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Abstract. We introduce a Weierstrass type transform associated with
the Whittaker integral transform, which we refer to as Weierstrass–Whitta-
ker integral transform. We examine some properties of the transform and
show, in particular, that it is helpful in solving of a generalized non-statio-
nary heat equation with an initial condition.
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îâäæñéâ. øãâê àŽêãéŽîðŽãå ãŽæâîöðîŽïæï ðæìæï àŽîáŽóéêŽï, îëéâèæù
áŽçŽãöæîâĲñèæŽ ñŽæåâçâîæï æêðâàîŽèñî àŽîáŽóéêŽïåŽê áŽ îëéâèïŽù øãâê
ãñûëáâĲå ãŽæâîöðîŽï-ñŽæåâçâîæï æêðâàîŽèñî àŽîáŽóéêŽï. øãâê ãïûŽã-
èëĲå Žé àŽîáŽóéêæï äëàæâîå åãæïâĲŽï áŽ, çâîúëá, ãŽøãâêâĲå, îëé æï ïŽïŽî-
àâĲèëŽ àŽêäëàŽáëâĲñèæ ŽîŽïðŽùæëêŽîñèæ ïæåĲëàŽéðŽîâĲèëĲæï àŽêðë-
èâĲæï ŽéëïŽýïêâèŽá ïŽûõæïæ ìæîëĲæå.
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1. Introduction

The Whittaker functions Mµ,ν and Wµ,ν of first and second order have
acquired an increasing significance due to their frequent use in applications
of mathematics to physical and technical problems (cf., e.g., [2]). Moreover,
they are closely related to the confluent hypergeometric functions which play
an important role in various branches of applied mathematics and theoreti-
cal physics. For instance, this is the case in fluid mechanics, electromagnetic
diffraction theory and atomic structure theory. This justifies a continuous
effort in studying properties of these functions and in gathering information
about them, as well as the integral equations and transforms generated by
them.

For a somehow much more detailed account of several significant re-
sults on the Whittaker and Weierstrass type transforms, over the last half-
century, we refer to [1, 3–7,11–14].

Let us consider the integral transform

[Wf ](τ) =

+∞∫

0

e−
xτ
2 Wµ,ν(xτ)f(x)e−(x+ 1

x )xα dx, τ > 0, (1.1)

where α > 0. The main purpose of this work is to define an integral trans-
form associated with the Whittaker integral transform (1.1) – which will be
called Weierstrass–Whittaker transform – and to study some of its proper-
ties and possible applications. We define such integral transform by

[Wtf ](x) =

+∞∫

0

Kt(x, y)f(y)e−(y+ 1
y )yα dy, (1.2)

where Kt(x, y) is the heat kernel associated with the Whittaker transform
(to be also studied later) and which is defined as

Kt(x, y) =

+∞∫

0

e−4ν2τte−
yτ
2 Wµ,ν(yτ)e−

xτ
2 Wµ,ν(xτ)e−(τ+ 1

τ )τα dτ

for t, x, y > 0.
The integral transform Wtf is a variant of the usual Weierstrass trans-

form [9] and solves the heat type problem




∂t[Wtf ](x) = −Lx[Wtf ](x),

lim
t→0

[Wtf ](x) = f(x),
t, x > 0,

where

Lx = 4τ3x2 d2

dx2
+ 4τ4x2 d

dx
+ τ3x2(τ2 − 1) + 4µτ2x + τ.
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2. The Whittaker Integral Transform

In this section, we study some of the mapping properties of the integral
transform (1.1) which may, in fact, be viewed as an operator acting from
L2(R+, e−(x+ 1

x )xα dx) into L2(R+, e−(τ+ 1
τ )τα dτ).

So, we consider the weighted Hilbert spaces L2(R+, e−(x+ 1
x )xα dx) en-

dowed with the inner product

〈f, g〉
L2(R+,e−(x+ 1

x
)xα dx)

=

+∞∫

0

f(x)g(x)e−(x+ 1
x )xα dx (2.1)

which generates the associated norm

‖f‖
L2(R+,e−(x+ 1

x
)xα dx)

=
( +∞∫

0

|f(x)|2e−(x+ 1
x )xα dx

)1/2

. (2.2)

In order to prove the convergence of the integral transform (1.1), we have
the following auxiliary result.

Theorem 2.1. Let f ∈ L2(R+, e−(x+ 1
x )xα dx) and

α > max
{
2|ν| − 2, 0

}
.

The integral transform (1.1) is absolutely convergent and the following uni-
form estimate

∣∣[Wf ](τ)
∣∣ ≤ Cµ,ν(τ)‖f‖

L2(R+,e−(x+ 1
x

)xα dx)
. (2.3)

holds.

Proof. Invoking the Cauchy–Schwarz inequality and relation (2.19.24.7) in
[8], we have

∣∣[Wf ](τ)
∣∣ ≤

+∞∫

0

∣∣e− xτ
2 Wµ,ν(xτ)f(x)e−(x+ 1

x )xα
∣∣ dx ≤

≤
( +∞∫

0

e−
xτ
2 Wµ,ν(xτ)e−

xτ
2 Wµ,ν(xτ)e−(x+ 1

x )xα dx

)1/2

×

×
( +∞∫

0

|f(x)|2e−(x+ 1
x )xα dx

)1/2

≤

≤
( +∞∫

0

e−
xτ
2 Wµ,ν(xτ)e−

xτ
2 Wµ,ν(xτ)xα dx

)1/2

‖f‖
L2(R+,e−(x+ 1

x
)xα dx)

=

= Cµ,ν(τ) ‖f‖
L2(R+,e−(x+ 1

x
)xα dx)

, (2.4)
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where

Cµ,ν(τ) = τ−
α+1

2

(
Γ(−2ν)Γ(α + 2ν + 2)Γ(2 + α)
Γ( 1

2 − µ− ν)Γ(5
2 − µ + α + ν)

×

× 3F 2
(1

2
+ µ + ν, 2 + α + 2ν, 2 + α; 1 + 2ν,

5
2

+ α + ν − µ; 1
)
+

+
Γ(2ν)Γ(α− 2ν + 2)Γ(2 + α)

Γ( 1
2 − µ + ν)Γ( 5

2 − µ + α + ν)
×

× 3F 2
(1

2
− µ + ν, 2 + α, 2 + α− 2ν; 1− 2ν,

5
2

+ α− ν − µ;−1
))1/2

,

with τ > 0, and where 3F 2 denotes the generalized hypergeometric function.
Hence, besides the estimation in question, the convergence of the integral
transform (1.1) is also obtained. ¤

We now concentrate on the image of the integral transform for the ele-
ments considered above. Namely, for that elements, in the next result we
obtain that Wf ∈ L2(R+, e−(τ+ 1

τ )τα dτ).

Theorem 2.2. Let α > max{2|ν| − 2, 0}.
If f ∈ L2(R+, e−(x+ 1

x )xα dx), then the Whittaker integral transform
[Wf ](τ) belongs to the space L2(R+, e−(τ+ 1

τ )τα dτ).

Proof. From the definition of the norm in L2(R+, e−(τ+ 1
τ )τα dτ), taking into

account that f ∈ L2(R+, e−(x+ 1
x )xα dx) and using (2.4), we obtain

‖Wf‖2
L2(R+,e−(τ+ 1

τ
)τα dτ)

=

+∞∫

0

∣∣[Wf ](τ)
∣∣2e−(τ+ 1

τ )τα dτ ≤

≤
+∞∫

0

(Cµ,ν(τ))2‖f‖2
L2(R+,e−(x+ 1

x
)xα)

e−(τ+ 1
τ )τα dτ =

= C∗µ,ν‖f‖2
L2(R+,e−(x+ 1

x
)xα dx)

+∞∫

0

τ−(α+1)e−(τ+ 1
τ )τα dτ ≤

≤
(
Γ(0, 1) +

1
e

)
C∗µ,ν‖f‖2

L2(R+,e−(x+ 1
x

)xα dx)
, (2.5)

where

C∗µ,ν =
Γ(−2ν)Γ(α + 2ν + 2)Γ(2 + α)
Γ( 1

2 − µ− ν)Γ( 5
2 − µ + α + ν)

×

× 3F 2
(1

2
+ µ + ν, 2 + α + 2ν, 2 + α; 1 + 2ν,

5
2

+ α + ν − µ; 1
)
+

+
Γ(2ν)Γ(α− 2ν + 2)Γ(2 + α)

Γ( 1
2 − µ + ν)Γ( 5

2 − µ + α + ν)
×
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× 3F 2
(1

2
− µ + ν, 2 + α, 2 + α− 2ν; 1− 2ν,

5
2

+ α− ν − µ;−1
)
, (2.6)

and
+∞∫

0

τ−(α+1)e−(τ+ 1
τ )τα dτ =

=

1∫

0

τ−(α+1)e−(τ+ 1
τ )τα dτ +

+∞∫

1

τ−(α+1)e−(τ+ 1
τ )τα dτ ≤

≤
1∫

0

τ−1e−
1
τ e−τ dτ +

+∞∫

1

τ−αe−(τ+ 1
τ )τα dτ ≤

≤
1∫

0

τ−1e−
1
τ dτ +

+∞∫

1

e−(τ+ 1
τ ) dτ ≤

≤
1∫

0

τ−1e−
1
τ dτ +

+∞∫

1

e−τ dτ = Γ(0, 1) +
1
e

, (2.7)

with Γ(a, x) denoting the incomplete Gamma function. ¤

3. The Heat Kernel Related to the Whittaker Integral
Transform

In order to introduce in a formal way the Weierstrass–Whittaker trans-
form (1.2), we need first to study the heat kernel associated with the Whit-
taker transform. Therefore, we will introduce in this section the heat kernel
associated with the Whittaker integral transform. Moreover, we will define
and examine some of its properties.

Let us introduce the Hilbert space HK(R+), defined as the subspace of
L2(R+, e−(x+ 1

x )xα dx) formed by all functions f such that

Wf ∈ L2(R+, e−(τ+ 1
τ )τα dτ).

HK(R+) is endowed with the inner product

〈f, g〉HK =

+∞∫

0

[Wf ](τ)[Wg](τ)e−(τ+ 1
τ )τα dτ (3.1)

and, consequently, the norm of HK(R+) is given by

‖f‖HK =
√
〈f, f〉HK =

( +∞∫

0

∣∣[Wf ](τ)
∣∣2e−(τ+ 1

τ )τα dτ

)1/2

. (3.2)
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Proposition 3.1. Let α > max{2|ν| − 2, 0}. For t > 0, we introduce
Kt(x, y) defined on ]0, +∞[× ]0, +∞[ by

Kt(x, y) =

+∞∫

0

e−4ν2τte−
xτ
2 Wµ,ν(xτ)e−

yτ
2 Wµ,ν(yτ)e−(τ+ 1

τ )τα dτ. (3.3)

For all y ∈ ]0,+∞[ , the function

x 7→ Kt(x, y)

belongs to HK(R+).

Proof. Invoking the Cauchy–Schwarz inequality and the relation (2.19.24.7)
in [8], we will be able to prove first the fact that the kernel belongs to
L2(R+, e−(x+ 1

x )xα dx). Indeed,

‖Kt‖2
L2(R+,e−(x+ 1

x
)xα dx)

=

+∞∫

0

|Kt(x, y)|2e−(x+ 1
x )xα dx =

=

+∞∫

0

(+∞∫

0

e−4ν2τte−
xτ
2 Wµ,ν(xτ)e−

yτ
2 Wµ,ν(yτ)e−(τ+ 1

τ )ταdτ

)2

e−(x+ 1
x )xαdx ≤

≤
+∞∫

0

( +∞∫

0

(e−
xτ
2 Wµ,ν(xτ))2e−(τ+ 1

τ )τα dτ

)
×

×
( +∞∫

0

(
e−

yτ
2 Wµ,ν(yτ)

)2
e−(τ+ 1

τ )τα dτ

)
e−(x+ 1

x )xα dx ≤

≤
+∞∫

0

( +∞∫

0

(e−
xτ
2 Wµ,ν(xτ))2τα dτ

)
e−(x+ 1

x )xα dx×

×
( +∞∫

0

(
e−

yτ
2 Wµ,ν(yτ)

)2
τα dτ

)
=

= (C∗µ,ν)2y−(α+1)

+∞∫

0

x−(α+1)e−(x+ 1
x )xα dx ≤

≤
(
Γ(0, 1) +

1
e

)
(C∗µ,ν)2y−(α+1), (3.4)

where C∗µ,ν is given by (2.6).
In order to prove that Kt ∈ HK(R+), we still need to prove that WKt ∈

L2(R+, e−(τ+ 1
τ )τα dτ).



64 L. P. Castro and M. M. Rodrigues

For α > max{2|ν| − 2, 0}, we obtain the following estimate by using the
Cauchy–Schwarz inequality:

|WKt| =
∣∣∣∣

+∞∫

0

e−
xτ
2 Wµ,ν(xτ)Kt(x, y)e−(x+ 1

x )xα dx

∣∣∣∣ ≤

≤
( +∞∫

0

(e−
xτ
2 Wµ,ν(xτ))2e−(x+ 1

x )xα dx

)1/2

×

×
( +∞∫

0

|Kt(x, y)|2e−(x+ 1
x )xα dx

)1/2

≤

≤
( +∞∫

0

(
e−

xτ
2 Wµ,ν(xτ)

)2
xα dx

)1/2

‖Kt‖
L2(R+,e−(x+ 1

x
)xα dx)

=

= (C∗µ,ν)1/2τ−
α+1

2 ‖Kt‖
L2(R+,e−(x+ 1

x
)xα dx)

.

Taking into account the previous inequality, we have

‖WKt‖2
L2(R+,e−(τ+ 1

τ
)τα dτ)

=

+∞∫

0

∣∣WKt(x, y)
∣∣2e−(τ+ 1

τ )τα dτ ≤

≤ C∗µ,ν‖Kt‖2
L2(R+,e−(x+ 1

x
)xα dx)

+∞∫

0

τ−(α+1)e−(τ+ 1
τ )τα dτ ≤

≤
(
Γ(0, 1) +

1
e

)
C∗µ,ν‖Kt‖2

L2(R+,e−(x+ 1
x

)xα dx)
. (3.5)

Therefore, we have just proved that, for y > 0, the function x 7→ Kt(x, y)
belongs to HK(R+). ¤

In order to obtain some important results related to the heat kernel
and the Weierstrass transform, we need to introduce a new Hilbert space
which we denote by H∗

K(R+). Towards this end, we need first to guarantee
the following result (which will ensure that the above-mentioned new space
definition will be coherent with our purposes).

Lemma 3.2. If f ∈ HK(R+), then
+∞∫

0

[Wf ](τ)e−
xτ
2 Wµ,ν(xτ)e−(τ+ 1

τ )τα dτ (3.6)

belongs to HK(R+).

Proof. Having in mind the definition of HK(R+), under the above hypoth-
esis, we realize that we have to prove that both the element in (3.6) and its
image under W must belong to L2(R+, e−(x+ 1

x )xα dx).
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For start, we will directly prove that for all elements f ∈ HK(R+) we
have

+∞∫

0

[Wf ](τ)e−
xτ
2 Wµ,ν(xτ)e−(τ+ 1

τ )τα dτ ∈ L2
(
R+, e−(x+ 1

x )xα dx
)
.

Indeed,
+∞∫

0

∣∣∣∣
+∞∫

0

[Wf ](τ)e−
xτ
2 Wµ,ν(xτ)e−(τ+ 1

τ )τα dτ

∣∣∣∣
2

e−(x+ 1
x )xα dx ≤

≤
+∞∫

0

( +∞∫

0

(
[Wf ](τ)

)2
e−(τ+ 1

τ )τα dτ

)
×

×
( +∞∫

0

(
e−

xτ
2 Wµ,ν(xτ)

)2
e−(τ+ 1

τ )τα dτ

)
e−(x+ 1

x )xα dx ≤

≤
+∞∫

0

( +∞∫

0

(
[Wf ](τ)

)2
e−(τ+ 1

τ )τα dτ

)
×

×
( +∞∫

0

(
e−

xτ
2 Wµ,ν(xτ)

)2
τα dτ

)
e−(x+ 1

x )xα dx ≤

≤ C∗µ,ν‖Wf‖
L2(R+,e−(τ+ 1

τ
)τα dτ)

+∞∫

0

x−α−1e−(x+ 1
x )xα dx ≤

≤ C∗µ,ν‖Wf‖
L2(R+,e−(τ+ 1

τ
)τα dτ)

+∞∫

0

x−α−1e−xxα dx ≤

≤ C∗µ,ν

(
Γ(0, 1) +

1
e

)
‖Wf‖

L2(R+,e−(τ+ 1
τ

)τα dτ)
. (3.7)

From the previous inequality, taking into account the definition of the
Whittaker integral transform (1.1), we have the following inequality related
with the Whittaker transform:
∣∣∣∣W

[ +∞∫

0

[Wf ](τ)e−
xτ
2 Wµ,ν(xτ)e−(τ+ 1

τ )τα dτ

]∣∣∣∣
2

=

=
∣∣∣∣

+∞∫

0

e−
xτ′
2 Wµ,ν(xτ ′)

( +∞∫

0

[Wf ](τ)e−
xτ
2 Wµ,ν(xτ)×

× e−(τ+ 1
τ )τα dτ

)
e−(x+ 1

x )xα dx

∣∣∣∣
2

≤
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≤
+∞∫

0

(
e−

xτ′
2 Wµ,ν(xτ ′)e−(x+ 1

x )xα

)2

×

×
( +∞∫

0

[Wf ](τ)e−
xτ
2 Wµ,ν(xτ)e−(τ+ 1

τ )τα dτ

)2

dx ≤

≤ C∗µ,ν‖Wf‖
L2(R+,e−(τ+ 1

τ
)τα dτ)

+∞∫

0

(
e−

xτ′
2 Wµ,ν(xτ ′)

)2
x2αx−α−1 dx ≤

≤ (C∗µ,ν)2(τ ′)−α‖Wf‖
L2(R+,e−(τ+ 1

τ
)τα dτ)

. (3.8)

Therefore, for f ∈ HK , we have

W

( +∞∫

0

[Wf ](τ)e−
xτ
2 Wµ,ν(xτ)e−(τ+ 1

τ )τα dτ

)
∈ L2

(
R+, e−(τ ′+ 1

τ′ )(τ ′)α dτ ′
)

i.e.,

+∞∫

0

e−
xτ′
2 Wµ,ν(xτ ′)

( +∞∫

0

[Wf ](τ)e−
xτ
2 Wµ,ν(xτ)e−(τ+ 1

τ )τα dτ

)
e−(x+ 1

x )xαdx

∈ L2
(
R+, e−(τ ′+ 1

τ′ )(τ ′)α dτ ′
)
.

Indeed, from (3.8), we get

+∞∫

0

∣∣∣∣
[
W

( +∞∫

0

[Wf ](τ)e−
xτ
2 Wµ,ν(xτ)e−(τ+ 1

τ )τα dτ

)]
(τ ′)

∣∣∣∣
2

×

× e−(τ ′+ 1
τ′ )(τ ′)α dτ ′ ≤

≤ (C∗µ,ν)2‖Wf‖
L2(R+,e−(τ+ 1

τ
)τα dτ)

+∞∫

0

e−(τ ′+ 1
τ′ )(τ ′)α(τ ′)−α dτ ′ ≤

≤ (C∗µ,ν)2‖Wf‖
L2(R+,e−(τ+ 1

τ
)τα dτ)

. ¤

Having in mind Lemma 3.2, we are now in a position to define H∗
K(R+) as

the space of elements f ∈ HK(R+) which admit the integral representation

f(x) =

+∞∫

0

[Wf ](τ)e−
xτ
2 Wµ,ν(xτ)e−(τ+ 1

τ )τα dτ. (3.9)

We will now exhibit a significative result based on the representation of
the elements of the space H∗

K(R+) and the definition of the heat kernel.



The Weierstrass–Whittaker Integral Transform 67

Lemma 3.3. Let Kt ∈ H∗
K(R+). Then, the Whittaker type transform

(1.1) of the heat kernel is given by

[WKt](τ, x) = e−4ν2τte−
xτ
2 Wµ,ν(xτ). (3.10)

Proof. From Proposition 3.1, we find that Kt ∈ HK(R+). Taking into
account the definition of heat kernel (3.3) and since Kt ∈ H∗

K(R+), we get
[WKt](τ, x) = e−4ν2τte−

xτ
2 Wµ,ν(xτ). ¤

4. Properties of the Weierstrass–Whittaker Transform

In this section, we shall define the above-mentioned Weierstrass–Whitta-
ker transform in a formal way, and derive some of its properties.

Definition 4.1. The Weierstrass transform associated with the Whit-
taker integral transform and called Weierstrass–Whittaker transform, is de-
fined in L2(R+, e−(y+ 1

y )yα dy) by

[Wtf ](x) =

+∞∫

0

Kt(x, y)f(y)e−(y+ 1
y )yα dy. (4.1)

For the classical Weierstrass transform, one can see [9].

Proposition 4.2. Let α > max{0, 2ν−2}. For all t > 0, the Weierstrass
type transform Wtf is a bounded operator from L2(R+, e−(y+ 1

y )yα dy) into
L2(R+, e−(x+ 1

x )xα dx) and, for all f ∈ L2(R+, e−(y+ 1
y )yα dy), we have

‖Wtf‖2
L2(R+,e−(x+ 1

x
)xα dx)

≤

≤ (C∗µ,ν)2
(
Γ(0, 1) +

1
e

)2

‖f‖2
L2(R+,e

−(y+ 1
y

)
yα dy)

. (4.2)

Proof. The absolutely convergence of the integral (4.1) follows from the
Cauchy–Schwarz inequality and Proposition 3.1. Indeed,

∣∣[Wtf ](x)
∣∣ ≤

+∞∫

0

|Kt(x, y)| |f(y)|e−(y+ 1
y )yα dy ≤

≤
( +∞∫

0

|Kt(x, y)|2e−(y+ 1
y )yα dy

)1/2( +∞∫

0

|f(y)|2e−(y+ 1
y )yα dy

)1/2

≤

≤
( +∞∫

0

(C∗µ,ν)2x−(α+1)y−(α+1)e−(y+ 1
y )yα dy

)1/2

‖f‖
L2(R+,e

−(y+ 1
y

)
yα dy)

≤

≤ C∗µ,ν

(
Γ(0, 1) +

1
e

) 1
2
x−

α+1
2 ‖f‖

L2(R+,e
−(y+ 1

y
)
yα dy)

. (4.3)
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Then, for all f ∈ L2(R+, e−(y+ 1
y )yα dy) and using the relation (4.3), we

have

‖Wtf‖2
L2(R+,e−(x+ 1

x
)xα dx)

=

+∞∫

0

|[Wtf ](x)|2e−(x+ 1
x )xα dx ≤

≤ (C∗µ,ν)2
(
Γ(0, 1) +

1
e

)
‖f‖2

L2(R+,e
−(y+ 1

y
)
yα dy)

+∞∫

0

x−(α+1)e−(x+ 1
x )xα dx ≤

≤ (C∗µ,ν)2
(
Γ(0, 1) +

1
e

)2

‖f‖2
L2(R+,e

−(y+ 1
y

)
yα dy)

. ¤

Proposition 4.3. Let α>max{0, 2ν−2}. For all t > 0, the Weierstrass–
Whittaker transform Wtf belongs to the space HK(R+).

Proof. From the previous proposition we have

Wtf ∈ L2
(
R+, e−(x+ 1

x )xα dx
)
.

Now, in order to prove that Wtf belongs to the space HK(R+), we need to
show that W [Wtf ] ∈ L2(R+, e−(τ+ 1

τ )τα dτ).
From the definition of the Whittaker type transform, we obtain

∣∣[W [Wtf ]
]
(τ)

∣∣ ≤
+∞∫

0

e−
xτ
2 |Wµ,ν(xτ)| |Wtf(x)|e−(x+ 1

x )xα dx

and by using (4.3) and taking into account the Cauchy–Schwarz inequality,
we have

∣∣[W [Wtf ]
]
(τ)

∣∣ ≤
(
Γ(0, 1) +

1
e

) 1
2
C∗µ,ν‖f‖

L2(R+,e
−(y+ 1

y
)
yα dy)

×

×
+∞∫

0

e−
xτ
2 |Wµ,ν(xτ)|x−α+1

2 e−(x+ 1
x )xα dx ≤

≤
(
Γ(0, 1) +

1
e

) 1
2
C∗µ,ν‖f‖

L2(R+,e
−(y+ 1

y
)
yα dy)

×

×
( +∞∫

0

(
e−

xτ
2 Wµ,ν(xτ)

)2
e−(x+ 1

x )xα dx

)1/2

×

×
( +∞∫

0

x−(α+1)e−(x+ 1
x )xα dx

)1/2

≤

≤ τ−
α+1

2

(
Γ(0, 1) +

1
e

)
(C∗µ,ν)

3
2 ‖f‖

L2(R+,e
−(y+ 1

y
)
yα dy)

.
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Having in mind the previous inequality, we obtain the following estimate:

∥∥W [Wtf ]
∥∥2

L2(R+,e−(τ+ 1
τ

)τα dτ)
=

+∞∫

0

∣∣W [Wtf ](τ)
∣∣2e−(τ+ 1

τ )τα dτ ≤

≤
(
Γ(0, 1) +

1
e

)2

(C∗µ,ν)3‖f‖2
L2(R+,e

−(y+ 1
y

)
yα dy)

+∞∫

0

τ−(α+1)e−(τ+ 1
τ )τα dτ ≤

≤
(
Γ(0, 1) +

1
e

)3

(C∗µ,ν)3‖f‖2
L2(R+,e

−(y+ 1
y

)
yα dy)

. (4.4)

Hence, it follows that the composition of the Whittaker type transform
(1.1) with the Weierstrass–Whittaker transform (4.1) belongs to the space
L2(R+, e−(τ+ 1

τ )τα dτ) and therefore Wtf ∈ HK(R+). ¤

The just used composition of integral transformations can be described
in an even more detailed way if we invoke the representation of the elements
of the space H∗

K(R+) and the definition of the Weierstrass–Whittaker trans-
form, as we shall see in the next result.

Lemma 4.4. Let Wtf ∈ H∗
K(R+). For all t > 0, we have

[
W [Wtf ]

]
(τ) = e−4ν2τt[Wf ](τ). (4.5)

Proof. From the definition of Weierstrass–Whittaker transform, the defi-
nition of inner product in HK(R+), Proposition 3.1, Proposition 4.3 and
Lemma 3.3, we deduce

[Wtf ](x) =

+∞∫

0

Kt(x, y)f(y)e−(y+ 1
y )yα dy =

=

+∞∫

0

[WKt](τ)W [f ](τ)e−(τ+ 1
τ )τα dτ =

=

+∞∫

0

e−4ν2τte−
xτ
2 Wµ,ν(xτ)[Wf ](τ)e−(τ+ 1

τ )τα dτ.

Since Wtf ∈ H∗
K(R+), invoking (3.9), we find

[
W [Wtf ]

]
(τ) = e−4ν2τt[Wf ](τ). (4.6)

¤

5. The Weierstrass–Whittaker Transform as a Solution
of a Heat Type Equation

In this last section we will show that the Weierstrass–Whittaker trans-
form Wtf solves a non-stationary heat type equation (cf. (5.2)). To this
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end, first of all, we need to prove that the kernel Kt(x, y) is a solution of a
variant of the heat equation.

We start by recalling that the Whittaker function is an eigenfunction of
a second order differential operator. More precisely,

AzWµ,ν(z) = 4ν2Wµ,ν(z),

where

Az = 4z2 d2

dz2
− z2 + 4µz + 1. (5.1)

From the differential properties of the Whittaker function, the absolute
and uniform convergence of the integral (1.3) and its derivatives with respect
to t and x, we directly arrive at the following result.

Corollary 5.1. The kernel Kt(x, y) satisfies the non-stationary heat type
equation

∂tu(t, x, y) = −Lxu(t, x, y), t, x, y > 0, (5.2)

where

Lx = 4τ3x2 d2

dx2
+ 4τ4x2 d

dx
+ τ3x2(τ2 − 1) + 4µτ2x + τ. (5.3)

is a second order differential operator which satisfies

Lx

(
e−

xτ
2 Wµ,ν(xτ)

)
= 4ν2τe−

xτ
2 Wµ,ν(xτ). (5.4)

Furthermore, the kernel Kt(x, y) is also a solution of the non-stationary
heat type equation

∂tu(t, x, y) = −Lyu(t, x, y), t, x, y > 0, (5.5)

where

Ly = 4τ3y2 d2

dy2
+ 4τ4y2 d

dy
+ τ3y2(τ2 − 1) + 4µτ2y + τ (5.6)

is a second order differential operator which satisfies

Ly

(
e−

yτ
2 Wµ,ν(yτ)

)
= 4ν2τe−

yτ
2 Wµ,ν(yτ). (5.7)

Theorem 5.2. Let f ∈ HK(R+). For all t > 0 and for all Wtf ∈
H∗

K(R+), the function Wtf solves the generalized heat equation (5.2), with
the initial condition lim

t→0
[Wtf ](x) = f(x) in HK(R+).

Proof. Propositions 3.1 and 4.2 guarantee the necessary differential proper-
ties of Wtf , and from the differential properties of the Whittaker function
we deduce that the function Wtf is a solution of (5.2).
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We will now prove the initial condition. From the definition of the norm
of HK(R+) (cf. (3.2)) and using Lemma 4.4, we have

‖Wtf − f‖2
L2(R+,e−(x+ 1

x
)xα dx)

=

=

+∞∫

0

∣∣∣
[
W [Wtf ]

]
(τ)− [Wf ](τ)

∣∣∣
2

e−(τ+ 1
τ )τα dτ =

=

+∞∫

0

∣∣e−4ν2τt − 1
∣∣2∣∣[Wf ](τ)

∣∣2e−(τ+ 1
τ )τα dτ. (5.8)

Since 4ν2τt > 0, we realize that the right-hand side of (5.8) is estimated by
+∞∫
0

|[Wf ](τ)|2e−(τ+ 1
τ )τα dτ . Then, we can pass to the limit → 0 through

equation (5.8) and the desired result is obtained. ¤
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