yields

Corollary 3.3.1. Let m and n be the same as in Theorem 3.3.1. The Green
function G, satisfies

[yl
c dr
Go0)| < - (— ¢ [ i) )

-
||

for 2|z| < |yl

We conclude with the following analogue of Theorem 3.3.1 in the case
n = 2m.

Theorem 3.3.2. Let n = 2m and let 2 be a domain of diameter D. Let
also

Y@ —y) = ylog :
(@=9) [z —y|

Then
D .
|Gz —y) = (@ —y)| < crlog = +eom if |w—y| < dy,
Yy

D ,
|Gm(x7y)| < C3 1Ogd7 + ¢4, Zf |(E - y‘ > dy
Y
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Proof. Proceeding in the dame way as in the proof of Theorem 3.3.1, we
arrive at (3.3.1). Therefore,

D
sup |H(p,y)| < cd;2m sup /F(x —p)dz < c¢1log — + ca.
pE2Q, PE2Q, dy

Y

Hence by Corollary 2.6.1, we obtain
D
[H(p,y)| < ¢ sup [H(p,y)| < 0(01 logd— + cz>

€28, y

for p & Q. Since Gy (p,y) = H(p,y) for p & 2Q,, the result follows. O



Chapter 4

Wiener Type Regularity of a
Boundary Point for the 3D Lamé
System

4.1 Introduction

In the present chapter we consider the Dirichlet problem for the 3D Lamé
system
Lu= —Au— agraddivu, w= (u1,us,u3)’.

We derive sufficient conditions for its weighted positivity and show that
some restrictions on the elastic constants are inevitable. We then prove
that the divergence of the classical Wiener integral for a boundary point
guarantees the continuity of solutions to the Lamé system at this point,
assuming the weighted positivity.

We first give the following definition.

Definition 4.1.1. Let L be the 3D Lamé system
Lu = —Au — agraddivu = —Dgpu; — aDyuy (i =1,2,3),

where as usual repeated indices indicate summation. The system L is said

to be positive with weight W (x) = (Uy;(x))? ;- if

/(Lu)T\Im dzx = —/ {Dkkui(:c) + aDyiug () Juj(z)¥;;(z) dz > 0 (4.1.1)
R3 RS

for all real-valued, smooth, nonzero vector functions u = (u;)?_;, u; €
Cs°(R3\ {0}). As usual, D denotes the gradient (D, D2, D3)T and Du is
the Jacobian matrix of u.

Remark 4.1.1. The 3D Lamé system satisfies the strong elliptic condition if
and only if & > —1, and we will make this assumption throughout this paper.

59
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The fundamental matrix of the 3D Lamé system is given by & = (@2])3’ =19
where

_ « ..
I 1(5”- + mwiwj) (i,j =1,2,3), (4.1.2)
C = 057—’—2 > 0
“ 8r(a+1) '

As usual, §;; is the Kronecker delta, r = |z| and w; = o

The first result we shall prove is the following

Theorem 4.1.1. The 3D Lamé system L is positive with weight ® when
a- < a < ay, where a— = —0.194 and ay ~ 1.524. 1t is not positive

definite with weight ® when a < o' ~ —0.902, or a > agf) =~ 39.450.

The proof of this theorem is given in Section 4.2.
Let © be an open set in R3 and consider the Dirichlet problem

Lu=f, fieC&(Q), ue H(Q). (4.1.3)

By I(}l(Q) we denote the completion of C§°(2) in the Sobolev norm:

1
2

12 @) = 11720y + 1DFI1720)]

Definition 4.1.2. The point P € 92 is regular with respect to L if for any
F=(f)2q, fi € C5°(), the solution of (4.1.3) satisfies

Qalggpui(x) =0 (i=1,2,3). (4.1.4)

Using Theorem 4.1.1, we will prove that the divergence of the classical
Wiener integral for a boundary point P guarantees its regularity with re-
spect to the Lamé system. To simplify notations we assume, without loss
of generality, that P = 0 is the origin of the space.

Theorem 4.1.2. Suppose the 3D Lamé system L is positive definite with
weight ®. Then O € 09 is regqular with respect to L if

/cap (B,\ Q)p2dp = 0. (4.1.5)
0

As usual, B, is the open ball centered at O with radius p, and cap (F) is the
compact set F C R3.

The proof of this theorem is given in Section 4.3.
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4.2 Proof of Theorem 4.1.1

We start the proof of Theorem 4.1.1 by rewriting the integral

/(Lu)T(I)u doe = — /(Dkkui + aDpiug)u; @45 dx
R3 RS

in a more revealing form. In the following, we shall write [ f dz instead of [,
R3
3 3 9
and by uZ; we always mean Y uZ; to express (Y u;;) we will write w;;u;;
i=1 i=1
instead. Furthermore, we always assume u; € C§°(R?), unless otherwise

stated.

Lemma 4.2.1.
/(Lu)Tq)u dr = % [u(0)* = B(u,u), (4.2.1)

where

PB(u,u) = %/(ujDkuk — upDyu;)D; @45 do+

+ /(Dkukauj + aDyupDiu;)®@;; d.
Proof. By definition,
/(Lu)beu dzx =

= —/Dkkui U P dr — a/Dkiuk cuj @i dr = I + Ip.

Since ® is symmetric, we have ®;; = ®;; and

Il = —/Dkkui . uj(I)ij dx =

1
- —5/ [Dik(uiug) — 2Dyu; Dyus] @45 da =
1
— —§/UinDkk(I>ij dx + /Dkuka“j - ®ij da.

On the other hand, ® is the fundamental matrix of L, so we have

—Dy®i; — aDyi @y = 6i50(x),
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and

1 1
— 5 /uinDkaI)ij dr = 5 /uiuj [513(5(.’E) + Oszi(I)kj] dr =

1 «
— 3 lu(0)[* — b /(Diuz‘ “uj + u; Diug) D@y do =

(07

1 2
= Sl - 5

/(Dkuk S Uj + ukauj)Diq)ij dz.
Now I5 can be written as
I, = a/Dkuk(Diuj Dy + UjDiq)ij) dx,

and the lemma follows by adding up the results. O
Remark 4.2.1. With ®(z) replaced by ®,(z) := ®(z — y), we have

/(Lu)T(I)yu dx = /(Luy)TCImy dx =
1 1
= IO + By ) = L )+ 2, 0,),
where u, (z) = u(z + y) and

«
By (u,u) = 3 /(UjDkuk — ugDyuy) D; @y ;5 da+

+ /(Dkuiujuj + OéDkukDiuj)(I)y,ij dz.

To proceed, we introduce the following decomposition for C§°(R?) functions:
f(z) = 7(‘%) + g(z), ? € C5°[0,00), g€ Cgo(Rg)v

where

fz) = ﬁ/f(rw) do.
SQ

Note that
/g(rw) do=0, Vr >0,
SQ
so we may think of f as the “0O-th order harmonics” of the function f. We

shall show below in Lemma 4.2.2 that all 0-th order harmonics in (4.2.1)
are canceled, so it is possible to control u by Du.
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Lemma 4.2.2. With the decomposition

ui(x) = w;(r) +vi(x) (i=1,2,3), (4.2.2)
where )
u;(r) = y /ui(rw) do,
52 Vr>0 (i=1,2,3),
/vi(rw) do =0,
SZ
we have )
/(Lu)T@u dx = 3 [u(0)|? + B*(u, u), (4.2.3)
where

PB*(u,u) = %/(ijkvk — v Dyvj) D; @5 da+
+ /(D;gukauj + aDpupDiu; )P dx. (4.2.4)
Proof. By Lemma 4.2.1, it is enough to show
/(ujDkuk —upDyu;)D; @5 de = /(ijkvk — v Do) D; 05 da.

Since

/(ujDkuk —upDyu;) D@ de =

= /(ﬂjDkﬂk — U Dyu;)D;®;; dx + /(ﬁjDkuk — Uk Dyvj)D; ®;; do+

+ /(ijkﬂk — v Dy, ) D; @5 dx + /(’ujDkvk — v Do) D; 0,5 do =:

=01 + 1+ I3+ 14,

it suffices to show I; = I = I3 = 0. Now

_ @
Di(I)ij = Di |:Ca7’ ! (5” + m wzwj)} =
= —car_2wi6ij+
Cal -2 [ —wwj 4 (85 — wHw; + (050 — wjw)w; | =
at2 i Wi i JWj j j
_ Ca¥  _ —
= —cor 2wj + P 2w =t dor 2wy, (4.2.5)
where
2¢q, 1

(63

Ca+42 :_47r(a+1)'
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Setting D, = % , we have
I, =d, / 72w, (0; Dy, - wi — WD, - wy) do =
=d, /r_2 (ﬂjDrﬂk cwiwy — U D .wkwj) dx =0,
I3 =d, /r_2 (ij,«ﬂk cwiwy — v D - wkwj) dzr = 0.
As for I, we obtain
I, = cloé/r_2 (HjDkvk cw; — R Dyv; - wj) dr =
= da/r72 (UjDkvk cw; —ujDjvy - wk) dr =

=— hm+ da/ [ﬂk(e)vk(sw)ijk — U (s)vk(ew)ijk} do—

e—0
5'2
— lim d, vpr > [ —2U; - wjwg+
e—0t
R3\ B,

+ rDyt; - wiwk + ;- (G55 — ‘*’ﬂ"”’“)} -
—vpr? [ = 22U - wjwk + 1D - wjer + U5 - (O — wkwj)} } -

The result follows. O

Remark 4.2.2. With ®(z) replaced by ®,(z) := ®(zr — y) and (4.2.2) re-
placed by
ui(r) = ;(r —y) +vi(x) (i=1,2,3),

where r, = |z — y| and

i 1
u;(ry) = E/ui(y + ryw) do,

52 Vr, >0 (i=1,2,3),
/vi(y + ryw) do = 0,
5’2
we have 1
J@uT e ude = Sl + #(uu)
where

. a
By (u,u) = 3 / (v Dvr, — v Dyv;) Di®y i da+

+ / (Dkukauj + aDkUkDin)q)y,ij dz.
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In the following lemma, we use the definition of ® and derive an explicit
expression for the bilinear form %*(u,u) defined in (4.2.4).

Lemma 4.2.3. We have

%*(ua u) = Ca/{aj_z r2 [Uk(Dk’U) Cw— (divv)(’u . w)}{-

20+ 3
+r7 [|D7~U|2 +a a:2 (D,;)?w? + | Dv]? + a(div )+
[0

2

+ a j_ 9 |(Dk'U) . w|2 —+ ao—[‘,- 5 (le'U) [wz(Dz'U) . w]+
ta 35 j; (D - w)(div o) + a(D, - w) [wi (D) - w]] } dr. (4.2.6)

Before proving this lemma, we need a simple yet important observation
that will be useful in the following computation.

Lemma 4.2.4. Let g € C§°(R?) be such that

/g(rw) do =0, Vr>0.

S‘Z
Then
[ Hogta)ds =0,

vV f e C5ol0,00).
/r_lDf(:r) -Dg(z)dx =0,

Proof. By switching to the spherical coordinates, we easily see that

/f(r)g(x) dx = 77"2f(7') /g(rw) do = 0.

0 S2

On the other hand,
/rilDf(r) - Dg(z)dx = /rilDTfDig cwidr =
== [ o[ =D D i+ 172D, 0 — )] =
= - /g( —r Do f +r 7' Dy f) dz =0,

where the last equality follows by switching to polar coordinates. O
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Proof of Lemma 4.2.3. By definition,

RB* (u, U) = %/ (’UjDk’Uk — kakUj)Di@ij d$+

+ / (Dkukauj + aDkukDiuj)Cbij de =:1I; + I5.
We have shown in Lemma 4.2.2 that (see (4.2.5))

I = 2*1ada/r*2wj (ijkvk — kakvj) dr =

Calt

=0 /r‘Q [vk(Dkv) cw — (divo) (v - w)} dx.

On the other hand,

Ca O
a+2

Ir) = ca/r_leukaui dr + /r‘leukauj - wiwj dr+

2
+ caa/r_leukDiui dac—}—%/r_leukDiuj - wiwj de =:
= 13+I4+I5+16.

Substituting u; = u; + v; into I3 and using Lemma 4.2.4, we get
Iy =c, / r~1(D,4; D, - wi + Dyvi Dyv;) dz+
+ 2¢, /rileﬂkavi dr =
=c, /r‘1(|DTﬂ|2 + | Dv|?) d. (4.2.7)
Next,
Is = coéoz/r_1 (DrﬂkDTUZ- - wpw; + 2D;v; Dy, - wy + Dkkain) dx.

Note that for k # 1,

oo
/r_lDrﬂkDrﬂi - wiw; dor = /TDTUkDTEi dr/wkwia =0,
5’2

and therefore,

I = caa/rfl {(Drﬂi)%)f + 2(divv) (D, - w) + (div v)Z] dzx.
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As for I, we obtain

Calt
Li=— /r*le(m +03) Dy (T + v;) - wiw; da =
Ca¥ —1 —_ — 2 a7
=i T (DruiDTuj cwiwjwy + Dyt Dy - wiwjwg+

+ Dk’Uz'Drﬂj C WiW W + Dkl}kaUj ~wiwj> dr =

= o [ s

+ 2(Dyu - w) [wi (Dgv) - w] + [Dyv - wﬂ dx.

Similarly,
I = ca0? r~iD (T + vi)D;(u; +vj) - ww; de =
6 — a+2 k\UE k i\Wj j) " Wilj -
CaOéz -1 2
= P /r (DrﬂkDrﬂj cwiwiwy + Dy Divj - wiwijwe+
+ D, u; Doy -w?wj + DpvrD;v; -wiwj) dr =
_ Cac” /r_l [(D w;)%w? + 2(D, - w) [wi (Dyv) - w]+
- a+2 rlj j r 7 i
+ (D, - w)(divv) + (divo) [w; (D) w” dz.
The lemma follows by adding up all these integrals. O

With the help of Lemma 4.2.3, we now complete the proof of Theo-
rem 4.1.1.

Proof of Theorem 4.1.1. By Lemmas 4.2.2 and 4.2.3
1
—c;! /(Lu)T<I>u dx = 5 cHu(0)? + 1 + I + I3,
where

2
I, = /r*l [|Dm|2 yalot 5 (D) w2+
a4+ 2

2 . 2 o 2
+ |Dv|* + a(dive)” + P |(Drv) - wl } dz,

3 4
5:—2 (D, - w)(div )+

I, = /r_1 [QL; (divo) [wi(Div) - w] + a

+ (D, - w) [wi(D;v) - w]} dx,

I3 = / - i 5 r? [vk(Dkv) cw— (divo)(v - w)} dx.
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Consider first the case a > 0. By switching to the polar coordinates, we
have

2 3
n> /7’71 [|Drﬂ|2 +a Ocj_:—2 (D,7;)*w? + |Dv|* + a(divv)Q] dzr =

r 20 +3
:/r[(ug N DR + 1Dl + o divel2] dr,
0

o+ 2
where we have written || - ||, for || - ||z2(g2) and used the fact that
/(D )22 do = 27 Zgj(D )2 = 1/|D a2 do =+ D2,
J Pl )" W; 5 & Ui 332 " 3 1Dl
Next,

2
1| < /T-I[Q%Q | divo| [ Dol+

4
+ a9 D G dive] + a| Dy - o \Dv@ dz <
a+2

oo
a2 .
< [ 1[5 ol Dol+
0

a—+2
a 3a+4 o

+ —  ——— || D, ull, || divoll, + — Drﬂvaw]dT,
5 g 1Dl divell + 1D Do

where we have used

||Drﬂ . wHi = /Drﬂl‘Drﬂj s Wiy do =
S2

As for I3, we note that

Bl < =55 [Pl + ol divel) de <
5 | el (Il + | divoll.) d
— a+2 v w vl||lw v w T.
0

Since 2 is the first non-trivial eigenvalue of the Laplace—Beltrami oper-



Topics on Wiener Regularity for Elliptic Equations and Systems 69

ator on S?, we have
2 1 2
Hv||i :/|v(rw)| do < §/|Dw[v(rw)]| do =
52 52

T2 2 T2
- 3/\(Dwv)(mn do < = D2, (4.2.8)

S2

where D,, is the gradient operator on S2. Thus

1
I < — - —2

V2 a+2

r[IDo]2 + [ Dol | divell,] dr

and by putting all pieces together, we obtain

(oo}
L+ +13> /r w? Byw) d (4.2.9)
0
where
w = (| Dy, [ Doy | divoll) "
'1 g.2a+3 o 7i.3a+4'
3 a+2 24/3 22/3 a+2
Bo_| -9 4 1 a _aa+22
+ 23 V2 a+2 2 a+2
a 3a+4 a a+273
53 etz 2 atz ]

Clearly, the weighted positivity of L follows from the weighted positivity
of By, because the latter implies, for some ¢ > 0, that

/r w’ By w) dT>c/r|w|2dr2
0 0
> [r(1Dal + [Dol) dr = ¢ [ |Dup ds
0

The weighed positivity of B, on the other hand, is equivalent to the posi-
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tivity of the determinants of all leading principal minors of B :

202 + 6a + 6
3(a+2)
1
C12(a +2)2

—12(6 — V2)a — 48] >0, (3.2.10D)

o 5 4 3
PR [604 + (23 +3v2)a + (13 + 19v2)a

— (77 — 38v/2)a® — (157 — 24v/2)a — 96| > 0. (3.2.10c)

pya(a) = >0, (3.2.10a)

py2(a) =

[044 —4(1 = V2)a® — 12(3 — V2)a?—
p+3(a) =—

With the help of computer algebra packages, we find that (3.2.10c) holds
for 0 < o < a4, where oy ~ 1.524 is the largest real root of p; 3.

The estimates of I;, Is and I3 are slightly different when o < 0, since
now the quadratic term «f divol||? in I; is negative. This means that it
is no longer possible to control the || divol, terms in Iy, I3 by o divvl|?,
and in order to obtain positivity, we need to bound || divv||,, by ||Dv||., as
follows:

I divol|?, < 3[[Dvll3.

This leads to the revised estimates:

T a 2a+3
IL> [(1 a. D, )2
vz [r](1e 5 2

0

«
+ I1Dv]2 + 3allDo|2 + — || Dv]l2 ] dr,
a2

7 V3 a2 9 3a+4
< _ bl _
< [ 1[5 100 - a 22 Dl Dl
0
« _
- o5 Dl Dl ] .
o0
1 « 9 9
B < =5 ooy [ r[IDVIE + VBIDuE ] ar
0

Hence
oo

L+, +13> / r(w? B_w) dr, (4.2.10)
0

where

w = (IID, |, [|1Dv]w) "
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a 2a+3 3a+ 4 o
14+ —-

«
3 a+2 §'a+2+2\/§

a 3a+4 « o 14++v3
e, X 143 (1 - V3a)
2wtz Tas PRt ot g V3a

The positive definiteness of B_ is equivalent to

B_:

p_1(a) = % >0, (3.2.12a)
p—o(@) = m { — (24 7V3)a* +2(15 + V2 - 11V3 + V6)a*+

+2(57 +3v2 — 10V3 + 3v6) o+
+6(20 + V2v6)a + 24| > 0, (3.2.12b)

and (3.2.12b) holds for a— < a < 0, where v ~ —0.194 is the smallest real
root of p_ .

Now we show that the 3D Lamé system is not positive with weight ®
when « is either too close to —1, or too large. By Proposition 3.11 in [8],
the 3D Lamé system is positive with weight ® only if

D AT Bip(w) 20, VEER?, Ywe §? (i=1,2,3),
.8,y

where

a
5 (6igdjy + iy 6jp)

ATY = 6,505, + 5

and (see equation (4.1.2))

(I>ij(w) = _1((5” + — wiwj) (Z,j = 1,2,3).

+2

This means, in particular, that the matrix

3
’ (; )ﬁ'y 1
2(a+1)(a+ 2 + aw?) ?wiwy a?wiws
— % a?wiws 2(a+ 2 + aw}) 0
o
QPwiws 0 2(a + 2+ aw?)

is semi-positive definite for any w € S? if the 3D Lamé system is positive
with weight ®. But A(w; ) is semi-positive definite only if the determinant
of the leading principal minor

2(a+1)(a+ 2 + aw?) a’wiwe
do(w; @) := det =
a?wiws 2(a + 2 + aw?)
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=4(a+1)(a+ 2+ aw?)? — atwiw?
is nonnegative, and elementary estimate shows that
4

J0);a] = (a+ 1)(3a+4)* - T =i g(a).

N

in do(w: ) < do[(27%.2-
L%gg 2((4‘)704)7 2[( )

It follows that the 3D Lamé system is not positive with weight ® when
g(a) < 0, which holds for a < o' ~ —0.902 or o > agf) ~ 39.450. O

Remark 4.2.3. We have in fact shown that for o < o < a4 and some ¢ > 0
depending on «,

/(Lu)T<I>u de > % lu(0)]* + c/ | Du(z)|? dr

x|

If we replace ®(x) by ®,(z) := ®(z — y), then

/(Lu)Tq)yu dzx = / [Lu(z + y)]Tq)u(a: +y)dx >

1 d
> 5P +e [ |Duta ) >

> g+ e [ 21 a2

4.3 Proof of Theorem 4.1.2

In the next lemma and henceforth, we use the notation S, = {z: p < |z] <
2p} and

my) =7 [ futa) .

ans,

M =5 [ futa) o
QNB,
Lemma 4.3.1. Suppose L is positive with weight ®, and let u = (u;)3_;,
u; € HY(Q) be a solution of

Lu=0 on QN By,

Then
/ [L(W?p)]T(byunp dz < cmp(u), Vy € By,
o)

where 1,(x) =n(%), n € C5°(Bs), n=1 on Bs, and y(z) = ®(x —y).

5
3
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Proof. By definition of u,

[L(unp)}TCDyunp dx =

D—

T
:/[L(unp)] <I>yu17pd:v—/(Lu)T<I>yun§ dx,
Q Q

where the second integral on the right=hand side vanishes and the first one
equals

_ / [QDkUkD}J]ThO-i-ukaknp—i-
Q

+ a(DyurDygnp + DyupDin, + ukamp)} w1, (Py)ij dex.

Note that Dn,, D1, have compact supports in R := B%p\B%p and |DFn,| <
cp~*. Besides,

c
|z -yl

|y,ij ()] < <cp', VxER, Vye B,.

Thus

/ [L(unp)}Ttﬁyunp dx <
Q

< /p_2|u|\Du|dx+c/,0_3|u|2dx§

QMR QNR
3 3
< c[p_?’ / |u)? dm] [p_l / | Du? dm] +cp? / lu|? da.
NS, QMR ns,

The lemma then follows from the well known local energy estimate [49]

p ! / |Dul? dz < p~3 / lu|? da. O
QMR NS,

Combining (4.2.11) (with u replaced by un,) and Lemma 4.3.1, we arrive
at the following local estimate.

Corollary 4.3.1. Let the conditions of Lemma 4.3.1 be satisfied. Then
2 | Du(z)[?
o+ [ 24 de < emyu), vyeans,

QNB,
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To proceed, we need the following Poincaré-type inequality (see Propo-
sition 2.5.1).

Lemma 4.3.2. Let u = (u;)3_, be any vector function with u; € H*(Q).
Then for any p > 0,

c
mp(u) < ——=—— / | Dul|? da,
S,\Q
ap®\ ) )
where c is independent of p.

The next corollary is a direct consequence of Corollary 4.3.1 and Lem-
ma 4.3.2.

Corollary 4.3.2. Let the conditions of Lemma 4.3.1 be satisfied. Then
D 2
u(y)|? + / 1Du@) 4 <« € / \Duf?dz, Yy € QN B,.

T — - S,\Q
QnB, | d cap(:p \ )Qnsp

We are now in a position to prove the following lemma which is the key
ingredient in the proof of Theorem 4.1.2.

Lemma 4.3.3. Suppose L is positive with weight ®, and let u = (u;)?_,
u; € HY(Q) be a solution of Lu =0 on QN Bagr. Then, for all p € (0, R),
sup |u(z)® + / | Du(x)

2E€QNB, ol |lz| ~
P

R
< c1Map(u exp{ cz/cap B\ Q)r~2dr|, (4.3.1)
P

where c1, co are independent of p.

Proof. Define B

v(r) :==r~cap(S, \ Q).
We first claim that «(r) is bounded from above by some absolute constant
A. Indeed, the monotonicity of capacity implies that

cap(S, \ ) < cap(B,).

By choosing smooth test functions n,.(z) = n(%) with n € C§°(Bz) and
n=1on B%, we also have

cap(B. /\DnT\de <

32
< sup |Dn(a)]? / r=2de = [2 1 sup |Dye)
z€ER3 5 3 2ER3
27r



Topics on Wiener Regularity for Elliptic Equations and Systems 75

Hence the claim follows.

We next consider the case p € (0, %] Denote the first and the second
terms on the left-hand side of (4.3.1) by ¢, and 1, respectively. From
Corollary 4.3.2, it follows that for r < R,

c

C
@r"‘wrgi wr_wr Si wr_¢r+<pr_%0r7
O RCRETO N o)
which implies that
1y € ——— (p2r +12y) =
SDT riC—F’}/(’/‘) QOQT 2r) —
CeCO’Y(T)

- 7507("“)
c+~(r) [6 (p2r + ?/127«)], Yo > 0.

Since y(r) < A and

cefos cecoA _
sup <max{1l,——  ccpel 70},
s€[0,4] c+s c+

it is possible to choose ¢y > 0 sufficiently small so that

CeCO’Y(T)

sup—— <1
T>IE))C+’V(T)

It follows, for ¢y chosen this way, that
o+ Pr < e (0o, + 1), (4.3.2)

By setting r = 27'R, [ € N, and repeatedly applying (4.3.2), we obtain

l

Pa-iR + ha-1p < €xp [ — ¢ Z’Y(TJR)} (pr +¥R).
j=1

If I is such that [ < logg(%) <l+1, then p <27'R < 2p and

!
Yp+p < Pa-ip +1ha-1p S exp { — Co Z’Y(Q_JR)} (R + VR).
=1

Note that by Corollary 4.3.1,

vr + Y < cmp(u) < cMag(u).
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In addition, the subadditivity of the harmonic capacity implies that

-
5
V

p(Byi-ir \ Q) — cap(Byip \ Q) _
— 2-IR

_ cap(BR V) eop(Bop\ Q) | o eop(Ban\ )
2-1R 2-IR ~  27R
1 cap(Br\Q) . cap(Ba-ig\ Q) <= cap(Byip \ Q)
- . _ - s - 2>
2 R 2 2-lR + Z

- 2-IR -
Jj=1

p— l —_—
> g @PBrtr\ Q) | 1y cap(Ba-in\ Q)

2-IR 2 4 2-JR
7=0
Since
cap(Ba-1 \ ©)
ZSRAAP2TR AT o
2-'R <4,
ZII cap(Ba-1p \ Q) ;”Zl cap(Ba-ir \ Q)
. 2R 24 (277R)? -
7=0 Jj=1
) 41 217IR ) R
22 / cap(B, \ Q)r~2dr > i/capB \ Q)r=2dr,
=1,k p
we have

R
exp{fCOZ’y2 ]R)} <exp{c4/cap(B \ Q)r~2dr +2coAl.

j=1 o

Hence (4.3.1) follows with ¢; = ce?®4 and ¢y =
Finally, we consider the case p € (§,R). B

e+ [ 2

dr <cm,(u), Yy € QN B,,
|1:—y\ P() P

Co
1
y Corollary 4.3.1,

QNB,

which implies that

dx
sup Ju(y)[? + / Du(@)? L < e Mag(u).
yeQNB, |$|
QnB,
In addition,

R R
/capB \ Q)r 2dr<A/ “ldr = Alog?2,
P

2
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SO

dx
o o)+ [ 1D T
yEQNB, ols |z|

R
X exp [ g/cap B, \ Q)r~2dr| < c;Mag(u),
p

provided that ¢; > ce®241082, O

Proof of Theorem 4.1.2. Consider the Dirichlet problem (4.1.3)

Lu=f, [ €CoQ), we H(Q).

Since f vanishes near the boundary, there exists R > 0 such that f =0 in
QN Byg. By Lemma 4.3.3,

R
sup |u(ac)|2 < ey Mag(u) exp [ —cy / cap(B, \ Q)'I"_Q dr] ,
yeQNB,

p

and in particular,

R
limsup |u(2)|* < ¢1 Mag(u) exp [—cz/cap (B, \ Q)r er] =0,

z—0
0

where the last equality follows from the divergence of the Wiener integral

1
/capB \ Q)r2dr = .
0

Thus O is regular with respect to L. O

Remark 4.3.1. In the paper by Guo Luo and Maz’ya [33] we studied weighted
integral inequalities of

/Lu -Wudr >0 (4.3.3)
Q
for general second order elliptic systems L in R™ (n > 3). For weights that
are smooth and positive homogeneous of order 2—n, we have shown thatL is

positive in the sense of (4.3.3) only if the weight is the fundamental matrix
of L, possibly multiplies by a semi-positive definite constant matrix.






Chapter 5

An Analogue of the Wiener Criterion
for the Zaremba Problem in a
Cylindrical Domain

In this chapter asymptotic behavior at infinity of solutions to the Zaremba
problem for the Laplace operator in a half-cylinder is studied. Pointwise
estimates for solutions, the Green function and the harmonic measure are
obtained in terms of the Wiener capacity. The main result is a necessary
and sufficient condition for regularity of a point at infinity.

5.1 Formulation of the Zaremba Problem

Let G be the semicylinder {z = (z/,2,) : 2, > 0, 2’ € w}, where w is a
domain in R”~! with compact closure and smooth boundary. Suppose that
a closed subset F is selected on do with limit points at infinity. Further, let

G-={ze€eG:a,>7}, S, ={2zeG: z,=1},
F.={z€F: z,>7}.
By k, ko, k1,... we mean positive constants depending on n and the
domain w. In the case n > 2, by cap (e) we denote the harmonic capacity
of a Borel set e C R™. For n = 2 we use the same notation for the capacity

generated by the operator —A+1. By “quasi-everywhere” we mean “outside
of a set of zero capacity”.

We introduce the space Li(G;F) of functions given on G having the

finite norm
%
_ 2 2
fieir) (/(gradu) dx + / u dx) ) (5.1.1)
G

lulle
G\Gy

and vanishing quasi-everywhere on F. By Hardy’s inequality the above

79



80 Viadimir Maz’ya

norm is equivalent to

</ [(grad w)? + (z, + 1)72u2] d:c) 2. (5.1.2)
G

o
This implies that the set of functions in Li(G; F) with compact support in G

is dense in Li(G; F). Since any function from that set can be approximated
in W3 (G) by a sequence of smooth functions vanishing near F, it follows
that the space C§°(G \ F) is dense in Li(G; F) (cf. [18]).

Let Ly '(G; F) stand for the space of linear functionals on L3(G; F).
Any functional f € Ly '(G; F) can be represented in the form

f(v)Z/(Zfi%Jrfov), veié(G;F), (5.1.3)
o =l v

where f; and (z, + 1)fy belong to Ly(G) (see [25]). Note that for any
7 € (0,00) the inequality

k(r)
2 2
lullz, e,y < cap (F\ ) IVullz,e\a, )

holds (see [25, Chapter 10]). Hence, given a set F' of positive capacity which
is always assumed in what follows, we see that the norm (5.1.1) is equivalent
to [|VullL,(c)-

Consider the integral identity

/Vqudx = f(v), (5.1.4)
G

where f € Ly (G5 F), v € C3°(G \ F), u belongs to W4 (G \ G,) for any
7, and u vanishes quasi-everywhere on F'. Assuming additionally that f; €
W3 (G) in (5.1.3), we obtain, as is well known (cf. [17, Section 15]), that
u € W3 in a small neighborhood of any point in G \ F, and the equality
(5.1.4) can be understood in the strong sense:

%:f~u on OG\ F,

u = 0 quasi-everywhere on F)

—Au = fo—divf in G,

where f = (f1,..., fn) and v is the outward normal to 9G.
Therefore, it is natural to call u as the (generalized) solution of the

Zaremba problem. If u € LI(G;F), we call u a solution with the finite
Dirichlet integral. In this case, one can take v in (5.1.4) as an arbitrary
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function in L(G; F). Since the left-hand side of (5.1.4) is the scalar product
in LI(G; F) and the right-hand side of (5.1.4) is a linear functional on
L(G; F), it follows that the solution with the finite Dirichlet integral exists

and is unique.
5.2 Auxiliary Assertions

In this section we prove two auxiliary assertions and provide information
on solutions of a certain ordinary differential equation.

Lemma 5.2.1. Let u have the finite norm (5.1.2) and satisfy the inequalities

Au <0 on G, @20 on G\ F
ov
in the sense that
/VUVU dx >0 for 0<ve zé(G,F) (5.2.1)
G

Besides, let u > 0 quasi-everywhere on F. Then u > 0 on é\ F.
Proof. Sinceu_ = |“‘;u = 0 quasi-everywhere on F', we have u_ € L}(G; F)
and can put v = u_ in (5.2.1). Then ||[Vu_||z,) = 0 and hence u_ =
const. This constant is zero, because u— = 0 on a set of positive capac-
ity. O

Lemma 5.2.2. Let f = 0 on G and u be the solution of the Zaremba
problem with the finite Dirichlet integral. Then

sup |u| < kllullL,aa\Grse) for A>T (5.2.2)

A+1

For elliptic equations of the second order in divergence form with mea-
surable bounded coeflicients, estimate (5.2.2) was proved by Moser [57]. To
be more precise, [57] contains an interior local estimate of the type (5.2.2).
However, its proof can be easily extended to the case under consideration.

Consider now the ordinary differential equation

§"(0) = p(o)é(a) =0 (5.2.3)

on the half-axis (0,00) with a nonnegative measurable function p, not van-
ishing identically. By Z we denote a solution of (5.2.3) satisfying the initial
conditions

Z(0)=1, Z'(0)=0.
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Clearly, Z is a convex nondecreasing function obeying the inequalities

Z(o)>1 and lim Zlo) > 0.

o—00 O

Let

oo

dr
=70 [ e

g

be another solution of (5.2.3), positive for o > 0. We have 27" — 2/Z =1

and z’(0) = —1. The function z is nonincreasing because
T odr 1 [ Z) 1
! == Z/ — < — =
0 =20 [ 755~ 7= | For 7 70 ="

By (5.2.3), the function Z’ is nondecreasing and tends to zero at infinity.
Therefore, for any a > 0,

oo
/ [2/(0)? + p(0)z(0)?] do = 2(0)2 (0)| = —2(a)?'(a).
s a
In view of this identity, the function o — A '28 provides the minimum

of the functional -
e [ 1€ +plo)¢(0)"] do

on the set of absolutely continuous functions satisfying the condition £(a) =

A, and the value of this minimum is equal to —A22(9 " Note also that

Z(a) *
A % provides the minimum value A2 ZzéZ; to the functional

e — [ €60 +plolelo)] do

Here a € (0,00) and £ is an arbitrary absolutely continuous function sat-
isfying the condition £(a) = A. Information on minimum values of these
functionals implies that both % and 27/ do not decrease a p grows. This
enables one to obtain estimates for solutions z and Z under additional as-
sumptions on p. For example, if p(c) < » = const, which will take place
in what follows, then, combining (5.2.3) with the equation £’ — 3£ = 0, we
obtain

1

th(s20) < s

1
and — 22 <

N
N|=

<x

Therefore, for any positive a and o,

[N

Z(o)< Z(o+a) < Z(o)eX”* and z(a)e_”% ¢ <z(o+a) < z(o).
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5.3 Estimates for Solutions of the Zaremba Problem

We set €(0) = cap (F, \ Fy+1) and consider the ordinary differential equa-
tion

&"(0) — k€(o)¢(o) =0, o >0. (5.3.1)

This means that we put p(o) = k€(o) in (5.2.3). In the same way as in
Section 5.2, by z and Z we denote the nonincreasing and nondecreasing
solutions of (5.2.3)with that choice of p.

Given a compact set F' C R", denote 112 = ([a, b] x R"~1) and ®(a,b) =
cap (II2 N F).

Lemma 5.3.1. For any compact set F C R™, the function ®(a,a + 1) is
Lebesgue measurable on R as a function of variable a.

Proof. For any compact set F the function ®(a,b) is increasing in vari-
able b and decreasing in variable a. Therefore, this function is Lebesgue
measurable on R2.

By the Fubini theorem, ®(a,a + A) is a measurable function of a for
almost all A € R.

Consider now a d-neighbourhood of F' with § > 0. For this domain we
use the notation Fjs. Letting

Ds(a,b) = cap (HZ N Fs),

in the same way as above we obtain that ®5(a, a+\) is a measurable function
of a for almost all A € R.
Obviously, there exists A\g(d) > 1 such that for all A € (1, A\g(d)) we have

F C A\ YFs C Fag.

Choosing now A € (1,¢(d)) so that ®s(a,a + A) is measurable, by the

)\_10,+1 _ .
yo1g N A\"1Fs) is a measurable

function of a. Therefore, cap (II%*1 N A~ F}) is also a measurable function
of a.

It remains to send § — 0. Since cap (II%T* N AT Fs) converges, as § — 0,
to cap (II2F1 N F) for all a, we obtain the desired measurability. O

scaling arguments we deduce that cap (II

The following lemma, similar to analogous assertions related to the
Dirichlet problem in [69] and [37], is the key one.

Lemma 5.3.2. Let f =0 on G, and let G, be the solution of the Zaremba
problem with the finite Dirichlet integral. Then

/u(:c)2 dr' < 2(an) /u(y)2 dy' for x, >y, > T. (5.3.2)

w w
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Proof. Let s — n(s) be a piecewise linear function given on R!, vanishing
for s < 0 and equal to unity for s > 1. Setting the function

x —v(x) = n(ffl(t — a))u(m), z e G,
with ¢ > ¢ > 7, into (5.1.4), we obtain

[0 wzde+ 2 [ (F20)utw) o @) de =0

G G

which is equivalent to

/U(?)(VU)Z dp 4 SO+ 62)8— 50) _y,
G

where §(o) = Hu||%2(sa). Passing to the limit as ¢ — 0, we find

/(Vu)2 do = —3/;") . (5.3.3)
Go

Hence, for any € € (0, 1),

/(Z)zd“/m / (Vu)? dzdo < —§'(0). (5.3.4)

G, 0 Gi\Gi41
Combining the inequality
/ (Vu)? de > k&(t) / u? dx
Gi\Gi41 Gi\Gi41

with the known estimate

(oo}

/u2 dz’ < k/ / [(Vu)? + v?] da,

St 0 Gt\Gi41

we have

/ (Vu)? do > k&(t)F(t).
Gi\Gi41

Substituting it in (5.3.4), we obtain

/ de / (2 + k€(t)u?] dt < —F (o), (5.3.5)
w G
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where
ou(z',t)

ot

u (2, t) =
The functional

£E— 7 [(%)2 + k@(t)gﬂ dt

0

defined on the functions obeying the condition £(o) = u(z’, o), attains its
minimum value at the solution

t — u(z’, o)

of equation (5.3.1), and the value of that minimum is —u?(z’, ) ZZ,((;')) (cf.

Section 5.2). Hence (5.3.5) implies the differential inequality

€ ((5)) )§(0) =5 (0)

which results in (5.3.2). O

Corollary 5.3.1. Let f =0 on G and let u be the solution of the Zaremba
problem with the finite Dirichlet integral. Then, with y = (y',Yn),

su ux2<kz(xn)
z’GI:) ( ) o Z(yn)

/U(y)2 dy’ for xn —1>y, >T. (5.3.6)

w

Proof. Using (5.2.2) and the monotonicity of the function § (cf. (5.3.3)),
we have

1
supu® < kl|ullpy (G \Gira) < K[28(t —a)]7? for t—1>T,

St

which together with (5.3.2) implies the estimate

Nl=

. 2 z(t—1)
sgltpu Sk[? ) S(a)] t—1>0>T.

It remains to use the inequality
1
2(0)e "% < z(0 +a)

(see the end of Section 5.2). O
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Remark 5.3.1. If the function € is sufficiently regular at infinity or has a
regular minorant, then, using the known asymptotic formulas or estimates
for solutions of (5.3.1), one can obtain more precise information on solutions
of the Zaremba problem by (5.3.2) and (5.3.6). Roughly speaking, there
exist three alternatives:

O(exp (—k/t\/@dt?)) if &(s)> 572,
2(t) _ 0((5)k), 0 it €(s) ~ 572, (5.3.7)

t

0<exp(—k/se(s)ds>), if ¢(s) <s?

(cf. [17, Chapter IT] and [15]). In order to check this, it suffices to reduce
(5.3.1) to the Riccati equation

Y'(0) =Y?%(0) = k&(0),

where Y (o) = Egl((;)) , and to note that the above estimates for z are valid

for Y < Y2, Y ~Y? and Y’ >> Y? at infinity. Similar estimates hold for
the increasing solution Z.

5.4 Regularity Criterion for a Point at Infinity

We say that a point at infinity is regular for the Zaremba problem if for
all f € LQ_I(G; F) with a bounded support, the solution with the finite
Dirichlet integral tends to zero as x, — oo and z € G. Here is the main
result.

Theorem 5.4.1. A point at infinity is reqular for the Zaremba problem if
and only if the function t&(t) is not integrable on (0,00), or equivalently,

o0
> jcap (Fj\ Fj41) = 0. (5.4.1)
j=1
Consider an example of a set F' for which the above regularity criterion
can be expressed explicitly. Let p be a point at dw and let 1 denote a de-
creasing positive continuous function given on [0, oo] and such that ¢ (0)= 1.
Let

' —p }
F=XRxedG: —— €6, z, >0,
{reoa: Gt

where § is a domain on dw. The well known estimates for the capacity of a
parallelepiped (cf. [2]) imply the inequalities
kl kS

% k
log 74y <cap (Fj\ Fjt1) < q log 5y

ks(j +1)" 3 ke ()" (n>3).
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Hence (5.4.1) holds, if and only if

s
—————ds =00 for n=3, /¢s"‘3sds:ooforn>3.
[ T )

Proof of Theorem 5.4.1. Sufficiency. Let u and z be the same as in Lem-
ma 5.3.2. By Corollary 5.3.1, for z € G,

u(z) >0 as x — oo, if z(c) >0 as o — oc.
Suppose that the limit z(co) is positive. Since z’'(c0) = 0 and z(o) > @
for large o, we have after integrating (5.3.1) from o to co that

oo

2(c0) / cap (Fy,\ Fyy1) dp.

o

—2'(0) >

|

This implies the estimate

z(0) 7d070ap (Fu\ Fug1) dp =

2(t) — 2(0) >

t o
ko 7
=5 2(00) [ (n—t)cap (Fy\ Frr) dp.
t

Hence
o0

/ucap (Fu \ Fug1) dp < 00

which is equivalent to (5.4.1).
Necessity will be proved with the help of the following lemma on esti-
mates of the Neumann function N(z,y) in a cylinder. O

Lemma 5.4.1. Given y € G, let N(z,y) stand for the solution of the
problem
—A;N(z,y) =0(z —y) — A(z) in G,
ON(z,y) _
Tw_o on 9G\ {y},

vanishing for x — oo and any fixed y. Here

A€ C(G) and /)\(x) dx = 1.
G

Further, let 42 be the first positive eigenvalue of the Laplace operator in
w with zero Neumann condition on Ow and let |w| stand for the (n — 1)-
dimensional Lebesque measure of w.

There exist positive constants » and k depending on n, w and A such
that
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(i) |N(z,y)| < ke~ Ea=vn) for a, — y, > 5,
(i) |N(z,y) + %| < ken@n=vn) for y, —x, > s,

(iii) the ratio of N to the fundamental solution of the Laplace operator in
R™ is bounded from above and is separated from zero from below by
positive constants in the zone |z — y| < .

The proof of this lemma will be given at the end of this section, while
we turn to the necessity of the condition (5.4.1).
Let

o0

> (G + 1) cap (Fj \ Fjs1) = oo. (5.4.2)
j=0
Suppose that a point at infinity is regular. Since the solution of the
Zaremba problem in G; multiplied by a smooth function in G, supported in
G, and equal to unity in a neighborhood of infinity, becomes the solution
of a similar problem in G, it follows that a point at infinity is regular for
the cylinder G; with any ¢ > 0. Hence, from the very beginning, one may
assume the sum in (5.4.2) to be sufficiently small. Let

Fj\ Fjq = U F® with diam F® < %

k1 ko
F]( )ﬂF]( ):g for klikg.
Here s¢ is the same constant as in the statement of Lemma 5.4.1. Since
cap Fj(k) < cap (£ \ Fj41),
the sum

oo L
Z(j +1) anp Fj(k)
k=1

§=0
is sufficiently small.

Let u§-k) be the equilibrium measure of the set Fj(k) (cf. [29, Chapter
IT]). We introduce the potential

= / N(z,y) dus™ (y),

F(k)

where N is the Neumann function from Lemma 5.4.1.
By the definition of the function N, the potential Vj(k) satisfies both the
equation

V(lC / Az duj y) = A(x) cap Fj(k) in G (5.4.3)

Fj (k)
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and the boundary condition

(k)
ov,
ov

We restrict ourselves to the case n > 2. For n = 2, one should replace
everywhere |z — y|>~" by the fundamental solution of the operator —A + 1.

By Lemma 5.4.1,

=0 on 9G\ F\V. (5.4.4)

@ (y)

dp; (y
’Vj(k)(x)}ﬁk/ﬁa zeGia\G;.

— y|n
F®

Further, by Lemma 5.4.1(i),
’Vj(k)(z)| < kcap Fj(k) z € Gjt,

and by Lemma 5.4.1(ii), the estimate

|W@@ngc/X%+nd@WwSko+nwp#“,xe@q\Gj

F (k)

holds. Since
(k)

du’

//@<w§17xeRg
|z — y[n—2

F{®

(cf. [29, p. 175]), the above estimates imply

co L [e%e) L
uv=>Yv"< k(lJrZ(jJrl)anp Fj(k)).

§=0 k=1 §=0 k=1
We have
LﬂWWW=/@@/@w/vmmomNmmm
G oG oG G

where =3 ,ug-k). By the definition of the function N,
Tk

/%N@QWNWWM=N®W—/M@M%MM
G G

Hence
/wwfdwzjvﬁmmo—umyfxmvmmﬁ

G oG G
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Since the measure p is finite and the function U is bounded, U has the
finite Dirichlet integral. Besides, by (5.4.3) and (5.4.4), U is a solution of
the problem

oo L
AU(z) = Az) Zanp Fj(k) in G,

v (x) > ko = const > 0 quasi-everywhere in Fj(k). (5.4.5)
If p(m,F(k)) > %, then it follows by Lemma 5.4.1 that
VP (@)| < k(G + DulP (FP) < k(G + 1) cap FV. (5.4.6)

Let z € F0)

G- We express U(z) as

U(m)zzkj’ / N(m,y>du§-’“><y>+2;” / N, ) du® (),

(k) (k)
F; F;

where the first sum is taken over j and k such that the sets F j(k) have a

nonempty intersection with the Z-neighborhood O;(’fo) of the set Fj(f(’). We
have

> [ N ) -

Pk gt
- [ Newalw s Y [ NewaPe-
F‘;:O) (4,k)# (o ko) Fj(k)mo;lgg)

. / Nz, ) du® ().

K £ Gk
(4,k)#(dosko) F;k)noﬁ.’;")
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By (5.4.5), the first integral on the right-hand side dominates k¢ and

each of the integrals over Fj(k) N O](f“) is nonnegative. By Lemma 5.4.1, the
inequality

N(,y) dps” (y)’ < kcap F\¥

(k) (ko)
F N0

holds. In view of (5.4.6), the integral over Fj(k) on 327 does not exceed
k(5 +1)cap Fj(k). Thus,

o0 L
. k
U(x)zk—kri (]+1)E capF(k)ZEO, xEFj(fO).
Jj=0 k=1

Since jo and kg are arbitrary, it follows that U(z) > %0 quasi-everywhere
on F. Let the point 2/ = 0 be at the distance 1 from dw. Then any point
(0, x,) with x,, > 1 has the distance 1 from F. By (5.4.6),

U(0,2,)| = > [V (0,20)] < k1 DG + 1) cap V.
gk gk

From the very beginning, one may assume that the last sum is less than
4’“701 . Hence U(0,z,) < %" . Let £ be an infinitely differentiable function in

G, nonnegative, equal to unity for z,, > 2 and vanishing for z,, < 1. Since

/VUVvdx =0, ve Z%(G; F),
G

it follows that the function V = (U — %) satisfies the equality

/VUVU dx = f(v) = /Vﬁ(UVv —oVU)dz, (5.4.7)
G G

where f is a linear functional on Li(G; F) supported by the set {z € G :
1 <z, <2}. Let S denote a function from the space Li(G; F), satisfying

(5.4.7) for all v € L3(G; F). Since V — S is harmonic in G, satisfies the zero
Neumann condition on G \ F and nonnegative quasi-everywhere on F', by
Lemma 5.2.1 we have V — S > 0 on G. By the assumption, the point at
infinity is regular, hence S(x) — 0 as  — oo for € G. On the other hand,
for x,, > 2,

ko ko

50.20) < V(0,) = U(0,5,) - 20 < =K

This contradiction proves that the point at infinity is irregular.
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Proof of Lemma 5.4.1. Let A be a solution of the Neumann problem

AA =X in G, %:0 on 0G,
ov
and
Alz) = O(zy,) as x, — oo.
Since

/)\dazzl,
G

A(z) = |w|zy + const + O(e™"1%7),

it follows that

where |w| is the (n — 1)-dimensional measure of w. This known relation can
be checked either by the Fourier method or with the help of the Laplace
transform in x,. Let I'(z,y) be the fundamental solution of the Neumann
problem in the cylinder w x R, i.e., the solution of the problem

—AL(z,y) =0(z —y), =,y R,
ol (z,y)

T:(), anWXR17 yE@wXRI,

such that I'(z,y) = O(zy,) for |z,| — co. By the Fourier method we have

D' an;y yn) =

)

0 / /
|Tn — Ynl + const + Z er(x )ng(y ) AP
2|w| el 27;;

where {72} and {¢} are the sequences of positive eigenvalues and orthog-
onal and normalized eigenvectors of the Laplace operator in w with zero
Neumann condition on dw. The series on the right-hand side converges in
some weak sense which we do not specify. Using the well-known estimate

ol < ko
with positive constants kg and M, we obtain

|xn _ynl

— const| < ke~ M1#Yl for | — Yn| > 2.
2w|

F(.’lﬁ,y) -

The validity of property (iii) for T" is practically known: the basic fact
is that the fundamental solution of the Neumann problem in the half-space
is the sum of the fundamental solution of the Laplace operator in R™ and
its reflection in the boundary hyperplane. It remains to note that

N(z,y) =T, 2n;9  yn) + (@, =205y, —yn) — A(z) + const. O
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5.5 Estimates for the Green Function and for the Har-
monic Measure of the Zaremba Problem

In this section we collect some quantitative information on solutions of the
Zaremba problem.

Lemma 5.5.1. Let f =0 on G\ G, and let u be the solution of the Zaremba
problem. Then

/u(ac)2 da' > Z(xn) /u(y)2 dy’ for T > xp > yn.

w w

Proof. Our argument is close to the one used in the proof of Lemma 5.3.2,
therefore, we only outline it briefly. Setting a cut-off function into (5.1.4),
similarly to (5.3.3), we obtain

/ (Vu)?da' = 3—(0, 0<o<7, §(0)=luli,es,)

2
G\Go

In the same way as (5.3.5) follows from (5.3.3), we get the inequality

i du(s t
/dm'/ [uf + kEt)u?] dt <F'(0), w(a,t) = %
w 0
By what we said at the end of Section 5.2 it follows that the functional
[1(dey? .
£ / KE) T EE(H)E } dt.
0

defined on functions obeying the condition (o) = u(2’, ), attains its min-
imum at the solution

t%u(x',a)?éz

of equation (5.3.1), and the value of that minimum is u(2’, o) Z(2) This
implies the estimate

Z'(0)
Z(0)
Integrating this inequality, we complete the proof. O

(o) <F'(0).

Corollary 5.5.1 (the Fragmen—Lindelof principle). If u is a solution of
problem (5.5.1), where f is a function with a compact support in G, then
either u has the finite Dirichlet integral and

lim sup |u(x)|1
Tp—00 2 l’n)§

< o0 (5.5.1)
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or
lim inf ”u( : 7$n>||L2(w)

L) 5 9.
Ty —>00 Z(xn)j

Proof. Relation (5.5.1) follows directly from Corollary 5.3.1. Let u be a
solution of the Zaremba problem with the infinite Dirichlet integral. Let v
stand for the solution of the same problem with the finite Dirichlet integral.
We apply Lemma 5.5.1 to the difference u — v. The result follows due to
the fact that z(z,) = o(Z(z,)), and v satisfies (5.3.2).

Let y = (v, yn) € G. By the Green function of the Zaremba problem
we mean the solution of the problem

~Augla,y) = oz —y) for @ € G,
0
6—g(x,y) =0 for x € G\ F, g¢g(z,y)=0 for z € F
v
with the finite Dirichlet integral outside any neighborhood of the point y.
The equation and the Neumann condition on G \ F should be understood
in the sense of the integral identity

/ Vog(2,9)Vo(z) dz = v(y), v e CF(G\ F),
G

and the Dirichlet condition on F' should be valid quasi-everywhere. Sub-
tracting from ¢ the fundamental solution of the laplace operator , multiplied
by a cut-off function supported near y, and using the unique solvability of

[e]
the Zaremba problem in the class L(G; F), we conclude that g exists and
is unique. Let gy be the Green function of the Dirichlet problem in g — gq.
Since % > 0 on OG, we may apply Lemma 5.2.1 to the difference g — gp.
Hence g > g on G, and thus g > 0.

The following assertion contains pointwise estimates of g. O

Proposition 5.5.1. The Green function of the Zaremba problem admits
the following estimates:

(i) if |xn - yn‘ > 1, then

o~
N
IS
—~
&
3
~
N—
=

Nl=

k(z(x:)) for y, > x, + 1.
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Proof. Two last inequalities are well known and we won’s give their proof
based on Lemma 5.2.1. Two first inequalities follow directly from (ii) and
Corollary 5.3.1. O

Remark 5.5.1. Various estimates for u follow from Proposition 5.5.1 and the
representation of the problem

ou
5—0 on O0G\F, u=0 on F

with the help of the Green function. For example, it is easy to check that

—Au=f in G,

Tn

lu(z)| < k(z(xn)é /z(t)-%F(t) dt + 2(zp)" 7z(t)%F(t) dt)
0

for |f(z)] < F(xy).

]
Let C(F) be the space of continuous functions vanishing as |z| — oo
and endowed with the norm

||UH5(F) = sup {|u(z)| : = € F}.

By C*°(F') we denote the space of traces on F of functions from the space

C3°(G) of functions which are smooth on G and have compact support.
Consider the boundary value problem

a—z:() on G\ F, v=¢ on F. (5.5.2)

Av—0 i
v OlnG,8

Given ¢ € C*°(F), this problem is readily reduced to that considered
in Section 5.1 and therefore it is uniquely solvable in the class of functions
with the finite norm (5.1.2). By Lemma 5.2.1 combined with the inequality
0<¢<1lonF,onehas0<wu<1onG\F. Hence the solution of problem
(5.5.2) can be represented in the form

v(z) = /sﬂ(y)H(m, dy), (5.5.3)

F

where H(z, e) is the measure of a set e C F', and 0 < H < 1. Equality (5.5.3)
enables one to extend the inverse operator of problem (5.5.2) onto the space

é(F ). The functions from the domain of the resulting extension of the
operator (5.5.3) will be called solutions of problem (5.5.2) with continuous
Dirichlet data.

Proposition 5.5.2. If x,, > s, then

=

H(z,F\F,) < k(zz(fs’g)) . (5.5.4)
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Proof. Since 0 < H < 1, it suffices to show that (5.5.4) holds for z,, > s+2.

Let ¢ be a function from the space C°°(F') supported on F \ Fsy;. By
Corollary 5.3.1,

dy)| <k
’/ e <175 ot
which implies (5.5.4) due to arbitrariness of . O

Corollary 5.5.2. Let ¢ € C(F) and let

v(s) = sup {|p(z)| : = € Fy}.

Then for any solution of problem (5.5.2) with continuous Dirichlet data the
estimate

y [l
[o(@)] < () + k() / o weT\E
holds.
Proof. By (5.5.3),
o) < [ 2B ody) < 3(wn) + [ o) = 2(e)] Hlzdo),

F F
where w, stands for the positive part of w. The last integral can be writ-

ten as
Tn

/ [4(5) — ()] dH (2, F \ F).
0

Therefore,

[o(2) < y(zn) - / H(x, F\ F.) dy(s).

It remains to apply inequality (5.5.4). O



Chapter 6

Behavior, Near the Boundary, of
Solutions of the Dirichlet Problem for
a Second-Order Elliptic Equation

6.1 Operator with Measurable Bounded Coefficients

In the present section estimates near the boundary point and at infinity are
obtained for the solution of the Dirichlet problem, Green’s function, and
the Z-harmonic measure for an elliptic operator

Lu = (auyi)y (¥ =a’" 0,5 =1,2,...,n).

The coefficients a®/ given in R™ (n > 2) are measurable and satisfy the

condition -
A <agig < AT (6.1.1)

where £ is an arbitrary real vector in R, and A\ = const < 1.

6.1.1 Notation and lemmas

We shall utilize the following notation: 2 is an open subset of R"”; F and
CFE are the boundary and complement of an arbitrary set £ C R"; fi, f-
are positive and negative parts of the function or charge f; S, = {z: |z] <
r}, C. = S.NCQ; (r,w) are spherical coordinates with center at the point
O € 09; ¢ is an constant depending only on A and n.

Let I'(x) be the fundamental solution of the operator £ in R™ with a
singularity at the point O; p(z) = [[(2)]@™ ", T, = {z : p(z) <r}. As
has been shown in [32, 63], there exists a constant « depending only on A
and n such that in R™,

2a)z| < p(z) < (2a) 7|z, (6.1.2)

which is equivalent to the imbedding Saa, C T C S(2a)-1 -

97
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Let us introduce additional notation:

Kn,rg = S'r‘l \STza QT‘l,TQ = TT‘l \TT‘27
Me(u)=1"" / u? dz, (6.1.3)

K _1

a”tr,ar

cap (F) is the harmonic capacity of the set E, v(r) = r>~" cap (C,.) is the
relative capacity of C() in the sphere S,.

In order not to complicate the exposition, we consider the coefficients a*
and the boundary €2, infinitely differentiable during the proofs. However,
since the constants in all the estimates are independent of this assumption,
by utilizing more or less standard approximation techniques all the funda-
mental results (Theorems 6.1.3-6.1.6) may be carried over to the general
case. The restriction n > 2 is introduced for simplicity of presentation.
Let us just note that the method applies below is applicable also to general
second order elliptic equations with divergent principal part.

In this section, u denotes a function from the space Lél) (Ss) (6 = const >
0) which satisfies the equation Zu = 0 in 2 N Ss and is zero on Cs.

Lemma 6.1.1. Let
I =@2-n)""! / u?a"T inj ds,, (6.1.4)
oT,

where v < 6 and {n;} are projections of the unit exterior normal to 0T,
onto the coordinate azes. Then

2r1_”/aijuziuxj de = _7'(r). (6.1.5)
Proof. Let us set

Then

2/(F — 1)y aYuyiug; do = /(F 1), L) dx =
Q

= —/a”l‘xi (u?)s dx = — / uQaijI’xmj ds;.
T, o,

Differentiating with respect to r, we obtain (6.1.5). O

Lemma 6.1.2. For ar < § the inequality 7 (1) < c.tly(u) is valid.
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Proof. Let us note that on 9T,
aTyin; = —anmn;|VI| <0
and that
/ aijinnj ds; = —1.
oT,

Now, the required estimate follows from (6.1.2) and the inequality

max  u® < ey (u), (6.1.6)

K(za)*lr,zar

which is substantially due to Moser [57]. O

Lemma 6.1.3. The inequality

R
dr

F(r) <c 7 (R)exp < - c/v(f) > (6.1.7)

T
T

is valid for r < R < 4.
Proof. By virtue of Lemma 6.1.1 and the estimate (6.1.2),

I'(r)y>ert /(Vu)2 dx > cr'™" / (Vu)? d. (6.1.8)

T Bar

Multiplying the inequality

ccap (Cyr) / u? dw < /(Vu)2 dz, (6.1.9)
a5, Sy

proved in [37] (see also [38, p. 48]) by r"~! and integrating between o?r

and ar, we obtain

ccap (Cyus,) / w? de < r" / (Vu)? dz,

Bar

ar,ad3r

which, together with Lemma 6.1.2 and the estimate (6.1.8), yields
J'(r) > er' "™ cap (Cosy) 7 (r).

Integrating between ar and r and using the monotonicity of # (r) (Lemma
6.1.1), we obtain

r

F0) = Far) e (@) [eap(Cosn) 5 =

ar

> g@nie [anCon 2],

ar
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Let us put 7 = r, = o®*R (k = 0,1,...) here. Then there is a constant c,
such that

Th41

S (1) 2 7 (rsa) exp ( [ d)

Therefore, for any k > 1,

o*R

SR> F(r)esp ( [+ dT).

T
Tk+4+1

Hence, we obtain (6.1.7) by the estimate v(7) < 1 and the monotonicity of
PAGE O

Lemma 6.1.4. Let R < § and r < o®R, where a is the constant from
(6.1.2). Then the inequality

/(Vu)2 dr < c_ 7 (R)r" % exp ( - c/Rv(T) ) (6.1.10)

Sr T
is valid.

Proof. By (6.1.5) and (6.1.2), we obtain

T

HF(r) > C/Tl_" dr /(Vu)2 dx > er?™m / (Vu)? da.

ar Sar S.3,

Now (6.1.10) follows from the inequality (6.1.7). O

6.1.2 Estimates of the “decreasing” solution

Theorem 6.1.1. Let the function u € L(Ql)(Sg) satisfy the equation Lu =0
in QN S5 and be equal zero on Cs. Then for R < af and r < o®R, the
estimate

R
max lu| < 0///1% (u) exp ( C/")/(T) dT) (6.1.11)
- T

18 valid.

Proof. Applying the formula of Kronrod (see [70, 14]):

/<I>(x)|Vu|dm: +/Ooalt / O(7) dsg,
Q “oo  u=t
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where ®(z) is a Borel-measurable function, and the function u(x) satisfies
the Lipschitz condition, we obtain

a2y
A= / u?aT Ty dr = / I (r)yrt "dr.
a?r

Q2r,a2r

Applying Lemma 6.1.3, we hence deduce

T

A< e g (R exp ( - c/Ry(T) dT).

According to Lemma 6.1.4, the same estimate is true for the integral

B= [ = (a?r)> "] 20y, da.

Q2r,a2r

Hence, by setting v = u[[’ — («=2r)27"],, we obtain

C= / av,iv,; de < 2(A+B) <
CT,
R
9 dr
<er " Z(R)exp| —c [ v(1)— ). (6.1.12)
T

T

On the other hand, since v = 0 outside S,-s, it follows that

C>c / (V)2 dx > cr™2 / v?de > cr? "My (u).  (6.1.13)

Ka_3T,ar 04_37‘,047‘
By the maximum principle and the inequality (6.1.6), it follows from (6.1.12)
and (6.1.13) that

R

d

Igl&qu < Ig%qu < ctly(u) < c Z(R)exp (— c/*y(r) T>. (6.1.14)
ar ke T

Finally, let us note that according to Lemma 6.1.2, the inequality #(R) <
cMr(u) is valid and that together with (6.1.14) it proves the theorem. O

An estimate of the decrease of a solution with finite energy at infinity is
given in the following theorem.
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Theorem 6.1.2. Let the function u € L (05’5) satisfy the equation Lu =
0 in QNCSs and be equal zero on CwﬂCSg Then forr > a~ 1§, R > o °r,
the estimate

O\Sr

max |u] < c/// (u )(%)H_Q exp (— C]{’Y(T) dT) (6.1.15)

is valid.

Proof. Let E* denote the image of the set E under the inversion z = y|y| 2.
If w is a solution of the equation Zu = 0 in w N CSy, then, as has been
shown in [64], the function

_ uy)
v(z) = T(y) (6.1.16)

satisfies some uniformly elliptic equation .4 v = 0 in Q* NS5 with an ellip-
ticity constant depending only on A. Moreover, from the proof presented in
[64], it immediately follows that the Kelvin transform (6.1.16) retains the

finiteness of the energy of the solution, i.e., that v € L(Ql)(S(;fl). According
to Theorem 6.1.1, the estimate

—1

dr

< 1 — * -

o ax V2 < e, - ()eXp( 0/7 (1) T)’
R—1

where v*(7) = 727" cap (CQ* N S, ), is true for the function v(y). Hence,
from (6.1.2) we obtain

-1

Inax lu| < c.///ré (u)(%)ni2 exp (— c / ¥ (1) dT) (6.1.17)

-
R-1
Let us set v = [log, R], 1t = [logy r]. Then

—1 2—Ic

dr - dr -
> * 2 s 2k(n—2) E*
[ 0T [y Tze 3 20 ),

R-1 k=p+1 5 %1 k=p+1
where Ej, = Cor+2 \ Cor+1. But, as is known (see [29, p. 353)),
27 2k+2)(n=2) cap (Ey) < cap (Bf) < 2720HD(0=2) cap ().

Therefore,

/ —>c Z 27F=2) cap (Ey).

R-1 k=p+1
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Furthermore, using the semi-additivity of the capacities, we obtain

[roT = S @ -2 Y @) 2

R-1 k=p+1 k=p+1

v

R
>(1-27) Y 2@ 9@ ze 40 T

k=p+2

Hence, we obtain the inequality (6.1.15) from (6.1.17). O

6.1.3 Estimates of the “growing” solution and the
Phragmen—Lindel6f principle

Theorem 6.1.3. For all 6 > 0, let the function u € Lgl)(CS(;) satisfy
the equation Lu = 0 in QN CSy and equal zero on CQ N CSs. Then for
r < &R, the estimate

ME () > e max |yl (E)%2 exp (C/R’V(T) d:) (6.1.18)

Q\Sr r

is valid.

This inequality follows directly from Theorem 6.1.2. Analogously, from
Theorem 6.1.1 we obtain the following assertion on the behavior of the
growing solution at infinity.

Theorem 6.1.4. For all § > 0, let the function u € Lgl)(Sg) satisfy the
equation v =0 in QN S5 and be equal zero on Cs. Then for R > o~ °r,
the estimate

T

R
M () > cmax [ul exp (c/v(T) dT) (6.1.19)

18 valid.

From Theorems 6.1.1 and 6.1.4 we obtain the following modification of
the Phragmen-Lindelof principle (compare with [27]).

Corollary 6.1.1. Let u be the solution of the equation ZLu = 0 which
equals zero on the portion of 0N located outside some sphere and belonging
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to Lgl)(SR NQ) for any R < oco. Then for any v > 0 one of the inequalities

R
1 d
liminf///F% (u) exp (— c/’y(r) T) >0, (6.1.20)
R—o00 T
R
3 n—2 dr
limsup max [u|R" “exp (¢ [ v(T) — | < o0 (6.1.21)
R—oo SR T

T
is satisfied.

It follows from Theorems 6.1.2 and 6.1.3 that an analogous alternative
characterizes the behavior, near the point O, of the solution of the equation
Zu = 0, which equals zero on S5 N <) for some 6.

6.1.4 Inhomogeneous boundary condition

Theorem 6.1.5. Let ¢ € C(0R), and let u be the solution of the equation
Zu =0, which satisfies the condition u = @ on IQ (see [32]). In addition,
by definition, let B = a8, and

wE(t) = Jlfil‘zg [o(z) — ©(0)] 4 (6.1.22)
Then the inequality
) (0] < (@lel) +¢ [ e (= [+ D) a0 0129
Blx| ||

s valid.

Proof. Let H(z, E) be the .Z-harmonic measure of the set £ C 9Q with
respect to 2. Then

u() — p(0) = / [o(y) — (0] H(x, dy).
o

Obviously,

[u(z) — p(0)], < / W () H (z, dy) <

o0

<wt(Blal) + [ [t (o)) — w* (Bla)], H . dy).

o0
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We hence obtain

[u(z) — 0(0)] . < w*(Blz]) +c / H(x, 00N CS;) dw™(t).  (6.1.24)
Bla|

Now, let us note that for fixed ¢ the function H(z,9Q N C'S;) satisfies the
equation Zu = 0 for |z| < t and the zero boundary condition. Hence, the
estimate

T

H(z,00N CS;) < cexp { - C/t’y(T) dT}, (6.1.25)

||

where §|z| < t, follows from Theorem 6.1.1 and the inequality H (z, E) < 1.
There remains to substitute this inequality into (6.1.24). O

Remark 6.1.1. Meanwhile, the sufficient Wiener’s condition

/7(7’) d; =00 (6.1.26)
0

for the regularity of the point O (see [32]) follows from (6.1.25) and (6.1.23).
In fact, if the integral (6.1.26) diverges, then for any € > 0,

limsup [u(z) — 4,0(0)}i <

z—0
1 ¢
. dr + +
<climsup [ exp| —c [ v(7) — | dw™(t) < cw™(e).
z—0 T
Blxl ||

Therefore, u(z) — ¢(0) as © — 0.

It also follows from Theorem 6.1.5 that the solution of the equation
Zu = 0 whose boundary values satisfy the Holder condition at the point
O, itself satisfies this condition if

z—0 |ln 7’|

1
liminfL /’y(T) ar > 0. (6.1.27)
T
i

The following theorem is proved analogously to Theorem 6.1.5.
Theorem 5. Let o € C(6Q) and let u be a solution of the equation Lu =0
satisfying the condition u = ¢ on 0S). Besides, let

+ —
t = ) O-
o) \rlagspi(x) t—00
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Then the inequality

uy (z) < o (B )+
B x| ||

be / <|i|)n_26Xp(c/’y(T) d:) do () (6.1.28)

s valid.
The estimate of the .#-harmonic measure

||

H(z,000S,) < c(i)H exp ( - c/w) dT) (6.1.29)

] T

resulting from Theorem 6.1.2, where St < |z| plays the part of the inequality
(6.1.25) in the proof of this theorem.

6.1.5 Inhomogeneous equation

Theorem 6.1.6. Let u, which equals zero on OS2, be a weak solution of
the equation Lu = f, where [ is a finite charge with a carrier in Q (the
existence of such a solution is proved in [32]). Then the inequality

us(z) < o / P2y (dy)+

58w
+c / exp (— 0/7(7) Ci?-)tQ_” df+(St) (6.1.30)
Blx| ||

s valid.

Proof. From the representation of the solution in terms of the Green’s func-
tion G(z,y) and from the inequality G(z,y) < er?, ™ resulting from (6.1.2),
we obtain

wr@) <e [ fuldn v [ Gla) e (6.1.31)
Sg|a| CSgia|

Since for fixed y, the function G(z,y) satisfies the conditions of Theorem
6.1.1 for |z| < Sly|, it follows that

[yl

G(z,y) < C///jm(G( *,y)) exp (— c/v(T) d:)

||
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Applying (6.1.2) to the Green’s function, we find that the mean value of
G?(-,y) does not exceed c|y|>*@=™) on K,z2|,|. Therefore, for 8|z| < |y|,

vl

G(z,y) < cly|/* "exp < - C/’y(T) dT), (6.1.32)

-
||

which, together with (6.1.31), proves the theorem. O

The following estimate of the solution of the problem Zu = f,
at infinity is obtained analogously:

U‘BQ =0,

up(z) < c / P2 (dy)+

CSg-1|

+ ez B/lwexp < - 077(7) d:) df 1 (Sy). (6.1.33)
0 t

By comparing (6.1.23) and (6.1.30), as well as (6.1.28) and (6.1.33), we
obtain estimates near the point O and at infinity for the solution of the
problem Zu = f, u’ag = .

6.2 Modulus of Continuity of a Harmonic Function at
a Boundary Point

In this section, the results obtained in Section 6.1 are improved for harmonic
functions.

Let n > 2,y e R", Br(y) ={z € R": |z —y| < R}, Br = $r(0) and
Q be a bounded domain in R™. By ¢, ¢1, co we denote possibly different
positive constants which depend only on n. Further, let F' be a closed
subset of the ball g and u be a function from the Sobolev space W (%r),
harmonic on £ \ F and equal to zero almost everywhere on F'.

According to Section 6.1.1, for all p, p € (0, R), one has

/ u?(p,w) dw < exp (—c/Rcap (FT)Tfle) / u?(R,w)dw, (6.2.1)

6381 8931

where F,. = FN%,, cap is the Wiener capacity, ¢ = Z—j , and dw is the area
element of the boundary 04,. Estimates of this type have also been proved
for solutions of linear elliptic second order equations with variable coeffi-
cients ([28, 38, 39, 61], etc), and also for certain linear equations of order
higher than two [36, 51], and quasi-linear second order equations [40, 45].

From (6.2.1) one derives pointwise estimates for the modulus of the function
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u, harmonic measure, and Green’s function. A consequence of (6.2.1) is the
sufficiency of the divergence of the Wiener series for the regularity of the
boundary point. The following sufficient condition for Hélder continuity at
the point O € 99 of the solution of the Dirichlet problem

Av=01in Q, v=¢ on 9N (6.2.2)

with the function ¢ Holder continuous at the point O also follows from
(6.2.1):
1

1 dr
lilpneionfm /cap (%, \ Q) s i 0. (6.2.3)
P

Under the additional requirement of decrease of the central projection
of the set 0%, \ Q onto the sphere 0%, as r | 0 the condition (6.2.3) is
equivalent to the inequality cap (%, \2) > er"~2; according to [38], it is also
necessary. For a rather long time it has been unclear about the question of
necessity of (6.2.3) in general (cf. [45]). A negative answer to this question
follows from the theorem proved below, which strengthens (6.2.1).

In the formulation of the theorem there occurs the function r ——
O(F,, AB,) defined as the infimum of those §, § > 0, such that for all balls
PBs(y) with centers on 0%, \ F one has

cap (Fr N Bs(y)) = 76" 2, (6.2.4)

where v is a small positive constant, depending only on n.

If cap (F,) > v(2r)"2, then by definition, F, is an essential subset of
2A,., and otherwise an inessential one. Since for essential F,., (6.2.4) holds
for all balls %o, (y), y € 0%, one has §(F,, B,) < 2r.

Theorem 6.2.1. For all p, p € (0, R), one has

u?(p,w) dw <

dr dr
Sexp{—c( / cap (F}) ] + / M)}x
E(p,R)

I(p,R)

0%

X /uZ(R,w)dw, (6.2.5)

0P,

where E(p,R) = {r € [p,R] : F, is an essential subset of %,}, and
I(p,R) = [p, R\ E(p, R).

Remark 6.2.1. The second integral in the exponential in (6.2.5) makes sense,
since the sets E, = {r > 0: d(r) > a} are of type F, for all a > 0, i.e., the
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function r — §(r) is measurable. Indeed, fix a > 0 and let r € E,. Then
there exist d2 > 0; > a and © € 0%4(0,r) such that

cap (2°N2(0,7) N B(z,02)) < kod} 2,

where Q¢ is the complement of . For |z —y| <& =dy — 1 and |y| < r,
this yields
cap (Q2°N (0, |yl) N By, 61)) < kod} 2,
ie. 0(|ly|) > 91 > a. Consequently, p € E, forall r —e < p < r.
For r € E,, let €. be the largest ¢ such that the set E, contains the
interval (r — e, 7]. The set

G= U (r—epr) C E,

rekE,

is open and it is easily verified that the set E, \ G is at most countable. It
follows that E, is of type Fy.

In the proof of theorem we have used the following assertion which con-
tains bilateral estimates of the quantity

A(r) = inf || gradull3, . [ull ;2 00,

where the infimum is taken over all u € W3 (4%,) which vanish almost ev-
erywhere on F, = F N %, (cf. [41]).
In what follows, the relation a ~ b means that a;a < b < cqa.

Proposition 6.2.1. If F,. is an inessential subset of %B,., then A(r) ~
cap (F,)r'=", and if not, \(r) ~ m .

Proof. 1. The inequality

Ar)>=(n-2)(n-— l)rk" cap (F)

| =

is proved in [37]. Let cap (F,) < v(2r)"~2. We denote by w the capacity
potential of the set Fj.. We have

—~

AP = w2, o) < / (gradw)? dz.
%7‘

Consequently,
1 pn_a
A0 (wir*e = llwlLuom,) ) < waln —2)cap (F),
where w,, is the area of 9.%,. Since

1
2

|wllz,0,) < crllgradwl|p,gn) < cir(cap Fr)Z,
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one has A(r)r!="(1 — ¢y2) < ccap F,.

2. Let cap F, > v(2r)"~2. We construct a finite covering of the set
0B, \ F by balls Bs(y;), vi € 08, \ F, where 6 = 6(F,, %) +¢, e > 0.
It follows from the definition of 6(F,., %,) that one can find a sufficiently
small number ¢ such that cap (F,. N %s(y;)) > 76" 2. From this and the
inequality

2 C(Sn / 2
u”dr < rad u)” dz
/ < G (5 1 Z5 ) (grad )
BrNBs(yi) BrNBs(y:)

(cf., e.g., [41]) it follows that

62 / u?dr < c / (grad u)? da.

BrNBs (yl) BrNBs (yl)
But since
5t / u?ds < c( / (gradu)?dx + 62 / u? dx),
0B, NBs(y:) BNBs(y:) 0B, NBs(y:)
one has

51 / w?ds < c / (grad u)? dz.
0B-NBs(ys) BrNABs(yi)

Summing over i, we find
¥ / u?ds < c§(Fy, B,) / (grad u)? dz,
OB, BrNBs(y:)

which is equivalent to the inequality

Y
M) 2 52

3. As above, let cap F,. > v(2r)"~2. We set § = 6(F,, %,) — . Then
one can find a ball %5(y), y € 0%, \ F such that cap (F.N%5(y)) < vo" 2.
For any function u, u € W} (%r), u = 0 on F,., we have

() / u2dsg/(gradu)2dz.

OB, 7

Let n € C§°(%5(y)), n =1 on #Bs (y), |gradn| < §. Then

A(r) / u?ds < c / [(grad u)? + 0 *u?] dx.

agarngag (y) @nga&(y)
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Since
572 / u? de <
BrNBs(y)
< c( / (gradu)® dx + 0~ / u? dS),
B.NBs(y) (mmﬁg (v)
one has

<c / (gradu)? dx + cp0 ! / u? ds.

Br-NBs(y) 8@rﬂ%% ()

If 2¢50~! > A(r), then we have obtained the upper bound needed for
A(r). Let 2¢06~ < A(r). Then
A(r) / u?ds < 2¢ / (grad u)? dz.

8@7‘(‘!(@% (y) Br-NBs(y)

We denote by w the capacity potential of the set F,. N %Bs(y) and by
¢ a function from CG° (% (y)) such that ((y) = 1, |grad(| < §. Since
(1 —w)¢ =0 on F,, one has

A1 - U’Hi(a%m@ﬂy)) <
4
<ec / [(grad w)® + 6 2(1 — w)?] da <
#rNB 3 (y)
< c(cap (F, N PBs(y)) +6"2) <" 2. (6.2.6)
Applying the inequalities

/ w2d8§c<(5 / (gradw)?da 4+ 61 / w2d$>,

02,025 (v) #5) ®

2
52 / w? dx < /;:_(z)de < c/(gradw)2 dz
() R

successively, we conclude that

w?ds < ¢é cap (FT N ﬂg(y)) < eydnh

6:957«038% (v)
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From this and (6.2.6) we get
eA(r)(1— C’Y%)Q < 6" 2,
Thus the proposition is proved. O
Proof of the Theorem 6.2.1. For r € (0, R),

/(grad u)?dr ="t / u % dw. (6.2.7)
B 0%,
Hence one has
2X(r) / u? dw < % / u? dw,
OAB, 0%,
which, with Proposition 6.2.1, gives (6.2.5). O

From (6.2.5) we derive a pointwise estimate for the function |u|. One
verifies by integration by parts that one has

Lemma 6.2.1. Letn € C5°(%,) and r = |x —y|. Forx € B,\ F, one has

u?(z)n(x)
wp(n —2

+2 / (erad u)?

BNF

pn—2 dy =
= / u?(r*""An — gradr®~" - gradn) dy. (6.2.8)

BN\F

From (6.2.8), assuming that n = 1 in a neighborhood of the ball B, we
deduce that one has

Corollary 6.2.1. For all x € #» \ F', we have
u(z)] < 0p7%IIUHL2(%\@§)- (6.2.9)

Since by (6.2.7) the function p — |[u(p, -)||L,02,) is nondecreasing,
from (6.2.8) one gets |u(z)| < cllu(p, -)l|L,(0%,), where x € B2 \ F. From
this and the theorem one gets

Corollary 6.2.2. For p € (0,R) and x € #¢ \ F, one has

u?(x) < cexp{ - C( / cap (F) r’cﬁl—i_

I(p,R)

+ / cap(F,.)é(}{ii%ﬂ)}/uz(R,w)dw. (6.2.10)

E(p,R) 0%,
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Noting that the integral over I(p, R) in (6.2.10) does not exceed ¢ log(%),
we get

Corollary 6.2.3. If

1 dr
I a__ 6.2.11
o230 log | / 5(Fr By) O ( )
E(p,R)

then u(z) = o(|z|) for any positive N.

From (6.2.10), just as from (6.2.1) in [39], one derives a variety of infor-
mation about the behavior of a harmonic function, Green’s function, and
harmonic measure at infinity and near a boundary point. Here we restrict
ourselves to the question of the Hélder continuity of a solution u of (6.2.2).

Proposition 6.2.2. Let Q C %, ¢ € C(99Q) and ¢(z) — $(0) < const|z|*,
where a > 0. If

1 dr dr
lim inf —— F) —— — )= . (6.2.12
migt ([ e e [ i) =e>0 6212
I(p,R) E(p,R)

where F. = B, \ Q, there exists a positive constant v depending on a, 8, n
such that v(z) — ¢(0) < const|z|".

Proof. One can assume that ¢(0) = 0. Let H(z, E) be the harmonic mea-
sure of the set E C 0 with respect to 2. We have

o(z) = / () H (z, dy) <

o0
< / | H (2, dy) < cla]® + / (Iy]* — (2Jz])*) H(x, dy).
a0 OO\ A2 5|
From this we have
1
o(z)] < c|z|® + / H(z, 00\ B,)d(t%). (6.2.13)

2|z|

Since the function x — H(x,0Q \ %) is harmonic and satisfies the
homogeneous Dirichlet condition on %, \ 09, by (6.2.10) for |z < §,

H(x, 09\ %) <

§ceXp{—c( / cap(Fr)%—i- / 5(;7%)} (6.2.14)

1(2[z|,t) E(2|z|,t)
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From this estimate and (6.2.12) we find that

]

H(z,00\ 8,) < C(T)Cﬁ.

Hence
1

lv(z)| < elz]® + ¢|z]¢? / te=eh=l . O
2||

We shell show that the domain  can satisfy (6.2.12), while simultane-
ously (6.2.3) does not hold.

Example 6.2.1. Let
BY) = {:L' eR™: |z| < py}, v > 2, log,log, p,t = v,

and let Q be the union of spherical shells ) \ Z(*+1) joined by holes in
the spheres 2", and F = 2\ . The hole p is a geodesic ball with an
arbitrary center and radius o, = pi‘fl, € > 0. Let p be a small positive
number and v be an index such that p, < p < p,—1. It is clear that

cap (%4, \ Q) ~ p~2. Consequently,

1
/cap (B N\ dr ~ v,
p

1

and since log, p~" ~ 2”, the domain under consideration does not satisfy

(6.2.3).

Now we note that there exists a constant ¢ > 1 such that (6.2.4) does
not hold for p € (copi, pr—1), 1 < k <wv. If now p € (pg, copr), then for any
ball Be(,—p,+s,)(y) with center on 0%, (6.2.4) holds. Hence §(F),,%,) <
c(p — px + dx). From this it follows that

dr dr
/ cap (Fy) pr + / 75<FT’%T) >
I(p,1) E(p,1)

. . _
ZCZIOgENC€2 ~ cellogp|~t.
k=1

Thus, (6.2.12) holds.

Setting log, o, = —|log p,|*1¢, we get
5 o i < 260
k=1

Hence for such a choice of diameters of the holes w, (6.2.10) holds,
guaranteeing the superpower convergence of the function u to zero (cf. Co-
rollary 6.2.3).
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