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Abstract. The purpose of this paper is to investigate basic transmission
and interface crack problems for the differential equations of the theory of
elasticity of hemitropic materials with regard to thermal effects. We con-
sider the so called pseudo-oscillation equations corresponding to the time
harmonic dependent case. Applying the potential method and the theory of
pseudodifferential equations first we prove uniqueness and existence theo-
rems of solutions to the Dirichlet and Neumann type transmission-boundary
value problems for piecewise homogeneous hemitropic composite bodies. Af-
terwards we investigate the interface crack problems and study regularity
properties of solution.
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îâäæñéâ. ïðŽðææï éæäŽêæŽ ßâéæðîëìñèæ ïýâñèâĲæï áîâçŽáëĲæï åâëîæ-
æï áæòâîâêùæŽèñîæ àŽêðëèâĲâĲæïŽåãæï úæîæåŽáæ ïŽçëêðŽóðë áŽ ĲäŽîæï
ðæìæï ŽéëùŽêâĲæï àŽéëçãèâãŽ åâîéñèæ âòâóðâĲæï àŽåãŽèæïûæêâĲæå. àŽêýæ-
èñèæŽ â. û. òïâãáë-îýâãæï àŽêðëèâĲâĲæ, îëéèâĲæù öââïŽĲŽéâĲŽ áîëäâ ßŽî-
éëêæñèŽá áŽéëçæáâĲñè öâéåýãâãŽï. ìëðâêùæŽèåŽ éâåëáæïŽ áŽ òïâãáëáæ-
òâîâêùæŽèñî àŽêðëèâĲŽåŽ åâëîææï àŽéëõâêâĲæå þâî áŽéðçæùâĲñèæŽ áæ-
îæýèâïŽ áŽ êâæéŽêæï ðæìæï ïŽïŽäôãîë-ïŽçëêðŽóðë ŽéëùŽêâĲæï ŽéëêŽýïêâĲæï
ŽîïâĲëĲæïŽ áŽ âîåŽáâîåëĲæï åâëîâéâĲæ ñĲêëĲîæã âîåàãŽîëãŽêæ ßâéæðîë-
ìñèæ ïýâñèâĲæïŽåãæï, ýëèë öâéáâà àŽéëçãèâñèæŽ ĲäŽîæï ðæìæï ŽéëùŽêŽ,
îëáâïŽù ĲäŽîæ éáâĲŽîâëĲï ïŽçëêðŽóðë äâáŽìæîäâ, áŽ öâïûŽãèæèæŽ Žéë-
êŽýïêæï îâàñèŽîëĲŽ.
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1. Introduction

Technological and industrial developments, and also recent important
progress in biological and medical sciences require the use of more general
and refined models for elastic bodies. In a generalized solid continuum, the
usual displacement field has to be supplemented by a microrotation field.
Such materials are called micropolar or Cosserat solids. They model con-
tinua with a complex inner structure whose material particles have 6 degree
of freedom (3 displacement components and 3 microrotation components).
Recall that the classical elasticity theory allows only 3 degrees of freedom
(3 displacement components).

Experiments have shown that micropolar materials possess quite different
properties in comparison with the classical elastic materials (see, e.g., [3],
[4], [7], [15], [23], [25], [26], and the references therein). For example, in non-
centrosymmetric micropolar materials the propagation of left-handed and
right-handed elastic waves is observed. Moreover, the twisting behaviour
under an axial stress is a purely hemitropic (chiral) phenomenon and has
no counterpart in classical elasticity. Such solids are called hemitropic non-
centrosymmetric, acentric, or chiral. Throughout the paper we use the term
hemitropic.

Hemitropic solids are not isotropic with respect to inversion, i.e., they
are isotropic with respect to all proper orthogonal transformations but not
with respect to mirror reflections.

Materials may exhibit chirality on the atomic scale, as in quartz and in
biological molecules - DNA, as well as on a large scale, as in composites with
helical or screw–shaped inclusions, certain types of nanotubes, fabricated
structures such as foams, chiral sculptured thin films and twisted fibers. For
more details see the references [3], [4], [14], [15], [20], [23], [24], [26]–[30],
[34], [35], [46]–[50], [53], [56], [57].

Mathematical models describing the chiral properties of elastic hemitropic
materials have been proposed by Aéro and Kuvshinski [3], [4] (for historical
notes see also [14], [15], [46], and the references therein).

In the present paper we deal with the model of micropolar elasticity for
hemitropic solids when the thermal effects are taken into consideration.

In the mathematical theory of hemitropic thermoelasticity there are in-
troduced the asymmetric force stress tensor and couple stress tensor, which
are kinematically related with the asymmetric strain tensor, torsion (cur-
vature) tensor and the temperature function via the constitutive equations.
All these quantities along with the heat flux vector are expressed in terms of
the components of the displacement and microrotation vectors, and the tem-
perature function. In turn, the displacement and microrotation vectors, and
the temperature satisfy a coupled complex system of second order partial
differential equations of dynamics. When the mechanical and thermal char-
acteristics (displacements, microrotations, temperature, body force, body
couple vectors, and heat source) do not depend on the time variable t we
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have the differential equations of statics. If time dependence is harmonic
(i.e., the pertinent fields are represented as the product of the time depen-
dent exponential function exp{−iσt} and a function of the spatial variable
x ∈ R3) then we have the steady state oscillation equations. Here σ is a real
frequency parameter. Note that if σ = 0, then we obtain the equations of
statics. If σ = σ1 + iσ2 is a complex parameter, then we have the so called
pseudo-oscillation equations (which are related to the dynamical equations
via the Laplace transform). All the above equations generate a strongly
elliptic, formally non-self-adjoint 7× 7 matrix differential operator.

The Dirichlet, Neumann and mixed type boundary value problems (BVP)
corresponding to this model are well investigated for homogeneous bodies
of arbitrary shape and the uniqueness and existence theorems are proved,
and regularity results for solutions are established by the potential method,
as well as by variational methods (see [39]–[43] and the references therein).

The main goal of our investigation is to study the Dirichlet and Neumann
type transmission and interface crack problems of the theory of elasticity
with regard to thermal effects for piecewise homogeneous hemitropic com-
posite bodies of arbitrary geometrical shape. We develop the boundary
integral equations method to obtain the existence and uniqueness results in
various Hölder (Ck,α), Sobolev–Slobodetski (W s

p ) and Besov (Bs
p,q) func-

tional spaces. We study regularity properties of solutions at the crack edges
and characterize the corresponding stress singularity exponents.

2. Field Equations

2.1. Constitutive relations and basic differential equations. Denote
by R3 the three-dimensional Euclidean space and let Ω+ ⊂ R3 be a bounded
domain with a boundary S := ∂Ω+, Ω+ = Ω+ ∪ S. Further, let Ω− =
R3 \ Ω+. We assume that Ω ∈ {Ω+,Ω−} is filled with an elastic material
possessing the hemitropic properties.

Denote by u = (u1, u2, u3)> and ω = (ω1, ω2, ω3)> the displacement
vector and the microrotation vector, respectively. By ϑ we denote the tem-
perature increment – temperature distribution function. Here and in what
follows the symbol (·)> denotes transposition. Note that the microrotation
vector in the hemitropic elasticity theory is kinematically distinct from the
macrorotation vector 1

2 curl u.
Throughout the paper the central dot denotes the real scalar product,

i.e., a · b :=
N∑

k=1

akbk for complex-valued N -dimensional vectors a, b ∈ CN .

The force stress {τpq} and the couple stress {µpq} tensors in the lin-
ear theory of hemitropic thermoelasticity read as follows (the constitutive
equations)

τpq = τpq(U) := (µ + α)∂puq + (µ− α)∂qup + λδpq div u + δδpq div ω+
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+(κ + ν)∂pωq + (κ − ν)∂qωp − 2α

3∑

k=1

εpqkωk − δpqηϑ, (2.1)

µpq = µpq(U) := δδpq div u + (κ + ν)
[
∂puq −

3∑

k=1

εpqkωk

]
+ βδpq div ω+

+(κ−ν)
[
∂qup−

3∑

k=1

εqpkωk

]
+(γ + ε)∂pωq+(γ − ε)∂qωp−δpqζϑ, (2.2)

where U = (u, ω, ϑ)>, δpq is the Kronecker delta, εpqk is the permutation
(Levi–Civitá) symbol, and α, β, γ, δ, λ, µ, ν, κ, and ε are the material
constants, while η > 0 and ζ > 0 are constants describing the coupling of
mechanical and thermal fields (see [3], [14]), ∂ = (∂1, ∂2, ∂3), ∂j = ∂/∂xj ,
j = 1, 2, 3.

The linear equations of dynamics of the thermoelasticity theory of hemi-
tropic materials have the form (see, e.g., [14])

3∑
p=1

∂pτpq(x, t) + %Fq(x, t) = %∂2
ttuq(x, t), q = 1, 2, 3,

3∑
p=1

∂pµpq(x, t)+
3∑

l,r=1

εqlrτlr(x, t)+%Gq(x, t) = I∂2
ttωq(x, t), q = 1, 2, 3,

κ′∆ϑ(x, t)−η∂t div u(x, t)−ζ∂t div ω(x, t)−κ′′∂tϑ(x, t) + Q(x, t) = 0,

where t is the time variable, ∂t = ∂/∂t, F = (F1, F2, F3)> and G =
(G1, G2, G3)> are the body force and body couple vectors per unit volume,
Q is the heat source density, % is the mass density of the elastic material,
and I is a constant characterizing the so called spin torque corresponding
to the microrotations (i.e., the moment of inertia per unit volume); here
κ′ = λ0

T0
and κ′′ = c0

T0
, where λ0 > 0 is the heat conduction coefficient,

T0 > 0 is an initial natural state temperature and c0 > 0 is the specific heat
coefficient.

Using the relations (2.1)–(2.2) we can rewrite the above dynamic equa-
tions as

(µ + α)∆u(x, t) + (λ + µ− α) grad div u(x, t) + (κ + ν)∆ω(x, t)+

+(δ + κ − ν) grad div ω(x, t) + 2α curl ω(x, t)−
−η gradϑ(x, t) + %F (x, t) = %∂2

ttu(x, t),

(κ + ν)∆u(x, t) + (δ + κ − ν) grad div u(x, t) + 2α curl u(x, t)+

+(γ + ε)∆ω(x, t) + (β + γ − ε) grad div ω(x, t) + 4ν curl ω(x, t)−
−4αω(x, t)− ζ gradϑ(x, t) + %G(x, t) = I∂2

ttω(x, t),

κ′∆ϑ(x, t)−η∂t div u(x, t)−ζ∂t div ω(x, t)−κ′′∂tϑ(x, t) + Q(x, t)= 0,

where ∆ is the Laplace operator.
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If all the quantities involved in these equations are harmonic time de-
pendent, i.e., u(x, t) = u(x)e−itσ, ω(x, t) = ω(x)e−itσ, ϑ(x, t) = ϑ(x)e−itσ,
F (x, t) = F (x)e−itσ, G(x, t) = G(x)e−itσ and Q(x, t) = Q(x)e−itσ with
σ ∈ R and i =

√−1, we obtain the steady state oscillation equations of the
hemitropic theory of thermoelasticity:

(µ + α)∆u(x) + (λ + µ− α) grad div u(x) + %σ2u(x)+

+(κ + ν)∆ω(x) + (δ + κ − ν) grad div ω(x) + 2α curlω(x)−
−η gradϑ(x) = −%F (x),

(κ + ν)∆u(x) + (δ + κ − ν) grad div u(x) + 2α curlu(x)+

+(γ + ε)∆ω(x) + (β + γ − ε) grad div ω(x) + 4ν curlω(x)−
−ζ grad ϑ(x) + (Iσ2 − 4α)ω(x) = −%G(x),

(κ′∆ + iσκ′′)ϑ(x) + iησ div u(x) + iζσ div ω(x) = −Q(x),

(2.3)

here u, ω, F , and G are complex-valued vector functions, while ϑ and Q are
complex-valued scalar functions, and σ is a frequency parameter.

If σ = σ1 + iσ2 is a complex parameter with σ2 6= 0, then the above
equations are called the pseudo–oscillation equations, while for σ = 0 they
represent the equilibrium equations of statics.

Let us introduce the block wise 7× 7 matrix differential operator corre-
sponding to the system (2.3):

L(∂, σ) :=




L(1)(∂, σ) L(2)(∂, σ) L(5)(∂, σ)
L(3)(∂, σ) L(4)(∂, σ) L(6)(∂, σ)
L(7)(∂, σ) L(8)(∂, σ) L(9)(∂, σ)




7×7

, (2.4)

where

L(1)(∂, σ) :=
[
(µ + α)∆ + %σ2

]
I3 + (λ + µ− α)Q(∂),

L(2)(∂, σ) = L(3)(∂, σ) := (κ + ν)∆I3 + (δ + κ − ν)Q(∂) + 2αR(∂),

L(4)(∂, σ) := [(γ + ε)∆ + (Iσ2 − 4α)]I3 + (β + γ − ε)Q(∂) + 4νR(∂),

L(5)(∂, σ) := −η∇>, L(6)(∂, σ) := −ζ∇>, L(7)(∂, σ) := iησ∇,

L(8)(∂, σ) := iζσ∇, L(9)(∂, σ) := κ′∆ + iσκ′′.

Here and in the sequel Ik stands for the k × k unit matrix and

R(∂) := [−εkjl∂l]3×3, Q(∂) := [∂k∂j ]3×3, ∇ := [∂1, ∂2, ∂3]. (2.5)

Throughout the paper summation over repeated indexes is meant from one
to three if not otherwise stated. It is easy to see that for v = (v1, v2, v3)>

R(∂)v = curl v, Q(∂)v = grad div v, (2.6)

R(−∂) = −R(∂) = [R(∂)]>, Q(∂)R(∂) = R(∂)Q(∂) = 0,

Q(∂) = [Q(∂)]>, [R(∂)]2 = Q(∂)−∆I3, [Q(∂)]2 = Q(∂)∆.
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Due to the above notation, the system (2.3) can be rewritten in matrix
form as

L(∂, σ)U(x) = Φ(x), U = (u, ω, ϑ)>, Φ = (−%F,−%G,−Q)>.

Note that L(∂, σ) is not formally self-adjoint. Further, let us remark that
the differential operator

L(∂) := L(∂, 0) (2.7)
corresponds to the static equilibrium case, while the formally self-adjoint
differential operator

L0(∂) :=




L
(1)
0 (∂) L

(2)
0 (∂) [0]3×1

L
(3)
0 (∂) L

(4)
0 (∂) [0]3×1

[0]1×3 [0]1×3 κ′∆




7×7

(2.8)

with

L
(1)
0 (∂) := (µ + α)∆I3 + (λ + µ− α)Q(∂),

L
(2)
0 (∂) = L

(3)
0 (∂) := (κ + ν)∆I3 + (δ + κ − ν)Q(∂),

L
(4)
0 (∂) := (γ + ε)∆I3 + (β + γ − ε)Q(∂),

represents the principal homogeneous part of the operators (2.4) and (2.7).
Denote

L̃(∂, σ) :=
[
L(1)(∂, σ) L(2)(∂, σ)
L(3)(∂, σ) L(4)(∂, σ)

]

6×6

,

L̃0(∂) :=

[
L

(1)
0 (∂) L

(2)
0 (∂)

L
(3)
0 (∂) L

(4)
0 (∂)

]

6×6

.

(2.9)

The operators (2.9) correspond to the equations of hemitropic elasticity
when thermal effects are not taken into consideration ([40]). It is clear that
the operator L0(∂), L̃(∂, σ) and L̃0(∂) are formally self-adjoint.

2.2. Generalized stress operators. The components of the force stress
vector τ (n) and the couple stress vector µ(n), acting on a surface element
with a unite normal vector n = (n1, n2, n3), read as

τ (n) =
(
τ

(n)
1 , τ

(n)
2 , τ

(n)
3

)>
, µ(n) =

(
µ

(n)
1 , µ

(n)
2 , µ

(n)
3

)>
,

where

τ (n)
q =

3∑
p=1

τpqnp, µ(n)
q =

3∑
p=1

µpqnp, q = 1, 2, 3.

It is also well known that the normal component of the heat flux vector
across a surface element with a normal vector n = (n1, n2, n3) is expressed
with the help of the normal derivative of the temperature function

κ′n · ∇ϑ = κ′
3∑

p=1

np∂pϑ = κ′∂nϑ,
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where ∂n = ∂/∂n denotes the usual normal derivative.
Throughout the paper we will refer the six vector (τ (n), µ(n))> as the

mechanical thermo-stress vector, while the seven vector (τ (n), µ(n), κ′∂nϑ)>

as the generalized thermo-stress vector.
Let us introduce the generalized thermo-stress operators

T (∂, n) =
[
T (1)(∂, n) T (2)(∂, n) −ηn>

T (3)(∂, n) T (4)(∂, n) −ζn>

]

6×7

, (2.10)

P(∂, n) =




T (1)(∂, n) T (2)(∂, n) −ηn>

T (3)(∂, n) T (4)(∂, n) −ζn>

[0]1×3 [0]1×3 κ′∂n




7×7

, (2.11)

where

T (j) = [T (j)
pq ]3×3, j = 1, 4, n> = (n1, n2, n3)>,

T (1)
pq (∂, n) = (µ + α)δpq∂n + (µ− α)nq∂p + λnp∂q,

T (2)
pq (∂, n) = (κ + ν)δpq∂n + (κ − ν)nq∂p + δnp∂q − 2α

3∑

k=1

εpqknk,

T (3)
pq (∂, n) = (κ + ν)δpq∂n + (κ − ν)nq∂p + δnp∂q,

T (4)
pq (∂, n) = (γ + ε)δpq∂n + (γ − ε)nq∂p + βnp∂q − 2ν

3∑

k=1

εpqknk.

One can easily check that for an arbitrary vector U = (u, ω, ϑ)>,

T (∂, n)U =
(
τ (n), µ(n)

)>
, P(∂, n)U =

(
τ (n), µ(n), κ′∂nϑ

)>
,

i.e., the six vector T (∂, n)U corresponds to the mechanical thermo-stress
vector and the seven vector P(∂, n)U corresponds to the generalized thermo-
stress vector.

Further, let us introduce the boundary differential operators which occur
in Green’s formulas and are associated with the adjoint differential operator
L∗(∂, σ) := L>(−∂, σ):

T ∗(∂, n) =
[
T (1)(∂, n) T (2)(∂, n) −iσηn>

T (3)(∂, n) T (4)(∂, n) −iσζn>

]

6×7

,

P∗(∂, n) =




T (1)(∂, n) T (2)(∂, n) −iσηn>

T (3)(∂, n) T (4)(∂, n) −iσζn>

[0]1×3 [0]1×3 κ′∂n




7×7

.

(2.12)

It is easy to see that the principal homogeneous parts of the operators
T (∂, n) and T ∗(∂, n) are the same, as well as the principal homogeneous
parts of the operators P(∂, n) and P∗(∂, n).
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Note that when the thermal effects are not taken into consideration the
hemitropic stress operator reads as [40]

T (∂, n) =
[
T (1)(∂, n) T (2)(∂, n)
T (3)(∂, n) T (4)(∂, n)

]

6×6

. (2.13)

Evidently, for U = (u, ω, 0)> and Ũ = (u, ω)> we have T (∂, n)U = T (∂, n)Ũ
in view of (2.10) and (2.13).

2.3. Green’s identities. For vector functions

Ũ = (u, ω)>, Ũ ′ = (u′, ω′)> ∈ [C2(Ω+)]6,

we have the following Green formula [40]
∫

Ω+

[
Ũ ′ · L̃(∂, 0)Ũ + E(Ũ ′, Ũ)

]
dx =

∫

∂Ω+

{Ũ ′}+ · {T (∂, n)Ũ}+ dS, (2.14)

where the operators L̃(∂, 0) and T (∂, n) are given by (2.9) and (2.13) respec-
tively, ∂Ω+ is a piecewise smooth manifold, n is the outward unit normal
vector to ∂Ω+, the symbols { · }± denote the limiting values on ∂Ω± from
Ω± respectively, E(· , ·) is the so called energy bilinear form,

E(Ũ ′, Ũ) = E(Ũ , Ũ ′) =
3∑

p,q=1

{
(µ + α)u′pqupq + (µ− α)u′pquqp+

+ (κ+ν)(u′pqωpq+ω′pqupq)+(κ−ν)(u′pqωqp+ω′pquqp)+(γ+ε)ω′pqωpq+

+ (γ − ε)ω′pqωqp + δ(u′ppωqq + ω′qqupp) + λu′ppuqq + βω′ppωqq

}
(2.15)

with

upq = ∂puq −
3∑

k=1

εpqkωk, ωpq = ∂pωq, p, q = 1, 2, 3. (2.16)

In what follows the over bar denotes complex conjugation. The necessary
and sufficient conditions for the quadratic form E(Ũ , Ũ) to be positive def-
inite with respect to the variables upq and ωpq, read as (see [4], [14], [18])

µ > 0, α > 0, γ > 0, ε > 0, λ + 2µ > 0, µγ − κ2 > 0, αε− ν2 > 0,

(λ + µ)(β + γ)− (δ + κ)2 > 0, (3λ + 2µ)(3β + 2γ)− (3δ + 2κ)2 > 0,

(µ + α)(γ + ε)− (κ + ν)2 > 0, (λ + 2µ)(β + 2γ)− (δ + 2κ)2 > 0,

µ
[
(λ + µ)(β + γ)− (δ + κ)2

]
+ (λ + µ)(µγ − κ2) > 0,

µ
[
(3λ + 2µ)(3β + 2γ)− (3δ + 2κ)2

]
+ (3λ + 2µ)(µγ − κ2) > 0.

Let us note that, if the condition 3λ + 2µ > 0 is fulfilled, which is very
natural in the classical elasticity, then the above conditions are equivalent
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to the following simultaneous inequalities

µ > 0, α > 0, γ > 0, ε > 0, 3λ + 2µ > 0, µγ − κ2 > 0,

αε− ν2 > 0, (µ + α)(γ + ε)− (κ + ν)2 > 0,

(3λ + 2µ)(3β + 2γ)− (3δ + 2κ)2 > 0.

(2.17)

For simplicity in what follows we assume that 3λ+2µ > 0 and therefore the
conditions (2.17) imply positive definiteness of the energy quadratic form

E(Ũ , Ũ) defined by (2.15). From (2.17) it follows that

γ > 0, ε > 0, λ + µ > 0, β + γ > 0,

d1 := (µ + α)(γ + ε)− (κ + ν)2 > 0,

d2 := (λ + 2µ)(β + 2γ)− (δ + 2κ)2 > 0.

Formula (2.15) can be rewritten as

E(Ũ , Ũ ′) =
3λ+2µ

3

(
div u+

3δ+2κ
3λ+2µ

div ω
)(

div u′ +
3δ+2κ
3λ+2µ

div ω′
)
+

+
1
3

(
3β + 2γ − (3δ+2κ)2

3λ+2µ

)
(div ω)(div ω′)+

+
(
ε− ν2

α

)
curlω · curl ω′+

+
µ

2

3∑

k,j=1, k 6=j

[
∂uk

∂xj
+

∂uj

∂xk
+
κ
µ

(∂ωk

∂xj
+

∂ωj

∂xk

)]
×

×
[
∂u′k
∂xj

+
∂u′j
∂xk

+
κ
µ

(∂ω′k
∂xj

+
∂ω′j
∂xk

)]
+

+
µ

3

3∑

k,j=1

[
∂uk

∂xk
− ∂uj

∂xj
+
κ
µ

(∂ωk

∂xk
− ∂ωj

∂xj

)]
×

×
[
∂u′k
∂xk

− ∂u′j
∂xj

+
κ
µ

(∂ω′k
∂xk

− ∂ω′j
∂xj

)]
+

+
(
γ − κ

2

µ

) 3∑

k,j=1, k 6=j

[
1
2

(∂ωk

∂xj
+

∂ωj

∂xk

)(∂ω′k
∂xj

+
∂ω′j
∂xk

)
+

+
1
3

(∂ωk

∂xk
− ∂ωj

∂xj

)(∂ω′k
∂xk

− ∂ω′j
∂xj

)]
+

+ α
(

curlu+
ν

α
curlω−2ω

)
·
(

curl u′+
ν

α
curlω′−2ω′

)
.

In particular,

E(Ũ , Ũ) =
3λ + 2µ

3

∣∣∣ div u +
3δ + 2κ
3λ + 2µ

div ω
∣∣∣
2

+

+
1
3

(
3β + 2γ − (3δ + 2κ)2

3λ + 2µ

)
| div ω|2+
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+
µ

2

3∑

k,j=1, k 6=j

∣∣∣∣
∂uk

∂xj
+

∂uj

∂xk
+
κ
µ

(∂ωk

∂xj
+

∂ωj

∂xk

)∣∣∣∣
2

+

+
µ

3

3∑

k,j=1

∣∣∣∣
∂uk

∂xk
− ∂uj

∂xj
+
κ
µ

(∂ωk

∂xk
− ∂ωj

∂xj

)∣∣∣∣
2

+

+
(
γ−κ

2

µ

) 3∑

k,j=1, k 6=j

[
1
2

∣∣∣∂ωk

∂xj
+

∂ωj

∂xk

∣∣∣
2

+
1
3

∣∣∣∂ωk

∂xk
− ∂ωj

∂xj

∣∣∣
2
]
+

+
(
ε− ν2

α

)
| curl ω|2 + α

∣∣∣ curl u +
ν

α
curl ω − 2ω

∣∣∣
2

.

We formulate here the following technical lemma.

Lemma 2.1. Let Ũ = (u, ω)> ∈ [C1(Ω+)]6 and E(Ũ , Ũ) = 0 in Ω+.
Then

u(x) = [a× x] + b, ω(x) = a, x ∈ Ω+, (2.18)
where a and b are arbitrary three-dimensional constant complex vectors.

Moreover,
(i) for an arbitrary vector Ũ = (u, ω)> defined by formulas (2.18) and

an arbitrary unit vector n = (n1, n2, n3) the generalized hemitropic
stress vector T (∂, n)Ũ vanishes identically, i.e., T (∂, n)Ũ(x) = 0
for all x ∈ Ω+.

(ii) for an arbitrary vector U := (Ũ , 0)> = (u, ω, 0)>, where u and ω
are given by formulas (2.18), and for an arbitrary unit vector n =
(n1, n2, n3) the generalized hemitropic thermo-stress vector P(∂, n)U
vanishes identically, i.e., P(∂, n)U(x) = 0 for all x ∈ Ω+.

Proof. The first part of the lemma is shown in [40]. The second part easily
follows from the first part and from the formulas (2.10), (2.11), (2.13). ¤

Throughout the paper Lp, W s
p , Hs

p , and Bs
p,q (with s ∈ R, 1 < p < ∞,

1 ≤ q ≤ ∞) denote the well–known Lebesgue, Sobolev–Slobodetski, Bessel
potential, and Besov spaces, respectively (see, e.g., [54], [55], [31]). We
recall that Hs

2 = W s
2 = Bs

2,2, W t
p = Bt

p,p, and Hk
p = W k

p , for any s ∈ R, for
any positive and non-integer t, and for any non-negative integer k.

Further, let M0 be a Lipschitz surface without boundary. For a Lipschitz
sub-manifold M ⊂ M0 we denote by H̃s

p(M) and B̃s
p,q(M) the subspaces

of Hs
p(M0) and Bs

p,q(M0), respectively,

H̃s
p(M) =

{
g : g ∈ Hs

p(M0), supp g ⊂M
}

,

B̃s
p,q(M) =

{
g : g ∈ Bs

p,q(M0), supp g ⊂M
}

,

while Hs
p(M) and Bs

p,q(M) denote the spaces of restrictions on M of func-
tions from Hs

p(M0) and Bs
p,q(M0), respectively,

Hs
p(M) =

{
rMf : f ∈ Hs

p(M0)
}
, Bs

p,q(M) =
{
rMf : f ∈ Bs

p,q(M0)
}
.
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Here rM is the restriction operator.
If Ũ = Ũ (1)+iŨ (2) is a complex–valued vector, where Ũ (j) = (u(j), ω(j))>

(j = 1, 2) are real–valued vectors, then

E(Ũ , Ũ) = E(Ũ (1), Ũ (1)) + E(Ũ (2), Ũ (2)),

and, due to the positive definiteness of the energy form for real–valued
vector functions, we have

E(Ũ , Ũ) ≥ c∗
3∑

p,q=1

[
(u(1)

pq )2 + (u(2)
pq )2 + (ω(1)

pq )2 + (ω(2)
pq )2

]
,

where c∗ is a positive constant depending only on the material constants,
and u

(j)
pq and ω

(j)
pq are defined by formulae (2.16) with u(j) and ω(j) for u

and ω.
From the positive definiteness of the energy form E(·, ·) with respect to

the variables (2.16) it follows that there exist positive constants c1 and c2

such that for an arbitrary real–valued vector Ũ ∈ [C1(Ω+)]6

B̃(Ũ , Ũ) :=
∫

Ω+

E(Ũ , Ũ) dx ≥

≥ c1

∫

Ω+

{ 3∑
p,q=1

[
(∂puq)2 + (∂pωq)2

]
+

3∑
p=1

[u2
p + ω2

p]
}

dx−

−c2

∫

Ω+

3∑
p=1

[u2
p + ω2

p] dx,

i.e., the following Korn’s type inequality holds (cf. [17, Part I, § 12], [32,
Ch. 10])

B̃(Ũ , Ũ) ≥ c1‖Ũ‖2[H1
2 (Ω+)]6 − c2‖Ũ‖2[H0

2 (Ω+)]6 , (2.19)

where ‖ · ‖[Hs
2 (Ω+)]6 denotes the norm in the Sobolev space [Hs

2(Ω+)]6.
Clearly, the counterpart of (2.19) holds for an arbitrary complex-valued
vector Ũ ∈ [H1

2 (Ω+)]6 as well,

B̃(Ũ , Ũ) ≥ c1‖Ũ |2[H1
2 (Ω+)]6 − c2‖Ũ‖2[H0

2 (Ω+)]6 . (2.20)

These results imply that the differential operators L̃(∂, σ) and L̃0(∂) are
strongly elliptic and the following inequality (the accretivity condition) holds
(cf., e.g., [17, Part I, § 5], [32, Ch. 4, Lemma 4.5])

c′2|ξ|2|η|2 ≥ L̃0(ξ)η · η =
6∑

k,j=1

L̃0kj(ξ)ηjηk ≥ c′1|ξ|2|η|2 (2.21)

with some constants c′k > 0, k = 1, 2, for arbitrary ξ ∈ R3 and arbitrary
complex vector η ∈ C6.
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Consequently, in view of (2.8) and (2.21) the differential operator L(∂, σ)
is strongly elliptic as well, since

C ′2|ξ|2|η|2 ≥ L0(ξ)η · η =
6∑

k,j=1

L0kj(ξ)ηjηk ≥ C ′1|ξ|2|η|2

with some constants C ′k > 0, k = 1, 2, for arbitrary ξ ∈ R3 and for arbitrary
complex vector η ∈ C7.

Now let U = (Ũ , ϑ)> = (u, ω, ϑ)> and U ′ = (Ũ ′, ϑ′)> = (u′, ω′, ϑ′)> be
vector functions of the class [C2(Ω+)]7. With the help of relation (2.14) and
standard manipulations we can show that the following Green’s formulas
hold ∫

Ω+

U ′ · L(∂, σ)U dx =
∫

∂Ω+

{U ′}+ · {P(∂, n)U
}+

dS−

−
∫

Ω+

[
E(Ũ ′, Ũ)− %σ2u′ · u− Iσ2ω′ · ω − ηϑ div u′ − ζϑ div ω′−

−iησϑ′ div u− iζσϑ′ div ω − iσκ′′ϑϑ′ + κ′ grad ϑ′ · gradϑ
]
dx, (2.22)

∫

Ω+

[
U ′ · L(∂, σ)U − L∗(∂, σ)U ′ · U

]
dx =

=
∫

∂Ω+

[
{U ′}+ · {P(∂, n)U

}+ − {P∗(∂, n)U ′}+ · {U}+
]
dS, (2.23)

where L∗(∂, σ) = L>(−∂, σ) is the operator formally adjoint to L(∂, σ),
the differential operators L(∂, σ), P(∂, n) and P∗(∂, n) are defined by (2.4),
(2.11) and (2.12) respectively. The proof of (2.22) and (2.23) easily follows
from (2.14) in view of the identity

U ′ · L(∂, σ)U − Ũ ′ · L̃(∂, 0)Ũ = %σ2u′ · u− η gradϑ · u′ + Iσ2ω′ · ω−
− ζ gradϑ · ω′ + κ′ϑ′∆ϑ + iησϑ′ div u + iσζϑ′ div ω + iσκ′′ϑϑ′.

By the standard limiting approach, Green’s formula (2.22) can be extended
to Lipschitz domains (see, e.g., [45], [32]) and to the case of complex–valued
vector functions U ∈ [W 1

p (Ω+)]7 and U ′ ∈ [W 1
p′(Ω

+)]7 with 1/p + 1/p′ = 1,
1 < p < ∞, and L(∂, σ)U ∈ [Lp(Ω+)]7 (cf. [31], [10], [32])

〈
{U ′}+,

{P(∂, n)U
}+

〉
∂Ω+

=
∫

Ω+

U ′ · L(∂, σ)U dx+

+
∫

Ω+

[
E(Ũ ′, Ũ)− %σ2u′ · u− Iσ2ω′ · ω − ηϑ div u′ − ζϑ div ω′−

− iησϑ′ div u− iζσϑ′ div ω − iσκ′′ϑϑ′ + κ′ gradϑ′ · gradϑ
]
dx, (2.24)
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where 〈 · , · 〉∂Ω+ denotes the duality between the spaces [B
1
p
p,p(∂Ω+)]7 and

[B
− 1

p

p′,p′(∂Ω+)]7, which extends the usual real L2-scalar product, i.e., for
f, g ∈ [L2(S)]7

〈f, g〉S =
7∑

k=1

∫

S

fkgk dS = (f, g)[L2(S)]7 .

Clearly, the generalized trace functional {P(∂, n)U}+ ∈ [B
− 1

p
p,p (∂Ω+)]7 is

well defined by the relation (2.24).
Let us introduce the sesquilinear form related to the operator L(∂, σ)

B(U,U ′) :=
∫

Ω+

[
E(Ũ , Ũ ′)−%σ2u · u′−Iσ2ω · ω′−ηϑ div u′−ζϑ div ω′−

− iησϑ′ div u− iζσϑ′ div ω − iσκ′′ϑϑ′ + κ′ gradϑ · grad ϑ′
]
dx. (2.25)

With the help of (2.20) and (2.25) we derive the inequality

ReB(U,U) ≥ C1‖U‖2[H1
2 (Ω+)]7 − C2‖U‖2[H0

2 (Ω+)]7 , (2.26)

with some positive constants C1 and C2. This inequality plays a crucial role
in the study of boundary value problems of the micropolar elasticity theory
for hemitropic continua by means of the variational methods based on the
well known Lax–Milgram theorem.

3. Formulation of Transmission Problems and Uniqueness
Theorems

Let Ω be a bounded region in R3 with the smooth connected boundary
∂Ω = S0. Let Ω1 ⊂ Ω be a sub-domain of Ω with a smooth simply connected
boundary ∂Ω1 = S1 ⊂ Ω. Put Ω0 := Ω \ Ω1. In what follows, by n(z),
z ∈ S0 ∪ S1, we denote the outward unit normal vector with respect to the
domains Ω1 and Ω, at the point z. We assume that S` ∈ C2,γ′ , 0 < γ′ ≤ 1,
` = 0, 1, if not otherwise stated. Let the domains Ω` be filled up by elastic
continua heaving different hemitropic material constants, α(`), β(`), γ(`),
δ(`), λ(`), µ(`), ν(`), κ(`) and ε(`), ` = 0, 1; η(`) > 0 and ζ(`) > 0, ` = 0, 1,
are constants describing the coupling of mechanical and thermal fields in Ω`

(see [3], [14]), ∂ = (∂1, ∂2, ∂3), ∂j = ∂/∂xj , j = 1, 2, 3.
Analogously, for the mechanical characteristics, e.g., the displacement

and microrotation vectors, the force stress and couple stress vectors, and
also for the differential operators, fundamental matrices and potentials re-
lated to the hemitropic material occupying the domain Ω`, ` = 0, 1, we
also employ the superscript (`). In particular, u(`) = (u(`)

1 , u
(`)
2 , u

(`)
3 )T ,

ω(`) = (ω(`)
1 , ω

(`)
2 , ω

(`)
3 )T and ϑ(`) denote the displacement and microrotation

vectors and temperature function in the domain Ω`; E(`)(U (`), U (`)) desig-
nates the appropriate potential energy density, L(`)(∂, σ), L(`)(∂), L

(`)
0 (∂),
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P(`)(∂, n) and P(`)
0 (∂, n) are the corresponding differential operators given

by the formulae (2.4), (2.7), (2.8), (2.5) and (2.6).
In what follows we treat transmission problems for the differential equa-

tions of pseudo-oscillations, i.e., we assume that

σ = σ1 + iσ2 with σ2 > 0. (3.1)

It is clear that the nonhomogeneous differential equation L(`)(∂, σ)U (`) =
Ψ(`) in Ω` we can reduce to the homogeneous one, L(`)(∂, σ)V (`) = 0, with
the help of the volume Newtonian potential NΩ`

(Ψ(`)) (see Appendix A).
Therefore, without loss of generality we can assume that the body force and
body couple vectors absent.

We will study the following boundary-transmission problems:

Find regular complex-valued vector-functions U (`) ∈ [C1(Ω`)]7 ∩ [C2(Ω`)]7,
` = 0, 1, satisfying the differential equations

L(`)(∂, σ)U (`)(x) = 0 in Ω`, ` = 0, 1, (3.2)

the transmission conditions on S1

{U (1)(z)}+ − {U (0)(z)}− = f(z) on S1, (3.3)

{P(1)(∂, n)U (1)(z)
}+ − {P(0)(∂, n)U (0)(z)

}− = F (z) o S1, (3.4)

and either the Dirichlet boundary condition on S0

{U (0)(z)}+ = f (D)(z) n S0, (3.5)

or the Neumann boundary condition on S0

{P(0)(∂, n)U (0)(z)
}+ = F (N)(z) on S0. (3.6)

We assume that the given transmission and boundary data are complex-
valued vectors and

f ∈ [C1,β′(S0)]7, F ∈ [C0,β′(S0)]7,

f (D) ∈ [C1,β′(S1)]7, F (N) ∈ [C0,β′(S1)]7,

with 0 < β′ < γ′ ≤ 1. We refer to the boundary-transmission problem (3.2)–
(3.5) as Problem (TD) and the boundary-transmission problem (3.2)–(3.4)
and (3.6) as Problem (TN).

The above problem setting is a classical one in the space of continuously
differentiable vector-functions.

In the case of a weak setting of the problems we look for a solution
pair (U (0), U (1)) in the Sobolev spaces, U (`) ∈ [W 1

p (Ω`)]7, ` = 0, 1, with
L(`)(∂, σ)U (`) ∈ [Lp(Ω`)]7. Therefore, equations (3.2) are understood in the
distributional sense. However, we remark that solutions to these homoge-
neous equations actually are analytical vector-functions of the real spatial
variable x in the open domains Ω0 and Ω1, since the differential operators
L(`)(∂, σ) are strongly elliptic.
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The Dirichlet type boundary and transmission conditions are understood
in the usual trace sense, while the Neumann type conditions are understood
in the generalized trace sense defined by Green’s identity (2.24) (for details
see [37], [42]).

We start with the study of uniqueness of solutions to these problems.

Theorem 3.1. Problems (TD) and (TN) may have at most one solution
in the space of regular vector-functions.

Proof. Due to linearity of the problems under consideration, it suffices to
show that the corresponding homogeneous problems have only the trivial
solutions. Let a pair of regular vectors

(U (0), U (1)) ∈ (
[C1(Ω0)]7 ∩ [C2(Ω0)]7

)× (
[C1(Ω1)]7 ∩ [C2(Ω1)]7

)

be a solution of either the homogeneous Problem (TD) or Problem (TN).
Using Green’s formulae for the vector-functions U (0) and U (1) and taking
into account the chosen direction of the normal vector on the boundaries
S0 and S1, we get
∫

Ω1

[
−E(1)

(
Ũ (1), Ũ (1)

)
+%1σ

2|u(1)|2+I1σ
2|ω(1)|2−C0κ

′
1|∇ϑ(1)|2−κ′′1 |ϑ(1)|2

]
dx+

+
∫

S1

{
T (1)(∂, n)U (1) · Ũ (1)+C0κ

′
1ϑ

(1)∂nϑ(1)
}+

dS =0, (3.7)

∫

Ω0

[
−E(0)

(
Ũ (0), Ũ (0)

)
+%0σ

2|u(0)|2+I0σ
2|ω(0)|2−C0κ

′
0|∇ϑ(0)|2−κ′′0 |ϑ(0)|2

]
dx+

+
∫

S0

{
T (0)(∂, n)U (0) · Ũ (0) + C0κ

′
0ϑ

(0)∂nϑ(0)
}+

dS−

−
∫

S1

{
T (0)(∂, n)U (0) · Ũ (0) + C0κ

′
0ϑ

(0)∂nϑ(0)
}−

dS = 0, (3.8)

where

C0 = − i

σ
, κ′` =

λ
(`)
0

T
(`)
0

, κ′′` =
c
(`)
0

T
(`)
0

, Ũ (`) = (u(`), ω(`))>, ` = 0, 1.

The homogeneous boundary and transmission conditions, f (`) = F (`) = 0,
yield

1∑

`=0

∫

Ω`

[
E(`)

(
Ũ (`), Ũ (`)

)− %`σ
2|u(`)|2 − I`σ

2|ω(`)|2+

+ C0κ
′
`|∇ϑ(`)|2 + κ′′` |ϑ(`)|2

]
dx = 0. (3.9)
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Separating the imaginary part leads to the relation

σ1

1∑

`=0

∫

Ω`

[
2σ2%`|u(`)|2 + 2σ2I`|ω(`)|2 +

κ′`
|σ|2 |∇ϑ(`)|2

]
dx = 0.

If σ1 6= 0, we then conclude u(`) = 0, ω(`) = 0, ϑ(`) = const. But from (3.9)
we have ϑ(`) = 0 and consequently U (`) = 0 in Ω`. If σ1 = 0, then from
(3.9) we have

E(`)(Ũ (`), Ũ (`)) + σ2
2%`|u(`)|2 + σ2

2I`|ω(`)|2 +
κ′`
σ2
|∇ϑ(`)|2 + κ′′` |ϑ(`)|2 = 0

for ` = 0, 1, whence u(`) = 0, ω(`) = 0, ϑ(`) = 0 in Ω` follow. ¤

By the quite similar arguments one can prove the following uniqueness
theorem for the same transmission problems in the weak formulation.

Theorem 3.2. Problems (TD) and (TN) may have at most one solution
in the space (U (0), U (1)) ∈ [W 1

2 (Ω0)]7 × [W 1
2 (Ω1)]7.

4. Existence Results for Problem (TD)

Here we develop the so called indirect boundary integral equations ap-
proach. We look for a solution pair of Problem (TD) in the form of single
layer potentials, see Appendix A,

U (1)(x) = V
(1)
S1

(
[H(1)

S1
]−1ϕ

)
(x) ≡

≡
∫

S1

Γ(1)(x− y, σ)
(
[H(1)

S1
]−1ϕ

)
(y) dSy, x ∈ Ω1, (4.1)

U (0)(x) = V
(0)
S0

(
[H(0)

S0
]−1ψ

)
(x) + V

(0)
S1

(
[H(0)

S1
]−1χ

)
(x) ≡

≡
∫

S0

Γ(0)(x− y, σ)
(
[H(0)

S0
]−1ψ

)
(y) dSy+

+
∫

S1

Γ(0)(x− y, σ)
(
[H(0)

S1
]−1χ

)
(y) dSy, x ∈ Ω0, (4.2)

where ϕ = (ϕ1, . . . , ϕ7)>, ψ = (ψ1, . . . , ψ7)> and χ = (χ1, . . . , χ7)> are
unknown densities; Γ(`)(x− y, σ) is the fundamental matrix of the operator
L(`)(∂, σ), ` = 0, 1; [H(`)

Sj
]−1 stands for the operator inverse to H(`)

Sj
, `, j =

0, 1, which is well defined due to Theorems A.5 and A.6 in Appendix A.
Recall that for the potentials and the boundary operators generated by

them, the superscript (`) shows the correspondence to the type of hemitropic
material in Ω`.

Taking into consideration the transmission and boundary conditions of
Problem (TD) and using the properties of the single-layer potentials we
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arrive at the system of boundary integral (pseudodifferential) equations:

ϕ(z)− χ(z)−
∫

S0

Γ(0)(z − y, σ)
(
[H(0)

S0
]−1ψ

)
(y) dSy = f(z), z ∈ S1,

[
(−2−1I7 +K(1)

S1
)[H(1)

S1
]−1ϕ

]
(z)−

[
(2−1I7 +K(0)

S1
)[H(0)

S1
]−1χ

]
(z)−

−
∫

S0

P(0)(∂z, n(z))Γ(0)(z − y, σ)
(
[H(0)

S0
]−1ψ

)
(y) dSy = F (z), z ∈ S1,

∫

S1

Γ(0)(z − y, σ)
(
[H(0)

S1
]−1χ

)
(y) dSy + ψ(z) = f (D)(z), z ∈ S0.

(4.3)

The operators K(`)
S`

, ` = 0, 1, are defined in Appendix A (see Theorem A.1).
Introduce the so called Steklov–Poincaré type operators

A(0)
S1

:= (2−1I7 +K(0)
S1

)[H(0)
S1

]−1, A(1)
S1

:= (−2−1I7 +K(1)
S1

)[H(1)
S1

]−1, (4.4)

and rewrite system (4.3) as

ϕ− χ− V
(0)
S0

(
[H(0)

S0
]−1ψ

)
= f on S1,

A(1)
S1

ϕ−A(0)
S1

χ−P(0)(∂z, n)V (0)
S0

(
[H(0)

S0
]−1ψ

)
= F on S1,

V
(0)
S1

([H(0)
S1

]−1χ) + ψ = f (D) on S0.

(4.5)

Denote by rΣ the restriction operator onto Σ. Clearly, the operators rS1V
(0)
S0

,

rS1P(0)V
(0)
S0

and rS0V
(0)
S1

, involved in the above equations are smoothing
operators, since the surfaces S1 and S0 are disjoint.

Denote the operator generated by the left hand side expressions in (4.5)
by D which acts on the triplet of the sought for vectors (ϕ, χ, ψ)>,

D :=




I7 −I7 −rS1V
(0)
S0

(
[H(0)

S0
]−1

)

A(1)
S1

−A(0)
S1

−rS1P(0)V
(0)
S0

(
[H(0)

S0
]−1

)

0 rS0V
(0)
S1

([H(0)
S1

]−1) I7




21×21

.

Set
Ψ = (ϕ, χ, ψ)>, Q = (f, F, f (D))>,

and rewrite (4.5) in matrix form

DΨ = Q.

Let us introduce the function spaces:

Xk,β′ := [Ck,β′(S1)]7 × [Ck,β′(S1)]7 × [Ck,β′(S0)]7,

Y k,β′ := [Ck,β′(S1)]7 × [Ck−1,β′(S1)]7 × [Ck,β′(S0)]7,

S0, S1 ∈ Ck+1,γ′ , k ≥ 1, 0 < β′ < γ′ ≤ 1,

(4.6)
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Xs
p := [Hs

p(S1)]7 × [Hs
p(S1)]7 × [Hs

p(S0)]7,

Y s
p := [Hs

p(S1)]7 × [Hs−1
p (S1)]7 × [Hs

p(S0)]7,
(4.7)

Xs
p,t := [Bs

p,t(S1)]7 × [Bs
p,t(S1)]7 × [Bs

p,t(S0)]7,

Y s
p,t := [Bs

p,t(S1)]7 × [Bs−1
p,t (S1)]7 × [Bs

p,t(S0)]7,

s ∈ R, 1 < p < ∞, 1 ≤ t ≤ ∞, S0, S1 ∈ C∞.

(4.8)

The results collected in Appendix A yield the following mapping properties:

D : Xk,β′ −→ Y k,β′ , S0, S1 ∈ Ck+1,γ′ , k ≥ 1, 0 < β′ < γ′ ≤ 1,

D : Xs
p −→ Y s

p, s ∈ R, 1 < p < ∞, S0, S1 ∈ C∞,

D : Xs
p,t −→ Y s

p,t, s ∈ R, 1 < p < ∞, 1 ≤ t ≤ ∞ S0, S1 ∈ C∞.

Further, let us introduce the operator

D̃ :=




I7 −I7 0
A(1)

S1
−A(0)

S1
0

0 0 I7




21×21

.

It is clear that D̃ has the same mapping properties as the operator D and
the operator D − D̃ with the same domain and range spaces is a compact
operator. To establish the Fredholm properties of the operator D first we
study the operator D̃.

Lemma 4.1. The operators

D̃ : Xk,β′ −→ Y k,β′ , k ≥ 1, 0 < β′ < γ′ ≤ 1, S0, S1 ∈ Ck+1,γ′ , (4.9)

D̃ : Xs
p −→ Y s

p, s ∈ R, 1 < p < ∞, S0, S1 ∈ C∞, (4.10)

D̃ : Xs
p,t −→ Y s

p,t, s ∈ R, 1 < p < ∞, 1 ≤ t ≤ ∞, S0, S1 ∈ C∞ (4.11)

are invertible.

Proof. We prove the lemma into several steps.
Step 1. First we show that the null-space of the operator (4.9) is trivial.

To this end, we have to prove that the simultaneous homogeneous equations

ϕ(z)− χ(z) = 0, z ∈ S1,

[A(1)
S1

ϕ](z)− [A(0)
S1

χ](z) = 0, z ∈ S1,

ψ(z) = 0, z ∈ S0,

(4.12)

have only the trivial solution. Since ψ = 0 on S0 it suffices to show that the
first two equations imply ϕ = χ = 0 on S1. Indeed, let ϕ and χ solve the
above homogeneous equations. Construct the single-layer potentials:

Ũ (1)(x) = V
(1)
S1

(
[H(1)

S1
]−1ϕ

)
(x), x ∈ Ω+ := Ω1,

Ũ (0)(x) = V
(0)
S1

(
[H(0)

S1
]−1χ

)
(x), x ∈ Ω− := R3 \ Ω1.

(4.13)
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From the first two equations in (4.12) and the properties of the single-layer
potentials it follows that the pair of vectors (Ũ (0), Ũ (1)) solve the basic ho-
mogeneous transmission problem for the whole space with the interface S1:

L(1)(∂, σ)Ũ (1)(x) = 0 in Ω+, L(0)(∂, σ)Ũ (0)(x) = 0 in Ω−,

{Ũ (1)(z)}+ − {Ũ (0)(z)}− = 0 on S1,
{P(1)(∂, n)Ũ (1)(z)

}+ − {P(0)(∂, n)Ũ (0)(z)
}− = 0 on S1.

Note that, if ϕ, χ ∈ [Ck,β′(S1)]7, then the corresponding single-layer poten-
tials are regular vectors in the Ω±, i.e., Ũ (1) ∈ [Ck,β′(Ω+)]7 ∩ [C∞(Ω+)]7

and Ũ (0) ∈ [Ck,β′(Ω−)]7 ∩ [C∞(Ω−)]7. We recall that the entries of the
fundamental matrix Γ(`)(x, σ) decay exponentially at infinity (see [44]), and
therefore the vector Ũ (0) and its partial derivatives decay exponentially as
|x| → +∞. It is clear that for such vectors the corresponding Green’s
formulae hold in the unbounded domain Ω− (cf. (3.7), (3.8)).

Therefore, by virtue of the homogeneous transmission conditions, as in
the proof of Theorem 3.1, we arrive at the equalities Ũ (1) = 0 in Ω+ and
Ũ (0) = 0 in Ω−, which in view of (4.13) proves that ker D̃ is trivial.

Step 2. Let us consider the vectors

U (1)(x) = V
(1)
S1

(
[H(1)

S1
]−1χ

)
(x), x ∈ Ω+,

U (0)(x) = V
(0)
S1

(
[H(0)

S1
]−1χ

)
(x), x ∈ Ω−,

(4.14)

then we have

{U (1)}+ = {U (0)}− = χ, (4.15)
{P(1)(∂, n)U (1)

}+ = A(1)
S1

χ,
{P(0)(∂, n){U (0)

}− = A(0)
S1

χ on S1.

With the help of formulae (2.24), for vectors U ′ = U (1) and U = U (1) we
have 〈

χ,A(1)
S1

χ
〉

S1

= B(1)(U (1), U (1)), (4.16)

where

B(1)(U (1), U (1)) =
∫

Ω+

[
E(1)(Ũ (1), Ũ (1)) + κ′1|∇ϑ(1)|2−

− %(1)σ2|u(1)|2 − I(1)σ2|ω(1)|2 − iσκ′′1 |ϑ(1)|2−
− ϑ(1) div

(
η(1)u(1) + ζ(1)ω(1)

)− iσϑ(1) div(η(1)u(1) + ζ(1)ω(1))
]
dx.

Quite similarly from (2.24) for vectors U ′ = U (0) and U = U (0) we derive

−
〈
χ,A(0)

S1
χ
〉

S1

= B(0)(U (0), U (0)), (4.17)

where
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B(0)(U (0), U (0)) =
∫

Ω−

[
E(0)(Ũ (0), Ũ (0)) + κ′0|∇ϑ(0)|2−

− %(0)σ2|u(0)|2 − I(0)σ2|ω(0)|2 − iσκ′′0 |ϑ(0)|2−
− ϑ(0) div

(
η(0)u(0) + ζ(0)ω(0)

)− iσϑ(0) div
(
η(0)u(0) + ζ(0)ω(0)

)]
dx.

Now from (4.16) and (4.17) we have
〈
(A(1)

S1
−A(0)

S1
)χ, χ

〉
S1

= B(1)(U (1), U (1)) + B(0)(U (0), U (0)).

Let

U :=

{
U (1) in Ω+,

U (0) in Ω−.

Since U (1) ∈ [H1
2 (Ω+)]7 and U (0) ∈ [H1

2 (Ω−)]7, by relation (4.15) we easily
conclude that U ∈ [H1

2 (R3)]7. Taking into consideration the coercivity
relation (2.26), we have

Re
〈
(A(1)

S1
−A(0)

S1
)χ, χ

〉
S1

≥ C1‖U‖2[H1
2 (R3)]7 − C2‖U‖2[H0

2 (R3)]7 , (4.18)

where C1 and C2 are some positive constants. Note that, by the trace
theorem from (4.18) we derive

Re
〈
(A(1)

S1
−A(0)

S1
)χ, χ

〉
S1

≥ C ′1‖{U}±‖2
[H

1
2
2 (S1)]7

− C2‖U‖2[H0
2 (R3)]7 ≥

≥ C ′1‖χ‖2
[H

1
2
2 (S1)]7

− C ′2‖χ‖2
[H
− 1

2
2 (S1)]7

, (4.19)

since by Theorem A.4 we have the estimate

‖U‖[H0
2 (R3)]7 ≤ C∗2‖χ‖

[H
− 1

2
2 (S1)]7

.

In turn, the inequality (4.19) implies that the operator

A(1)
S1
−A(0)

S1
: [H

1
2
2 (S1)]7 −→ [H− 1

2
2 (S1)]7 (4.20)

is Fredholm with zero index (see, e.g., [32]).
Let us show that the null space of the operator (4.20) is trivial. Indeed, if

χ ∈ [H
1
2
2 (S1)]7 is a solution of the homogeneous equation (A(1)

S1
−A(0)

S1
)χ = 0

on S1, then it follows that the vectors U (1) and U (0) defined by (4.14) solve
the homogeneous transmission problem:

L(1)(∂, σ)U (1)(x) = 0 in Ω+,

L(0)(∂, σ)U (0)(x) = 0 in Ω−,

{U (1)(z)}+ − {U (0)(z)}− = 0 on S1,
{P(1)(∂, n)U (1)(z)

}+ − {P(0)(∂, n)U (0)(z)
}− = 0 on S1.

By the arguments applied in the proof of Theorem 3.1, we conclude that
U (1) = 0 in Ω+ and U (0) = 0 in Ω−, implying χ = 0 on S1. Consequently,
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the null space of the operator (4.20) is trivial. Thus the operator (4.20) is
invertible. Then from the general theory of pseudodifferential operators on
manifolds without boundary it follows that

A(1)
S1
−A(0)

S1
: [Hs

p(S1)]7 −→ [Hs−1
p (S1)]7,

: [Bs
p,t(S1)]7 −→ [Bs−1

p,t (S1)]7

are also invertible operators for arbitrary s ∈ R, 1 < p < ∞, 1 ≤ t ≤ ∞
(see, e.g., [1], [2], [19], [51], [52]).

Step 3. In turn, this yields that the operator (4.10) is invertible for s =

1/2 and p = 2, i.e., the system of equations for the triplet (ϕ, χ, ψ) ∈ X
1
2
2 ,

ϕ− χ = f on S1,

A(1)
S1

ϕ−A(0)
S1

χ = F on S1,

ψ = f (D) on S0,

is uniquely solvable for arbitrary (f, F, f (D)) ∈ Y
1
2
2 .

Applying again the results from the general theory of pseudodifferential
operators on manifolds without boundary we conclude that all the operators
in (4.9)–(4.11) are invertible. ¤

Now we are in a position to prove the following invertibility results.

Theorem 4.2. The operators

D : Xk,β′ −→ Y k,β′ , k ≥ 1, 0 < β′ < γ′ ≤ 1, S0, S1 ∈ Ck+1,γ′ , (4.21)

: Xs
p −→ Y s

p, s ∈ R, 1 < p < ∞, S0, S1 ∈ C∞, (4.22)

: Xs
p,t −→ Y s

p,t, s ∈ R, 1 < p < ∞, 1 ≤ t ≤ ∞, S0, S1 ∈ C∞, (4.23)

are invertible.

Proof. First let us note that by Lemma 4.1 the operators (4.21)–(4.23) are
Fredholm with zero index, since they are compact perturbations of the in-
vertible operators, due to the compactness of the difference D − D̃ in the
corresponding function spaces. Thus, for invertibility we need only to show
that their null-spaces are trivial. Let the triplet Ψ = (ϕ, χ, ψ)> belonging
to one of the spaces Xk,β′ or Xs

p or Xs
p,t be a solution of the homogeneous

equation DΨ = 0, i.e., the homogeneous equation (4.5). Due to the regu-
larity theorem for solutions to the elliptic pseudodifferential equations on
manifolds without boundary we conclude that actually Ψ ∈ Xk,β′ . Fur-
ther, with the help of the solution triplet (ϕ, χ, ψ) we construct the vectors
U (0) and U (1) by formulae (4.1)–(4.2). Clearly, the pair (U (0), U (1)) is a
regular solution to the homogeneous Problem (TD). Consequently, by the
uniqueness Theorem 3.1 we have U (1) = 0 in Ω1 and U (0) = 0 in Ω0. Since
[U (1)]+ = ϕ on S1 we get ϕ = 0.

The vector U (0) defined by formula (4.2) solves the homogeneous differ-
ential equation L(0)(∂, σ)U (0) = 0 in R3\[S0∪S1] and is identical zero in Ω0.
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Since the single layer potentials are continuous in R3 we have that [U (0)]− =
[U (0)]+ = 0 on S1 and [U (0)]+ = [U (0)]− = 0 on S0. So U (0) solves the ho-
mogeneous Dirichlet problems for the operator L(0)(∂, σ) in the domain Ω1

and in the unbounded domain R3 \ [Ω0 ∪Ω1]. Moreover, U (0) decays expo-
nentially at infinity. By the uniqueness theorem for the Dirichlet interior
and exterior problems, which can be easily proved with the help of Green’s
formulae (2.22), we establish that U (0) vanishes in R3. Now, the jump rela-
tions for the singlelayer potential imply [P(0)U (0)]− − [P(0)U (0)]+ = χ = 0
on S1 and [P(0)U (0)]− − [P(0)U (0)]+ = ψ = 0 on S0, which completes the
proof. ¤

These invertibility properties for the operator D lead to the following
existence results for Problem (TD).

Theorem 4.3. Let

S0, S1 ∈ C2,γ′ , f ∈ [C1,β′(S1)]7, F ∈ [C0,β′(S1)]7,

f (D) ∈ [C1,β′(S0)]7, 0 < β′ < γ′ ≤ 1.

Then the problem (3.2)–(3.5) has a unique solution in the class of regular
vector functions which can be represented by the single layer potentials (4.1)–
(4.2), where the triplet

(ϕ, χ, ψ)> ∈ [C1,β′(S1)]7 × [C1,β′(S1)]7 × [C1,β′(S0)]7

is a unique solution of the system of boundary pseudodifferential equations
(4.3).

Theorem 4.4. Let p > 1, s ≥ 1, and

S0, S1 ∈ C∞, f ∈ [
B

s− 1
p

p,p (S1)
]7

,

F ∈ [
B

s−1− 1
p

p,p (S1)
]7

, f (D) ∈ [
B

s− 1
p

p,p (S0)
]7

.

Then the problem (3.2)–(3.5) has a unique solution

(U (0), U (1)) ∈ [W s
p (Ω0)]7 × [W s

p (Ω1)]7

which can be represented by the single layer potentials (4.1)–(4.2), where the
triplet

(ϕ, χ, ψ)> ∈ [B
s− 1

p
p,p (S1)]7 × [B

s− 1
p

p,p (S1)]7 × [B
s− 1

p
p,p (S0)]7

is a unique solution of the system of boundary pseudodifferential equations
(4.3).

Proof. Existence of solutions directly follows from the representations (4.1)–
(4.2) and invertibility of the operator (4.23). Uniqueness for p = 2 follows
from Theorem 3.1. It remains to show uniqueness of solutions for arbitrary
p > 1 and s = 1.
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First we prove that any solution U (`) ∈ [W 1
p (Ω`)]7 of the homogeneous

equation
L(`)(∂, σ)U (`) = 0 in Ω`, ` = 0, 1,

can be represented by the single layer potentials:

U (1)(x) = V
(1)
S1

(ϕ∗)(x), x ∈ Ω1, (4.24)

U (0)(x) = V
(0)
S0

(ψ∗)(x) + V
(0)
S1

(χ∗)(x), x ∈ Ω0, (4.25)

where ϕ∗, χ∗ ∈ [B
− 1

p
p,p (S1)]7 and ψ∗ ∈ [B

− 1
p

p,p (S0)]7.
We show it for the vector U (0) ∈ [W 1

p (Ω0)]7. By the general integral
representation formula we have (see [44, corollary 3.6, formulae (3.77)])

U (0) = W
(0)
S0

([U (0)]+)− V
(0)
S0

(
[P(0)U (0)]+

)−
−W

(0)
S1

([U (0)]−) + V
(0)
S1

(
[P(0)U (0)]−

)
in Ω0. (4.26)

Furthermore, we establish that the double-layer potentials W
(0)
S0

([U (0)]+)

and W
(0)
S1

([U (0)]−) involved in (4.26) can be represented by the single layer
potentials in the interior of S0 (i.e., in Ω) and in the exterior of S1 (i.e.,
in R3 \ Ω1), respectively. Indeed, denote Ũ := W

(0)
S0

([U (0)]+) in Ω, and

consider the vector U∗ := Ũ − V
(0)
S0

(
[H(0)

S0
]−1[Ũ ]+

) ∈ [W 1
p (Ω)]7. Clearly,

L(1)(∂, σ)U∗ = 0 in Ω and [U∗]+ = 0 on S0. Therefore, applying again the
general integral representation formula in Ω, we derive

U∗ = −V
(0)
S0

(
[P(0)U∗]+

) ∈ [W 1
p (Ω)]7.

Whence it follows that

Ũ = V
(0)
S0

(
[H(0)

S0
]−1[Ũ ]+ − [P(0)U∗]+

)
in Ω.

Quite analogously we can show that W
(0)
S1

([U (0)]−) is representable by a
single layer potential in R3 \Ω1. Finally, from (4.26) we conclude that U (0)

can be represented in the form (4.25). Similarly we derive the representation
(4.24).

Due to invertibility of the operators H(`)
Sj

, `, j = 0, 1, we conclude that
any solution pair (U (0), U (1)) ∈ [W 1

p (Ω0)]7× [W 1
p (Ω1)]7 of the homogeneous

Problem (TD) can be represented by formulae (4.1) and (4.2). This implies
that the homogeneous problem (TD) with p > 1 possesses only the trivial
solution since the operator D is invertible by Theorem 4.2. ¤

Corollary 4.5. Let

S0, S1 ∈ C∞, f ∈ [H
1
2
2 (S1)]7, F ∈ [H− 1

2
2 (S1)]7, f (D) ∈ [H

1
2
2 (S0)]7.

Then the problem (3.2)–(3.5) has a unique solution

(U (0), U (1)) ∈ [W 1
2 (Ω0)]7 × [W 1

2 (Ω1)]7
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which can be represented by the single layer potentials (4.1)–(4.2), were the
triplet

(ϕ, χ, ψ)> ∈ [H
1
2
2 (S1)]7 × [H

1
2
2 (S1)]7 × [H

1
2
2 (S0)]7

is a unique solution of the system of boundary pseudodifferential equations
(4.3).

Remark 4.6. Applying the results in the references [8] and [42] (see also
[32]) concerning the properties of the potentials on Lipschitz domains one
can prove that the inequality (4.18) remains valid when S1 is a Lipschitz
surface and the operator (4.20) is invertible. This implies that Corollary
4.5 holds true when S0 and S1 are Lipschitz surfaces.

5. Existence Results for Problem (TN)

We look for a solution pair (U (0), U (1)) of Problem (TN) again in the
form (4.1)–(4.2). Taking into consideration the transmission and boundary
conditions of Problem (TN) and using the properties of the single layer
potentials we arrive at the system of boundary pseudodifferential equations
with respect to the triplet of unknown densities (ϕ, χ, ψ):

ϕ− χ− rS1V
(0)
S0

(
[H(0)

S0
]−1ψ

)
= f on S1,

A(1)
S1

ϕ−A(0)
S1

χ− rS1P(0)(∂, n)V (0)
S0

(
[H(0)

S0
]−1ψ

)
= F on S1,

rS0P(0)(∂, n)V (0)
S1

(
[H(0)

S1
]−1χ

)
+A(0)

S0
ψ = F (N) on S0,

(5.1)

where A(1)
S1

and A(0)
S1

are the Steklov–Poincaré operators given by (4.4), and

A(0)
S0

:= (−2−1I7 +K(0)
S0

)[H(0)
S0

]−1.

Denote by N the matrix integral operator generated by the left hand side
expressions in (5.1)

N = [Nkj ]21×21 :=

:=




I7 −I7 −rS1V
(0)
S0

(
[H(0)

S0
]−1

)

A(1)
S1

−A(0)
S1

−rS1P(0)V
(0)
S0

(
[H(0)

S0
]−1

)

0 rS0P(0)V
(0)
S1

([H(0)
S1

]−1) A(0)
S0




21×21

. (5.2)

Set
Ψ = (ϕ, χ, ψ)>, Q = (f, F, F (N))>,

and rewrite (5.1) in matrix form

NΨ = Q.

Further, let us introduce the function spaces

Zk,β′ := [Ck,β′(S1)]7 × [Ck−1,β′(S1)]7 × [Ck−1,β′(S0)]7,

S0, S1 ∈ Ck+1,γ′ , k ≥ 1, 0 < β′ < γ′ ≤ 1,

Zs
p := [Hs

p(S1)]7 × [Hs−1
p (S1)]7 × [Hs−1

p (S0)]7,
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Zs
p,t := [Bs

p,t(S1)]7 × [Bs−1
p,t (S1)]7 × [Bs−1

p,t (S0)]7,

s ∈ R, 1 < p < ∞, 1 ≤ t ≤ ∞, S0, S1 ∈ C∞.

The operator N possesses the mapping properties

N : Xk,β′ −→ Zk,β′ ,

: Xs
p −→ Zs

p,

: Xs
p,t −→ Zs

p,t,

where the spaces Xk,β′ , Xs
p, and Xs

p,t are defined in (4.6)–(4.8) respec-
tively. To establish Fredholm properties of these operators let us consider
the principal part Ñ of the operator (5.2)

Ñ :=




I7 −I7 0
A(1)

S1
−A(0)

S1
0

0 0 A(0)
S0




21×21

.

It is evident that Ñ has the same mapping properties as N and that the
difference N − Ñ is a compact operator in the corresponding spaces.

As we have shown in Section 4, the upper 14× 14 principal block of the
matrix operator Ñ and the elliptic pseudodifferential operator A(0)

S0
are in-

vertible in the appropriate function spaces. Consequently, Ñ is an invertible
operator. Then it follows that the operator N is Fredholm with zero index.
Now let us show that the operator N has a trivial kernel which implies its
invertibility. Indeed, let Ψ = (ϕ, χ, ψ)> be a solution of the homogeneous
equation

NΨ = 0.

Construct the single layer potentials:

U (1)(x) = V
(1)
S1

(
[H(1)

S1
]−1ϕ

)
(x), x ∈ Ω1,

U (0)(x) = V
(0)
S0

(
[H(0)

S0
]−1ψ

)
(x) + V

(0)
S1

(
[H(0)

S1
]−1χ

)
(x), x ∈ Ω0.

It is easy to verify that the pair (U (0), U (1)) solves the homogeneous Problem
(TN) and, consequently, by the uniqueness Theorem 3.2 we conclude that

U (1)(x) = 0, x ∈ Ω1, U (0)(x) = 0, x ∈ Ω0. (5.3)

As in the proof of Theorem 4.2 one can easily show that the relations (5.3)
implies Ψ = 0.

Now we can formulate the following existence results for Problem (TN).

Theorem 5.1.
(i) Let

S0, S1 ∈ C2,γ′ , f ∈ [C1,β′(S1)]7, F ∈ [C0,β′(S1)]7,

F (N) ∈ [C0,β′(S0)]7, 0 < β′ < γ′ ≤ 1.
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Then the problem (3.2)–(3.4), (3.6) possesses a unique solution in
the class of regular vector functions which can be represented by
single layer potentials (4.1)–(4.2), where the triplet

(ϕ, χ, ψ)> ∈ [C1,β′(S1)]7 × [C1,β′(S1)]7 × [C1,β′(S0)]7

is uniquely defined by the system of boundary pseudodifferential
equations (5.1).

(ii) Let

S0, S1 ∈ C∞, f ∈ [
B

1− 1
p

p,p (S1)
]7

, F ∈ [
B
− 1

p
p,p (S1)

]7
,

F (N) ∈ [
B
− 1

p
p,p (S0)

]7
, p > 1.

Then the problem (3.2)–(3.4), (3.6) possesses a unique solution

(U (0), U (1)) ∈ [W 1
p (Ω0)]7 × [W 1

p (Ω1)]7

which can be represented by the single layer potentials (4.1)–(4.2),
where the triplet

(ϕ, χ, ψ) ∈ [B
1− 1

p
p,p (S1)]7 × [B

1− 1
p

p,p (S1)]7 × [B
1− 1

p
p,p (S0)]7

is a unique solution of the system of boundary pseudodifferential
equations (5.1).

From this theorem, as a particular case, we have the following

Corollary 5.2. Let

S0, S1 ∈ C∞, f ∈ [H
1
2
2 (S1)]7, F ∈ [H− 1

2
2 (S1)]7, F (N) ∈ [H− 1

2
2 (S0)]7.

Then the problem (3.2)–(3.4), (3.6) has a solution

(U (0), U (1)) ∈ [W 1
2 (Ω0)]7 × [W 1

2 (Ω1)]7

which can be represented by the singlelayer potentials (4.1)–(4.2), where the
triplet

(ϕ, χ, ψ) ∈ [H
1
2
2 (S1)]7 × [H

1
2
2 (S1)]7 × [H

1
2
2 (S0)]7

is a unique solution of the system of boundary pseudodifferential equations
(5.1).

Remark 5.3. Applying again the results in the references [8], [42], and
[32]) concerning the properties of the potentials on Lipschitz domains one
can prove that Corollary 5.2 holds true when S0 and S1 are Lipschitz sur-
faces.
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6. Interface Crack Problem (ICP)

6.1. Formulation of the problem. Throughout this section, let Ω1 =
Ω+ be a bounded region in R3 with a simply connected boundary S =
∂Ω1 ∈ C∞ and let Ω0 = Ω− = R3 \ Ω1. As in Section 3, we assume that
the domains Ω` are filled with elastic hemitropic materials having different
material constants, α(`), β(`), γ(`), δ(`), λ(`), µ(`), ν(`), κ(`) and ε(`), ` = 0, 1.
We preserve the notation employed in Section 3 for differential and integral
operators. In what follows, n(z) stands for the outward unit normal vector
with respect to the bounded domain Ω1 at the point z ∈ S. Further, let
the interface surface S be divided into two disjoint, simply connected parts
ST (where the transmission conditions are given) and SC (where the crack
conditions are given): S = ST ∪ SC . We assume that ∂ST = ∂SC is a
simple, C∞-smooth curve. We identify SC as an interface crack surface
with smooth boundary ∂SC .

We will study the following interface crack type mixed transmission Prob-
lem (ICP):

Find vector-functions

U (1) ∈ [W 1
p (Ω1)]7, U (0) ∈ [W 1

p,loc(Ω0)]7, 1 < p < ∞,

satisfying the differential equations,

L(`)(∂, σ)U (`) = 0 in Ω`, ` = 0, 1, (6.1)

the transmission conditions on ST ,

{U (1)}+ − {U (0)}− = f̃ , (6.2)
{P(1)(∂, n)U (1)

}+ − {P(0)(∂, n)U (0)
}− = F̃ on ST , (6.3)

and the interface crack conditions on SC ,
{P(1)(∂, n)U (1)

}+ = F (1),
{P(0)(∂, n)U (0)

}− = F (0) on SC . (6.4)

Moreover, we assume that U (0) is bounded at infinity, whence in view
of (3.1) it follows that actually U (0) decays exponentially at infinity and
U (0) ∈ [W 1

p (Ω0)]7 ∩ [C∞(Ω0)]7 (for details see [44]).
In our analysis we replace the conditions (6.4) by the equivalent ones:
{P(1)(∂, n)U (1)

}+ − {P(0)(∂, n)U (0)
}− = F (1) − F (0) on SC , (6.5)

{P(1)(∂, n)U (1)
}+ +

{P(0)(∂, n)U (0)
}− = F (1) + F (0) on SC . (6.6)

The boundary data involved in the above formulation belong to the natural
spaces:

f̃ ∈ [
B

1− 1
p

p,p (ST )
]7

, F̃ ∈ [B
− 1

p
p,p (ST )]7, F (1), F (0) ∈ [B

− 1
p

p,p (SC)]7. (6.7)

Denote

F :=

{
F̃ on ST ,

F (1) − F (0) on SC .
(6.8)
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Clearly, F represents the difference of generalized traces of the stress vectors,

F =
{P(1)(∂, n)U (1)

}+ − {P(0)(∂, n)U (0)
}− on S.

Therefore the imbedding

F ∈ [B
− 1

p
p,p (S)]7 (6.9)

is the necessary condition for the interface crack problem (ICP) to be solv-
able in the space [W 1

p (Ω0)]7 × [W 1
p (Ω1)]7.

Now we reformulate the problem (ICP) (6.1)–(6.7) in the following form:

Find vector-functions U (`) ∈ [W 1
p (Ω`)]7, ` = 0, 1, 1 < p < ∞, satisfying the

conditions

L(`)(∂, σ)U (`) = 0 in Ω`, ` = 0, 1, (6.10)

{U (1)}+ − {U (0)}− = f̃ on ST , (6.11)
{P(1)(∂, n)U (1)

}+ − {P(0)(∂, n)U (0)
}− = F on S, (6.12)

{P(1)(∂, n)U (1)
}+ +

{P(0)(∂, n)U (0)
}− = F (1) + F (0) on SC . (6.13)

One can easily prove the following particular uniqueness result using
Green’s identities for domains Ω1 and Ω0 (see the proof of Theorem 3.1).

Theorem 6.1. The interface crack problem (6.10)–(6.13) with p = 2
may have at most onesolution.

6.2. Auxiliary problem. Let us consider the following basic transmission
problem (BTP):

Find vector-functions U (`) ∈ [W 1
p (Ω`)]7, ` = 0, 1, 1 < p < ∞, satisfying the

conditions U (`) ∈ [W 1
p (Ω`)]7 :

L(`)(∂, σ)U (`) = 0 in Ω`, ` = 0, 1, (6.14)

{U (1)}+ − {U (0)}− = f on S, (6.15)
{P(1)(∂, n)U (1)

}+ − {P(0)(∂, n)U (0)
}− = F on S, (6.16)

where

f ∈ [
B

1− 1
p

p,p (S)
]7

, F ∈ [
B
− 1

p
p,p (S)

]7
, 1 < p < ∞. (6.17)

Using Green’s formulas it can easily be shown that this problem possesses
at most one solution for p = 2.

Let us look for a solution pair (U (1), U (2)) in the form of single layer
potentials:

U (`)(x) = V (`)
(
[H(`)]−1g(`))(x), ` = 0, 1, (6.18)

where V (`) = V
(`)
S and g(`) ∈ [

B
1− 1

p
p,p (S)

]7 are unknown densities.
The transmission conditions (6.15)–(6.16) lead then to the relations

g(1) − g(0) = f on S, (6.19)

A(1)g(1) −A(0)g(0) = F on S, (6.20)
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where A(`), ` = 0, 1, are the above introduced Steklov–Poincaré operators
(see (4.4)):

A(1) = (−2−1I7 +K(1))[H(1)]−1, A(0) = (2−1I7 +K(0))[H(0)]−1.

From (6.19)–(6.20) we get

g(1) = f − g(0) on S, (6.21)
(A(1) −A(0)

)
g(0) = F −A(1)f on S. (6.22)

As we have shown in the proof of Lemma 4.1 (Step 2) the operator

A(1) −A(0) : [B
− 1

p
p,p (S)]7 −→ [B

− 1
p

p,p (S)]7

is invertible. Therefore we have from (6.22)

g(0) = [A(1) −A(0)]−1(F −A(1)f). (6.23)

By (6.21) we then get

g(1) = [A(1) −A(0)]−1F − [A(1) −A(0)]−1A(0)f. (6.24)

Substituting (6.23) and (6.24) into (6.18) finally we get the following
representation of the solution to the (BTP)

U (1) = V (1)
(
[H(1)]−1[A(1) −A(0)]−1(F −A(0)f)

)
in Ω1, (6.25)

U (0) = V (0)
(
[H(0)]−1[A(1) −A(0)]−1(F −A(1)f)

)
in Ω0. (6.26)

Theorem 6.2. Let 1 < p < ∞ and conditions (6.17) be satisfied. Then
the basic transmission problem (6.14)–(6.17) is uniquely solvable in the space
[W 1

p (Ω1)]7 × [W 1
p (Ω0)]7 and the solution can be represented by formulas

(6.25)–(6.26).

Proof. It is word for word of the proof of Theorem 4.4. ¤

6.3. Existence and regularity of solutions to the (ICP). Let us now
consider the (ICP) (6.10)–(6.13). Denote by f a fixed extension of the vector
f̃ from ST onto the whole of S, preserving the space. Any extension of the

same vector can be then represented as a sum f +ϕ with ϕ ∈ [B̃
1− 1

p
p,p (SC)]7.

We look for a solution pair (U (1), U (0)) to the (ICP) (6.10)–(6.13) in the
form

U (1) = V (1)
(
[H(1)]−1[A(1) −A(0)]−1(F −A(0)(f + ϕ))

)
in Ω1, (6.27)

U (0) = V (0)
(
[H(0)]−1[A(1) −A(0)]−1(F −A(1)(f + ϕ))

)
in Ω0, (6.28)

where F is a known vector-function given by (6.8), f is the fixed extension

of the vector f̃ and ϕ ∈ [B̃
1− 1

p
p,p (SC)]7 is unknown.

One can easily verify that the differential equations (6.10) and the trans-
mission conditions (6.11) and (6.12) are automatically satisfied, while the



Transmission and Interface Crack Problems of Thermoelasticity 55

boundary condition (6.13) on the crack surface SC leads to the pseudodif-
ferential equation on SC for the unknown vector-function ϕ:

rSC

{
A(1)[A(1)−A(0)]−1A(0)+A(0)[A(1)−A(0)]−1A(1)

}
ϕ=Φ on SC , (6.29)

where

Φ :=F (1)−F (0)−rSC (−2−1I7+K(1))[H(1)]−1[A(1)−A(0)]−1(F−A(0)f)−
− rSC

(2−1I7 +K(0))[H(0)]−1[A(1) −A(0)]−1(F −A(1)f).

Clearly,

Φ ∈ [B
− 1

p
p,p (SC)]7.

Denote the principal homogeneous symbol matrices of the pseudodiffer-
ential operators A(1) and A(0) by S1 = S1(x, ξ1, ξ2) and S0 = S0(x, ξ1, ξ2)
respectively with x ∈ SC and (ξ1, ξ2) ∈ R2 \ {0}.

Note that, since the principal homogeneous parts of the differential oper-
ators L(`)(∂, σ) are formally selfadjoint, from (4.19) one can conclude that
the principal homogeneous symbol matrices S1 and −S0 of the operators
A(1)

S1
and −A(0)

S1
are positive definite for all x ∈ SC and (ξ1, ξ2) ∈ R2 \ {0}.

For the principal homogeneous symbol matrix of the operator

K := −A(1)[A(1) −A(0)]−1A(0) −A(0)[A(1) −A(0)]−1A(1) (6.30)

we have

SK = −S1(S1−S0)−1S0−S0(S1−S0)−1S1 = 2(S−1
1 −S−1

0 )−1. (6.31)

Whence it follows that SK = SK(x, ξ1, ξ2) is positive definite for all x ∈ SC

and (ξ1, ξ2) ∈ R2 \ {0}.
Rewrite equation (6.29) in the form

rSC (Kϕ) = −Φ on SC ,

Due to the results in [52] (see also Appendix C in [44]), since K is an ellip-
tic pseudo differential operator of order +1 with positive definite principal
homogeneous symbol, we conclude that the operator

rSC
K : [B̃s

p,t(SC)]7 −→ [Bs−1
p,t (SC)]7 (6.32)

is Fredholm with zero index for arbitrary t ∈ [1,∞], if
1
p
− 1 < s− 1

2
<

1
p

. (6.33)

In particular, for s = 1− 1
p and t = p we get that the operator

rSC
K :

[
B̃

1− 1
p

p,p (SC)
]7 −→ [

B
− 1

p
p,p (SC)

]7 (6.34)

is Fredholm, if
4
3

< p < 4. (6.35)

Moreover, the null space of the operator (6.32) does not depend on t, p and
s if (6.33) holds (see, e.g., [5, Theorem 3.5]).
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Now we show that the null space of the operator (6.34) with p = 2,

rSC K :
[
H̃

1
2
2 (SC)

]7 −→ [H− 1
2

2 (SC)]7 (6.36)

is trivial.
Let ψ ∈ [H

1
2
2 (SC)]7 be a solution of the homogeneous equation

rSC
Kψ = 0 on SC (6.37)

and construct the vectors

Ũ (1)(x) = −V (1)
(
[H(1)]−1[A(1) −A(0)]−1A(0)ψ

)
in Ω1,

Ũ (0)(x) = −V (0)
(
[H(0)]−1[A(1) −A(0)]−1A(1)ψ

)
in Ω0.

It is easy to check that the pair (Ũ (1), Ũ (0)) solve the homogeneous problem
(ICP) (6.10)–(6.13). Due to the uniqueness Theorem 6.1 it follows that

Ũ (1) = 0 in Ω0 and Ũ (1) = 0 in Ω1.

Whence

0={Ũ (1)}+−{Ũ (0)}−=−[A(1)−A(0)]−1A(0)ψ+[A(1)−A(0)]−1A(1)ψ=ψ.

Thus, equation (6.37) possesses only the zero solution and consequently the
null space of the operator (6.36) is trivial. Therefore it follows that the
operator (6.32) with s and p satisfying the condition (6.33) is invertible.

The same holds true for the operator (6.34) with p satisfying the inequal-
ities (6.35). The above results lead to the following existence and regularity
theorems.

Theorem 6.3. Let 4/3 < p < 4,

f̃ ∈ [
B

1− 1
p

p,p (ST )
]7

, F̃ ∈ [
B
− 1

p
p,p (ST )

]7
, F (0), F (1) ∈ [

B
− 1

p
p,p (SC)

]7
,

and for F given by (6.8) the inclusion (6.9) hold. Then the interface crack
problem (ICP) possesses a unique solution pair

(U (0), U (1)) ∈ [W 1
p (Ω0)]7 × [W 1

p (Ω1)]7,

which is representable in the form (6.27)–(6.28), where the unknown vector
ϕ is a unique solution to the pseudodifferential equation (6.29).

Proof. It is quite similar to the proof of Theorem 4.4. The existence of so-
lution follows from the mapping properties of the layer potentials described
in Theorems A.1–A.4 (see Appendix A), while the uniqueness of solution
is a consequence of the invertibility of the operator (6.34) with p satisfying
the inequality (6.35). ¤

Theorem 6.4. Let

1 < t < ∞, 1 ≤ r ≤ ∞,
4
3

< p < 4,
1
t
− 1

2
< s <

1
t

+
1
2

, (6.38)

and let a pair (U (0), U (1)) ∈ [W 1
p (Ω0)]7 × [W 1

p,loc(Ω1)]7 be a solution to
Problem (ICP).
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(i) If f̃ ∈ [Bs
t,t(ST )]7, F̃ ∈ [Bs−1

t,t (ST )]7, F (0), F (1) ∈ [Bs−1
t,t (SC)]7, and

F ∈ [Bs−1
t,t (S)]7, where F is defined by (6.8), then

(U (0), U (1)) ∈ [Hs+ 1
t

t (Ω0)]7 × [Hs+ 1
t

t (Ω1)]7;

(ii) If f̃ ∈ [Bs
t,r(ST )]7, F̃ ∈ [Bs−1

t,r (ST )]7, F (0), F (1) ∈ [Bs−1
t,r (SC)]7, and

F ∈ [Bs−1
t,r (S)]6, where F is defined by (6.8),then

(U (0), U (1)) ∈ [Bs+ 1
t

t,r (Ω0)]7 × [Bs+ 1
t

t,r (Ω1)]7; (6.39)

(iii) If

f̃ ∈ [Cβ′(ST )]7, F̃ ∈ [
Bβ′−1
∞,∞(ST )

]7
, F ∈ [

Bβ′−1
∞,∞(S)

]7
,

F (0), F (1) ∈ [
Bβ′−1
∞,∞(SC)

]7
, β′ > 0,

(6.40)

where F is defined by (6.8), then

U (`) ∈
⋂

σ′<ν′

[
Cσ′(Ω`)

]7
, ` = 0, 1,

where ν′ = min{β′, 1/2}.
Proof. Under the restrictions on the parameters r, t and s stated in the
theorem we see that the operator (6.32) is invertible. Therefore the items
(i) and (ii) immediately follow from the mapping properties of the single
layer potentials and the boundary operators A(1) − A(0) and H(`), A(`),
` = 0, 1.

To prove (iii) we use the following embeddings (see, e.g., [54], [55])

Bα′
∞,∞(S) ⊂ Bα′−ε′

∞,1 (S) ⊂ Bα′−ε′
∞,r (S) ⊂ Bα′−ε′

t,r (S), (6.41)

Cβ′(S) = Bβ′
∞,∞(S) ⊂ Bβ′−ε′

∞,1 (S) ⊂ Bβ′−ε′
∞,r (S) ⊂

⊂ Bβ′−ε′
t,r (S) ⊂ Cβ′−ε′− k

t (S), (6.42)

where α′ ∈ R, ε′ is an arbitrary small positive number, S ⊂ R3 is a compact
k-dimensional (k = 2, 3) smooth manifold with smooth boundary, 1 ≤ r ≤
∞, 1 < t < ∞, β′ − ε′ − k/t > 0, β′ and β′ − ε′ − k/t are not integers.
From (6.40) and the embeddings (6.41) the condition (6.39) follows with
any s ≤ β′ − ε′.

Bearing in mind the conditions (6.38) and taking t sufficiently large and
ε′ sufficiently small, we may put s = β′ − ε′ if

1
t
− 1

2
< β′ − ε′ <

1
t

+
1
2

, (6.43)

and s ∈ (1/t− 1/2, 1/t + 1/2) if
1
t

+
1
2

< β′ − ε′. (6.44)

By the inclusion (6.39) the vector U (`) belongs then to [Bs+ 1
t

t,r (Ω`)]7 with
s+1/t = β′−ε′+1/t if (6.43) holds, and with s+1/t ∈ (2/t−1/2, 2/t+1/2)
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if (6.44) holds. In the last case we can take s + 1/t = 2/t + 1/2 − ε′.

Therefore, we have either U (`) ∈ [Bβ′−ε′+ 1
t

t,r (Ω`)]7, or U (`) ∈ [B
1
2+ 2

t−ε′

t,r (Ω`)]7

in accordance with the inequalities (6.43) and (6.44). The last embedding
in (6.42) (with k = 3) yields that either U (`) ∈ [Cβ′−ε′− 2

t (Ω`)]7, or U (`) ∈
[C

1
2−ε′− 1

t (Ω`)]7 which lead to the inclusion

U (`) ∈ [
Cν′−ε′− 2

t (Ω`)
]7

, ` = 0, 1, (6.45)

where ν′ := min{β′, 1/2}. Since t is sufficiently large and ε′ is sufficiently
small, the embedding (6.45) completes the proof. ¤

Remark 6.5. More detailed analysis based on the asymptotic expansions
of solutions (see [6], [9]) shows that for sufficiently smooth boundary data
(e.g., C∞-smooth data say) the leading asymptotic terms of the solution vec-
tors U (0) and U (1) near the interface crack edge, i.e., near the curve ∂ST =
∂SC can be represented as a product of a “good” vector-function and a sin-
gular factor of the form [ln %(x)]qj [%(x)]αj+iβj , 0 ≤ qj ≤ mj − 1. Here %(x)
is the distance from a reference point x to the curve ∂ST = ∂SC . Therefore,
near the interface crack edge, the leading dominant singular terms of the
corresponding generalized stress vectors P(`)U (`) are represented as a prod-
uct of a “good” vector-function and the factors [ln %(x)]qj [%(x)]−1+αj+iβj .
Clearly when the numbers βj are different from zero then we have the os-
cillating stress singularities.

The exponents αj+iβj are related to the eigenvalues λj = λj(x), j = 1, 7,
of the matrix (see (6.30), (6.31))

[
SK(x, 0, +1)

]−1
SK(x, 0,−1)

for x ∈ ∂ST = ∂SC , and the following relations hold

αj =
1
2

+
arg λj

2π
, βj = − ln |λj |

2π
, j = 1, 7.

In the above expressions the parameter mj denotes the algebraic multiplicity
of the eigenvalue λj .

Note that due to the positive definiteness of the matrix SK(x, ξ1, ξ2) for
all x ∈ S1 and (ξ1, ξ2) ∈ R2 \ {0} it is easy to show that all eigenvalues λj

are positive which implies that αj = 1
2 , j = 1, 7.

It is evident that when |λj | 6= 1, then the corresponding βj 6= 0 and
oscillating stress singularities arise near the interface crack edge. More-
over, the components of the generalized stress vector P(`)U (`) behave like
O(

[ln %(x)]q0−1[%(x)]−
1
2
)
, where q0 denotes the maximal algebraic multiplic-

ity of the eigenvalues. This is a global singularity effect for the first order
derivatives of the vectors U (0) and U (1). As we see, the stress singularity
exponents for the interface crack problem in the case of hemitropic solids
have the form − 1

2 + iβj where βj depends on the material parameters of
the constituent solids of the composite structure.
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7. Appendix A

Here we collect some results concerning mapping and regularity prop-
erties of the single and double layer potentials and the boundary pseudo-
differential operators generated by them in the Hölder (Cm,κ), Sobolev–
Slobodetski (W s

p ), Bessel potential (Hs
p) and Besov (Bs

p,q) spaces. They
can be found in [10], [11], [12], [13], [16], [21], [22], [32], [36], [37], [38], [40],
[43], and [44].

We assume (if not otherwise stated) that Ω+ ⊂ R3 is a bounded domain
with boundary S = ∂Ω+ and Ω− = R3 \ Ω+,

S = ∂Ω± ∈ Cm,γ′ with integer m ≥ 2 and 0 < γ′ ≤ 1,

σ = σ1 + iσ2, σ1 ∈ R, σ2 > 0.
(A.1)

Introduce the single and double layer potentials

V (x) = VS(x) :=
∫

S

Γ(x− y, σ)g(y) dSy, (A.2)

W (x) = WS(x) :=
∫

S

[P∗(∂y, n(y))Γ>(x− y, σ)
]>

g(y) dSy, (A.3)

where x ∈ R3 \ S, Γ(x − y, σ) is the fundamental matrix of the operator
L(∂, σ) which is explicitly constructed in [44]. The proofs of the following
theorems can be found in [44].

Theorem A.1. Let S, m, and γ′ be as in (A.1), 0 < β′ < γ′, and let
k ≤ m− 1 be a nonnegative integer. Then the operators

V : [Ck,β′(S)]7 −→ [
Ck+1,β′(Ω±)

]7
,

W : [Ck,β′(S)]7 −→ [
Ck,β′(Ω±)

]7 (A.4)

are continuous.
For any g ∈ [C0,β′(S)]7, h ∈ [C1,β′(S)]7, and for all x ∈ S

[V (g)(x)]± = V (g)(x) = Hg(x), (A.5)
[P(∂x, n(x))V (g)(x)

]± = [∓2−1I7 +K]g(x), (A.6)

[W (g)(x)]± = [±2−1I7 +N ]g(x), (A.7)
[P(∂x, n(x))W (h)(x)

]+ = [P(∂x, n(x))W (h)(x)]− = Lh(x), (A.8)

where

Hg(x) = HSg(x) :=
∫

S

Γ(x− y, σ)g(y) dSy, (A.9)

Kg(x) = KSg(x) :=
∫

S

[P(∂x, n(x))Γ(x− y, σ)
]
g(y) dSy, (A.10)
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N g(x) = NSg(x) :=
∫

S

[P∗(∂y, n(y))Γ>(x− y, σ)
]>

g(y) dSy, (A.11)

Lh(x) = LSh(x) := (A.12)

:= lim
Ω±3z→x∈S

P(∂z, n(x))
∫

S

[P∗(∂y, n(y))Γ>(z−y, σ)
]>

h(y) dSy. (A.13)

Theorem A.2. Let S be a Lipschitz surface. Then the operators (A.4)
can be extended to the continuous mappings

V : [H− 1
2

2 (S)]7 −→ [H1
2 (Ω±)]7, W : [H

1
2
2 (S)]7 −→ [H1

2 (Ω±)]7.

The jump relations (A.5)–(A.8) on S remain valid for the extended operators
in the corresponding function spaces.

Theorem A.3. Let S, m, γ′, β′ and k be as in Theorem A.1. Then the
operators

H : [Ck,β′(S)]7 −→ [Ck+1,β′(S)]7,

: [H− 1
2

2 (S)]7 −→ [H
1
2
2 (S)]7,

(A.14)

K : [Ck,β′(S)]7 −→ [Ck,β′(S)]7,

: [H− 1
2

2 (S)]7 −→ [H− 1
2

2 (S)]7,
(A.15)

N : [Ck,β′(S)]7 −→ [Ck,β′(S)]7,

: [H
1
2
2 (S)]7 −→ [H

1
2
2 (S)]7,

(A.16)

L : [Ck,β′(S)]7 −→ [Ck−1,β′(S)]7,

: [H
1
2
2 (S)]7 −→ [H− 1

2
2 (S)]7

(A.17)

are continuous. Moreover,

(i) the principal homogeneous symbol matrices of the singular integral
operators ±2−1I7 + K and ±2−1I7 + N are non-degenerate, while
the principal homogeneous symbol matrices of the pseudodifferential
operators −H and L are positive definite;

(ii) the operators H, ±2−1I7 +K, ±2−1I7 +N , and L are elliptic pseu-
dodifferential operators (of order −1, 0, 0, and 1, respectively) with
zero index;

(iii) the following equalities hold in appropriate function spaces:

NH = HK, LN = KL,

HL = −4−1I7 +N 2, LH = −4−1I7 +K2.

(iv) The operators (A.14), (A.15), (A.16), and (A.17) are bounded if S
is a Lipschitz surface.
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Theorem A.4. Let V , W , H, K, N , and L be as in Theorems A.1 and
A.3 and let s ∈ R, 1 < p < ∞, 1 ≤ q ≤ ∞, S ∈ C∞. The layer potential op-
erators (A.2), (A.3) and the boundary integral (pseudodifferential) operators
(A.9)–(A.12) can be extended to the following continuous operators

V : [Bs
p,p(S)]7 −→ [H

s+1+ 1
p

p (Ω±)]7
(

[Bs
p,q(S)]7 −→ [

B
s+1+ 1

p
p,q (Ω±)

]7 )
,

W : [Bs
p,p(S)]7 −→ [H

s+ 1
p

p (Ω±)]7
(

[Bs
p,q(S)]7 −→ [

B
s+ 1

p
p,q (Ω±)

]7 )
,

H : [Hs
p(S)]7 −→ [Hs+1

p (S)]7
(

[Bs
p,q(S)]7 −→ [Bs+1

p,q (S)]7
)
, (A.18)

K : [Hs
p(S)]7 −→ [Hs

p(S)]7
(

[Bs
p,q(S)]7 −→ [Bs

p,q(S)]7
)
, (A.19)

N : [Hs
p(S)]7 −→ [Hs

p(S)]7
(

[Bs
p,q(S)]7 −→ [Bs

p,q(S)]7
)
, (A.20)

L : [Hs+1
p (S)]7 −→ [Hs

p(S)]7
(

[Bs+1
p,q (S)]7 −→ [Bs

p,q(S)]7
)
. (A.21)

The jump relations (A.5)–(A.8) remain valid for arbitrary g ∈ [Bs
p,q(S)]7

with s ∈ R if the limiting values (traces) on S are understood in the sense
described in [51].

The operators (A.18)–(A.21) are elliptic pseudodifferential operators with
zero index. The null-spaces of the operators (A.18)–(A.21) are invariant
with respect to p, q, and s.

Theorem A.5. Let S ∈ C2,γ′ and 0 < β′ < γ′ ≤ 1. Then the operator

H : [C0,β′(S)]7 −→ [C1,β′(S)]7

is invertible.

Theorem A.6. Let S be Lipschitz. Then the operator

H : [H− 1
2

2 (S)]7 −→ [H
1
2
2 (S)]7

is invertible.

Let us introduce the volume Newtonian potential

NΩ(Ψ)(x) :=
∫

Ω

Γ(x− y, σ)Ψ(y) dx,

where Ω ⊂ R3 is an arbitrary bounded domain and either Ψ ∈ [L2(Ω)]7 or
Ψ ∈ [C0,β′(Ω)]7 with 0 < β′ < 1. There holds the following proposition
(see, e.g., [33], [32]).

Theorem A.7. Let S ∈ C1,γ′ and 0 < β′ < γ′ ≤ 1. Then operators

NΩ : [L2(Ω)]7 −→ [W 2
2 (Ω)]7,

: [C0,β′(Ω)]7 −→ [C2,β′(Ω)]7 ∩ [C1,β′(Ω)]7,
(A.22)
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are bounded. The mapping property (A.22) holds for Lipschitz domains as
well. Moreover,

L(∂, σ)NΩ(Ψ)(x) = Ψ(x), x ∈ Ω,

for almost all x in Ω if Ψ ∈ [L2(Ω)]7 and for all x in Ω if Ψ ∈ [C0,β′(Ω)]7.
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