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1. INTRODUCTION

This paper is devoted to the study of the existence of homoclinic orbits
for the first-order time-dependent Hamiltonian system

i=JH.(t,2), (1.1)
where z = (p,q) € RY x RY. Here H has the form

H(t,z) = %B(t)z cz+ G(t, z) + h(t)z, (1.2)

where G € C(RxR2?V,R) is T-periodic in , B(t) is a continuous T-periodic
and symmetric 2N x 2N matrix function, h : R — R2" is a continuous and
bounded function and J is the standard 2N x 2N symplectic matrix

0 —In
J= (IN ! )
In recent years several authors studied homoclinic orbits for Hamiltonian
systems via the critical point theory. For the second order Hamiltonian
systems we refer the reader to [1,2,7,8,10-13] and for for the first order
to [3-6,9,14-17] (and the references therein).
Throughout this paper, we always assume the following:

Hy) G(t,z) >0, for all (¢,2) € R x R?V;

Hy) G(t,z) = o(|z])?) as |z| — 0 uniformly in ¢,

(

(H2)

(H3) G(t 2 5 400 as |z| — 400 uniformly in ¢
(Hy)

H,) There exist constants 5> 1, 1 < A <1+ 8= 821 4y >0, ap > 0 and
7€ LY(R,R") such that
2-G.(t,2) —2G(t, 2) > a1]z|® —7(t), (t,2) € R x RN (1.3)
and
|G.(t,2)| < asl2*, V(t,z) € R x R, (1.4)

(Hs) there exist constants ag > 0 and n > 0 such that

/M|ﬂ<%,</M|MQ <
20

(WWWM) £ ¢
Tgl, as <mln{2 29)\+1}

where ¢ and £ are two positive constants which will be defined in
Proposition 3.1 and in (3.13) later.
A solution z(t) of (1.1) is said to be homoclinic (to 0) if z(t) — 0 as
t — £oo. In addition, if z(t) # 0, then z(t) is called a nontrivial homoclinic
solution.

Theorem 1.1. Let (Hy) — (Hs) be satisfied. Then (1.1) possesses a non-
trivial homoclinic solution such that z(t) — 0 as t — £oo.
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This paper is motivated by the work of Rabinowitz [12] in which the
existence of nontrivial homoclinic solutions for the second order Hamiltonian
system

G+ Vy(t,q) =0
was established.

The paper is organized as follows. In Section 2, we establish a variational
structure for (1.1) with a periodic boundary value condition. Our main
result (Theorem 1.1) will be proved in Section 3.

2. VARIATIONAL STRUCTURE
Let A = —(J(d/dt+B(t)) be a self-adjoint operator acting on L?(R,R2N)
with the domain D(4) = HY(R,R2N). If E := D(|A|2), then E is a Hilbert
space with the inner product

(z,v) = (z,v)2 + (|A|%z, |A|%v) z,v € FE,

L2’
1 1
and £ = Hz(R,R*). Let By, := H2 (R, R?") for each k € N. Then Ej,
is a Hilbert space with the norm || - ||g, given by (here z € Ey)
kT L 12
Izlle, = < / (||A\fz| +\z|2) dt> . (2.1)
—kT

Furthermore, let L3S, (R, R?Y) denote a space of 2kT-periodic essentially
bounded (measurable) functions from R into R*" equipped with the norm
= esssup {|z(t)] : t € [-kT,kT]}.

As in [10], a homoclinic solution of (1.1) will be obtained as a limit, as
k — 400, of a certain sequence of functions zp € FEj. We consider a
sequence of systems of differential equations

L= J(B(t)z + GL(t, 2) + hi(t)), (2.2)

where for each k € N, hj, : R — R is a 2kT-periodic extension of the
restriction of h to the interval [—kT, kT and z, a 2kT-periodic solution of
(2.1), will be obtained via a linking theorem.

2]lLge

We define
kT p
(Au,v) = / (f (J%+B)u,v> dt, Yu,v e Ey (2.3)
—kT
and

kT kT
In(z) = % (Az, z) — / G(t, z)dt — / hi(t) - z(t) dt. (2.4)

—kT —kT

We have from (2.3) that A has a sequence of eigenvalues

---fé_m)ﬁ-“ﬁfé_mﬁfé_l)<0<§,(€1)§f,(€2)§---§§,(€m)-“
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with 5,(€m) — oo and 5(_m) — —ocoasm —» 0o. Let gpi be the eigenvector
of A corresponding to 5,(5), j=41,£2,...,&m,.... Set

Ej) = ker(A), E, = the negative eigenspace of A
and

E,j = the positive eigenspace of A.

Hence there exists an orthogonal decomposition Ej = Eg OE, @ Elj with
dim(EY) < oo
Lemma 2.1 ( [11]). Let E be a real Hilbert space with E = EM @ E®?) and
EM = (E@)L. Suppose I € C1(E,R) satisfies the (PS) condition, and

(C1) I(u) = % (Lu,u) + b(u), where Lu = LiPyu+ LyPou, L; : E® —s
EW s bounded and self-adjoint, P; is the projector of E onto E(®,
i=1,2;

(Co) V' is compact;

(Cs) there exist a subspace E C E, the sets S C E, Q C E and constants
a > w such that

(i) Sc EW and I|s > @;
(i) Q is bounded and I|pg < w;
(iii) S and 0Q are linked .
Then I possesses a critical value ¢ > a given by

c=inf sup I(g(1,u)),
inf sup £(g(1, )

where
r= {g € C([0,1] x E, E)|g satisfies (I'1) — (I‘g)},
(T1) 9(0,u) = u;
(T2) g(t,u) =u for u € 0Q;
(T'3) g(t,u) = P @y 1+ x(t,u), where O(t,u) € C([0,1] x E,R), and x
is compact.

3. PROOF OF THE MAIN RESULT
The following result in [11, p. 36, Proposition 6.6] will be used.

Proposition 3.1. There is a positive constant c,, such that for each k € N
and z € Ey the following inequality holds:

< cullzll g (3.1)

where p € [1,400). For notational purposes let cx41 = 0.

Izl s,

Lemma 3.1. Under the conditions of Theorem 1.1, I}, satisfies the (PS)
condition.



88 Chengjun Guo et al.

Proof. Assume that {zx, }nen in Ej is a sequence such that {Ix(zx,)}neN
is bounded and I} (zx,) — 0 as n — +oo. Then there exists a constant
di > 0 such that

|Ie(zr,)| < dv,  I(2k,) — 0 as n — oo. (3.2)

We first prove that {zx, }nen is bounded. Let z, = 2} + z,jn + 2z, €
EY® Ef @ E, . From (1.3) of (Hy), (Hs), (2.4) and (3.1), there exists a
constant ¢z > 0 such that (here % + % =1)

2d1 Z QIk(an) — <I,/€(an), an> =
kT kT

= / [zkn-szn(t,zkn)—za(t,zkn)] dt — / hi(t) - zp, dt >
—kT —kT
kT kT kT
> / a1|zkn|ﬁdt7/m(t)dt7 / |hie (8| |2k, | dt >
—kT —kT —kT

> alHanHing ~lmelley,, —eallbnll 5 llzr,llz, =

> aleknlligw —lIrller = esliPllpallzna e =

> alHZ’%”ing =Tl = eseallhllorllzen s =

> al\lzknlligw —lIlley = escgaslizr, Il s s (3.3)

where for each k € N, 7, : R — R” is a 2kT-periodic extension of the
restriction of 7(¢) to the interval [—kT, kT.

Since 8 > 1, this implies that there exists a constant MO > 0 with
< M. .
2k, g < Mo (3.4)

Consider {||z) ||z, }nen. Note dim(E}) < +oco, and this implies that there
are the constants by and by such that

bl s < I llee <bollzl s <bollzwllps - (35)

By (3.4) and (3.5), there exists a constant M; > 0 such that

128, 11, < M. (3.6)
Let a = %, then
1 (3.7
)\a—l:a—B7 a>1
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If0 < |zlLg, <1for z € Ek, we have from (1.4) of (Hy) that
kT kT
/ G (t, ()| dt < az / 12(8)] dt. (3.8)
—kT —kT

By using (3.1) and (3.8), we have (here L + 1 =1)

Iz N > (Ih(zh,), 2 ) =

kT kT
= (Az,;:l,z,jn> - / [z,jn -G, (t2k,)] dt — / hi(t) ~z;rn dt =
—kT —kT

kT
=<Az,:f”,z,j”>—</ T /)[z,j”-szn(t,zkn)]dt—/hk(t)-z,jndtz
—kT

|26, 121 |2k, <1

ZM%%M‘%W%M—L/@MM%WF

—( / G, (12,

|2y, |21

|z, <1

1 kT 1
adt) ( / z,:rn|"dt> >
—kT

n
> (Azf 2] ) - 2 1712 = az||zr, ||, 12, I 2~

n

1

_( / ‘szn (tvzkn)|a dt) CU”anHEk (39)

|2k, |21

and

2, 15 = —(Ti(2r, ) 2, ) =
kT kT

= (Anp g+ / [ - Gy (t.2,)] b — / hi(t) - 2f. di =

—kT —kT

:—<Azkn,zkn>—( / + / )[zkn-szn(t7zkn)]dt—

|zkn |Zl |zkn |<1
kT

- / hilt) - 2 dt >

—kT

_ _ n _
> (A5, 57) = gl I - / aalz, | 2p | dt—

|z, [<1
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1 kT 1
_( / ’szn(t7zkn)|adt> (/zkn|”dt> >
kT

[2k, |21

_ _ n _
> —(Az 2 ) — % 2k, || B — azll2k, || |2, |2 —

_( / szkn(t,zkn)Pdt) collze |, (3.10)

|2, [21

By using (1.4) of (Hy) and (3.1), there exists a constant ¢sia-1) > 0 such
B—1
that

/ G (1 25,)

“dt < / ag |z, M dt <

|2k, [21 |2k, [21
}
<a§( / |zkn|ﬁdt) ( / |an|(>\a_l)ﬁgldt> <
|2k, [21 |2k, |21
1
B
<aleaen ([ i) i @0

|2k, |21
Combining (3.4) with (3.9)—(3.11), we find that
12, 15 + N2,

> (Az 50 ) = (Az 2 ) — azllzk,

E, =

g (12 e + N1z, l20) —
1

77 (o3
Derlle = o [ 16 )" ) (ol + o) 2

‘Zk‘n [>1

- n
> &z %, — -1l B, - o Iwallme = 2az |2, |55, —

1_1

o Aa—1 3 Bl a (Aa—1)
[y (O B I B P R P

[2ky |21

> &ill=f 15, — &-allz, |

2 n
B — EHanHEk—

9 - (Aa—1D+4a
—2as |2k, &, —2¢oDo(llzr, ) = 5 (3.12)

where Dy = [a$((cs0a-1) ) 2 Mo]=, and & is the smallest positive eigen-
B—1

value, £_1 is the largest negative eigenvalue of the operator A, respectively.

From (3.6) and (3.12), there exists a positive constant D; > 0 such that

D (1127, 1, + 127, 1, + 1126, 1, ) =

> |l2f .+ 2, |2 +60Mll2, o > 2] s+l s €2k, 1, >
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> &illef, B, — E-1llzg, I, + €Nk, B, —

7 L 2, 5 ()\a—al)+a>
QHanHEk a2k, %, — 2¢6Do (|12, || £,)

> € (1157, 1%, + 2, I, + 128, 1%, ) -

(Aa—1D+a

—g lzn, I = 2a2ll2w, 5, = 2¢0Do(l2kallmn) =+ (3.13)
where £ = min{&;, —£_1}. This implies that
~ n ~ Qa-1)
Dit 2 (€ = 2a2)lzk, |5, — 2¢o Do(ll2e, l20) =, (3.14)
where 0 < 22=D 1 Since & — 2ay > 0, we have that {2k, | B, fren is

bounded. Going if necessary to a subsequence, we can assume that there
exists z € Ej such that 2z, — z, as n — +o00, in Ej, which implies
2k, — z uniformly on [—kT,kT|. Hence (I} (zy,) — I;(2))(zk, — 2) — 0

and ||zg, — Z||L[2—kT,kT] — 0. Set
kT
= / (G, (120, (1)) = Gty (1)) 21, — 2) .
—kT

It is easy to check that & — 0 as n — +00. Moreover, an easy computation
shows that

(Tk (2, ) = Ii(2)) (2, = 2) = (A(2k, = 2), (2, — 2)) — 2.
This implies ||zx,, — ||z, — 0. O
Lemma 3.2. Under the conditions of Theorem 1.1, for every k € N the

system (2.2) possesses a 2kT -periodic solution.

Proof. The proof will be divided into three steps.

Step 1: Assume that 0 < ||z||g, <1 for z € E,(Cl) = E;". From (1.3) of (Hy)
and (3.1), we have

Z G(t,2(t))dt < % {Z z-GL(t, 2(t) dt +Z (1) dt} <

kT
1 1
<5 la [ IOF s ] < g fae R+ ] <
—kT

< 5 a2 21, + 17l . (3.15)

NN
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From (2.4) and (3.15), for z € E,(;) = E; and 0 < ||z]|g, < 1, we have

kT kT

1
In(2) = 3 (Az, z) — / G(t,z)dt — / z - hg(t)dt >
—kT —kT
&1 1 n
> 5 el — 5 [o20 el + Irlas] = g lells, >
I ¢ (2 + )
> (€= 20N 2lh, + 3 a0, — 5 (3.16)

Note from (Hs) that & — 2az0™* > 0. Set

2(% +I7llzr)N 3 & —2ap0M!
= <7) and ¢ = >———.
13 4
Let B, denote the open ball in Ej, with radius p about 0 and let 95, denote
4, 1
its boundary. Let Sy = 0B, N E}f. If 2 € Sy, then ||z||p, = (W) 2
(note that ||z||g, <1 from (Hs)) and thus (3.16) gives

In(z) > a z € S.
Then (C3)(i) of Lemma 2.1 holds.
Step 2: Let e € E; with |e||g, =1 and Ep = E, ® E) ® span{e}. Let now
Or={z€Ey: |2l =1},

W= inf |<Azf,zf>|, n:(

zEE;,Hz* HEk:l

2||Af[\ /2
)
For z € Oy, we write z = 2z~ + 29 4 2F.

D) If |27 ||g, > k|2t + 2% g, then for any v > %tff) > 0, we have
from (Hy) that

1 o
IL(yz) = 5 (Ayz",727) + 5 (A2 y27) -

kT kT
— / G(t,vz)dt — /’yz-hk(t)dtg
kT kT
B 2y —2 ||A|| 20 4112 Ui
§—§7 [E4 ||Ek+77 [E4 ||Ek+2*97§
< B, + oz o, 4 2 <
=79 Ty DY
B oy —p2 ||A|| o 1 -2 n
§—§7 [E ||Ek+77 EHZ ||Ek+§7=
K oy _—2 Ui .
= LI, + Lo <0 (3.17)
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note ||z~ [|3, > J% since
,

_ (1+rK%), _
L=, + e+ 2, < S,
Let

Ae={z 00 15, < rll=t + 0,

) If |27 ||, < kllzt + 2% &, , we have

1= el = 171, + 127+ 2°l%, < @+ )]z +200%,  (3.18)
i.e.,
1
+ 012
|z + = ||Ek > m > 0. (3.19)

The argument in [6, pp. 6-7] guarantees that there exists e¥ > 0 such that,
Vuée Ak,

meas{t € [0,2kT) : |u(t)| > s’f} > ek, (3.20)
For z =2t + 294+ 27 € Ay, let
P={te0,2kT]: |2(t)| > f ).

By (Hs), for M}, = AL~ 0, there exists Ly, such that

(eh)?

G(t,z) > My|z|?>, V|z| > L, uniformly in t. (3.21)
Let
Yr = max {L—:, L}
et ol Al
For v > 7, we have from (3.20) and (3.21) that
G(t,v2) > My|yz|*> > Mpy%(e)?, Vit e QF. (3.22)
From (H,) and (3.22), for v > -, we have for z € Ay, that
Iy(vyz) = %72<AZ+72+> + %72<A2_»Z_>—
kT kT
— /G(t,'yz) dt— /'yz “hg(t) dt < % ||A||’72—/G(t,’yz) dt + %’y <
—kT —kT Qz
< 5 IAI® = M) + oy = = S 1Al + Ly < 0. (329)
Therefore we have shown that
Ix(yz) <0 for any z € Ap and v > 4. (3.24)

Let
B =B o B,
Qr="{re: 0<v<2ule{ze B |zl <2wu}
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By (H2), (3.16)—(3.17) and (3.24) we have Ii|ag, < O, ie., Ij satisfies
(C2)(it) of the Lemma 2.1.
Step 3: (C3) (i) (i.e. Sk links Q) holds from the definition of S and Qy
and [11, p. 32]. Thus (C3)(#4¢) holds.

From (Hs)—(Hs) and (2.3), (Cy) and (C3) of Lemma 2.1 are true, so by
Lemma 2.1, I, possesses a critical value ¢ given by

cp = inf sup Ip(gr(1,uk)), (3.25)
9:€Tk upeQy,

where T}, satisfies (I'1) — (I's). Hence, for every k € N, there is z; € Ej
such that

Ie(zp) = ek, Ii(z) = 0. (3.26)
The function z; is a desired classical 2kT-periodic solution of (2.2). Since
cL > a= % > 0, z; is a nontrivial solution. O

Lemma 3.3. Let {z}}ren be the sequence given by Lemma 3.3. There
ezists a zg € C(R,R*Y) such that 2} — 2 in Cioe(R,R*Y) as k — +oc.

Proof. The first step in the proof is to show that the sequences {cj}ren
and {||z;]| g, }ken are bounded. There exists 2} € Ey with z7(£7") = 0 such
that
¢ <Ii(z7) = inf sup Ii(g1(1,ur)). (3.27)
91E€T1 4y €Qq,ur (£T)=0
For every k € N, let

(3.28)

0 for T < |t| < kT

and g : [0,1] x Ex, — E}) be a curve given by gx(t,z) = z, where z € Ej.
Then gr € Ty and I;(gx(1,2;)) = Li(g1(1, 27)) = I1(%f) for all k € N.
Therefore, from (3.25), (3.27) and (3.28),

cr < Ik(ﬁk(l,EZ)) =10 (51(1,2’1")) = I(2}) = M. (3.29)

We now prove that {2} }xen is bounded.
Let z; = (21)°+ (25)T + (2})” € EY @ Ef @ E;_. From (1.3) of (Ha),

1 1 _
1+3=1)
2My > 21y (25;) — (L (23), 21)
kT kT
- / {zZ-Gzz(t,z}:) —2G(t7z;)} dt — / hio(t) - 2 dt >
—kT —kT
kT kT kT

> /aﬂzZ\Bdtf /Tk(t)dtf / |h (1) |25 | dt >

—kT —kT —kT
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> ailll, Iy

kT Cﬁ”hk”LEkT HZZHLS}CT =

> ailll9, ~ vl - ezl ol g, >
13 -~ *
> aill i, Il = eadaslailyg,, (330)
Since B > 1, this implies that there exists a constant 1\75 > with
* < N*. .
lzxllLe . < Mg (3.31)
Note dim(EY) < +o0, therefore there exists a constant Ml* > 0 such that
1(0)°] | < M- (3.32)
By using (3.1) and (3.8), we have (here L + 1 =1)

1Gz2) " e = (T (20, (20)T) =

kT kT
— (4G e - [ [0 Gala]d— [ o 6" =
—kT —kT

e @ - ([ [ et e a

lzxl21 Jzl<1

kT
- / hilt) - (1) dt >

—kT
* * n * * *
> (AT G — 2 el — [ sl ) de-
[zx]<1
1 kT 1
—( / |ng<t,z;;>|adt) ( / |zkt|f'dt) >
2z |>1 —kT
E3 * "7 * * *
> (A %) = 2 el — aslztle ) s~
1
—( / |Gz,;<t,zz>|adt) . (3.33)
5121

and

1(z0) " e = (Tr(z8), (20)7)
kT kT

= (A=) (2)) — / [(25)" - Gus (£, 2)] dt / hi(t) - ()" dt =

—kT —kT
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—ac @@= ([ - [ ) Gatan] a

[zz]>1  |zpl<1

kT
- / ha(t) - (1) dt >
—kT
*\ — *\ — n * * *\ —
> (A G — 2 el — [ skl G0
\z;|<1
1 kT 1
—( / |ng<t,zz>|adt) ( / |z;n|f’dt) >
2 |>1 —kT
*\ — *\ — n * * *\ —
> (4G 67— 2 el — aalle ) e~
( / |GZ;<t,zz>adt> ol (3.34)
|zp]>1

Combining (3.11), (3.31) with (3.33)—(3.34), we have

1Gz0) " Nl + 1(z0) Nl >

- U
> &l (=) "I, — &-all (=), — o Izlle =

Aa—1)

= 22|21, — 2¢oD5 |12, "

Ikl e, (3-35)
where
1
g « Aa—177,
DO = |:a2 (Cs(giIl)) M0:|
From (3.32) and (3.35), there exists a positive constant D} > 0 such that

Di(lGzi) e + 1)~ s, + 1(5)°lz,) =
> [(z0) * s, + 11z0) " 1 + EMTNI(2) B >
> [1(z0) ¥l + 1z) ™ Ml + €Ml (20)° N, =

> (11, + 1) 1B, +1:0)°0%, ) -
Aa—1)4a

n * * Nk * o
- E Izl 2 — 2a2||zk||?3k - 2CUDO(||Zk||Ek) - (3.36)

This implies that

Aa—1

N n * T * %
Dy + % > (€= 2a2)l1z || By — 2¢6 D5 (1241 1) : (3.37)
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where 0 < % < 1. Since & — 2az > 0, we have that {||zy, ||, }nen is
bounded. Hence (3.37) shows that there exists a constant M; > 0 such that

2kl < M. (3.38)
We now show that for a large enough £,
125l g, < Ma. (3.39)

2ET —
If not (note (2.1) and (3.38)), by passing to a subsequence, without loss of
generality, for each k € N, there exist 2}, £ and ¢}, such that |25 (l)| = M,
125 (0)| =1 and 1 < |25(t)| < My for t € (g, 0x) C [T, kT (and M} — oo
as k—00). Hence, we have from (1.3) of (Ha), (Hs) and (3.31) that
o, p
My =1 = [z5(C)| — |2 (be)| = /@lZZ(S)ldS =

Ly

Ly

Ly
:/z;;(s). Z§(S§|dsg/|z,:<s>|ds

A

J |2 (s

Ly
Ly,

0 0
§/’Gzz(t,zlj(s))|ds+/|B(s)z;§(s)‘ds—|—/|hk(s)|ds§

Ly Li Li
Ly

< (as + 1Bl / 2 (5) s+ [illoy <

2kT )

Ly,

4
-1
)/|z;(s)|ﬂ ds+||h||pr < (since 1<)\<1+L<ﬁ)

< (az+|Bllrg 3

2kT

Ly
< (az + | Bllg

2kT

Y(Mg)? + as, (3.40)

where as, as, ||B||Lg, and Mg are k-independent constants. However, we
have M} — oo as k — oo, which leads to a contradiction. Hence there

exists a constant My > 0 such that

I2illgs, < (a2 + 1Bllog, ) (Mg)® +ag +1 = Mo, (3.41)

2kT — 2kT
This shows that (3.39) holds.

It remains now to show that {z}}ren is equicontinuous. It suffices to
prove that the sequence satisfies a Lipschitz condition with a constant, in-
dependent of k.

From (1.1) and (3.39), there exists a constant M3 > 0, independent of k
such that

|2 ()] = [J(G2; (L, 2 (1) + B(t)z (1) + hie(1))] <
< Mj (since ||z}||pse.. < Ms)

2T —
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which implies
12k llLgs, < Ms. (3.42)
Let k € N and t,tg € R, then

|zk zkt0|‘/ s)ds

Since {2} }ren is bounded in LS, (R, R*V) and equicontinuous, we obtain
that the sequence {2} }ren converges to a certain zg € Cjoo(R,R?*Y) by
using the Arzela—Ascoli theorem. O

/\zk )l ds < Mt — to).

Lemma 3.4. The function zy determined by Lemma 3.4 is the desired
homoclinic solution of (1.1).

Proof. The proof will be divided into three steps.
Step 1: We prove that zo(t) — 0 as t — +oo.

‘We have
+oo 3T iT
2 2 5, . * 2
[laop = tim [ o@Pde= tm tm [ e, 0P d
—00 —j7T —iT

Clearly, by (2.1) and (3.38), for every j € N there exists n; € N such that
for all k& > n; we have

3T
[ ra <0, < M2
—iT

and now, letting j — +o0, we have

/ |o(t)? dt < 72,

and hence
lzo(t)|*dt — 0 as m — +oo0. (3.43)

[t|>m
Then (3.43) shows that our claim holds.

Step 2: We show that zg #Z 0 when h(t) =
Now, up to a subsequence, we have either

400
/|z0(t)|2dt lim /|z0 ()2 dt =

,JT

3T
o . 2 g _
—tmtim [ @Pd=0, (340
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or there exist & > 0 such that

+oo JjT
/|zo(t)|2dt: lim /|zo(t)|2dt:
Jj—+oo
—o00 —3T
iT
= i i . 2dt>a . .
jgrfoo kgrfoo / |z, (D)7 dt > a >0 (3.45)
—3T

In the first case we shall say that z is vanishing and in the second that zq
is nonvanishing.
By assumptions (Hs), (Hs) and (1.4) of (Hy), for any £ > 0 there exists
C. > 0 such that
|G(t, z;‘bkﬂ <elzp, |+ C’E|zzk|)‘+1. (3.46)
Hence, we have from (1.4) of (Hy4) and (3.46) that

/! ()G, (20| i <
—kT
< EHan ||L2kTH(Z;klk)i||L§kT + CLQH’Zn;c H/\)\_Ha (347)
kT
[ Gty <z By, + IR
2T
—kT

Arguing indirectly, we suppose that {z; }72, is bounded and vanishing.
We have from (3.44) and (3.47) that
kT kT
Jim (z0)F - G (t, 25) dt = Jim G(t,z;)dt = 0. (3.48)
—00 —00
—kT —kT
Since (I},(z;,), (z5,)%) = 0, for some positive constant C, using (3.1) and
(3.47), we find that

kT
a5 5, < (A3 (h)h) = / (52,0 G (123, e <
—kT
and
kT
~ellGa) 75, < (A ) == [ i G (a0 di <
—kT

|/\+1
8

+ C||znk||’\+1. (3.50)

< E||Z7Lk||EkH nk _HEI‘ +CHan|
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Note that dim(EY) < +oo, there exist two positive constants 51, and 32
such that

Bl < Il <TGl <Rl G50
From (3.44) and (3.51) we have

* 2 T *
€l Ga 2, < i)l —0as k—o0. (352
Now (3.52) implies that there exists a positive constant b.(0 < b, < %) such
that
* 2 *
&l ()" g, < bellzm, I, - (3.53)
Hence, from (3.49), (3.50) and (3.53) we obtain that

e(llGm ) I, + G I, + G2, ) <
<&l by, + el I, el I, <

£ = A
< 3 Ml + 2G5, s

and ||z ||g, > ¢ for some ¢ > 0.
On the other hand, from (3.44), (3.48) and (3.53), we have

H(z* )iH2Ek — 0 and H(z*k)onk —0 as k — oo.

Nk n

This means that ||z}, ||z, — 0 as k — oo, which leads to a contradiction.
Hence {z;} is nonvanishing, so (3.45) holds, and this shows that our claim
holds.

Step 3: We show that zo(t) is a nontrivial homoclinic solution of (1.1).
Proof. According to step 2, zo(t) #Z 0, it suffices to prove that for any
¢ € C3°(R,R*Y),

+oo
/ Golt) — JH., (t, 20(1))) - p(t) dt = 0. (3.54)

— 00

By step 1, we can choose kg such that supp ¢ C [—k;T, k; T for all k; > ko,
and we have for k; > kg

+o00o

[ {0 = I[BO= 0 + 62 157,60 + 0] } - o) dt =0 (355)
By (3.43) and (3.55), letting k; — oo we get (3.54), which shows zy(t) is a
nontrivial homoclinic solution of (1.1). O

Proof of Theorem 1.1. The result follows from Lemma 3.4. (]



The Ezistence of Homoclinic Orbits. . . 101

ACKNOWLEDGEMENTS

This project is supported by National Natural Science Foundation of
China (No. 51275094), by China postdoctoral science foundation
(No. 20110490893) and by Natural Science Foundation of Guangdong Pro-
vince (No. 10151009001000032).

REFERENCES

1. V. Coti ZeLaTl, I. EKELAND, AND E. SERE, A variational approach to homoclinic
orbits in Hamiltonian systems. Math. Ann. 288 (1990), No. 1, 133-160.

2. V. CotI ZELATI AND P. H. RABINOWITZ, Homoclinic orbits for second order Hamil-
tonian systems possessing superquadratic potentials. J. Amer. Math. Soc. 4 (1991),
No. 4, 693-727.

3. Y. H. DiNgG, Existence and multiplicity results for homoclinic solutions to a class of
Hamiltonian systems. Nonlinear Anal. 25 (1995), No. 11, 1095-1113.

4. Y. H. DING AND M. GIRARDI, Periodic and homoclinic solutions to a class of Hamil-
tonian systems with the potentials changing sign. Dynam. Systems Appl. 2 (1993),
No. 1, 131-145.

5. Y. H. DiINnG AND L. JEANJEAN, Homoclinic orbits for a nonperiodic Hamiltonian
system. J. Differential Equations 237 (2007), No. 2, 473-490.

6. G. FEI, On periodic solutions of superquadratic Hamiltonian systems. Electron. J.
Differential Equations 2002, No. 8, 12 pp. (electronic).

7. CH. Guo, D. O’REGAN, YUu. XU, AND R. P. AGARWAL, Homoclinic orbits for a
singular second-order neutral differential equation. J. Math. Anal. Appl. 366 (2010),
No. 2, 550-560.

8. CH. Guo, D. O’REGAN, Yu. Xu, AND R. P. AGARWAL, Existence of subharmonic
solutions and homoclinic orbits for a class of even higher order differential equations.
Appl. Anal. 90 (2011), No. 7, 1169-1183.

9. H. HOoFERr AND K. Wysocki, First order elliptic systems and the existence of homo-
clinic orbits in Hamiltonian systems. Math. Ann. 288 (1990), No. 3, 483-503.

10. M. IZYDOREK AND J. JANCZEWSKA, Homoclinic solutions for a class of the second
order Hamiltonian systems. J. Differential Equations 219 (2005), No. 2, 375-389.

11. P. H. RABINOWITZ, Minimax methods in critical point theory with applications to
differential equations. CBMS Regional Conference Series in Mathematics, 65. Pub-
lished for the Conference Board of the Mathematical Sciences, Washington, DC; by
the American Mathematical Society, Providence, RI, 1986.

12. P. H. RaBINOWITZ, Homoclinic orbits for a class of Hamiltonian systems. Proc. Roy.
Soc. Edinburgh Sect. A 114 (1990), No. 1-2, 33-38.

13. P. H. RABINOWITZ AND K. TANAKA, Some results on connecting orbits for a class of
Hamiltonian systems. Math. Z. 206 (1991), No. 3, 473-499.

14. E. SERE, Looking for the Bernoulli shift. Ann. Inst. H. Poincaré Anal. Non Linéaire
10 (1993), No. 5, 561-590.

15. C. A. STUART, Bifurcation into spectral gaps. Bull. Belg. Math. Soc. Simon Stevin
1995, suppl., 59 pp.

16. A. SzZULKIN AND W. Zou, Homoclinic orbits for asymptotically linear Hamiltonian
systems. J. Funct. Anal. 187 (2001), No. 1, 25-41.

17. X. Xu, Sub-harmonics of first order Hamiltonian systems and their asymptotic be-
haviors. Nonlinear differential equations, mechanics and bifurcation (Durham, NC,
2002). Discrete Contin. Dyn. Syst. Ser. B 3 (2003), No. 4, 643-654.

18. X. Xu, Homoclinic orbits for first order Hamiltonian systems with convex potentials.
Adv. Nonlinear Stud. 6 (2006), No. 3, 399-410.

(October 29, 2013)



102 Chengjun Guo et al.

Authors’ addresses:

Chengjun Guo and Chengjiang Wang
School of Applied Mathematics, Guangdong University of Technology,
Guangzhou, 510006, China.

Donal O’Regan

School of Mathematics, Statistics and Applied Mathematics, National
University of Ireland, Galway, Ireland.

E-mail: donal.oregan@uuigalway.ie

Ravi P. Agarwal

Department of Mathematics, Texas A and M University-Kingsville, Texas,
78363, USA.

E-mail: Ravi.Agarwal@tamuk.edu



