Mem. Differential Equations Math. Phys. 64 (2015), 143—-154

Short Communications

MALKHAZ ASHORDIA AND GODERDZI EKHVAIA

ON THE SOLVABILITY OF MULTIPOINT
BOUNDARY VALUE PROBLEMS FOR SYSTEMS OF
NONLINEAR DIFFERENTIAL EQUATIONS WITH
FIXED POINTS OF IMPULSES ACTIONS
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For the nonlinear impulsive system with fixed and finite number of im-
pulses points

Cc% = f(t,x) fora.e. t € [a,b] \ {Tw};%, (1)
x(tt) — x(me—) = Ig(z(7x)) (k=1,...,myp), (2)

we consider the multipoint boundary value problem of the Caucy—Nicoletti’s
type

zi(t;) = pi(z1,...,z) (E=1,...,n), (3)
where t; € [a,b] (i = 1,...,n), a < 71 < -+ < Tppy < b (we will assume
70 = a and Ty41 = b if necessary), f = (fr)io, € K([a,b] x R",R"),
Iy = (I)y : R - R” (k =1,...,mg; 4 = 1,...,n) are continuous
operators, and ¢; : BV,([a,b],R™) (i = 1,...,n) are continuous functionals
which are nonlinear, in general.

In this paper, the necessary and sufficient conditions as well as the effec-
tive suflicient conditions are given for the solvability and unique solvability
of the boundary value problem (1), (2);(3). Analogous problem on the in-
terval [—a, a] have been considered in [3], when the multipoint problem is
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degenerated into the two-point one, i.e., when t; = —o;a (i = 1,...,n). The
general nonlinear boundary value problems for the impulsive system (1), (2)
is considered in [4], where the Conti-Opial type existence and uniqueness
theorems are prescribed for the problem.

We realize the results for the boundary condition

wi(ti):Ci (7;:1"";”)7 (4)

ie, when p;(z1,...,2,) =¢;(i=1,...,n), where ¢; e R*"(i =1,...,n) are
the constant vectors.

Note, in addition, that analogous results are contained in [5,6,8,9] for
the multipoint boundary value problems for systems of ordinary differential
equations.

Throughout the paper, the following notation and definitions will be used.

R =]— o0, 400[, Ry = [0, +00[; [a,b] (a,b € R) is a closed interval.

R™*™ is the space of all real n x m-matrices X = (2;);j, with the
norm

n
X = max > |ayl;
j=1,...,m Pt

Rﬁ'_xm = {(fﬂ”):’le LTy Z 0 (Z = ].,...,71; j = 1,,m)}
R™ = R™*! is the space of all real column n-vectors z = (z;)/_; R} =
nx1

R7<Y,

diag(A1, ..., An) is the diagonal matrix with diagonal elements Ay, ..., \;
0;; is the Kronecker symbol, i.e., 0;; = 1 if ¢ = j, and 6;; = 0if ¢ # j
(i,j=1,...,n).

6 is the function defined by 6(¢) =1 for ¢ > 0, and 6(t) = —1 for t < 0.

b
V(X)) is the total variation of the matrix-function X : [a,b] — R™*™ i.e.,

the sum of total variations of the latter’s components.

X (t—) and X (t+) are the left and the right limit of the matrix-function
X : [a,b] — R™™™ at the point ¢t (we will assume X (t) = X(a) for t < a
and X (t) = X (b) for ¢t > b, if necessary);

i X(t)=X(t)— X(t-), d2 X (t) = X(t+) — X (¢);

1X s = sup {IX(¢)[| = ¢ € [a, 0]}

BV([a, b],R™*™) is the set of all matrix-functions of bounded variation

b
X :[a,b] = R™ ™ (i.e., such that V(X) < 400);
a
BV;([a,b], R™) is the normed space (BV([a,b],R™), | - |s);

C(la,b], D), where D C R™ ™ is the set of all absolutely continuous
matrix-functions X : [a,b] = D;

Cioc([a,b] \ {7%},, D) is the set of all matrix-functions X : [a,b] — D
whose restrictions to an arbitrary closed interval [c,d] from [a, b] \ {7 }7,
belong to C([e, d], D).
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If By and By are normed spaces, then an operator g : By — Bs (nonlin-
ear, in general) is positive homogeneous if

g(A\x) = Ag(z)

for every A € Ry and = € Bj.

An operator ¢ : BV([a,b],R™) — R™ is called nondecreasing if for every
z,y € BV([a,b],R™) such that z(t) < y(t) for t € [a,b] the inequality
e(x)(t) < ¢(y)(t) holds for ¢ € [a, b].

If &« € BV([a,b],R) has no more than a finite number of points of dis-
continuity, and m € {1,2}, then Dam = {tami, - - tamnan, | am1 < - <
tamna,, ) 1S the set of all points from [a, b] for which d,,a(t) # 0.

tom = max{dna(t) : t € Dam} (m=1,2).

If 8 € BV([a, b],R), then

Vamﬁjmax{djﬂ(taml)‘i’ Z djﬂ(’r) :ll,...,nam}

tami+1-m<T<tami+2—m

(j,m =1,2); here tao0 = a — 1, tain,,+1 = b+ 1.

By v(t) (a < t < b) we denote a number of points 7, (kK = 1,...,my)
belonging to [a, .

A matrix-function is said to be continuous, nondecreasing, integrable,
etc., if each of its components is such.

L(Ja,b], D), where D C R™*™_ is the set of all measurable and integrable
matrix-functions X : [a,b] — D.

If D; € R™ and Dy C R™*™, then K ([a,b] x D1, D3) is the Carathéodory
class, i.e., the set of all mappings F = (fy;);;/~; : [a,0] x D1 — Dy such
that for each ¢ € {1,...,1}, j€{l,...,m}and k € {1,...,n}:

a) the function fx;(-,x) : [a,b] — Dy is measurable for every x € Dy;

b) the function fg;(t,-) : D1 — D is continuous for almost every
t € [a,b], and

Sup{‘fkj('u‘r” IS DO} € L([a, b], R; gix)

for every compact Dy C D;.

By a solution of the impulsive system (1), (2) we understand a continuous
from the left vector-function € Cioe([a, ] \ {72}, R") N BV ([a, b], R")
satisfying both the system (1) for a.e. ¢t € [a,b] \ {7x};"°; and the relation
(2) for every k € {1,...,mp}.

Quite a number of issues on the theory of systems of differential equa-
tions with impulsive effect (both linear and nonlinear) have been stud-
ied sufficiently well (for a survey of the results on impulsive systems see
e.g. [1,2,7,10,11,13,14], and references therein). But the above-mentioned
works do not contain the results analogous to those obtained in [5, 6,8, 9]
for ordinary differential equations.
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Using the theory of the so-called generalized ordinary differential equa-
tions (see e.g. [1,2,12] and references therein), we extend these results to
the systems of impulsive equations.

To establish the results dealing with the boundary value problems for the
impulsive system (1), (2) we use the following concept.

It is easy to show that the vector-function x is a solution of the impulsive
system (1),(2) if and only if it is a solution of the following system of
generalized ordinary differential equations (see e.g. [8,9,13] and references
therein):

da(t) = dA(t) - f(t, (1)),

where
A(t) = diag(ai1(t), ..., ann(t)),
t for a <t <,
a;(t) = .
t+k for i, <t <741 (K=1,....,mp; i=1,...,n);

flri,z) = I(x) (k=1,...,mp).

It is evident that the matrix-function A is continuous from the left,
dgA(t) =0ifte [a,b] \ {Tk}zn:ol and dQA(Tk») =1 (k =1,... ,mo).
Definition. Let ¢1,...,t, € [a,b] and a < 71 < -+ < Ty, < b. We say that
the triplet (P, {Hj},'}, ¢o) consisting of a matrix-function P = (pi)};—; €
L([a,b],R™*"), a finite sequence of constant matrices Hy = (hrit)j—; €
R™™ (k = 1,...,mg) and a positive homogeneous nondecreasing contin-
uous operator ¢o = (@o;)j—; : BV([a,b],R}) — R’ belongs to the set
U(ti, .y tniTiy vy Tmg) i pu(t) > 0 forae. t €fa,b] (1 £ i,l=1,...,n),
hea >0 (@ #Li,l=1,...,n; k=1,...,mgp), and the system

2, (t) sgn(t — t;) Z ) forae. t€fa, b\ {m}2, (i=1,...,n),

(@i (o) —2i(me—)) sgn(me—t) < hgaai(ri) (i=1,...,n; k=1,...,mq)
=1

has no nontrivial nonnegative solution satisfying the condition
zi(t;) < woi(z1,...,zy) (i=1,...,n).
The set analogous to U(t1,...,tn;T1,--.,Tm,) has been introduced by
I. Kiguradze for ordinary differential equations (see [5,6]).

Theorem 1. The problem (1),(2);(3) is solvable if and only if there exist

continuous from the left vector-functions o, = (ami)l, € éloc([a, bl \
{0, R") N BV ([a, b],R™) (m = 1,2) such that the conditions

a1 (t) < ag(t) for t € la,b
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and
(71)J (fz (t,i)’]l, ey L1, Otji(t), Lid1ye-- ,%n) - Oé;Z(t)) sgn(t - tl) § 0
for almost every t € [a,b], t#t;, t & {T1, ., Tmg}s
ar(t) < ()i S ao(t) (=125 i=1,...,n),

(1" (i + Ialr, o 20) = i) ) 0 for 70 > i,

o () < (a)iy <o) (m=1,2; i=1,...,n; k=1,...,mg)
hold, and the inequalities
Ozu(ti)<<pi(1?l,..., )S (tz) (ZZl ,’I”L)

are fulfilled on the set {(x)}; € Cioc(la, b\ {7}y, R") NBV,([a, b],R™),
ai(t) < (m)jey < aa(t) fort € [a, b]}

Theorem 2. Let the conditions

fi(taxlv“wxn)sgn t_t Z |wl|+QZ )
=1
for almost every t € [a,b], t#t;, t ¢ {m,...,Tmet (G=1,...,n), (5)

where ¢; € L([a,b],Ry) (i=1,...,n), and
Ii(x1, ..., xn)0(mk — t;)sgna; <
< hgalml+a(re) (k=1,...,me; i=1,...,n) (6)

1=1
be fulfilled on R™, and the inequalities

loi(@1, - an)| < goi(l2l, - lzal) +9 (E=1,...,n)
be fulfilled on the set Cioe(la,b] \ {m}i, R") N BV([a,b],R™), where v €
R.. Let, moreover,
(i)t (i) ics } s (i ) € Ul b Ty Timg)s (7)

where g; € L([a,b],Ry) (i =1,...,n),v € Ry. Then the problem (1), (2);(3)
is solvable.

Corollary 1. Let the conditions (5) and (6) be fulfilled on R™, where p;; €
L*([a,b],R), pa € L*([a,b],Ry) (i #1; 3,1 =1,...,n), ¢; € L([a,b],Ry)
(i=1,...,n), hkil:aklpil(Tk (=1, mowl—l n), 1 <p<
+oo, i €ERy (i=1,...,n;k=1,.. ) Let, moreover, the inequalities

mo 1
lpi(z1,...,20)] < Z (’ymlszLu + Y2i1 [Z |xz(Tz)|”} ) +
k=1

k=l
be fulfilled on the set Coc([a, b\ {7}, R")NBV([a,b],R") (i=1,...,n)
and let
r(Ho) <1, (8)
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where Y1k, Yo € Ry (i,k = 1,...,n), i—i—% =1, v € Ry, and the
2n x 2n-matrizc Ho = (Hojm)?,m:1 is defined by

n

L 2 :
Hour = ((b —a) ik + {; (b— a)} ||pik||Lu> ;

ik=1
. 1 1
Horz = ((b — a);’}/gik + {(b Zalz} (Z |pzk Ti |M> ) >
=1 k=1
mo 1 1 n
Hoz1 = (( Z ali) Yk + {(b —a) ZOLM} ||pik|L“) )
1=1 =1 ik=1
1 i\
Hoze = (( Cm) 721k+< Pifte ST 4nk+2> (lezk ) ) >i,k_1;
here p; = max{ay; : L =1,...,mo}, and ng, = nq, 2 is the quantity of nonzero
numbers from the sequence aug, ..., 0mqk- Then the problem (1), (2);(3) is
solvable.

Remark 1. The 2n x 2n-matrix H appearing in Corollary 1 can be replaced
by the n X n-matrix

mo 1
v

(max{{(b - a)% + (;ali) }’ymﬁ—
([ e-olslo-aZ] Yt o= () s
({b azazzf ( Hifbg Sin 24n T2 i)(zmk ) ) })

ik=1

2
u

Remark 2. In the Corollary 1, as a matrix-function C' = (c;1)7;—, we take
cu(t) = pat +ay(t) (5,1=1,...,n).

Corollary 2. Let the conditions (5) and (6) be fulfilled on R™, where p;; €
LM([aab]aR); pir € LM([aabLR-l-) (Z 7£ l:' il = ]-7“-377')7 g € L([avb]aR+)
(i = 1,...,77,), hkil = aklpil(m) (/f = 1,...,m0; i,l = ].,...7TL), 1 S 1% §
+oo, ayp ERy (1=1,...,n; k=1,...,mg). Let, moreover, the inequality
(8) hold, where the 2n x 2n-matriz Ho = (Hojm)3 =y is defined by

n

2 3
H011=<[ﬂ_(b—a)} ||hMu) :
ik=1

Horz = ([(b —a) %alz} ’ (% \hik(Tl)W) i)" ;
=1 =1 k=1
Hoz1 = ([(b —a) ialz} ihik|L“>n ]
=1 i,k=1
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=) (S atr))

1 .

Hozz = <(4 i fig S

k=1

here %—i—% =1, u; = max{ay; : 1l = 1,...,mg}, and ng = g2 is the

quantity of nonzero numbers from the sequence oig,...,Qmk- 1Lhen the
problem (1), (2);(4) is solvable.

Remark 3. The 2n x 2n-matrix Hy appearing in Corollary 2 can be replaced
by the n X n-matrix

(max { ([i (b— a)} v + [(b —a) go:ali] i) pir |l e,
=1
([(’H‘) > o S+ G pansin™ ;) i) (Z():'plk(”)‘”) i }>
=1 = ik=1

By Remark 3, the Corollary 2 has the following form for p;(t) = py =
const (i,l =1,...,n) and pu = +oo.

Corollary 3. Let the conditions (6) and

S

filt,x1, ..., xy) sen[(t — t;) Z palzi] + qi(t)

for almost every_t € la, b\ {m}°, (1=1,...,n) (9)

be fulfilled on R™, where p;; € R, py >0 (i #1;i,l=1,...,n), hpa = axpi
(k=1,....mo; i, =1,....n), ar >0 (i =1,....,n; k = 1,...,mg),
¢ € L(la,b,Ry) (i = 1,...,n). Let, moreover, the inequality (8) hold,
where Hy = poH, H = (h;l)};_,, and

<X \i 2 1 ., 7
p0:<(b_a)lz_;al) +maX{ﬂ_(b—a),2'U/aSln 4%_’_2},
to = max{ag : 1 =1,...,mg}, ng is the quantity of nonzero numbers from
the sequence i, ..., m,. Then the problem (1), (2);(4) is solvable.

Corollary 4. Let the conditions (5) and (6) be fulfilled on R™, the inequal-
ities

|<pi(x1, .. ,xn)| < wilzi(s)|+v (i=1,...,n) (10)
be fulfilled on the set Cioc(Ja,b] \ {m )i, R") N BV([a,b],R™) and let
wivi(si, ti) <1 (i=1,...,n), (11)

where py(t) = haBi(t) + Ba(t), ¢ € L([a,b],Ry) (i = 1,...,
hilﬁki_‘_ﬁkil (Z7l = 1)"'an; k = 17'--7m0)7 h/ii < O, hil Z O (’L ;é l;

i7l = 1,...,71),’ i € R-i-) 8 € [a7b]7 54 # 123 (Z 17"'7”)7 v E R-‘r;
BiiEL([aab]aR—F) (i:1>'~',n)7'ﬂilaﬁi€L([a ]R)( 7él7 ivl:]-a“'vn)
are such that By (t) > 0 (i # 1) and Bi(t) > 0 for a.e. t € [a,t;[U]t:,b];
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Brii € Ry (iz1,...,71;k::l,...,mO);ﬂkil,ﬁkiER(i#l,‘i,lZI,...,n;
k=1,...,mp) are such that Bry >0 and Bx; > 0 if 7, # i, Bri <0 if 7, =
ti, and 0 < By < |mi| 7Y if T > ti, mi < 0; yi(t,t) = 1, vi(t, s) = 7 (s,1)
fort < s and

Yi(t, s) =exp (nijﬁi(T)dT> I +miBe) for t>s (i=1,...,n).

s<T <t
Let, moreover, the condition
gi <1 (i=1,...,n) (12)

hold and the real part of every characteristic value of the matriz (gil)?,lzl
be negative, where

i = ha (6 + (1= 6a)hi) — hasga (i,1=1,...,n),
gil:Ui(l_ﬂi%(sivti))_l'Yil(Ti)+maX{%‘l(a)v’Yil(b)} (i,l=1,...,n),
Y (t) = | (t) — aults)| for t <t
Y (t) = | (t) — aalts)| for t >t; if ti & {T1,. ., Tmo }
Yir(t) = | (t) — aar(ts)| — (1 = i) Bri
for t>t; if t, €{m,...,Tme} (1,1=1,...,n),
hi=14df 0<p; <1,

hi =1+ (/Ll — 1)(1 7”1")/1'(81‘,@'))71 Zf i >1 (Z = 1,...,n),

t
aiz(t)E/Biz(T)dT+ > B (,1=1,...,n).

a<T<t
Then the problem (1), (2);(4) is solvable.

Corollary 4 has the following form if we assume therein that 5;(1 = 1,
Biu(t) =0, Bri =0, hga = Brar (i1 =1,...,n; k= 1,...,mp, and py(t) =
pii = const, where p; = hy (i,1=1,...,n).

Corollary 5. Let the conditions (6) and (9) be fulfilled on R™, the inequali-
ties (10) be fulfilled on the set Cioc([a, ]\ {m )i, R")NBV,([a,b],R™) and
let the condition (11) hold, where py;; < 0, py >0 (i £ 1; 4,1l =1,...,n);
hiii € Ry, hgy € R (k =1,...,mp; 1t 7£ l; 4,1l = 1,...,’/7,), qi € L([a,b],R_,_)
(i =1,...,n), u; and v € Ry, s; € [a,b] and s; # t; (i = 1,...,n),
vi(si,t;) = exp(milsi — 6]) (¢ = 1,...,n), 3 < 0 (i = 1,...,n), and
¢ € L(la,b,Ry) (i = 1,...,n). Let, moreover, the condition (12) hold
and the real part of every characteristic value of the matriz (fz‘l)ﬁzzl be
negative, where

& = piu(0a + (1= 6)hs) —puga (i,1=1,...,n),
g = (1 = pivi(si, t:) " yal(si) + max{yu(a), ya(b)} (i,1=1,...,n),
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Ya(t) = laa(t) — aul(t)] (G,1=1,...,n),
h; =1 for 0<u4§1

hi =1+ (p — 1) (1 — pivi(si, Z)) for u; >1 (i=1,...,n),
a;(a) =0, ay(t) = Z hii for t €la,b] (i,l=1,...,n).
a<Tp<t

Then the problem (1), (2), (3) is solvable.

Corollary 4 has the following form if we assume therein that 5;(1 = 1,
Bau(t) =0, Bri =1, Bra =0 (i, =1,...,n; k = 1,...,mg, and p;(t) =
pa = const, where p;; = hy (3,1 =1,...,n).

Corollary 6. Let 7, # t;(i = 1,...,n;k = 1,...,my), the conditions (9)
and

Ii(x1,. .., 2p) sgn [(Tk - t)w] <

n

Z palzi| +aqi(me) (k=1,...,mgp; i=1,...,n)

be fulﬁlled on R™, the inequalities (10) be fulfilled on the set Cioc([a,b] \
{m}0, R") N BV([a,b],R™) and let the condition (11) hold, where p;; <
0, pu >0 (G #1; 4,0l =1,...,n); u; and v € Ry, ¢; € L([a,b],Ry)
(i =1,...,n), s; € [a,b] and s; # t; (i = 1,...,n), ¢; € L([a,b],R,)
(i =1,...,n), yi(si,t;) = (1 4+ )V exp(n|s; — t5]) (1 = 1,...,n),
and -1 <n; <0 (i=1,...,n). Let, moreover, the condition (12) hold and
the real part of every characteristic value of the matriz ({il)zlzl be negative,
where

& = pit (6 + (1 — 6a)hs) — piaga (i,1=1,...,n),
gir = pi(1 = pivi(si, t:) " i (si) + max{va(a), ()} (i,0=1,...,n),
Yu(t) =0 for t <t;, vu(t)=0 for t >t; if t; {1, Tmo}>
Yu(t) =0y —1 for t>t; if ti€{m,....,Tmo; (L, 1=1,...,n),
hi =1 for O<;li<1

hizl‘l‘(,ui_l)(l wivi(Sis z)) for pi>1 (i=1,...,n).
Then the problem (1), (2), (3) is solvable.

Theorem 3. Let the conditions
lfz‘(t T1ss @) = filtoyr, o yn)] senl(t — t) (2 — yi)] <

<Zp (O)|zi—ui| for almost every tela,b]\ {m} 2, (1=1,...,n) (13)
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and

[Tii(z1s oy @n) = Ti(yn, - - -, yn)10(7 — i) sgn(a; — y;)] <
< thum —ul (k=1,....mg; i=1,...,n) (14)
1=1
be fulfilled on R™, the inequalities

‘Soi(xla R ,.’I}n> - @i(yl, s ;yn)‘ <
S ¢0i(|$—y1‘7~-~,|$n _ynl) (7/ - 1,...,’[7,)
be fulfilled on the set Coc(Ja, b\ {7} 0,, R")NBV([a, b], R™), where pii, hii

and o; (i, =1,...,n; k=1,...;mq) are such that the condition (7) holds.
Then the problem (1), (2), (3) has one and only one solution.

Corollary 7. Let the conditions (13) and (14) be fulfilled on R"™, where
pii € L*([a,b], R), py € L*([a,b],Ry) (i #£1; 4,l=1,...,n), ¢; € L([a,b],R})
(i=1,...,n), hgg = agpa(te) (E=1,....mp; 5,0l =1,...,n), 1 < pu <
+oo, aix ERy (1=1,...,n; k=1,...,mg). Let, moreover, the conditions
(8) and

“pi(l‘l’"'vxn) - @i(ylw--ayn)‘ <

n mo 1
< Z (’71il|$l —yillzy +Y2a {Z |z (T — yl|”} U>

k=1 k=1
be fulfilled on the set Coc([a, bI\{7r} i, R")NBV([a, b],R™) (i =1,...,n),
where Y1k, voi € Ry (i,k = 1,...,n), i—i—% =1,~v€Ry, and Hy =
(Hojm)im:l is the 2n x 2n-matriz defined in Corollary 1. Then the problem
(1),(2), (3) has one and only one solution.
Corollary 8. Let the conditions (13) and (14) be fulfilled on R™, where p;; €
L“([a, b],R), pil € L“([a,b]7R+) (Z 7é l,’ ’i7l = 1,...,n), hia = Oéklpil(Tk)
(k=1,....mo; 4,0 =1,....n), 1 <p<+o0, sy ERy (i=1,...,n; k=
1,...,mq). Let, moreover, the inequality (8) hold, where Ho = (Hojm)?,mzl
is the 2n X 2n-matriz is defined in Corollary 2. Then the problem (1), (2), (3)
has one and only one solution.

Corollary 9. Let the conditions (14) and
[fi(ta'rh o 73;71) - fi(tvyla s 7yn)] Sgn[(t - tz)(xl - yl)] <

< Zpiﬂxl — 1| for almost every t € [a,b] \ {mx};°; (i=1,...,n) (15)
=1

be fulfilled on R™, where pi; € R, py >0 (i £ 1 i,0=1,...,n), hxa = arpi
(k=1,....mg; i, =1,....n), ax >0 (i =1,....,n; k = 1,...,mp).
Let, moreover, the inequality (8) hold, where the matriz Hy is defined as in
Corollary 3. Then the problem (1), (2), (4) has one and only one solution.
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Corollary 10. Let the conditions (14) and (15) be fulfilled on R™ and let
the condition (11) hold, where p;; < 0, py > 0 (i £ 1; ¢, = 1,...,n);
hiis €ERy, gy R (k=1,...,mg; i £ 1; 3,0l =1,...,n), s; € [a,b] and
si £t (i =1,...,n), vi(si,t;) = exp(milsi —t;]) (¢ = 1,...,n), n; <0
(t=1,...,n), and u; € Ry) (i = 1,...,n). Let, moreover, the condition
(12) hold and the real part of every characteristic value of the matriz (§1); 1,
be negative, where the matrizc (gil)?,lzl is defined as in Corollary 5. Then
the system (1), (2) has one and only one solution under the condition

.’El(tl) = )\le(sl) + ﬁz (Z = 1, . ,n)
for every v; € [—pi pi] and B; €R (i=1,...,n).

Corollary 11. Let 7 # t; (i = 1,...,n; k = 1,...,myg), the conditions
(15) and

[Tki(@1, - an) = Tei(yr, - yn) | sen(ie — t) (s — yi)] <
SZpu|$l*yl| (k=1,...,mo; i=1,...,n)
=1

be fulfilled on R™ and let the condition (11) hold, where p; < 0, py > 0
(£l =1,....n); Ry (i =1,...,n), s; € [a,b] and s; # t; (i =
1...,n), vi(sit;) = (1 +n,)"C)77E) exp(nils; — ti]) (i = 1,...,n), and
—1<n;<0(¢=1,...,n). Let, moreover, the condition (12) hold and the
real part of every characteristic value of the matriz (ﬁil)ﬁlzl be negative,
where the matrix (gil)?,lzl is defined as in Corollary 6. Then the statement
of Corollary 10 is true.

Remarks 1-3 given above are true for the uniqueness case, as well.
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