NINO PARTSVANIA

ON A NONLOCAL BOUNDARY VALUE PROBLEM FOR TWO-DIMENSIONAL NONLINEAR SINGULAR DIFFERENTIAL SYSTEMS

Dedicated to the blessed memory of Professor Levan Magnaradze

Abstract. For two-dimensional nonlinear differential systems with strong singularities with respect to a time variable, unimprovable sufficient conditions for solvability and well-posedness of the Nicoletti type nonlocal boundary value problem are established.

რეზიუმე. ორგანზომილებიანი არაწრფივი დიფერენციალური სისტემებისათვის ძლიერი სინგულარობებით დროითი ცვლადის მიმართ დადგენილია ნიკოლეტის ტიპის არალოკალური სასაზღვრო ამოცანის ამოხსნადობისა და კორექტულობის არაგაუმჯობესებადი საკმარისი პირობები.

2010 Mathematics Subject Classification: 34B10, 34B16. Key words and phrases: Two-dimensional differential system, nonlinear, nonlocal boundary value problem, strong singularity, well-posedness.

Let $-\infty < a < b < +\infty$, C(]a, b[) be the space of continuous functions $u:]a, b[\to R$ with finite right and left limits u(a+) and u(b-) at the points a and b and with the norm $||u||_C = \sup \{|u(t)|: a < t < b\}$, and let $L^2(]a, b[)$ be the space of square integrable functions $u:]a, b[\to R$ with the norm

$$||u||_{L^2} = \left(\int_a^b u^2(t) \, dt\right)^{1/2}$$

By $C_0^{1,2}(]a, b[; R^2)$ we denote the space of vector functions $(u_1, u_2) :]a, b[\to R^2$ with continuously differentiable components u_1 and u_2 , satisfying the conditions

$$u_1(a+) = 0, \quad \int_a^b \left(u_1'^2(t) + u_2^2(t) \right) dt < +\infty.$$

We consider the nonlinear differential system

$$\frac{du_1}{dt} = f_1(t, u_2), \quad \frac{du_2}{dt} = f_2(t, u_1) \tag{1}$$

with the Nicoletti type nonlocal boundary conditions

$$u_1(a+) = 0, \quad u_2(b-) = \varphi(u_1, u_2).$$
 (2)

Here $f_1: [a, b[\times R \to R \text{ and } f_2:]a, b] \times R \to R$ are continuous functions, and $\varphi: C([a, b[) \times L^2(]a, b[) \to R$ is a continuous functional.

A vector function (u_1, u_2) : $]a, b[\rightarrow R^2$ is said to be a solution of the problem (1), (2) if:

(i) u_1 and u_2 are continuously differentiable and satisfy the system (1) at every point of the interval]a, b];

(ii) $u_1 \in C([a, b[), u_2 \in L^2([a, b[), and the equalities (2) are satisfied.$

In the present paper, unimprovable in a certain sense conditions are established guaranteeing, respectively, the solvability of (1), (2) in the space $C_0^{1,2}(]a, b[; R^2)$ and the stability of its solution with respect to small perturbations of right-hand sides of (1) and the functional φ . In contrast to the results from [2]–[6], concerning the solvability and well-posedness of the Nicoletti type problems, the theorems below cover the case, where the system (1) with respect to a time variable has a strong singularity at the point a in the Agarwal–Kiguradze sense [1], i.e., the case, where

$$\int_{a}^{b} (t-a) \Big(|f_{2}(t,x)| - f_{2}(t,x) \operatorname{sgn}(x) \Big) dt = +\infty \quad \text{for } x \neq 0.$$

Along with the problem (1), (2) we consider the auxiliary problem

$$\frac{du_1}{dt} = \lambda f_1(t, u_2), \quad \frac{du_2}{dt} = \lambda \delta(t) f_2(t, u_1), \tag{3}$$

$$u_1(a+) = 0, \quad u_2(b-) = \lambda \varphi(u_1, u_2),$$
(4)

dependent on a parameter $\lambda \in [0, 1]$ and an arbitrary continuous function $\delta : [a, b] \to [0, 1]$.

Theorem 1 (A principle of a priori boundedness). Let there exist a nonnegative function $g \in L^2(]a, b[)$ and a positive constant ρ such that

$$|f_1(t,x)| \le g(t)(1+|x|)$$
 for $a < t < b, x \in R$.

and for any number $\lambda \in [0,1]$ and an arbitrary continuous function $\delta : [a,b] \rightarrow [0,1]$ every solution (u_1, u_2) of the problem (3), (4) admits the estimate

$$\|u_1'\|_{L^2} + \|u_2\|_{L^2} < \rho.$$

Then the problem (1), (2) has at least one solution in the space $C_0^{1,2}(]a, b[; R^2)$.

Consider now the case, where

$$\varphi(u_1, u_2)\operatorname{sgn}(u_1(b-)) \le$$

$$\leq \alpha_0 + \alpha_1 \|u_1'\|_{L^2} + \alpha_2 \|u_2\|_{L^2} \quad \text{for} \quad (u_1, u_2) \in C_0^{1,2}(]a, b[; R^2), \tag{5}$$

and in the domain $]a, b[\times R$ the inequalities

$$\ell_0|x| \le \left[f_1(t,x) - f_1(t,0) \right] \operatorname{sgn}(x) \le \ell_1 |x|, \tag{6}$$

$$\left[f_2(t,x) - f_2(t,0)\right] \operatorname{sgn}(x) \ge -\frac{\ell}{(t-a)^2} |x| \tag{7}$$

are fulfilled.

122

On the basis of Theorem 1, the following theorem can be proved.

Theorem 2. Let

$$\int_{a}^{b} f_{1}^{2}(t,0) dt < +\infty, \quad \int_{a}^{b} (t-a)^{1/2} |f_{2}(t,0)| dt < +\infty, \tag{8}$$

and let the conditions (5)–(7) hold, where $\alpha_i \geq 0$ (i = 0, 1, 2), $\ell_k > 0$ (k = 0, 1), and $\ell \geq 0$ are constants such that

$$(b-a)^{1/2} (\alpha_1 \ell_1 + \alpha_2) \ell_1 + 4\ell_1^2 \ell < \ell_0.$$
(9)

Then the problem (1), (2) has at least one solution in the space $C_0^{1,2}(]a, b[; R^2)$.

Particular case of the boundary conditions (2) are the multi-point boundary conditions

$$u_1(a+) = 0, \quad u_2(b-) = \sum_{k=1}^{n-1} \beta_k u_1(t_k) + \beta_n u_1(b-) + \beta_0, \tag{10}$$

where $\beta_k \in R$ (k = 0, ..., n). Suppose

$$[\beta_n]_+ = \frac{1}{2} \left(|\beta_n| + \beta_n \right).$$

From Theorem 2 it follows

Corollary 1. Let the conditions (6)–(8) be satisfied, where $\ell_k > 0$ (k = 0, 1) and $\ell \ge 0$ are constants such that

$$\frac{2}{\pi} (b-a)^{1/2} \left(\sum_{k=1}^{n-1} |\beta_k| (t_k - a)^{1/2} + [\beta_n]_+ (b-a)^{1/2} \right) \ell_1^2 + 4\ell_1^2 \ell < \ell_0.$$
(11)

Then the problem (1), (10) has at least one solution in the space $C_0^{1,2}(]a,b[;R^2)$.

Now we consider the perturbed problem

$$\frac{dv_1}{dt} = f_1(t, v_2) + q_1(t), \quad \frac{dv_2}{dt} = f_2(t, v_1) + q_2(t), \tag{12}$$

$$v_1(a+) = 0, \quad v_2(b-) = \varphi(v_1, v_2) + \alpha,$$
(13)

and we introduce the following

Definition. The problem (1), (2) is said to be **well-posed** in the space $C_0^{1,2}(]a, b[; \mathbb{R}^2)$ if it has a unique solution (u_1, u_2) in that space and there exists a positive constant r such that for any continuous functions $q_i]a, b[\to \mathbb{R}$ (i = 1, 2), satisfying the condition

$$\nu(q_1, q_2) = \left(\int_a^b q_1^2(t) \, dt\right)^{1/2} + \int_a^b (t-a)^{1/2} |q_2(t)| \, dt < +\infty,$$

and for any real number α , the problem (12), (13) has at least one solution $(v_1, v_2) \in C_0^{1,2}(]a, b[; \mathbb{R}^2)$, and every such solution admits the estimate

$$||v_1' - u_1'||_{L^2} + ||v_2 - u_2||_{L^2} \le r(\nu(q_1, q_2) + |\alpha|).$$

Theorem 3. Let

 $\varphi(u_1, u_2) \operatorname{sgn}(u_1(b-)) \leq$

$$\leq \alpha_1 \|u_1'\|_{L^2} + \alpha_2 \|u_2\|_{L^2} \text{ for } (u_1, u_2) \in C_0^{1,2}(]a, b[; R^2),$$

and let in the domain $]a, b[\times R$ the conditions

$$\ell_0|x| \le f_1(t, x)\operatorname{sgn}(x) \le \ell_1|x|, \tag{14}$$

$$f_2(t,x)\operatorname{sgn}(x) \ge -\frac{\ell}{(t-a)^2}|x|$$
 (15)

be fulfilled, where $\alpha_i \geq 0$ (i = 1, 2), $\ell_k > 0$ (k = 0, 1), and $\ell \geq 0$ are constants, satisfying the inequality (9). Then the problem (1), (2) is well-posed in the space $C_0^{1,2}(]a, b[; \mathbb{R}^2)$.

In the case, where the boundary conditions (2) have the form

$$u_1(a+) = 0, \quad u_2(b-) = \sum_{k=1}^{n-1} \beta_k u_1(t_k) + \beta_n u_1(b-),$$
 (16)

Theorem 3 yields

Corollary 2. Let in the domain $]a, b[\times R$ the conditions (14) and (15) be satisfied, where $\ell_k > 0$ (k = 0, 1) and $\ell \ge 0$ are constants, satisfying the inequality (11). Then the problem (1), (16) is well-posed in the space $C_0^{1,2}(]a, b[; R^2)$.

As an example, we consider the differential system

$$\frac{du_1}{dt} = p_1(t, u_2)u_2, \quad \frac{du_2}{dt} = \frac{p_2(t, u_1)}{(t-a)^2}u_1, \tag{17}$$

where $p_1:]a, b[\times R \to R \text{ and } p_2:]a, b] \times R \to R$ are continuous functions. For this system from Corollary 2 it follows

Corollary 3. Let in the domain $]a, b[\times R$ the conditions

 $\ell_0 \le p_1(t, x) \le \ell_1, \quad p_2(t, x) \ge -\ell$

be satisfied, where $\ell_i > 0$ (i = 0, 1) and $\ell \ge 0$ are constants, satisfying the inequality (11). Then the problem (17), (16) is well-posed.

Remark 1. If the conditions of Corollary 3 are satisfied and in the domain $]a, b[\times R$ the inequality

$$p_2(t,x) \le -\overline{\ell}$$

holds, where $\overline{\ell}$ is a positive constant, then the system (17) with respect to a time variable has a strong singularity at the point *a* in the Agarwal–Kiguradze sense.

Remark 2. The condition (9) in Theorems 2 and 3 is unimprovable and it cannot be replaced by the condition

$$(b-a)^{1/2}(\alpha_1\ell_1 + \alpha_2)\ell_1 + 4\ell_1^2\ell \le \ell_0.$$

124

Also, the strict inequality (11) in Corollaries 1–3 cannot be replaced by the non-strict one

$$\frac{2}{\pi} (b-a)^{1/2} \left(\sum_{k=1}^{n-1} |\beta_k| (t_k-a)^{1/2} + [\beta_n]_+ (b-a)^{1/2} \right) \ell_1^2 + 4\ell_1^2 \ell \le \ell_0.$$

Acknowledgement

This work is supported by the Shota Rustaveli National Science Foundation (Project # GNSF/ST09_175_3-101).

References

- R. P. AGARWAL AND I. KIGURADZE, Two-point boundary value problems for higherorder linear differential equations with strong singularities. *Boundary Value Problems*, 2006, 1–32; Article ID 83910.
- 2. I. T. KIGURADZE, Some singular boundary value problems for ordinary differential equations. (Russian) *Tbilisi University Press, Tbilisi*, 1975.
- I. T. KIGURADZE, On a singular problem of Cauchy–Nicoletti. Ann. Mat. Pura Appl. 104 (1975), 151–175.
- I. T. KIGURADZE, Boundary value problems for systems of ordinary differential equations. (Russian) Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat., Novejshie Dostizh. 30 (1987), 3–103; English transl.: J. Sov. Math. 43 (1988), No. 2, 2259–2339.
- I. KIGURADZE, Optimal conditions of solvability and unsolvability of nonlocal problems for essentially nonlinear differential systems. *Comm. Math. Anal.* 8 (2010), No. 3, 92–01.
- A. LASOTA AND C. OLECH, An optimal solution of Nicoletti's boundary value problem. Ann. Polon. Math. 18 (1966), 131–139.
- N. PARTSVANIA, On two-point boundary value problems for two-dimensional linear differential systems with singular coefficients. *Mem. Differential Equations Math. Phys.* 51 (2010), 155–162.
- N. PARTSVANIA, On two-point boundary value problems for two-dimensional nonlinear differential systems with strong singularities. *Mem. Differential Equations Math. Phys.* 58 (2013), 147–152.

(Received 25.12.2012)

Author's addresses:

1. A. Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State University, 6 Tamarashvili St., Tbilisi 0177, Georgia;

2. International Black Sea University, 2 David Agmashenebeli Alley 13km, Tbilisi 0131, Georgia.

E-mail: ninopa@rmi.ge