
Memoirs on Differential Equations and Mathematical Physics
Volume 60, 2013, 135–177

Roland Duduchava

MELLIN CONVOLUTION OPERATORS
IN BESSEL POTENTIAL SPACES WITH
ADMISSIBLE MEROMORPHIC KERNELS

Dedicated to the memory of Academician Victor Kupradze
on the occasion of his 110-th birthday anniversary



Abstract. The paper is devoted to Mellin convolution operators with
meromorphic kernels in Bessel potential spaces. We encounter such oper-
ators while investigating boundary value problems for elliptic equations in
planar 2D domains with angular points on the boundary.

Our study is based upon two results. The first concerns commutants
of Mellin convolution and Bessel potential operators: Bessel potentials al-
ter essentially after commutation with Mellin convolutions depending on
the poles of the kernel (in contrast to commutants with Fourier convolu-
tion operatiors.) The second basic ingredient is the results on the Banach
algebra Ap generated by Mellin convolution and Fourier convolution oper-
ators in weighted Lp-spaces obtained by the author in 1970’s and 1980’s.
These results are modified by adding Hankel operators. Examples of Mellin
convolution operators are considered.
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îâäæñéâ. ê�öîëéæ éæúôãêæèæ� éâèæêæï çëêãëèñùææï ëìâî�ðëîâ�æï�á-
éæ éâîëéëîòñèæ �æîåãâ�æå, îëéèâ�æù éëóéâáâ�âê �âïâèæï ìëðâêùæ�èå�
ïæãîùââ�öæ. �ïâåæ ëìâî�ðëîâ�æ àãýãáâ�� ï�ï�äôãîë �éëù�êâ�æï à�éëçãèâ-
ãâ�öæ âèæòïñîæ áæòâîâêùæ�èñîæ à�êðëèâ�â�æï�åãæï �îðõâè 2-à�êäëéæèâ-
�æ�ê �îââ�öæ çñåýëã�êæ ï�äôãîæå.

øãâêæ à�éëçãèâã� âõîáêë�� ëî öâáâàï. ìæîãâèæ âýâ�� éâèæêæï çëêãëèñ-
ùæâ�æï á� �âïâèæï ìëðâêùæ�èâ�æï çëéñð�êðï: �âïâèæï ìëðâêùæ�èæï ëìâ-
î�ðëîæ à�êæùáæï �îïâ�æå ùãèæèâ��ï éâèæêæï çëêãëèñùææï ëìâî�ðëîå�ê
à�á�ïéæï öâáâà�á á� âï ùãèæèâ�� á�éëçæáâ�ñèæ� éâîëéëîòñèæ �æîå-
ãæï ìëèñïâ�äâ (òñîæâï çëêãëèñùææï ëìâî�ðëîæï�à�ê à�êïýã�ãâ�æå, îëéâ-
èå�ê�ù à�á�ïéæï öâáâà�á �âïâèæï ìëðâêùæ�èæ �î æùãèâ��). éâëîâ éêæöãêâ-
èëã�êæ öâáâàæ, îëéâèï�ù ãâõîáêë�æå, û�îéë�áàâêï ëìâî�ðëîâ�æï à�éëçã-
èâãæï öâáâàâ�ï ��ê�ýæï �èàâ�îæá�ê Ap, îëéâèæù û�îéëóéêæèæ� éâèæêæï çë-
êãëèñùææï á� òñîæâï çëêãëèñùææï ëìâî�ðëîâ�æï éæâî ûëêæ�ê Lp-ïæãîùâ-
â�öæ, îëéèâ�æù éæôâ�ñèæ� 1980-æ�ê ûèâ�öæ ïð�ðææï �ãðëîæï éæâî. �é öâ-
áâàâ�äâ á�é�ðâ�ñèæ� �ý�èæ öâáâàæ, îëéâèæù âýâ�� ÿ�êçâèæï ëìâî�ðëîâ�ï.
à�êýæèñèæ� éâèæêæï çëêãñèñùææï ëìâî�ðëîâ�æï é�à�èæåâ�æ.
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Introduction

It is well-known that various boundary value problems for PDE in pla-
nar domains with angular points on the boundary, e.g. Lamé systems in
elasticity (cracks in elastic media, reinforced plates), Maxwell’s system and
Helmholtz equation in electromagnetic scattering, Cauchy–Riemann sys-
tems, Carleman–Vekua systems in generalized analytic function theory etc.
can be studied with the help of the Mellin convolution equations of the form

Aϕ(t) := c0ϕ(t) +
c1
πi

∞∫

0

ϕ(τ) dt
τ − t +

∞∫

0

K
( t
τ

)
ϕ(τ)

dτ

τ
= f(t), (1)

with the kernel K satisfying the condition
∞∫

0

tβ−1|K (t)| dt <∞, 0 < β < 1, (2)

which makes it a bounded operator in the weighted Lebesgue space
Lp(R+, tγ), provided 1 6 p 6∞, −1 < γ < p− 1, β := (1 + γ)/p (cf. [17]).

In particular, integral equations with fixed singularities in the kernel

c0(t)ϕ(t) +
c1(t)
πi

∞∫

0

ϕ(τ) dt
τ − t +

+
n∑

k=0

ck+2(t)tk−r

πi

∞∫

0

τ rϕ(τ) dτ
(τ + t)k+1

= f(t), 0 6 t 6 1, (3)

where 0 6 r 6 k are of type (1) after localization, i.e. after “freezing” the
coefficients.

The Fredholm theory and the unique solvability of equations (1) in the
weighted Lebesgue spaces were accomplished in [17]. This investigation
was based on the following observation: if 1 < p < ∞, −1 < γ < p − 1,
β := (1+γ)/p, the following mutually invertible exponential transformations

Zβ : Lp([0, 1], tγ) −→ Lp(R+),

Zβϕ(ξ) := e−βξϕ(e−ξ), ξ ∈ R := (−∞,∞),

Z−1
β : Lp(R+) −→ Lp([0, 1], tγ),

Z−1
β ψ(t) := t−βψ(− ln t), t ∈ R+ := (0,∞),

(4)

transform the equation (1), treated in the weighted Lebesgue space f, ϕ ∈
Lp(R+, tγ) into the Fourier convolution equation W 0

Aβ
ψ = g, ψ = Zβϕ, g =

Zβf ∈ Lp(R) of the form

W 0
Aβ
ψ(x) = c0ψ(x) +

∞∫

−∞

K1(x− y)ϕ(y) dy,
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K1(x) = e−βx
[ c1

1− e−x + K (e−x)
]
.

Note that the symbol of the operator W 0
Aβ

, viz. the Fourier transform of
the kernel

Aβ(ξ) := c0 +

∞∫

−∞

eiξxK1(x) dx

:= c0 − ic1 cotπ(β − iξ) +

∞∫

−∞

e(iξ−β)xK (e−x) dx, ξ ∈ R (5)

is a piecewise continuous function. Let us recall that the theory of Fourier
convolution operators with discontinuous symbols is well developed, cf.
[13, 14, 15, 16, 42]. This allows one to investigate various properties of
the operators (1), (3). In particular, Fredholm criteria, index formula and
conditions of unique solvability of the equations (1) and (3) have been es-
tablished in [17].

Similar integral operators with fixed singularities in kernel arise in the
theory of singular integral equations with the complex conjugation

a(t)ϕ(t) +
b(t)
πi

∫

Γ

ϕ(τ) dt
τ − t +

e(t)
πi

∫

Γ

ϕ(τ) dt
τ − t = f(t), t ∈ Γ

and in more general R-linear equations

a(t)ϕ(t) + b(t)ϕ(t) +
c(t)
πi

∫

Γ

ϕ(τ) dt
τ − t +

d(t)
πi

∫

Γ

ϕ(τ) dt
τ − t +

+
e(t)
πi

∫

Γ

ϕ(τ) dt
τ − t +

g(t)
πi

∫

Γ

ϕ(τ) dt
τ − t = f(t), t ∈ Γ,

if the contour Γ possesses corner points. Note that a complete theory of
such equations is presented in [24, 25], whereas approximation methods have
been studied in [10, 11].

Let t1, . . . , tn ∈ Γ be the corner points of a piecewise-smooth contour Γ,
and let Lp(Γ, ρ) denote the weighted Lp-space with a power weight ρ(t) :=
n∏
j=1

|t − tj |γj . Assume that the parameters p and βj := (1 + γj)/p satisfy

the conditions

1 < p <∞, 0 < βj < 1, j = 1, . . . , n.

If the coefficients of the above equations are piecewise-continuous matrix
functions, one can construct a function A~β(t, ξ), t ∈ Γ, ξ ∈ R, ~β :=
(β1, . . . , βn), called the symbol of the equation (of the related operator).
It is possible to express various properties of the equation in terms of A~β :
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• The equation is Fredholm in Lp(Γ, ρ) if and only if its symbol is
elliptic., i.e. iff inf(t,ξ)∈Γ×R | A~β(t, ξ)| > 0;

• To an elliptic symbol A~β(t, ξ) there corresponds an integer valued in-
dex
ind A~β(t, ξ), the winding number, which coincides with the Fred-
holm index of the corresponding operator modulo a constant mul-
tiplier.

For more detailed survey of the theory and various applications to the
problems of elasticity we refer the reader to [13, 14, 15, 17, 18, 19, 20, 21, 40].

Similar approach to boundary integral equations on curves with corner
points based on Mellin transformation has been exploited by M. Costabel
and E. Stephan [5, 6].

However, one of the main problems in boundary integral equations for
elliptic partial differential equations is the absence of appropriate results
for Mellin convolution operators in Bessel potential spaces, cf. [18, 20,
21] and recent publications on nano-photonics [1, 2, 32]. Such results are
needed to obtain an equivalent reformulation of boundary value problems
into boundary integral equations in Bessel potential spaces. Nevertheless,
numerous works on Mellin convolution equations seem to pay almost no
attention to the mentioned problem.

The first arising problem is the boundedness results for Mellin convolu-
tion operators in Bessel potential spaces. The conditions on kernels known
so far are very restrictive. The following boundedness result for the Mellin
convolution operator is proved in the yet unpublished paper by V. Didenko
and R. Duduchava.

Proposition 0.1. Let 1 < p <∞ and let m = 1, 2, . . . be an integer. If
a function K satisfies the condition

1∫

0

t
1
p−m−1|K (t)| dt+

∞∫

1

t
1
p−1|K (t)| dt <∞, (6)

then the Mellin convolution operator (see (1))

A = M0
A1/p

: H̃s
p(R+) −→ Hs

p(R+) (7)

with the symbol (see (5))

A1/p(ξ) := c0 + c1 cothπ
( i
p

+ ξ
)

+

∞∫

0

t
1
p−iξK (t)

dt

t
, ξ ∈ R, (8)

is bounded for any 0 6 s 6 m.

Note that the condition

Kβ :=

∞∫

0

tβ−1|K (t)| dt <∞ (9)
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and the constraints (16) ensure that the operator

M0
a : Lp(R+, tγ) −→ Lp(R+, tγ)

is bounded and the norm of the Mellin convolution

M0
aβ
ϕ(t) :=

∞∫

0

K
( t
τ

)
ϕ(τ)

dτ

τ
. (10)

admits the estimate ‖M0
aβ
‖ 6 Kβ .

The above-formulated result has very restricted application. For exam-
ple, the operators

Nαϕ(t) :=
sinα
π

∞∫

0

t ϕ(τ) dτ
t2 + τ2 − 2tτ cosα

,

N∗αϕ(t) :=
sinα
π

∞∫

0

τ ψj(τ) dτ
t2 + τ2 − 2tτ cosα

,

Mαϕ(t) :=
1

2π

∫

R+

[τ cosα− t]ϕ(τ) dτ
t2 + τ2 − 2t τ cosα

, −π < α < π,

(11)

which we encounter in boundary integral equations for elliptic boundary
value problems (see [4, 27]), as well as the operators

Nm,kϕ(t) :=
tk

πi

∞∫

0

τm−kϕ(τ) dτ
(τ + t)m+1

, k = 0, . . . ,m, (12)

represented in (3), do not satisfy the conditions (6). In particular, Nα

satisfies condition (6) only for m = 1 and Nm,k only for m = k. Although,
as we will see below in Theorem 2.5, all operators Nα, N∗α and Nm,k are
bounded in Bessel potential spaces in the setting (17) for all s ∈ R.

In the present paper we introduce admissible kernels, which are mero-
morphic functions on the complex plane C, vanishing at the infinity

K (t) :=
∑̀

j=0

dj
t− cj

+
∞∑

j=`+1

dj
(t− cj)mj

, cj 6= 0, j = 0, 1, . . . ,

c0, . . . , c` ∈ R, 0 < αk := | arg ck| 6 π, k = `+ 1, `+ 2, . . .

(13)

having poles at c0, c1, . . . ∈ C \ {0} and complex coefficients dj ∈ C. The
Mellin convolution operator

Km
c ϕ(t) :=

∞∫

0

τm−1ϕ(τ) dτ
(t− c τ)m

. (14)

corresponding to the kernel

K (t) :=
1

(t− c)m , cj 6= 0
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(see Definition 2.1) turns out to be bounded in the Bessel potential spaces
(see Theorem 2.5).

In order to study Mellin convolution operators in Bessel potential spaces,
we use the “lifting” procedure, performed with the help of the Bessel poten-
tial operators Λs+ and Λs−r− , which transform the initial operator M0

a into the
lifted operator Λs−r− M0

aΛ−s+ acting already on a Lebesgue Lp spaces. How-
ever, the lifted operator is neither Mellin nor Fourier convolution and to
describe its properties, one has to study the commutants of Bessel potential
operators and Mellin convolutions with meromorphic kernels. It turns out
that Bessel potentials alter after commutation with Mellin convolutions and
the result depends essentially on poles of the meromorphic kernels. These
results allows us to show that the lifted operator Λs−r− MaΛ−s+ belongs to
the Banach algebra of operators generated by Mellin and Fourier convolu-
tion operators with discontinuous symbols. Since such algebras have been
studied before [22], one can derive various information (Fredholm prop-
erties, index, the unique solvability) about the initial Mellin convolution
equation M0

aϕ = g in Bessel potential spaces in the settings ϕ ∈ H̃s
p(R+),

g ∈ H̃s−r
p (R+) and in the settings ϕ ∈ H̃s

p(R+), g ∈ Hs−r
p (R+).

The results of the present work will be applied to the investigation of
some boundary value problems studied before by Lax–Milgram Lemma in
[1, 2]. Note that the present approach is more flexible and provides better
tools for analyzing the solvability of the boundary value problems and the
asymptotic behavior of their solutions.

It is worth noting that the obtained results can also be used to study
Schrödinger operator on combinatorial and quantum graphs. Such a prob-
lem has attracted a lot of attention recently, since the operator mentioned
above possesses interesting properties and has various applications, in par-
ticular, in nano-structures (see [36, 37] and the references there). Another
area for application of the present results are Mellin pseudodifferential oper-
ators on graphs. This problem has been studied in [39], but in the periodic
case only. Moreover, some of the results can be applied in the study of sta-
bility of approximation methods for Mellin convolution equations in Bessel
potential spaces.

The present paper is organized as follows. In the first section we ob-
serve Mellin and Fourier convolution operators with discontinuous symbols
acting on Lebesgue spaces. Most of these results are well known and we
recall them for convenience. In the second section we define Mellin convo-
lutions with admissible meromorphic kernels and prove their boundedness
in Bessel potential spaces. In Section 2 is proved the key result on com-
mutants of the Mellin convolution operator (with admissible meromorphic
kernel) and a Bessel potential. In Section 3 we enhance results on Banach
algebra generated by Mellin and Fourier convolution operators by adding
explicit definition of the symbol of a Hankel operator, which belong to this
algebra. In Sections 4 the obtained results are applied to describe Fredholm
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properties and the index of Mellin convolution operators with admissible
meromorphic kernels in Bessel potential spaces.

1. Mellin Convolution and Bessel Potential Operators

Let N be a positive integer. If there arises no confusion, we write A for
both scalar and matrix N ×N algebras with entries from A. Similarly, the
same notation B is used for the set of N -dimensional vectors with entries
from B. It will be usually clear from the context what kind of space or
algebra is considered.

The integral operator (1) is called Mellin convolution. More generally, if
a ∈ L∞(R) is an essentially bounded measurable N × N matrix function,
the Mellin convolution operator M0

a is defined by

M0
aϕ(t) := M−1

β aMβϕ(t) =
1

2π

∞∫

−∞

a(ξ)

∞∫

0

( t
τ

)iξ−β
ϕ(τ)

dτ

τ
dξ, ϕ ∈ S(R+),

where S(R+) is the Schwartz space of fast decaying functions on R+, whereas
Mβ and M−1

β are the Mellin transform and its inverse, i.e.

Mβψ(ξ) :=

∞∫

0

tβ−iξψ(t)
dt

t
, ξ ∈ R,

M−1
β ϕ(t) :=

1
2π

∞∫

−∞

tiξ−βϕ(ξ) dξ, t ∈ R+.

The function a(ξ) is usually referred to as a symbol of the Mellin opera-
tor M0

a. Further, if the corresponding Mellin convolution operator M0
a is

bounded on the weighted Lebesgue space Lp(R+, tγ) of N -vector functions
endowed with the norm

∥∥ϕ | Lp(R+, tγ)
∥∥ :=

[ ∞∫

0

tγ |ϕ(t)|p dt
]1/p

,

then the symbol a(ξ) is called an Lp(R+, tγ) Mellin multiplier. The trans-
formations

Zβ : Lp(R+, tγ) −→ Lp(R), Zβϕ(ξ) := e−βtϕ(e−ξ), ξ ∈ R,

Z−1
β : Lp(R) −→ Lp(R+, tγ), Z−1

β ψ(t) := t−βψ(− ln t), t ∈ R+,

generate an isometrical isomorphism between the corresponding Lp-spaces.
Moreover, the relations

Mβ = FZβ , M−1
β = Z−1

β F−1,

M0
a = M−1

β aMβ = Z−1
β F−1aFZβ = Z−1

β W 0
aZβ ,

(15)
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where F and F−1 are the Fourier transform and its inverse,

Fϕ(ξ) :=

∞∫

−∞

eiξxϕ(x) dx, F−1ψ(x) :=
1

2π

∞∫

−∞

e−iξxψ(ξ) dξ, x ∈ R ,

show a close connection between Mellin M0
a and Fourier

W 0
aϕ := F−1aFϕ, ϕ ∈ S(R),

convolution operators, as well as between the corresponding transforms.
Here S(R) denotes the Schwartz class of infinitely smooth functions, decay-
ing fast at the infinity.

An N ×N matrix function a(ξ), ξ ∈ R is called a Fourier Lp-multiplier if
the operatorW 0

a : Lp(R) −→ Lp(R) is bounded. The set of all Lp-multipliers
is denoted by Mp(R).

From (15) immediately follows the following

Proposition 1.1. The class Mp(R) of Fourier Lp-multipliers coincides
with the class of Mellin Lp(R+, tγ) multiplier.

It is known, see, e.g. [17], that Mp(R) is a Banach algebra which contains
the algebra V1(R) of all functions with finite variation provided that

β :=
1 + γ

p
, 1 < p <∞, −1 < γ < p− 1. (16)

As it was already mentioned, the primary aim of the present paper is to
study Mellin convolution operators M0

a acting in Bessel potential spaces,

M0
a : H̃s

p(R+) −→ Hs
p(R+). (17)

The symbols of these operators are N ×N matrix functions a ∈ CM0
p(R),

continuous on the real axis R with the only one possible jump at infin-
ity. We commence with the definition of the Besseel potential spaces and
Bessel potentials, arranging isometrical isomorphisms between these spaces
and enabling the lifting procedure, writing a Fredholm equivalent operator
(equation) in the Lebesgue space Lp(R+) for the operator M0

a in (17).
For s ∈ R and 1 < p < ∞, the Bessel potential space, known also as

a fractional Sobolev space, is the subspace of the Schwartz space S′(R) of
distributions having the finite norm

∥∥ϕ | Hs
p(R)

∥∥ :=
[ ∞∫

−∞

∣∣F−1
(
1 + |ξ|2

)s/2(Fϕ)(t)
∣∣p dt

]1/p

<∞.

For an integer parameter s = m = 1, 2, . . . , the space Hs
p(R) coincides

with the usual Sobolev space endowed with an equivalent norm

∥∥ϕ |Wm
p (R)

∥∥ :=
[ m∑

k=0

∞∫

−∞

∣∣∣d
kϕ(t)
dtk

∣∣∣
p

dt

]1/p

. (18)
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If s < 0, one gets the space of distributions. Moreover, H−sp′ (R) is the
dual to the space Hs

p(R+), provided p′ := p
p−1 , 1 < p <∞. Note that Hs

2(R)
is a Hilbert space with the inner product

〈ϕ,ψ〉s =
∫

R

(Fϕ)(ξ)(Fψ)(ξ)(1 + ξ2)s dξ, ϕ, ψ ∈ Hs(R).

By rΣ we denote the operator restricting functions or distributions de-
fined on R to the subset Σ ⊂ R. Thus Hs

p(R+) = r+(Hs
p(R)), and the norm

in Hs
p(R+) is defined by

∥∥f | Hs
p(R+)

∥∥ = inf
`

∥∥`f | Hs
p(R)

∥∥,

where `f stands for any extension of f to a distribution in Hs
p(R).

Further, we denote by H̃s
p(R+) the (closed) subspace of Hs

p(R) which
consists of all distributions supported in the closure of R+.

Notice that H̃s
p(R+) is always continuously embedded in Hs

p(R+), and if
s ∈ (1/p − 1, 1/p), these two spaces coincide. Moreover, Hs

p(R+) may be
viewed as the quotient-space Hs

p(R+) := Hs
p(R)/H̃s

p(R−), R− := (−∞, 0).
Let a ∈ L∞,loc(R) be a locally bounded m × m matrix function. The

Fourier convolution operator (FCO) with the symbol a is defined by

W 0
a := F−1aF . (19)

If the operator
W 0
a : Hs

p(R) −→ Hs−r
p (R) (20)

is bounded, we say that a is an Lp-multiplier (of order 0). The set of all
Lp-multipliers is denoted by Mp(R).

The Fourier convolution operator (FCO) on the semi-axis R+ with the
symbol a is defined by Wa = r+W

0
a where r+ := rR+ : Hs

p(R) −→ Hs
p(R+)

is the restriction operator.
Consider FCO

Wa = r+W
0
a : H̃s

p(R+) −→ Hs−r
p (R+), (21)

and Hankel operators

Ha = r+V W 0
a : H̃s

p(R+) −→ Hs−r
p (R+), V ψ(t) := ψ(−t), (22)

where r+ is the restriction operator to the semi-axes R+. Note that the
generalized Hoermander’s kernel of a FCO Wa depends on the difference of
arguments Ka(t− τ), while the Hoermander’s kernel ä of a Hankel operator
r+V W 0

a depends of the sum of the arguments Ka(t+ τ).
If Wa in (22) is bounded, we say that Wa has order r and a is an Lp

multiplier of order r. The set of all Lp multipliers of order r is denoted by
Mr
p(R). We did not use in the definition of the class of multipliers Mr

p(R)
the parameter s ∈ R. This is due to the fact that Mr

p(R) is independent
of s: if the operator Wa in (22) is bounded for some s ∈ R, it is bounded
for all other values of s. Another definition of the multiplier class Mr

p(R)



Mellin Convolution Operators in Bessel Potential Spaces. . . 145

is written as follows: a ∈ Mr
p(R) if and only if λ−ra ∈ Mp(R) = M0

p(R),
where λr(ξ) := (1 + |ξ|2)r/2. This assertion is one of the consequences of
the following theorem.

Theorem 1.2. Let 1 < p <∞. Then

(1) For any r, s ∈ R, γ ∈ C, Im γ > 0 the convolution operators (ΨDOs)

Λrγ = W 0
λrγ

: H̃s
p(R+) −→ H̃s−r

p (R+),

Λr−γ = r+W
0
λr−γ

` : Hs
p(R+) −→ Hs−r

p (R+),

λr±γ(ξ) := (ξ ± γ)r, ξ ∈ R, Im γ > 0,

(23)

which arrange isomorphisms of the corresponding spaces (see [17,
28]). Here ` : Hs

p(R+) −→ Hs
p(R) is some extension operator, define

an isomorphism between the corresponding spaces. The final result
is independent of the choice of an extension `. r+ is the restriction
from the axes R to the semi-axes R+.

(2) For any operator A : H̃s
p(R+) −→ Hs−r

p (R+) of the order r, the
following diagram is commutative

H̃s
p(R+) A // Hs−r

p (R+)

Λs−r−
��

Lp(R+)
Λs−r− AΛ−s+

//

Λ−s+

OO

Lp(R+)

. (24)

The diagram (23) provides an equivalent lifting of the operator A of
order r to the operator Λs−r− AΛ−s+ : Lp(R+) −→ Lp(R+) of order 0.

(3) If A = Wa : Hs
p(R+) −→ Hs−r

p (R+) is a bounded convolution op-
erator of order r, then the lifted operator Λs−r− AΛ−s+ : Lp(R+) −→
Lp(R+) is also a convolution operator Wa0 , with the symbol

a0(ξ) = λs−r−γ (ξ)a(ξ)λ−sγ (ξ) =
(ξ − γ
ξ + γ

)s−r a(ξ)
(ξ + i)r

.

Proof. For the proof we refer the reader to [17, Lemma 5.1] and [26, 28]. �

Remark 1.3. The class of Fourier convolution operators is a subclass
of pseudodifferential operators (ΨDOs). Moreover, for integer parameters
m = 1, 2, . . . the Bessel potentials Λm± = Wλm±γ

, which are the Fourier convo-
lutions of order m, are ordinary differential operators of the same order m:

Λm±γ = Wλm±γ
=
(
i
d

dt
± γ
)m

=
m∑

k=0

(
m

k

)
ik(±γ)m−k

dk

dtk
. (25)

These potentials map both spaces (cf. (23))

Λm±γ : H̃s
p(R+) −→ H̃s−r

p (R+),

: Hs
p(R+) −→ Hs−m

p (R+),
(26)
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but the mappings are not isomorphisms because the inverses Λ−m±γ do not
map both spaces, only those indicated in (23).

2. Mellin Convolutions with Admissible Meromorphic Kernels

Now we consider kernels K (t), exposed in (13), (14), which are mero-
morphic functions on the complex plane C, vanishing at infinity, having
poles at c0, c1, . . . ∈ C \ {0} and complex coefficients dj ∈ C.

Definition 2.1. We call a kernel K (t) in (13) admissible iff:

(i) K (t) has only a finite number of poles c0, . . . , c` which belong to
the positive semi-axes, i.e., arg c0 = · · · = arg c` = 0;

(ii) The corresponding multiplicities are one m0 = · · · = m` = 1;

(iii) The points c`+1, c`+2, . . . do not condense to the positive semi-axes
except a finite number of points c0 > 0, . . . , c` > 0 from conditions
(i)–(ii) and their real parts are uniformly bounded

lim
j−→∞

cj 6∈ [0,∞), sup
j=`+1,`+2,...

Re cj 6 K <∞. (27)

(iv) If K (t) emerges as a kernel of the operator, a superposition of finite
number of operators with admissible kernels.

Example 2.2. The function

K (t) = exp
( 1
t− c

)
, Re c < 0 or Im c 6= 0

is an example of the admissible kernel which also satisfies the condition of
the next Theorem 2.5. More trivial examples of operators with admissible
kernels (which also satisfies the condition of the next Theorem 2.5) are
operators which we encounter in (3), in (11) and in (21) and, in general,
any finite sum in (13).

Example 2.3. The function

K (t) =
ln τ − c1c2 ln t

t− c1c2τ
, Im c1 6= 0, Im c2 6= 0,

is another example of the admissible kernel, which is the composition of
operators c2K1

c1K
1
c2 (see (14)) with admissible kernels which also satisfies

the condition of the next Theorem 2.5. More trivial examples of operators
with admissible kernels (which also satisfies the condition of the next The-
orem 2.5) are operators which we encounter in (3), in (11) and in (21) and,
in general, any finite sum in (13).

Theorem 2.4. Let conditions (16) hold, K (t) in (13) be an admissible
kernel and

Kβ :=
π

| sinπβ|
∞∑

j=0

2mj |dj | |cj |β−mj <∞. (28)
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Then the Mellin convolution M0
aβ

in (10) with the admissible meromorphic
kernel K (t) in (13) is bounded in the Lebesgue space Lp(R+, tγ) and its
norm is estimated by the constant ‖M0

aβ
| L (Lp(R+, tγ))‖ 6 MKβ with

some M > 0.
We can drop the constant M and replace 2mj by 2

mj
2 in the estimate (28)

provided Re cj < 0 for all j = 0, 1, . . . .

Proof. The first ` + 1 summands in the definition of the admissible kernel
(13) correspond to the Cauchy operators

A0ϕ(t) =
∑̀

j=0

dj
πi

∞∫

0

ϕ(τ) dτ
t− cjτ

, cj > 0, j = 0, 1, . . . , `,

and their boundedness property in the weighted Lebesgue space

A0 : Lp(R+, tγ) −→ Lp(R+, tγ) (29)

under constraints (16) is well known (see [35] and also [30]). Therefore we
can ignore the first ` summands in the expansion of the kernel K (t) in (13).
To the boundedness of the operator M0

a`β
with the remainder kernel

K `(t) :=
∞∑

j=`+1

dj
(t− cj)mj

, cj 6= 0, j = 0, 1, . . . ,

0 < αk := | arg ck| 6 π, k = `+ 1, `+ 2, . . .

(see (13)), we apply the estimate (9)

∥∥M0
a`β
| L (Lp(R+, tγ))

∥∥ 6

6

∞∫

0

tβ−1|K `(t)| dt 6
∞∑

j=`+1

|dj |
∞∫

0

tβ−1dt

|t− cj |mj
. (30)

Note now that

|t− cj |−mj =
(
t2 + |cj |2 − 2 Re cjt

)−mj2 6
( t2 + |cj |2

2

)−mj2
6

6 2mj (t+ |cj |)−mj for all t > 2K = 2 sup |Re cj | > 0.

due to the constraints (27). On the other hand,

|t− cj |−mj 6M(t+ |cj |)−mj for all 0 6 t 6 2K

and a certain constant M > 0. Therefore

|t− cj |−mj 6M2mj (t+ |cj |)−mj for all 0 < t <∞. (31)
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Next we recall the formula from [31, Formula 3.194.4]
∞∫

0

tβ−1 dt

(t+c)m
=(−1)m−1

(
β−1
m−1

)
πc β−m

sinπβ
, −π<arg c<π, Reβ<1, (32)

(
β − 1
m− 1

)
:=

(β − 1) · · · (β −m+ 1)
(m− 1)!

,

(
β − 1

0

)
:= 1

to calculate the integrals. By inserting the estimate (31) into (30) and
applying (32), we get
∥∥M0

a`β
| L (Lp(R+, tγ))

∥∥ 6

6
∞∑

j=`+1

|dj |
∞∫

0

tβ−1dt

|t− cj |mj
6M

∞∑

j=`+1

2mj |dj |
∞∫

0

tβ−1dt

(t+ |cj |)mj
6

6
πM

sinπβ

∞∑

j=`+1

2mj |dj |
∣∣∣∣
(
β − 1
mj − 1

)∣∣∣∣c
β−mj
j 6

6
πM

sinπβ

∞∑

j=`+1

2mj |dj |cβ−mjj = MKβ , (33)

since (see (32)) ∣∣∣∣
(
β − 1
mj − 1

)∣∣∣∣ 6 1,

where Kβ is from (28). The boundedness (29) and the estimate (33) imply
the claimed estimate

∥∥M0
aβ
| L (Lp(R+, tγ))

∥∥ 6MKβ .

If Re cj < 0 for all j = 0, 1, . . ., we have

1
|t− cj |mj

=
(
t2 + |c|2 − 2 Re cjt

)−mj2 6

6
(
t2 + |c|2

)−mj2 6 2
mj
2
(
t+ |cj |

)−mj

valid for all t > 0 and a constant M does not emerge in the estimate. �

Let us find the symbol (the Mellin transform of the kernel) of the operator
(14) for 0 < | arg c| < π, m = 1, 2, . . . (see (42), (14)). For this we apply
formula (32):

MβK
m
c (ξ) =

∞∫

0

tβ−iξ−1K m
c (t) dt =

∞∫

0

tβ−iξ−1

(t+ e∓πic)m
dt =

=
(
β − iξ − 1
m− 1

)
π(−1)m−1e∓π(β−iξ−m)i

sinπ(β − iξ) cβ−iξ−m =
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= −
(
β − iξ − 1
m− 1

)
πe∓π(β−iξ)i

sinπ(β − iξ) c
β−iξ−m, 0 < ± arg c < π (34)

and

MβK
m
−d(ξ) =

∞∫

0

tβ−iξ−1dt

(t+ d)m
=
(
β − iξ − 1
m− 1

)
(−1)m−1πdβ−iξ−m

sinπ(β − iξ) (35)

for 0 < | arg d| < π, ξ ∈ R.
In particular,

MβK
1
c (ξ) = −πe

∓π(β−iξ)icβ−iξ−1

sinπ(β − iξ) , 0 < ± arg c < π, (36)

MβK
1
−d(ξ) =

πd β−iξ−1

sinπ(β − iξ) , 0 < | arg d| < π, (37)

MβK
1
−1(ξ) =

π

sinπ(β − iξ) , ξ ∈ R. (38)

Now let us find the symbol of the Cauchy singular integral operator
K1

1 = −πiSR+ (see (43), (44)). For this we apply Plemeli formula and
formula (32):

MβK
1

1 (t) :=

∞∫

0

tβ−iξ−1K 1
1 (t) dt = −

∞∫

0

tβ−iξ−1 dt

t− 1
=

= lim
ε−→0

1
2

∞∫

0

[ tβ−iξ−1

t+ ei(π−ε)
+

tβ−iξ−1

t+ e−i(π−ε)

]
dt =

= lim
ε−→0

π
ei(π−ε)(β−iξ−1) + e−i(π−ε)(β−iξ−1)

2 sinπ(β − iξ) =

= π cotπ(β − iξ). (39)

For an admissible kernel with simple (non-multiple) poles m0 = m1 =
· · · = 1 and arg c0 = arg c` = 0 and 0 < ± arg cj < π, j = `+ 1, . . . we get

MβK (ξ) = π cotπ(β − iξ)
∑̀

j=0

djc
β−iξ−1
j −

− π

sinπ(β − iξ)
∞∑

j=`+1

dj

(
β − iξ − 1
m− 1

)
πe∓π(β−iξ)icβ−iξ−m. (40)

Theorem 2.5. Let 1 < p < ∞ and s ∈ R. The Mellin convolution
operator M0

aβ
in (10) with an admissible kernel K (see (13)) is bounded in

Bessel potential spaces

M0
a : H̃s

p(R+) −→ Hs
p(R+), (41)

provided the condition (28) holds and m0 := sup
j=0,1,...

mj <∞.
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The condition on the parameter p can be relaxed to 1 6 p 6∞, provided
the admissible kernel K in (13) has no poles on positive semi-axes αj =
arg cj 6= 0 for all j = 0, 1, . . . .

Proof. Due to the representation (13), we have to prove the theorem only
for a model kernel

K m
c (t) :=

1
(t− c)m , c 6= 0, 0 6 | arg c| < π, m = 1, 2, . . . . (42)

The corresponding Mellin convolution operator Km
c (see (14)) is bounded

in Lp(R+) for all 1 6 p 6∞ for arbitrary 0 < | arg c| < π (cf. (2)).
For arg c = 0 (i.e., c ∈ (0,∞),) by the definition of an admissible kernel

m = 1 and the corresponding operator coincides with the Cauchy singular
integral operator SR+

SR+ϕ(t) :=
1
πi

∞∫

0

ϕ(τ) dτ
τ − t (43)

modulo compact multiplier

K1
cϕ(t) :=

∞∫

0

ϕ(τ)dτ
t− c τ = −πi

c
(SR+ϕ)

( t
c

)
(44)

and is bounded in Lp(R+) for all 1 < p <∞ (cf., e.g., [17, 30]).
Now let 0 < arg c < 2π and m = 1. Then, if ϕ ∈ C∞0 (R+) is a smooth

function with compact support and k = 1, 2, . . ., integrating by parts we get

dk

dtk
K1
cϕ(t) =

∞∫

0

dk

dtk
1

t− c τ ϕ(τ) dτ = (−c)−k
∞∫

0

dk

dτk
1

t− c τ ϕ(τ) dτ =

= c−k
∞∫

0

1
t− c τ

dkϕ(τ)
dτk

dτ = c−k
(
K1
c

dk

dtk
ϕ
)

(t). (45)

For m = 2, 3, . . . , we similarly get

d

dt
Km
c ϕ(t) =

∞∫

0

d

dt

τm−1

(t− c τ)m
ϕ(τ) dτ =

=
m−1∑

j=0

(−c)−1−j
∞∫

0

d

dτ

τm−1−j

(t− c τ)m−j
ϕ(τ) dτ =

= −
m−1∑

j=0

(−c)−1−j
∞∫

0

τm−1−j

(t− c τ)m−j
d

dτ
ϕ(τ) dτ =

= −
m−1∑

j=0

(−c)−1−j
(
Km−j
c

d

dt
ϕ
)

(t)
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and, recurrently,

dk

dtk
Km
c ϕ(t)=(−1)k

m−1∑

j=0

(−c)−k−jγkj
(
Km−j
c

dk

dtk
ϕ
)

(t), k=1, 2, . . . , (46)

γ1
j = j + 1, γk0 = 1, γkj :=

j∑

r=0

γk−1
r , j = 0, 1, . . . ,m, k = 1, 2, . . . .

Recall now that for an integer s = n the spaces Hn
p (R+), H̃n

p (R+) coin-
cide with the Sobolev spaces Wn

p (R+), W̃n
p (R+), respectively (these spaces

are isomorphic and the norms are equivalent) and C∞0 (R+) is a dense sub-
set in W̃n

p (R+) = H̃n
p (R+). Then, using the equalities (45), (46) and the

boundedness results of the operators Km−j
c (see (14) and (43)), we proceed

as follows:

∥∥Km
c ϕ | Hn

p (R+)
∥∥ =

n∑

k=0

∥∥∥ d
k

dtk
Km
α ϕ | Lp(R+)

∥∥∥ =

=
m∑

k=0

m−1∑

j=0

|c|−k−jγkj
∥∥∥Km−j

c

dk

dtk
ϕ | Lp(R+)

∥∥∥ 6

6M
m∑

k=0

∥∥∥ d
k

dtk
ϕ | Lp(R+)

∥∥∥ = M
∥∥ϕ | Hm

p (R+)
∥∥, (47)

where M > 0 is a constant, and there follows the boundedness result (41) for
s = 0, 1, 2, . . . . The case of an arbitrary s > 0 follows by the interpolation
between the spaces Hm

p (R+) and H0
p(R+) = Lp(R+), also between the spaces

H̃m
p (R+) and H̃0

p(R+) = Lp(R+).
The boundedness result (41) for s < 0 follows by duality: the adjoint

operator to Km
c is

Km,∗
c ϕ(t) :=

∞∫

0

tm−1ϕ(τ) dτ
(τ − c t)m =

m∑

j=1

ωjK
j
c−1ϕ(t), (48)

for some constant coefficients ω1, . . . , ωm. The operator Km,∗
c has the ad-

missible kernel and, due to the proved part of the theorem is bounded in
the space setting Km,∗

c : H̃−sp′ (R+) −→ H−sp′ (R+), p′ := p/(p − 1), since
−s > 0. The initial operator Km

c : H̃s
p(R+) −→ Hs

p(R+) is dual to Km,∗
c

and, therefore, is bounded as well �

Corollary 2.6. Let 1 < p < ∞ and s ∈ R. A Mellin convolution
operator M0

a with an admissible kernel described in Definition 2.1 (also see
Example 2.3) and Theorem 2.5 is bounded in Bessel potential spaces, see
(41).
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With the help of formulae (25) and (45) for an integer m = 1, 2 . . . and
arbitrary complex parameters γ, c ∈ C it follows that

Λm−γK
1
cϕ =

(
i
d

dt
± γ
)m

K1
cϕ =

m∑

k=0

(
m

k

)
ik(±γ)m−k

dk

dtk
K1
cϕ =

=
m∑

k=0

(
m

k

)
ik(±γ)m−kc−k

(
K1
c

dk

dtk
ϕ
)

(t) =

= c−mK1
c

( m∑

k=0

(
m

k

)
ik(±c γ)m−k

dk

dtk
ϕ

)
(t) =

= c−mK1
cΛ

m
−c γϕ, ϕ ∈ H̃r

p(R+), 0 < | arg γ| < π. (49)

Next, we will generalize formula (49).

Theorem 2.7. Let 0 < | arg c| < π, 0 < | arg γ| < π, 0 < | arg(c γ)| < π,
r, s ∈ R, m = 1, 2, . . ., 1 < p <∞. Then

Λs−γK
m
c ϕ =

=

{
eσ(c,γ)πsic−sKm

c Λs−c γϕ if − π < arg c γ < 0,
eσ(c,γ)πsic−sK̃m

c Λs−c γϕ if 0 < arg c γ < π, ϕ ∈ H̃r
p(R+),

(50)

where

σ(c, γ) :=

{
0 if 0 < arg c < π,

sign arg(c γ)− sign arg γ if − π < arg c < 0,
(51)

K̃m
c ψ(t)=Km

c ψ+(t)+(−1)m−1Km
−cψ−(t), ψ∈Lp(R), ψ±∈Lp(R+), (52)

ψ±(t) := r+ψ(±t) and r+ is the restriction from R to R+.

Proof. First we consider the case m = 1 (a simple pole). Let Λs−γ,tψ(t, τ)
denote the action of the Bessel potential operator Λs−γ (see (23)) on a func-
tion ψ(t, τ) with respect to the variable t (see (14)):

Λs−γK
1
cϕ(t) := r+

∞∫

0

[
Λs−γ,t

1
t− c τ

]
ϕ(τ) dτ =

=
1

2π
r+

∞∫

0

ϕ(τ)

∞∫

−∞

e−iξt(ξ − γ)s
∞∫

−∞

eiξy

y − cτ dy dξ dτ, (53)

where r+ is the restriction to R+. The integrand in the last integral in
(53) is a meromorphic function with a single pole at c τ and the function
vanishes as |y| −→ ∞, provided ξ < 0 for 0 < arg c < π and for ξ > 0
for −π < arg c < 0, respectively. Therefore, by the Cauchy theorem, the
integral vanishes for ξ < 0 in the first and for ξ > 0 in the second case,
respectively. Since τ > 0, the integral is found with the help of the residue
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theorem:

∞∫

−∞

eiξy

y − cτ dy =





0 for ξ arg c < 0,
2πieicξτ for ξ > 0 and 0 < arg c < π,

−2πieicξτ for ξ < 0 and − π < arg c < 0.
(54)

Then

Λs−γK
1
cϕ(t) = ir+

∞∫

0

ϕ(τ)

∞∫

0

e−iξ(t−cτ)(ξ−γ)s dξ dτ, 0<arg c<π, (55a)

Λs−γK
1
cϕ(t) = −ir+

∞∫

0

ϕ(τ)

0∫

−∞

e−iξ(t−cτ)(ξ − γ)s dξ dτ =

= −ie−σ(γ)πsir+

∞∫

0

ϕ(τ)

∞∫

0

eiξ(t−cτ)(ξ + γ)s dξ dτ (55b)

for σ(γ) := sign arg γ, −π < arg c < 0

because arg(−ξ − γ) = arg(ξ + γ) ± π ∈ (−π, π) for 0 < ∓ arg γ < π. To
(55a) and (55b) we apply the formula (see [31, Formula 3.382.4])

∞∫

0

e−µξ(ξ + ν)s dξ = µ−s−1eνµΓ(s+ 1, νµ), (56)

s ∈ R, −π < arg ν < π, Reµ > 0.

To comply with the constraint −π < arg ν < π for ν = −γ, we choose
arg(−γ) = arg γ ± π for 0 < ∓ arg γ < π. From 0 < arg c < π follows the
constraint Reµ > 0 for µ = i(t − cτ) and from (55a) with the help of (56)
we get

Λs−γK
1
cϕ(t) = ir+

∞∫

0

(it−icτ)−s−1e−iγ(t−cτ)Γ(s+ 1,−iγ(t−cτ))ϕ(τ) dτ=

= e−
π
2 sir+

∞∫

0

e−iγ(t−cτ)Γ(s+ 1,−iγ(t− cτ))
(t− cτ)s+1

ϕ(τ) dτ, (57a)

since arg(it − icτ) = arg(t − cτ) + π/2 ∈ (−π, π) and, therefore, i(it −
icτ)−s−1 = e−

π
2 si(t− cτ)−s−1 .

Similarly, from −π < arg c < 0 follows the constraint Reµ > 0 for
µ = −i(t− cτ) and from (55b) with the help of (56) we get

Λs−γK
1
cϕ(t) =

= −ie−σ(γ)πsir+

∞∫

0

(−it+icτ)−s−1e−iγ(t−cτ)Γ(s+1,−iγ(t−cτ))ϕ(τ) dτ =
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= e(−σ(γ)π+π
2 )si r+

∞∫

0

e−iγ(t−cτ)Γ(s+ 1,−iγ(t− cτ))
(t− cτ)s+1

ϕ(τ) dτ, (57b)

for σ(γ) := sign arg γ, −π < arg c < 0,

since arg(−it + icτ) = arg(t − cτ) − π/2 ∈ (−π, π) and, therefore, i(−it +
icτ)−s−1 = −eπ2 si (t− cτ)−s−1.

Next, we check what are the results if the Bessel potential Λsc γ,τ is applied
to the kernel 1

t−cτ of the operator K1
c with respect to the variable τ :

Aγϕ(t) := r+

∞∫

0

[
Λsc γ,y

1
t− c y

]
ϕ(τ) dτ =

=
1

2π
r+

∞∫

0

ϕ(τ)

∞∫

−∞

e−iξτ (ξ + c γ)s
∞∫

−∞

eiξy dy

t− cy dξ dτ =

= − 1
2πc

r+

∞∫

0

ϕ(τ)

∞∫

−∞

e−iξτ (ξ + c γ)s
∞∫

−∞

eiξy dy

y − c−1t
dξ dτ. (58)

The last integral in (58) is found with the help of the residue theorem, by
taking into account that τ > 0 (cf. (54)):

∞∫

−∞

eiξy

y − c−1t
dy =





0 for ξ arg c > 0,
−2πieic

−1ξ t for ξ < 0 and 0 < arg c < π,

2πieic
−1ξ t for ξ > 0 and − π < arg c < 0.

(59)

Applying formula (59), we proceed as follows:

Aγϕ(t) =
i

c
r+

∞∫

0

ϕ(τ)

0∫

−∞

e−iξ(τ−c
−1t)(ξ + c γ)s dξ dτ =

=
ieσ(cγ)πsi

c
r+

∞∫

0

ϕ(τ)

∞∫

0

e−ic
−1ξ(t−c τ)(ξ − c γ)s dξ dτ, (60a)

σ(γ) := sign arg γ for 0 < arg c < π,

because arg(−ξ + c γ) = arg(ξ − c γ)± π ∈ (−π, π). Similarly,

Aγϕ(t) = − i
c
r+

∞∫

0

ϕ(τ)

∞∫

0

e−iξ(τ−c
−1t)(ξ + c γ)s dξ dτ =

= − i
c
r+

∞∫

0

ϕ(τ)

∞∫

0

eic
−1ξ(t−c τ)(ξ + c γ)s dξ dτ, −π < arg c < 0. (60b)

To (60a) and (60b) we apply the formula (56) with µ = ±ic−1(t− cτ) and
ν = ∓c γ, which yields νµ = −iγ(t−cτ). The constraint 0 < | arg(c γ)| < π,
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imposed in the theorem, allows us to comply with the condition −π < ν < π
by choosing arg(−c γ) = arg(c γ)∓π for ± arg(c γ) > 0. Another constraint
0 < | arg c| < π allows to comply with the condition Reµ > 0 in (56):
Re(±ic−1t∓ iτ) = ∓ Im c−1t = ±t Im c

|c|2 > 0 for 0 < ± arg c < π. We get the
following:

Aγϕ(t) =
ie−σ(cγ)πsi

c
r+×

×
∞∫

0

(ic−1)−s−1(t− c τ)−s−1e−iγ(t−c τ)Γ(s+ 1,−iγ(t− c τ))ϕ(τ) dτ =

= cse(σ(cγ)π−π2 )sir+

∞∫

0

e−iγ(t−c τ)Γ(s+ 1,−iγ(t− cτ))
(t− c τ)s+1

ϕ(τ) dτ (61a)

for σ(c γ) := sign arg(cγ), 0 < arg c < π,

since i−s−1 = i−1e−
π
2 si, and

Aγϕ(t) = − i
c
r+×

×
∞∫

0

(−ic−1)−s−1(t− c τ)−s−1e−iγ(t−c τ)Γ(s+ 1,−iγ(t− c τ))ϕ(τ) dτ =

= cse
π
2 sir+

∞∫

0

e−iγ(t−c τ)Γ(s+ 1,−iγ(t− c τ))
(t− c τ)s+1

ϕ(τ) dτ (61b)

for −π < arg c < 0, since (−i)−s−1 = ie
π
2 si.

From (57a)–(57b), (58) and (61)–(61) we derive the following equality:

Λs−γK
1
cϕ(t) =

∞∫

0

[
Λs−γ,t

1
t− cτ

]
ϕ(τ) dτ =

= c−se−σ0(c,γ)π si

∞∫

−∞

[
Λsc γ,τ

1
t− cτ

]
ϕ0(τ) dτ, (62)

where

σ0(c, γ) :=

{
σ(c γ) if 0 < arg c < π,

σ(γ) if − π < arg c < 0
(63)

and ϕ0 ∈ H1
2(R) is the extension of ϕ0 ∈ H̃1

2(R+) by 0 to the semi-axes
R− := R \ R+. Now note, that the operator Λsc γ,τ is the dual (adjoint) to
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the operator eσ(c γ)πsiΛs−c γ,τ i.e,

∞∫

−∞

(Λsc γ,τu)(τ)v(τ) dτ = eσ(c γ)πsi

∞∫

−∞

u(τ)(Λs−c γ,τv)(τ) dτ,

∀u, v ∈ C∞0 (R),

the equality can easily be verified by changing the orders of integration and
change the Fourier transform variable ξ to −ξ. We continue the equality
(62) as follows:

Λs−γK
1
cϕ(t) = c−se−σ0(c,γ)π si

∞∫

−∞

[
Λsc γ,τ

1
t− cτ

]
ϕ0(τ) dτ =

= eσ(c,γ)π sic−s
∞∫

−∞

Λs−c γϕ(τ) dτ
t− cτ ,

where σ(c, γ) is defined in (51). By the properties of the Bessel poten-
tial Λm−c γ , it maintains the support of a function supp ϕ ⊂ R+ for −π <
arg c γ < 0 but not for 0 < arg c γ < π. Therefore,

Λs−γK
1
cϕ(t) = eσ(c,γ)π sic−sK1

cΛ
s
−c γϕ(t) for − π < arg c γ < 0,

Λs−γK
1
cϕ(t) = eσ(c,γ)π sic−sK̃1

cΛ
s
−c γϕ(t) for 0 < arg c γ < π.

(64)

Formula (64) accomplishes the proof of formula (50) for an operator K1
c

(case m = 1) and under the additional constraint arg c 6= 0. For an operator
K1
c (case m = 1) but arg c = 0 and a case of an operator Km

c , m = 2, 3, . . .
we can deal with a perturbation:

1
(t− c)m = lim

ve−→0
Kε(t),

Kc1,ε,...,cm,ε(t) :=
1

(t− c1,ε) · · · (t− cm,ε)
=

m∑

j=1

dj(ε)
t− cj,ε

,
(65)

cj,ε=c(1+εeiωj ), ωj ∈(−π, π), arg cj,ε, arg cj,ε γj 6=0, j=1, . . . ,m.

the points and ω1, . . . , ωm ∈ (−π, π] are distinct ωj 6= ωk for j 6= k. The
case arg c = 0 is covered for m = 1. By equating the numerators in the
formula (65)

m∑

j=1

dj(ε)tm − (m− 1)
m∑

j=1

dj(ε)cj,εtm−1 + · · · =

=
m∑

j=1

dj(ε)(tm − ctm−1)− (m− 1)ε
m∑

j=1

eωjdj(ε)tm−1 + O(ε) = 1,
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we derive the last two equalities

dj(ε) = O(ε−1),
m∑

j=1

dj(ε) = 0,
m∑

j=1

eωjdj(ε) = 0, (66)

while the first one is well known. The claimed equality (64) holds for each
operator K1

cj,ε and

Λs−γK
m
c1,ε,...,cm,εϕ=

m∑

j=1

dj(ε)Λs−γK
1
cj,εϕ=

m∑

j=1

csj,εdj(ε)K
1
cj,εΛ

s
−c γj,εϕ, (67)

where

Km
c1,ε,...,cm,εϕ(t)=

∞∫

0

Kc1,ε,...,cm,ε

( t
τ

)
ϕ(τ)

dτ

τ
=

∞∫

0

τm−1ϕ(τ) dτ
(t− c1,ετ) · · · (t− cm,ετ)

.

Further, we assume that −π < arg c γ < 0. The case 0 < arg c γ < π is
considered similarly and we drop its proof.

Using the Bessel potentials (see (23)), we get

Λ−s−c γ
[
Λs−c γj,ε − Λs−c γ

]
= Waj,ε − I = Waj,ε−1, σ := σ(c, γ) = σ(c, γ),

aj,ε(ξ)− 1 =
(ξ − c γj,ε
ξ − c γ

)s
− 1 =

(
1− εeiωj

ξ
c γ − 1

)s
− 1 =

= − seiωj

ξ
c γ − 1

ε+ a0
j,ε(ξ)ε

2 =
s c γeiωj

ξ − c γ ε+ a0
j,ε(ξ)ε

2, a0
j,ε = O(1), (68)

c−sj,ε = c−s(1 + εeiωj )−s = c−s − c−sseiωjε+ bj,εε
2, bj,ε = O(1) (69)

as ε −→ 0. For ε sufficiently small, the value σ(cj,ε, γ) becomes independent
of j = 1, . . . ,m and ε, and we use the notation σ(c, γ) := σ(cj,ε, γ). Then,
by virtue of the equality (66) and asymptotic (68), (69), we get the following
equalities:

Λs−γK
m
c1,ε,...,cm,εϕ :=

m∑

j=1

dj(ε)Λs−γK
1
cj,εϕ =

=
m∑

j=1

eσ(c,γ)π sic−sj,εdj(ε)K
1
cj,εΛ

s
−c γj,εϕ =

=
m∑

j=1

eσ(c,γ)π si
[
c−s − c−sseiωjε+ bj,εε

2
]
dj(ε)K1

cj,εΛ
s
−c γj,εϕ =

=
m∑

j=1

eσ(c,γ)π si
[
c−s + bj,εε

2
]
dj(ε)K1

cj,εΛ
s
−c γj,εϕ =

= eσ(c,γ)π sic−s
m∑

j=1

dj(ε)K1
cj,εΛ

s
−c γϕ+
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+ eσ(c,γ)π sic−s
m∑

j=1

dj(ε)K1
cj,εΛ

s
−c γΛ−s−c γ

[
Λs−c γj,ε − Λs−c γ

]
ϕ+

+ ε2eσ(c,γ)π sic−s
m∑

j=1

dj(ε)bj,εK1
cj,εΛ

s
−c γj,εϕ =

= eσ(c,γ)π sic−sKm
c1,ε,...,cm,εΛ

s
−c γϕ+

+ eσ(c,γ)π sic−s
m∑

j=1

K1
cj,εdj(ε)

[
− s c γeiωjW 1

ξ+c γ
ε+Wa0

j,ε(ξ)
ε2
]
Λs−c γϕ+

+ eσ(c,γ)π sic−sε2
m∑

j=1

dj(ε)bjεK1
cj,εΛ

s
−γ cj,εϕ =

= eσ(c,γ)π sic−sKm
c1,ε,...,cm,εΛ

s
−c γϕ+

+ ε2eσ(c,γ)π sic−s
m∑

j=1

dj(ε)
[
bjε +Wa0

j,ε

]
K1
cj,εΛ

s
−c γj,εϕ. (70)

By using the boundedness result proved in Theorem 2.5, we get

lim
ε−→0

∥∥Km
c −Km

c1,ε,...,cm,εϕ | Hν
2(R+

∥∥ 6

6 lim
ε−→0

ε

m∑

j=1

∥∥Km
c,...,c,cj,ε,...,cm,εϕ | Hν

2(R+
∥∥ = 0. (71)

Further, invoking the well known formula for the norm of a convolution
operator in the Hilbert-Bessel spaces Lp(R+)

∥∥Wa | L (Hµ
2 (R+))

∥∥ =
∥∥Wa | L (L2(R+))

∥∥ = sup
ξ∈R
|a(ξ)| (72)

(cf., e.g., [17]) and using the property lim
ε−→0

ε2dj(ε) = 0 (see (66)), from

(70)–(72) we derive

Λs−γK
m
c ϕ = lim

ε−→0
Λs−γK

m
c1,ε,...,cm,εϕ =

= lim
ε−→0

[
eσ(c,γ)π sic−sKm

c1,ε,...,cm,εΛ
s
−c γϕ+

+ ε2eσ(c,γ)π sic−s
m∑

j=1

dj(ε)
[
bjε +Wa0

j,ε

]
K1
cj,εΛ

s
−c γj,εϕ

]
=

= eσ(c,γ)π sic−s lim
ε−→0

Km
c1,ε,...,cm,εΛ

s
−c γϕ =

= eσ(c,γ)π sic−sKm
c Λs−c γϕ

which accomplishes the proof. �
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3. Algebra Generated by Mellin and Fourier Convolution
Operators

Unlike the operators W 0
a and M0

a (see Section 1), possessing the property

W 0
aW

0
b = W 0

ab, M0
aM

0
b = M0

ab for all a, b ∈Mp(R), (73)

the composition of the convolution operators on the semi-axes Wa and Wb

(see (73)) cannot be computed by the rules similar to (73). Nevertheless,
the following propositions hold.

Proposition 3.1 ([17, Section 2]). Assume that 1 < p < ∞, and let
[Wa,Wb] := WaWb−WbWa be the commutant of the operators Wa and Wb.

If a, b ∈ Mp(R+) ∩ PC(
•
R) are piecewise-continuous scalar Lp-multipliers,

then the commutant [Wa,Wb] : Lp(R+) 7−→ Lp(R+) is compact.
Moreover, if, in addition, the symbols a(ξ) and b(ξ) of the operators Wa

and Wb have no common discontinuity points, i.e., if
[
a(ξ + 0)− a(ξ + 0)

][
b(ξ + 0)− b(ξ + 0)

]
= 0 for all ξ ∈

•
R,

then T = WaWb −Wab is a compact operator in Lp(R+).

Note that the algebra of N ×N matrix multipliers M2(R) coincides with
the algebra of N×N matrix functions essentially bounded on R. For p 6= 2,
the algebra Mp(R) is rather complicated. There are multipliers g ∈Mp(R)
which are elliptic, i.e. ess inf |g(x)| > 0, but 1/g 6∈ Mp(R). In connection
with this, let us consider the subalgebra PCMp(R) which is the closure of
the algebra of piecewise-constant functions on R in the norm of multipliers
Mp(R) ∥∥a |Mp(R)

∥∥ :=
∥∥W 0

a | Lp(R)
∥∥.

Note that any function g ∈ PCMp(R) ⊂ PC(R) has limits g(x± 0) for all
x ∈ R, including the infinity. Let

CMp(R) := C(R) ∩ PCM0
p(R), CM0

p(
•
R) := C(

•
R) ∩ PCMp(R),

where functions g ∈ CMp(R) (functions h ∈ C(
•
R)) might have jump only

at the infinity g(−∞) 6= g(+∞) (are continuous at the infinity h(−∞) =
h(+∞)).
PCMp(R) is a Banach algebra and contains all functions of bounded vari-

ation as a subset for all 1 < p <∞ (Stechkin’s theorem, see [17, Section 2]).
Therefore, cothπ(iβ + ξ) ∈ CMp(R) for all p ∈ (1,∞).

Proposition 3.2 ([17, Section 2]). If g ∈ PCMp(R) is an N×N matrix
multiplier, then its inverse g−1 ∈ PCMp(R) if and only if it is elliptic,
i.e. det g(x ± 0) 6= 0 for all x ∈ R. If this is the case, the corresponding
Mellin convolution operator M0

g : Lp(R+) 7−→ Lp(R+) is invertible and
(M0

g)
−1 = M0

g−1 .
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Moreover, any N×N matrix multiplier b ∈ CM0
p(
•
R) can be approximated

by polynomials

rn(ξ) :=
m∑

j=−m
cm

(ξ − i
ξ + i

)m
, rm ∈ CM0

p(R),

with constant N × N matrix coefficients, whereas any N × N matrix mul-
tiplier g ∈ CM0

p(R) having a jump discontinuity at infinity can be approxi-
mated by N ×N matrix functions d cothπ(iβ + ξ) + rm(ξ), 0 < β < 1.

Due to the connection between the Fourier and Mellin convolution oper-
ators (see Introduction, (4)), the following is a direct consequence of Propo-
sition 3.2.

Corollary 3.3. The Mellin convolution operator

A = M0
Aβ

: Lp(R, tγ),

in (1) with the symbol Aβ(ξ) in (5) is invertible if and only if the symbol is
elliptic,

inf
ξ∈R

∣∣ det Aβ(ξ)
∣∣ > 0 (74)

and the inverse is then written as A−1 = M0
A−1

1/p
.

The Hilbert transform on the semi-axis

SR+ϕ(x) :=
1
πi

∞∫

0

ϕ(y) dy
y − x (75)

is the Fourier convolution SR+ = W−sign on the semi-axis R+ with the
discontinuous symbol − sign ξ (see [17, Lemma 1.35]), and it is also the
Mellin convolution

SR+ = M0
sβ

= ZβW 0
sβ

Z−1
β , (76)

sβ(ξ) := cothπ(iβ + ξ)=
eπ(iβ+ξ)+e−π(iβ+ξ)

eπ(iβ+ξ)−e−π(iβ+ξ)
=−i cotπ(β−iξ), ξ∈R

(cf. (5) and (8)). Indeed, to verify (76) rewrite SR+ in the following form

SR+ϕ(x) :=
1
πi

∞∫

0

ϕ(y)
1− x

y

dy

y
=

∞∫

0

K
(x
y

)
ϕ(y)

dy

y
,

where K(t) := (1/πi)(1− t)−1. Further, using the formula
∞∫

0

tz−1

1− t dt = π cotπz, Re z < 1,

cf. [31, formula 3.241.3], one shows that the Mellin transform MβK(ξ)
coincides with the function sβ(ξ) from (76).
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For our aim we will need certain results concerning the compactness of
Mellin and Fourier convolutions in Lp-spaces. These results are scattered
in literature. For the convenience of the reader, we reformulate them here
as Propositions 3.4–3.8. For more details, the reader can consult [8, 17, 22].

Proposition 3.4 ([22, Proposition 1.6]). Let 1 < p < ∞, a ∈ C(
•
R+),

b ∈ CM0
p(
•
R) and a(0) = b(∞) = 0. Then the operators aM0

b ,M
0
b aI :

Lp(R+) −→ Lp(R+) are compact.

Proposition 3.5 ([17, Lemma 7.1] and [22, Proposition 1.2]). Let 1 <

p < ∞, a ∈ C(
•
R+), b ∈ CM0

p(
•
R) and a(∞) = b(∞) = 0. Then the

operators aWb,Wb aI : Lp(R+) −→ Lp(R+) are compact.

Proposition 3.6 ([22, Lemma 2.5, Lemma 2.6] and [8]). Assume that
1 < p <∞. Then

(1) If g ∈ CM0
p(
•
R) and g(∞) = 0, the Hankel operator Hg : Lp(R+) −→

Lp(R+) is compact;

(2) If the functions a ∈ C(
•
R), b ∈ CM0

p(R), c ∈ C(R+) and satisfy at
least one of the conditions

(i) c(0) = b(+∞) = 0 and a(ξ) = 0 for all ξ > 0,

(ii) c(0) = b(−∞) = 0 and a(ξ) = 0 for all ξ < 0,
then the operators cWaM

0
b , cM

0
bWa, WaM

0
b cI, M0

bWa cI : Lp(R+)
−→ Lp(R+) are compact.

Proof. Let us comment only on item 2 in Proposition 3.6, which is not
proved in [22], although is well known. The kernel k(x+ y) of the operator
Ha is approximated by the Laguerre polynomials km(x+y) = e−x−ypm(x+
y), m = 1, 2, . . . , where pm(x+y) are polynomials of order m so that the cor-
responding Hankel operators converge in norm ‖Ha−Ham | |L (Lp(R+))‖−→
0, where am = Fkm are the Fourier transforms of the Laguerre polynomials
(see, e.g. [29]). Since

|km(x+ y)| =
∣∣e−x−ypm(x+ y)

∣∣ 6 Cme−xe−yxmym, m = 1, 2, . . . ,

for some constant Cm, the condition on the kernel
∞∫

0

[ ∞∫

0

|km(x+ y)|p′ dy
]p/p′

dx <∞, p′ :=
p

p− 1
,

holds and ensures the compactness of the operator Ham : Lp(R+) −→
Lp(R+). Then the limit operator Ha = lim

m−→∞
Ham is compact as well. �

Proposition 3.7 ([17, Lemma 7.4] and [22, Lemma 1.2]). Let 1 < p <∞
and let a and b satisfy at least one of the conditions

(i) a ∈ C(R+), b ∈M0
p(R) ∩ PC(R),
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(ii) a ∈ PC(R+), b ∈ CM0
p(R).

Then the commutants [aI,Wb] and [aI,M0
b ] are compact operators in the

space Lp(R+).

Proposition 3.8 ([22]). The Banach algebra, generated by the Cauchy
singular integral operator SR+ and by the identity operator I on the semi-axis
R+, contains all Mellin and Fourier convolution operators on the semi-axis
with symbols from CM0

p(R), having discontinuity of the jump type only at
the infinity.

Moreover, the Banach algebra Fp(R+) generated by the Cauchy singular
integral operators with “shifts”

ScR+ϕ(x) :=
1
πi

∞∫

0

e−ic(x−y)ϕ(y) dy
y − x = W− sign(ξ−c)ϕ(x) for all c ∈ R

and by the identity operator I on the semi-axis R+ over the field of N ×N
complex valued matrices coincides with the Banach algebra generated by
Fourier convolution operators with piecewise-constant N×N matrix symbols
contains all Fourier convolution Wa and hankel Hb operators with N × N
matrix symbols (multipliers) a, b ∈ PCMp(R).

Let us consider the Banach algebra Ap(R+) generated by Mellin convo-
lution and Fourier convolution operators in the Lebesgue space Lp(R+)

A :=
m∑

j=1

M0
ajWbj , (77)

where M0
aj are Mellin convolution operators with continuous N ×N matrix

symbols aj ∈ CMp(R), Wbj are Fourier convolution operators with N ×N
matrix symbols bj ∈ CMp(R \ {0}) := CMp(R

− ∪ R+
) in the weighted

Lebesgue space Lp(R+, xα). The algebra of N × N matrix Lp-multipliers
CMp(R \ {0}) consists of those piecewise-continuous N ×N matrix multi-
pliers b ∈ Mp(R) ∩ PC(R) which are continuous on the semi-axis R− and
R+ but might have finite jump discontinuities at 0 and at the infinity.

This and more general algebras (see Remark 3.14) were studied in [22]
and also in earlier works [12, 21, 42].

In order to keep the exposition self-contained, to improve formulations
from [22] and to add Hankel operators as generators of the algebra, the
results concerning the Banach algebra generated by the operators (77) are
presented here with some modification and the proofs.

Note that the algebra Ap(R+) is actually a subalgebra of the Banach
algebra Fp(R+) generated by the Fourier convolution operators Wa act-
ing on the space Lp(R+) and having piecewise-constant symbols a(ξ), cf.
Proposition 3.8. Let S(Lp(R+)) denote the ideal of all compact operators
in Lp(R+). Since the quotient algebra Fp(R+)/S(Lp(R+)) is commutative
in the scalar case N = 1, the following is true.



Mellin Convolution Operators in Bessel Potential Spaces. . . 163

Corollary 3.9. The quotient algebra Ap(R+)/S(Lp(R+)) is commuta-
tive in the scalar case N = 1.

To describe the symbol of the operator (77), consider the infinite clock-
wise oriented “rectangle” R := Γ1 ∪ Γ−2 ∪ Γ+

2 ∪ Γ3, where (cf. Figure 1)

Γ1 := R× {+∞}, Γ±2 := {±∞} × R+
, Γ3 := R× {0}.

14

PC(R) in the weighted Lebesgue space Lp(R+, xα). Recall that this algebra has been studied
in [Du87] and also in earlier works [Du74, Du86, Th85]. In the present paper we are going
to use some of the results from the papers mentioned, namely the results concerning the
operators

A :=
m∑

j=1

M0
aj
Wbj , B :=

m∑

j=1

WbjM
0
aj
, (3.2)

with symbols aj ∈ CMp(R) and bj ∈ CMp(R \ {0}) := CMp(R
− ∪ R+

). The algebra of
N ×N matrix Lp-multipliers CMp(R \ {0}) consists of those piecewise-continuous N ×N
matrix multipliers b ∈Mp(R) ∩ PC(R), which are continuous on the semi-axis R− and R+

but may have finite jump discontinuities at 0 and at infinity.

In order to keep the exposition as self-contained as possible and to improve formulations
from [Du87], the results concerning the Banach algebra generated by the operators (3.2) are
presented here with the proofs.

Denote by Ap(R+) the Banach algebra generated by Mellin and Fourier convolution
operators (3.2) in the Lebesgue space Lp(R+). Note that the algebra Ap(R+) is actually
a subalgebra of the Banach algebra Fp(R+) generated by the Fourier convolution operators
Wa acting on the space Lp(R+) and having piecewise-constant symbols a(ξ), cf. Proposition
1.8. Let S(Lp(R+)) denote the ideal of all compact operators in Lp(R+). Since the quotient
algebra Fp(R+)/S(Lp(R+)) is commutative we derives the following assertion.

(ξ, 0)

(ξ,∞)

(−∞, η) (+∞, η)

Γ3

Γ1

Γ−2 Γ+
2

(−∞,∞)

(+∞, 0)(−∞, 0)

(+∞,∞)

Fig. 1

Corollary 3.1 The quotient alge-
bra Ap(R+)/S(Lp(R+)) is com-
mutative.

Let us now describe the symbol of
the operator A of (3.2), hence Fred-
holm properties and the index of A.
For, consider the infinite clockwise
oriented ”rectangle” R := Γ1∪Γ−2 ∪
Γ+

2 ∪ Γ3, where Γ1,Γ
±
2 and Γ3 are

the curves

Γ1 := R× {+∞}, Γ±2 := {±∞} × R+
, Γ3 := R× {0}, (3.3)

Figure 1. The domain R of definition of the symbol Ap(ξ, η).

The symbol Ap(ω) of the operator A in (77) is a function on the set R, viz.

Ap(ω) :=





m∑

j=1

aj(ξ)(bj)p(∞, ξ), ω = (ξ,∞) ∈ Γ1,

m∑

j=1

aj(+∞)bj(−η), ω = (+∞, η) ∈ Γ+
2 ,

m∑

j=1

aj(−∞)bj(η), ω = (−∞, η) ∈ Γ−2 ,

m∑

j=1

aj(ξ)(bj)p(0, ξ), ω = (ξ, 0) ∈ Γ3.

(78)

In (78) for a piecewise continuous function g ∈ PC(R) we use the notation

gp(∞, ξ) :=
1
2
[
g(+∞) + g(−∞)

]
−

− 1
2
[
g(+∞)− g(−∞)

]
cotπ

(1
p
− iξ

)
,

gp(t, ξ) :=
1
2
[
g(t+ 0) + g(t− 0)

]
−

− 1
2
[
g(t+ 0)− g(t− 0)

]
cothπ

(1
p
− iξ

)
,

(79)

where t, ξ ∈ R.
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To make the symbol Ap(ω) continuous, we endow the rectangle R with
a special topology. Thus let us define the distance on the curves Γ1, Γ±2 , Γ3

and on R by

ρ(x, y) :=
∣∣∣ arg

x− i
x+ i

− arg
y − i
y + i

∣∣∣ for arbitrary x, y ∈ R.

In this topology, the length |R| of R is 6π, and the symbol Ap(ω) is con-
tinuous everywhere on R. The image of the function det Ap(ω), ω ∈ R
(det Bp(ω)) is a closed curve in the complex plane. It follows from the con-
tinuity of the symbol at the angular points of the rectangle R where the
one-sided limits coincide. Thus

Ap(±∞,∞) =
m∑

j=1

[aj(±∞)bj(∓∞),

Ap(±∞, 0) =
m∑

j=1

[aj(±∞)bj(0∓ 0).

Hence, if the symbol of the corresponding operator is elliptic, i.e. if

inf
ω∈R

∣∣ det Ap(ω)
∣∣ > 0, (80)

the increment of the argument (1/2π) arg Ap(ω) when ω ranges through R
in the positive direction is an integer, is called the winding number or the
index and it is denoted by ind det Ap.

Theorem 3.10. Let 1 < p < ∞ and let A be defined by (77). The
operator A : Lp(R+) −→ Lp(R+) is Fredholm if and only if its symbol
Ap(ω) is elliptic. If A is Fredholm, the index of the operator has the value

Ind A = − ind det Ap. (81)

Proof. Note that our study is based on a localization technique. For more
details concerning this approach we refer the reader to [17, 19, 9, 30, 41].

Let us apply the Gohberg–Krupnik local principle to the operator A in
(79), “freezing” the symbol of A at a point x ∈ R := R ∪ {−∞} ∪ {+∞}.
For x ∈ R and ` ∈ N, ` ≥ 1, let C`x(R) denote the set of all `-times differ-
entiable non-negative functions which are supported in a neighborhood of
x ∈ R and are identically one everywhere in a smaller neighborhood of x.
For x ∈ {−∞}∪{+∞}∪{∞}, the functions from the corresponding classes
C`+∞(R) and C`−∞(R) vanish on semi-infinite intervals [−∞, c) and (−c,∞],
respectively, for certain c > 0 and are identically one in smaller neighbor-
hoods. It is easily seen that the system of localizing classes {C`x(R)}x∈R is
covering in the algebras C(R), Mp(R), respectively (cf. [17, 19, 9, 30]).

Let us now consider a system of localizing classes {Lω,x}(ω,x)∈R×R+ in
the quotient algebra Ap(R+)/S(Lp(R+)). These localizing classes depend
on two variables, viz. on ω ∈ R and x ∈ R+. In particular, the class Lω,x
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contains the operator Λω,x,

Λω,x :=





[
h0M

0
vξ
Wg∞

]
=
[
h0M

0
vξ

]

if ω = (ξ,∞) ∈ Γ1, x = 0;[
hxM

0
v±∞Wg∞

]
=
[
hxM

0
v±∞Wg∓∞

]

if ω = (±∞,∞) ∈ Γ±2 ∩ Γ1, x ∈ R+;[
h∞M0

v±∞Wgη

]
=
[
h∞M0

v±∞Wg∓ η

]

if ω = (±∞, η) ∈ Γ±2 , x =∞;[
h∞M0

vξ
Wg0

]
=
[
M0
vξ
Wg0

]

if ω = (ξ, 0) ∈ Γ3, x =∞,

(82)

where hx ∈ C1
x(R+), vξ ∈ C1

ξ (R+), gη ∈ C1
η(R+), and [A] ∈

Ap(R+)/S(Lp(R+)) denotes the coset containing the operator A ∈ Ap(R+).
To verify the equalities in (82), one has to show that the difference be-

tween the operators in the square brackets is compact.
Consider the first equality in (82): The operator

h0Wg∞ − h0I = h0W(g∞−1) = h0Wg0

is compact, since both functions h0 and 1−g∞ = g0 have compact supports,
so Proposition 3.4 applies.

To check the second equality in (82), let us note that hx(0) = 0, v±∞(∓∞)
= 0 and g±∞(ξ) = 0 for all ∓ ξ > 0. From the fourth part of Proposition 3.6
we derive that for any x ∈ R+ the operator hxM0

v±∞Wg±∞ is compact. This
leads to the claimed equality since

[
hxM

0
v±∞Wg∞

]
=
[
hxM

0
v±∞{Wg−∞ +Wg+∞}

]
=
[
hxM

0
v±∞Wg∓∞

]
.

The third identity in (82) can be verified analogously. As far as the fourth
identity in (82) is concerned, one can replace h∞ by 1 because the difference
h∞Wg0 −Wg0 = (1− h∞)Wg0 = h0Wg0 is compact due to Proposition 3.4.

Consider now other properties of the system {Lω,x}(ω,x)∈R×R+ . Propo-
sitions 3.4–3.6 imply that

[
hxM

0
vξ
Wg∞

]
= 0 for all (ξ, η, x) ∈ R× R× R+ \R× R+.

Therefore, the system of localizing classes {Lω,x}(ω,x)∈R×R+ is covering: for
a given system {Λω,x}(ω,x)∈R×R+ of localizing operators one can select a
finite number of points (ω1, x1) = (ξ1, η1, x1), . . . , (ωs, xs) = (ξs, ηs, xs) ∈ R
and add appropriately chosen terms [hxs+jM

0
vξs+j

Wgs+j ] = 0 with

(ξs+j , ηs+j , xs+j)) ∈ R × R × R+ \ (R × R+), j = 1, 2, . . . , r so, that the
equality

r∑

j=1

s∑

k=1

[
cxjM

0
aξj
Wbηk

]
=
[
cM0

aWb

]
(83)
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holds and the functions c ∈ C(R+), a ∈ CMp(R), b ∈ CMp(R) are all
elliptic. This implies the invertibility of the coset [cM0

aWb] in the quo-
tient algebra Ap(R+)/S(Lp(R+)) and the inverse coset is [cM0

aWb]−1 =
[c−1M0

a−1Wb−1 ].
Note that the choice of a finite number of terms in (83) is possible due

to Borel–Lebesgue lemma and the compactness of the sets R and R+ (two
point and one point compactification of R and of R+, respectively).

Moreover, localization in the quotient algebra Ap(R+)/S(Lp(R+)) leads
to the following local representatives of the cosets containing Mellin and
Fourier convolution operators with symbols a, b ∈ CMp(R):

[M0
a]

M0
vξ0∼ [M0

a(ξ0)] = [a(ξ0)I] if ξ0 ∈ R, (84a)

[M0
a]
vx0I∼ [M0

a∞ ] if ξ0 ∈ R+, x0 6= 0, (84b)

[M0
a] v0I∼ [M0

a] if ξ0 = 0, (84c)

[Wb]
Wbη0∼ [Wb(η0)] = [b(η0)I] if η0 ∈ R \ {0}, (84d)

[Wb]
Wb0∼ [Wb0 ] = [M0

bp(0,·)] if η = 0, (84e)

[Wb]
Wg∞∼ [Wb∞(∞,·)] = [M0

bp(∞,·)] if η0 = ±∞, (84f)

[Wb]
vx0I∼ [Wb∞ ] = [M0

bp(∞,·)] if x0 ∈ R+, (84g)

[Wb]
v∞I∼ [Wb] if x0 =∞, (84h)

where

g∞(ξ) :=
1
2
[
g(+∞) + g(−∞)

]
+

1
2
[
g(+∞)− g(−∞)

]
sign ξ =

= g(−∞)χ−(ξ) + g(+∞)χ+(ξ),

g0(ξ) :=
1
2
[
g(0 + 0) + g(0− 0)

]
+

1
2
[
g(0 + 0) + g(0− 0)

]
sign ξ =

= g(0− 0)χ−(ξ) + g(0 + 0)χ+(ξ),

(85)

and χ±(ξ) := (1/2)(1 ± sign ξ). Note that in the equivalency relations
(84e)–(84g) we used the identities, cf. (75) and (79),

Wg∞ =
1
2
[
g(−∞)− g(+∞)

]
− 1

2
[
g(−∞)− g(+∞)

]
SR+ = Mgp(∞,·),

Wg0 =
1
2
[
g(0 + 0) + g(0− 0)

]
− 1

2
[
g(0 + 0)− g(0− 0)

]
SR+ = Mgp(0,·),

which means that the Fourier convolution operators with homogeneous of
order 0 symbols g∞(ξ) and g0(ξ) are, simultaneously, Mellin convolutions
with the symbols gp(∞, ξ), gp(0, ξ).

Using the equivalence relations (84a)–(84h) and the compactness of the
corresponding operators, cf. Propositions 3.4–3.6, one finds easily the fol-
lowing local representatives of the operator (coset) A ∈ Ap(R+)/SLp(R+)



Mellin Convolution Operators in Bessel Potential Spaces. . . 167

(see (79) for the operator A):

[A]
Λ(ξ0,∞),0∼

[ m∑

j=1

M0
aj(ξ0)W(bj)∞

]
=

=
[ m∑

j=1

M0
aj(ξ0)(bj)p(∞,·)

] Λ(ξ0,∞),0∼
[ m∑

j=1

M0
aj(ξ0)(bj)p(∞,ξ0)

]
=

=
[
Ap(ξ0,∞)I

]
if ω = (ξ0,∞) ∈ Γ1, x0 = 0, (86a)

[A]
Λ(±∞,∞),x0∼

[ m∑

j=1

M0
aj(±∞)W(bj)∞

]
=
[ m∑

j=1

M0
aj(±∞)(bj)p(∞,·)

]
=

=
[
M0

Ap(±∞,·)
] Λ(±∞,∞),x0∼

[
Ap(±∞,∞)I

]
(86b)

if ω = (±∞,∞) ∈ Γ±2 ∩ Γ1, 0 < x0 <∞;

[A]
Λ(±∞,∓ η0),∞∼

[ m∑

j=1

M0
aj(±∞)Wbj(∓ η0)

]
=
[ m∑

j=1

aj(±∞)bj(∓ η0)I
]

=

=
[
Ap(±∞,∓ η0)I

]
if η0>0, ω=(±∞,∓ η0)∈Γ±2 , x0=∞; (86c)

[A]
Λ(ξ0,0),∞∼

[ m∑

j=1

M0
ajWb0j

]
=

=
[ m∑

j=1

aj(ξ0)M(bj)p(0,·)

] Λ(ξ0,0),∞∼
[ m∑

j=1

aj(ξ0)(bj)p(0, ξ0)
]

=

=
[
Ap(ξ0, 0)I

]
if ω = (ξ0, 0) ∈ Γ3, x0 =∞; (86d)

[A]
Λ(±∞,η),∞∼

[ m∑

j=1

M0
aj(±∞)Wbj(0)

]
=
[ m∑

j=1

aj(±∞)bj(0)I
]

=

=
[
Ap(±∞, 0)I

]
if ω = (±∞, 0) ∈ Γ3, x0 =∞. (86e)

It is remarkable that the local representatives (86a)–(86e) are just the
quotient classes of multiplication operators by constant N × N matrices
[Ap(ξ0, η0)I]. If det Ap(ξ0, η0) = 0, these representatives are not invertible,
both locally and globally. On the other hand, they are globally invertible
if det Ap(ξ0, η0) 6= 0. Thus, the conditions of the local invertibility for
all points ω0 = (ξ0, η0) ∈ R and the global invertibility of the operators
under consideration coincide with the ellipticity condition for the symbol

inf
(ξ0,η0)∈R

det Ap(ξ0, η0) 6= 0.

The index Ind A is a continuous integer-valued multiplicative function
Ind AB = Ind A + Ind B defined on the group of Fredholm operators of
Ap(R+). On the other hand, the index function ind det Ap defined on
Lp-symbols Ap possesses the same property ind det ApBp = ind det Ap +
ind det Bp, see explanations after (80). Moreover, the set of operators (79)
is dense in the algebra Ap(R+) and the corresponding set of their symbols is
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dense in the algebra C(R) of all continuous functions on R. For p = 2 these
algebras even coincide. Therefore, there is an algebraic homeomorphism
between the quotient algebra Ap(R+)/S(Lp(R+)) and the algebra of their
symbols which is a dense subalgebra of C(R). Hence, two various index
functions can be only connected by the relation Ind A = M0 ind det Ap

with an integer constant M0 independent of A ∈ Ap(R+)/S(Lp(R+)).
Since for any Fourier convolution operator A = Wa the index formula is
Ind A = − ind det Ap [12, 13, 17], the constant M0 = −1, and the index
formula (81) is proved. �

Remark 3.11. Let us emphasize that the formula (81) does not contradict
the invertibility of “pure Mellin convolution” operators M0

a : Lp(R+) −→
Lp(R+) with an elliptic matrix symbol a ∈ CM0

p(R), inf
ξ∈R
|a(ξ)| > 0, stated

in Proposition 0.1, even if ind a 6= 0.
In fact, computing the symbol of M0

a by formula (78), one obtains

(M0
a)p(ω) :=





a(ξ), ω = (ξ,∞) ∈ Γ1,

a(+∞), ω = (+∞, η) ∈ Γ+
2 ,

a(−∞), ω = (−∞, η) ∈ Γ−2 ,
a(ξ), ω = (ξ, 0) ∈ Γ3.

Noting that on the sets Γ1 and Γ3 the variable ω runs in opposite direction,
the increment of the argument [arg det(M0

a)p(ω)]R = 0 is zero, implying
Ind M0

a = 0.
In contrast to the above, the pure Fourier convolution operators

Wb : Lp(R+) −→ Lp(R+) with elliptic matrix symbol b ∈ CM0
p(R),

inf
ξ∈R
|bp(ξ, η)| > 0 can possess non-zero indices. Since

bp(ω) :=





bp(∞, ξ), ω = (ξ,∞) ∈ Γ1,

b(−η), ω = (+∞, η) ∈ Γ+
2 ,

b(η), ω = (−∞, η) ∈ Γ−2 ,
b(0), ω = (ξ, 0) ∈ Γ3,

one arrives at the well-known formula

IndWb = − ind bp.

Moreover, in the case where the symbol b(−∞) = b(+∞) is continuous, one
has bp(ξ, η) = b(ξ). Thus the ellipticity of the corresponding operator leads
to the formula

ind bp = ind det b.

If Ap(ω) is the symbol of an operator A of (77), the set R(Ap) :=
{Ap(ω) ∈ C : ω ∈ R} coincides with the essential spectrum of A. Recall
that the essential spectrum σess(A) of a bounded operator A is the set of
all λ ∈ C such that the operator A − λI is not Fredholm in Lp(R+) or,
equivalently, the coset [A − λI] is not invertible in the quotient algebra
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Ap(R+)/S(Lp(R+)). Then, due to Banach theorem, the essential norm
‖|A‖| of the operator A can be estimated as follows

sup
ω∈ω
|Ap(ω)| 6 ‖|A‖| := inf

T∈S(Lp(R+))

∥∥(A + T ) | L (Lp(R+))
∥∥. (87)

The inequality (87) enables one to extend continuously the symbol map (78)

[A] −→ Ap(ω), [A] ∈ Ap(R+)/S(Lp(R+)) (88)

on the whole Banach algebra Ap(R+). Now, using Theorem 3.10 and con-
ventional methods, cf. [22, Theorem 3.2], one can derive the following result.

Corollary 3.12. Let 1 < p < ∞ and A ∈ Ap(R+). The operator
A : Lp(R+) −→ Lp(R+) is Fredholm if and only if it’s symbol Ap(ω) is
elliptic. If A is Fredholm, then

Ind A = − ind Ap.

Theorem 3.10 and Corollary 3.12 lead to the assertion.

Corollary 3.13. The set of maximal ideals of the commutative Banach
quotient algebra Ap(R+)/S(Lp(R+)) generated by scalar N = 1 operators in
(77), is homeomorphic to R, and the symbol map in (78), (88) is a Gelfand
homeomorphism of the corresponding Banach algebras.

The proof of this result is similar to [22, Theorem 3.1] and is left to the
reader.

Remark 3.14. All the above results are valid in a more general setting viz.,
for the Banach algebra PAN×Np,α (R+) generated in the weighted Lebesgue
space of N -vector-functions LNp (R+, xα) by the operators

A :=
m∑

j=1

[
d1
jM

0
a1
j
Wb1j

+ d2
jM

0
a2
j
Hc1j

+ d3
jW

0
b2j
Hc2j

]
(89)

when coefficients d1
j , d

2
j , d

3
j ∈ PCN×N (R) are piecewise-continuous N ×

N matrix functions, symbols of Mellin convolution operators M0
a1
j
, M0

a2
j
,

Winer–Hopf (Fourier convolution) operators Wb1j
, Wb2j

and Hankel operators
Hc1j

, Hc2j
are N ×N piecewise-continuous matrix Lp-multipliers akj , b

k
j , c

k
j ∈

PCN×NMp(R).
The spectral set Σ(PAN×Np,α (R+)) of such Banach algebra (viz., the set

where the symbols are defined, e.g. R for the Banach algebra AN×Np (R+)
investigated above) is more sophisticated and described in the papers [15,
16, 22, 42]. Let CAp,α(R+)S(Lp(R+)) be the sub-algebra of PAp,α(R+) =
PA1×1

p,α (R+) generated by scalar operators (89) with continuous coefficients
cj , hj ∈ C(R) and scalar piecewise-continuous Lp-multipliers) aj , bj , dj , gj ∈
PCMp(R). The quotient-algebra CAp,α(R+)S(Lp(R+)) with respect to the
ideal of all compact operators is a commutative algebra and the spectral set
Σ(PAp,α(R+)) is homeomorphic to the set of maximal ideals.
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We drop further details about the Banach algebra PAN×Np,α (R+), be-
cause the result formulated above are sufficient for the purpose of this and
subsequent papers dealing with the BVPs in domains with corners at the
boundary.

4. Mellin Convolution Operators in Bessel Potential Spaces

As it was already mentioned, the primary aim of the present paper is to
study Mellin convolution operators M0

a acting in Bessel potential spaces,

M0
a : H̃s

p(R+) −→ Hs
p(R+). (90)

The symbols of these operators are N ×N matrix functions a ∈ CM0
p(R),

continuous on the real axis R with the only possible jump at infinity.

Theorem 4.1. Let 0 < | arg γ| < π, 0 < | arg c| < π, 0 < | arg(c γ)| < π,
r, s ∈ R, m = 1, 2, . . ., 1 < p < ∞. Then the operator Km

c : H̃s
p(R+) −→

Hs
p(R+) is lifted equivalently to the operator

Am,s
c := Λs−γK

m
c Λ−sγ : Lp(R+) −→ Lp(R+), (91a)

where

Am,s
c =





eσ(c,γ)πsic−sKm
c Wgsγ,c

if − π < arg c γ < 0,

eσ(c,γ)πsic−s
[
Km
c Wgsγ,c

+ (−1)m−1Km
−cHgsγ,c

]

if 0 < arg c γ < π,

(91b)

Hgsγ,c
=





I + T

if σ(c, γ) 6= 0,

Hgs∞
+ T = eσ(γ)πsi

[
cosπsI − σ(γ)

sinπs
π

K1
−1

]
+ T

if σ(c, γ) = 0,

(91c)

gsγ,c(ξ) :=
(ξ − c γ
ξ + γ

)s
,

gs∞(ξ) :=
1
2
[
eσ(γ)2πsi + 1

]
+

1
2
[
eσ(γ)2πsi − 1

]
sign ξ,

(91d)

T is a compact operator in Lp(R+), σ(γ) := sign arg γ and σ(c, γ) is defined
in (51)

σ(c, γ) :=

{
0 if 0 < arg c < π,

sign arg(c γ)− sign arg γ if − π < arg c < 0.

Proof. Let a± ∈ L∞(R) be Lp-multipliers, which have analytic extensions
a−(ξ) in the lower Im ξ < 0 and a+(ξ) in the upper Im ξ > 0 complex half
planes. Then

Wa−WgWa+ = Wa−ga+ , ∀ g ∈ L∞(R) (92)
(cf., e.g., [17]).



Mellin Convolution Operators in Bessel Potential Spaces. . . 171

Let −π < arg c γ < 0. Theorem 2.7 and the property 92 yield the equal-
ities

Λs−γK
m
c Λ−sγ = eσ(c,γ)πsic−sKm

c Λs−c γΛ−sγ =

= eσ(c,γ)πsic−sKm
c Wλs−c γ

Wλ−sγ
= eσ(c,γ)πsic−sKm

c Wgsγ,c
.

For 0 < arg c γ < π we have similarly to (92)

Λs−γK
m
c Λ−sγ = eσ(c,γ)πsic−sK̃m

c Λs−c γΛ−sγ =

= eσ(c,γ)πsic−sK̃m
c W

0
λs−c γ

W 0
λ−sγ

= eσ(c,γ)πsic−sK̃m
c W

0
gsγ,c

. (93)

On the other hand,

K̃m
c W

0
gsγ,c

ϕ(t) = Km
c Wgsγ,c

ϕ(t) +

0∫

−∞

τm−1W 0
gsγ,c

ϕ(τ) dτ

(t− c τ)m
ϕ(t) =

= Km
c Wgsγ,c

ϕ(t) +

∞∫

0

(−τ)m−1r+V W 0
gsγ,c

ϕ(τ) dτ

(t+ c τ)m
ϕ(t) =

= Km
c Wgsγ,c

ϕ(t) + (−1)m−1Km
−cr+V W 0

gsγ,c
ϕ(t) =

= Km
c Wgsγ,c

ϕ(t) + (−1)m−1Km
−cHgsγ,c

ϕ(t). (94)

The proved equalities justify formula (91b) for Am,s
c .

To justify the remainder formulae (91c) and (91d) note that if σ(c, γ) 6= 0,
the meromorphic function gγ,c(ξ) in (91d) has one pole and one zero in the
same half-plane Im ξ < 0 or Im ξ > 0 and, therefore, has equal limits at
the infinity: lim

ξ±∞
gsγ,c(ξ) = 1. Then gsγ,c(ξ) := 1 + gs0(ξ) where gs0(ξ) is

continuous (is C∞(R)-smooth) and vanishes at the infinity: gs0(±∞) = 0.
By virtue of Proposition 3.6 the operator T := Hgs0

is compact in Lp(R+).
In contrast to the foregoing case, where σ(c, γ) = 0, the meromorphic

function gγ,c(ξ) in (91c) has the pole and the zero in different half-planes
and, therefore, the function has different limits at the infinity:

gsγ,c(−∞) = lim
ξ−→−∞

gsγ,c(ξ) = 1,

gsγ,c(+∞) = lim
ξ−→+∞

gγ,c(ξ) = eσ(γ)2πsi,

where σ(γ) = σ(c γ) = sign arg γ = sign Im γ. Consider the representation

gsγ,c(ξ) := gs∞(ξ) + gs0(ξ), (95)

where gs∞(ξ) is defined in (91c) and the function hs0 is, as above, continuous
and gs0(±∞) = 0. The operator T := Hgs0

is compact in Lp(R+).
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On the other hand,

Hgs∞
=

1
2
[
eσ(γ)2πsi + 1

]
I − 1

2
[
eσ(γ)2πsi − 1

]
H− sign =

=
1
2
[
eσ(γ)2πsi + 1

]
I − 1

2
[
eσ(γ)2πsi − 1

]
r+V SR+ =

= eσ(γ)πsi
[

cosπsI − σ(γ)
sinπs
π

K1
−1

]
. (96)

From (94)–(96) follows the representation (91b), (91d) in the case 0 <
arg c γ < π, and the proof is complete. �

Let us consider a combined convolution operator

A := d0I +Wa +
n∑

j=1

djK
mj
cj , c1, . . . , cn ∈ C, a ∈ CMp(R \ {0}) (97)

with constant coefficients d0, d1, . . . , dn∈C in Bessel potential space Hs
p(R+).

For a complex number γ ∈ C, with the positive imaginary part 0 <
arg γ < π, we assume the following:

−π < arg cjγ < 0 for j = 1, . . . ,m,
0 < arg cjγ < π for j = m+ 1, . . . , n.

(98)

Then, due to the imposed constraint (97), the lifting property (91b) of the
Mellin convolution operator and the lifting property (24) of the Fourier
convolution operator, the lifted operator

As := Λs−γAΛ−sγ : Lp(R+) −→ Lp(R+) (99)

has the form

As := Wd0gsγ
+Wagsγ

+
m∑

j=1

djc
−s
j Kmj

cj Wgsγ,cj
+

+
n∑

j=m+1

dje
σ(cj ,γ)πsic−sj

[
Kmj
cj Wgsγ,cj

− (−1)mjKmj
−cjHgsγ,cj

]
+ T, (100)

where (see (51))

σ(cj , γ) :=





0 if 0 < arg cj < π,

0 if − π < arg cj < 0, 0 < arg cjγ < π,

−2 if − π < arg cj < 0, −π < arg cjγ < 0,
(101)

the functions gsγ,cj ∈ C(
•
R) are defined in (91d) and, due to the conditions

(98), have the following limits at the infinity:

gsγ,cj (−∞) = 1, gsγ,cj (0) = e−σ(cj)πsicsj , gsγ,cj (+∞) = 1, j = 1, . . . ,m,

gsγ,cj (−∞)=1, gsγ(0)=e−σ(cj)πsicsj , gsγ,cj (+∞)=e2πsi, j=m+1, . . . , n,

σ(cj) := sign arg cj .
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The function gsγ ∈ C(R) is continuous on R, but has different limits at the
infinity

gsγ(−∞) = 1, gsγ(+∞) = e2πsi.

And, finally, the symbols

K mj
cj ,p(ξ) := M1/pK

mj
cj (ξ), K 1

−1,p(ξ) := M1/pK
1
−1(ξ)

of the operators Kmj
cj and K1

−1 = πiSR+ are defined in (34)–(38) and have
the following limits at the infinity

K mj
cj (±∞) = 0, j = 1, . . . , n, K 1

−1,p(±∞) = ±1.

Using the equality (100), we announce the symbol A s
p (ω), ω ∈ R, of the

lifted operator As in Lp(R+) as the symbol of A in Bessel potential space
Hs
p(R+) (cf. the definition (78))

A s
p (ω) :=

:=





d0g
s
p(ξ) + asp(∞, ξ)+

+
m∑

j=1

djc
−s
j K mj

cj ,p(ξ) +
n∑

j=m+1

dje
σ(cj ,γ)πsic−sj ×

×
[
K mj
cj ,p(ξ)Wgsγ,cj,p

(∞, ξ)−(−1)mjK mj
−cj ,p(ξ)Hgsγ,cj,p

(∞, ξ)
]
,

ω = (ξ,∞) ∈ Γ1,

{
d0 + a(−η)

}(η + γ

η − γ
)s
, ω = (+∞, η) ∈ Γ+

2 ,

{
d0 + a(η)

}(η − γ
η + γ

)s
ω = (−∞, η) ∈ Γ−2 ,

eπsi
{
d0 + ap(0, ξ)

}
+

+
m∑

j=1

dje
−σ(cj)πsiK mj

cj ,p(ξ) +
n∑

j=m+1

dje
σ(cj ,γ)πsi×

×
[
e−σ(cj)πsiK mj

cj ,p(ξ)−(−1)mjc−sj K
mj
−cj ,p(ξ)Hgsγ,cj,p

(∞, ξ)
]
,

ω = (ξ, 0) ∈ Γ3,

(102)

where, since σ(γ) = sign arg γ = 1,

Wgsγ,cj,p
(∞, ξ) := eπsi

[
cosπs− sinπs cotπ

(1
p
− iξ

)]
, (103)

Hgsγ,cj,p
(∞, ξ) := eπsi

[
cosπs− sinπs

sinπ(1/p− iξ)
]
, j=m+1, . . . , n, (104)
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asp(∞, ξ) :=
1
2
[
e2πsia(+∞) + a(−∞)

]
−

− 1
2
[
e2πsia(+∞)− a(−∞)

]
cotπ

(1
p
− iξ

)
,

ap(t, ξ) :=
1
2
[
a(t+ 0) + a(t− 0)

]
−

− 1
2
[
a(t+ 0)− a(t− 0)

]
cotπ

(1
p
− iξ

)
.

Theorem 4.2. Let 1 < p < ∞, s ∈ R and let A be defined by (97).
The operator A : H̃s

p(R+) −→ Hs
p(R+) is Fredholm if and only if its symbol

A s
p (ω), defined in (102), is elliptic. If A is Fredholm, the index of the

operator has the value

Ind A = − ind det A s
p . (105)

Proof. The proof follows if we apply to the lifted operator As (see (99))
having the form (100), Theorem 3.10. �

For the definition of the Sobolev–Slobodeckij (Besov) spaces Ws
p(Ω) =

Bsp,p(Ω), W̃s
p(Ω) = B̃sp,p(Ω) we for arbitrary domain Ω ⊂ Rn, including the

half axes R+ refer, e.g., to the monograph [43].

Corollary 4.3. Let 1 < p < ∞, s ∈ R and let A be defined by (87).
If the operator A : H̃s

p(R+) −→ Hs
p(R+) is Fredholm (is invertible) for all

a ∈ (s0, s1) and p ∈ (p0, p1), where −∞ < s0 < s1 <∞, 1 < po < p1 <∞,
then

A : W̃s
p(R+) −→Ws

p(R+), s ∈ (s0, s1), p ∈ (p0, p1) (106)

is Fredholm and has the equal index

Ind A = − ind det A s
p . (107)

(is invertible, respectively) in the Sobolev–Slobodeckij (Besov) spaces Ws
p =

Bsp,p.

Proof. First of all recall that the Sobolev–Slobodeckij (Besov) spaces Ws
p =

Bsp,p emerge as the result of interpolation with the real interpolation method
between Bessel potential spaces

(
Hs0
p0(Ω),Hs1

p1(Ω)
)
θ,p

= Ws
p(Ω), s := s0(1− θ) + s1θ,

(
H̃s0
p0(Ω), H̃s1

p1(Ω)
)
θ,p

= W̃s
p(Ω), p :=

1
p0

(1− θ) +
1
p1
θ, 0 < θ < 1.

(108)

If A : H̃s
p(R+) −→ Hs

p(R+) is Fredholm (or is invertible) for all s ∈
(s0, s1) and p ∈ (p0, p1), it has a regularizer R (has the inverse A−1 = R,
respectively), which is bounded in the setting

R : Ws
p(R+) −→ W̃s

p(R+)
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due to the interpolation (108) and

RA = I + T1, AR = I + T2,

where T1 and T2 are compact in H̃s
p(R+) and in −→ Hs

p(R+), respectively
(T1 = T2 = 0 if A is invertible).

Due to the Krasnoselskij interpolation theorem (see [43]), T1 and T2 are
compact in W̃s

p(R+) and in Ws
p(R+), respectively for all s ∈ (s0, s1) and p ∈

(p0, p1) and, therefore, A in (106) is Fredholm (is invertible, respectively).
The index formulae (107) follows from the embedding properties of the

Sobolev–Slobodeckij and Bessel potential spaces by standard well-known
arguments. �
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