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Abstract. We derive Green’s formulas for the system of differential
equations of stationary oscillations in the theory of elastic mixtures, which
enable us to prove the uniqueness theorems for solutions of the boundary
value problems. The jump formulas for single and double-layer potentials
are derived. Using the theories of potentials and integral equations the
existence of solutions is proved.

2010 Mathematics Subject Classification. 74A15, 75F20, 74H25,
74B10.

Key words and phrases. Composite body, theory of mixtures, funda-
mental matrix, metaharmonic function.

îâäæñéâ. ïðŽðæŽöæ éæôâĲñèæŽ áîâçŽá êŽîâãåŽ åâëîææï ïðŽùæëêŽèñ-
îæ îýâãæï áæòâîâêùæŽèñî àŽêðëèâĲŽåŽ ïæïðâéæïŽåãæï àîæêæï òëîéñèâ-
Ĳæ, îëéâèåŽ áŽýéŽîâĲæå áŽéðçæùâĲñèæŽ ïŽïŽäôãîë ŽéëùŽêâĲæï ŽéëêŽýïêæï
âîåŽáâîåëĲæï åâëîâéâĲæ. éæôâĲñèæŽ éŽîðæãæ áŽ ëîéŽàæ òâêæï ìëðâêùæ-
ŽèâĲæï ûõãâðæï òëîéñèâĲæ. ìëðâêùæŽèåŽ áŽ æêðâàîŽèñî àŽêðëèâĲŽåŽ
åâëîææï àŽéëõâêâĲæå áŽéðçæùâĲñèæŽ ŽéëùŽêâĲæï ŽéëêŽýïêæï ŽîïâĲëĲæï åâ-
ëîâéâĲæ.
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1. Introduction

Elastic composite materials with complex structures, as well as with
structures composed of substantially differing materials are widely applied
in the modern technological processes. Hemitropic elastic materials, mix-
tures produced from two or more elastic materials, etc., belong to the class
of such composite materials and structures. The study of practical problems
of mechanical properties of such materials naturally results in the necessity
to develop mathematical models, which would allow to get more precise
description of actual processes ongoing during the experiments. Mathemat-
ical modeling for such materials commenced as early as in the sixties of
the past century. The first mathematical model of an elastic mixture (solid
with solid), the so-called diffuse model, was developed by A. Green and
T. Steel in 1966. In this model, the interaction force between components
depends upon the difference of displacement vectors of components. In the
same year they have developed the single-temperature thermoelasticity the-
ory diffuse model of the elastic mixtures. Mathematical model of the linear
theory of thermoelasticity of two-temperature elastic mixtures for the com-
posites of granular, fibrous and layered structures was developed in 1984 by
L. Khoroshun and N. Soltanov. Normally, the study of processes ongoing
in the body is reduced, in the relevant mathematical model described by
the system of differential equations with partial derivatives, to the study of
boundary value problems (BVPs), mixed type BVPs and boundary-contact
problems, and also the fundamental matrix for solving the system of dif-
ferential equations playing a substantial role. For the diffuse and displace-
ment models of the two-component mixtures (single-temperature) thermoe-
lasticity theory, the issue of steadiness and correctness, identification of
the asymptotic behavior of problem solution, proving of the uniqueness
and existence theorems, solution of the BVPs for the domains bounded
by the specific surfaces, as absolutely and uniformly convergent series, are
studied by many scientists, among them: Alves, Munoz Rivera, Quin-
tanilla [2], Basheleishvili [3], Basheleishvili, Zazashvili [4], Burchuladze,
Svanadze [6], Gales [9], Giorgashvili, Skhvitaridze [13], [12], Giorgashvili,
Karseladze, Sadunishvili [11], Iesan [18], Nappa [29], Natroshvili, Jagh-
maidze, Svanadze [36], Svanadze [42], Quintanilla [41], Pompei [40], etc.

In this paper we derive Green’s formulas for the system of differential
equations of stationary oscillations in the theory of elastic mixtures, which
enable us to prove the uniqueness theorems for solutions of the boundary
value problems. Further, we establish mapping properties and jump for-
mulas for the single and double-layer potentials, and analyse the Fredholm
properties of the corresponding boundary operators. Using the potential
method and the theory of singular integral equations, the existence of solu-
tions to the basic boundary value problems is proved.



4 L. Giorgashvili, G. Karseladze, G. Sadunishvili, and Sh. Zazashvili

We treat here only the classical setting of basic boundary value problems
for smooth domains, however applying the results obtained in the refer-
ences: Agranovich [1], Buchukuri, Chkadua, Duduchava, Natroshvili [5],
Duduchava, Natroshvili [8], Gao [10], Jentsch, Natroshvili [19–21], Jentsch,
Natroshvili, Wendland [22, 23], Kupradze, Gegelia, Basheleishvili, Burchu-
ladze [25], Mitrea, Mitrea, Pipher [28], Natroshvili [30–32], Natroshvili,
Giorgashvili, Stratis [33], Natroshvili, Giorgashvili, Zazashvili [34], Natro-
shvili, Kharibegashvili, Tediashvili [37], Natroshvili, Sadunishvili [38], Na-
troshvili, Stratis [39], and using the same type approaches and reasonings,
one can analyze the generalized basic and mixed type boundary value prob-
lems, as well as crack type and interface problems in Sobolev–Slobodetskii
and Bessel potential spaces for smooth and Lipschitz domains.

2. Basic Differential Equations

The basic dynamical relationships for the two-component elastic mix-
tures, taking two-temperature thermal field into consideration, are math-
ematically described by the following system of partial differential equa-
tions [24]

a1∆u′(x, t) + b1 grad div u′(x, t) + c∆u′′(x, t)+

+d grad div u′′(x, t)− κ[
u′(x, t)− u′′(x, t)

]−
−η1 gradϑ1(x, t)− η2 gradϑ2(x, t) + ρ1F

′(x, t) = ρ1∂
2
ttu

′(x, t),

c∆u′(x, t) + d grad div u′(x, t) + a2∆u′′(x, t)+

+b2 grad div u′′(x, t) + κ
[
u′(x, t)− u′′(x, t)

]−
−ζ1 grad ϑ1(x, t)− ζ2 gradϑ2(x, t) + ρ2F

′′(x, t) = ρ2∂
2
ttu

′′(x, t),

κ1∆ϑ1(x, t) + κ2∆ϑ2(x, t)− α
[
ϑ1(x, t)− ϑ2(x, t)

]−
−η1 div ∂tu

′(x, t)− ζ1 div ∂tu
′′(x, t) + G′(x, t) = κ′∂tϑ1(x, t),

κ2∆ϑ1(x, t) + κ3∆ϑ2(x, t) + α
[
ϑ1(x, t)− ϑ2(x, t)

]−
−η2 div ∂tu

′(x, t)− ζ2 div ∂tu
′′(x, t) + G′′(x, t) = κ′′∂tϑ2(x, t),

(2.1)

where ∆ is the three-dimensional Laplace operator, u′ = (u′1, u
′
2, u

′
3)
>, u′′ =

(u′′1 , u′′2 , u′′3)> are partial displacement vectors, ϑ1 and ϑ2 are temperatures of
each component of the mixture, F ′ = (F ′1, F

′
2, F

′
3)
>, F ′′ = (F ′′1 , F ′′2 , F ′′3 )> are

the mass forces, G′, G′′ are the thermal sources located in the components,
aj , bj , c, d are the elasticity coefficients, κ, ηj , ζj , κj , κ3, κ′, κ′′, α, j = 1, 2,
are the mechanical and thermal constants of the elastic mixture, ρ1, ρ2 are
the densities of mixture components, t is a time variable, x = (x1, x2, x3) is
a point in the three-dimensional Cartesian space, > denotes transposition.

In the system (2.1), aj , bj , c, d, j = 1, 2, are the constants given as
follows [15,17]

a1 = µ1 − λ5, b1 = µ1 + λ5 + λ1 − ρ2

ρ
α0,
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a2 = µ2 − λ5, b2 = µ2 + λ5 + λ2 +
ρ1

ρ
α0,

c = µ3 + λ5, d = µ3 − λ5 + λ3 − ρ1

ρ
α0, α0 = λ3 − λ4, ρ = ρ1 + ρ2,

where λ1, λ2, . . . , λ5, µ1, µ2, µ3 are elastic constants satisfying the condi-
tions

µ1 > 0, λ5 < 0, µ1µ2 − µ2
3 > 0, λ1 +

2
3

µ1 − ρ2

ρ
α0 > 0,

(
λ1 +

2
3

µ1 − ρ2

ρ
α0

)(
λ2 +

2
3

µ2 − ρ1

ρ
α0

)
>

(
λ3 +

2
3

µ3 − ρ1

ρ
α0

)2

.

From these inequalities it follows that

a1 > 0, a1 + b1 > 0,

d1 := a1a2 − c2 > 0, d2 := (a1 + b1)(a2 + b2)− (c + d)2 > 0.
(2.2)

In addition, from physical considerations it follows that

ρ1 > 0, ρ2 > 0, α > 0, κ > 0, κ′ > 0, κ′′ > 0,

κj > 0, j = 1, 2, 3, d3 := κ1κ3 − κ2
2 > 0.

(2.3)

If all the functions involved in the system (2.1) are harmonic time depen-
dent, i.e., u′(x, t) = u′(x) exp(−iσt), u′′(x, t) = u′′(x) exp(−iσt), ϑ1(x, t) =
ϑ1(x) exp(−iσt), ϑ2(x, t) = ϑ2(x) exp(−iσt), F ′(x, t) = F ′(x) exp(−iσt),
F ′′(x, t) = F ′′(x) exp(−iσt), G′(x, t) = G′(x) exp(−iσt), G′′(x, t) =
G′′(x) exp(−iσt), where σ ∈ R is oscillation frequency, i =

√−1, then from
the system (2.1) we obtain the following system of differential equations of
the theory of stationary oscillations of two-temperature elastic mixture:

a1∆u′(x) + b1 grad div u′(x) + c∆u′′(x) + d grad div u′′(x)−
−κ[

u′(x)− u′′(x)
]− η1 gradϑ1(x)− η2 grad ϑ2(x)+

+ρ1σ
2u′(x) = −ρ1F

′(x),

c∆u′(x) + d grad div u′(x) + a2∆u′′(x) + b2 grad div u′′(x)+

+κ
[
u′(x)− u′′(x)

]− ζ1 gradϑ1(x)− ζ2 gradϑ2(x)+

+ρ2σ
2u′′(x) = −ρ2F

′′(x),

κ1∆ϑ1(x) + κ2∆ϑ2(x)− α
[
ϑ1(x)− ϑ2(x)

]
+ iση1 div u′(x)+

+iσζ1 div u′′(x) + iσκ′ϑ1(x) = −G′(x),

κ2∆ϑ1(x) + κ3∆ϑ2(x) + α
[
ϑ1(x)− ϑ2(x)

]
+ iση2 div u′(x)+

+iσζ2 div u′′(x) + iσκ′′ϑ2(x) = −G′′(x);

(2.4)

here u′, u′′, F ′, F ′′ are the complex vector-functions and ϑ1, ϑ2, G′, G′′,
are the complex scalar functions.

If σ = σ1 + iσ2 is a complex parameter and σ2 6= 0, then (2.4) is called
the system of differential equations of pseudooscillations, and if σ = 0, then
(2.4) is the system of differential equations of statics.
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Let us introduce the matrix differential operator of order 8×8, generated
by the left hand side expressions in system (2.4),

L(∂, σ) :=




L(1)(∂, σ) L(2)(∂, σ) L(5)(∂, σ) L(6)(∂, σ)
L(3)(∂, σ) L(4)(∂, σ) L(7)(∂, σ) L(8)(∂, σ)
L(9)(∂, σ) L(10)(∂, σ) L(13)(∂, σ) L(14)(∂, σ)
L(11)(∂, σ) L(12)(∂, σ) L(15)(∂, σ) L(16)(∂, σ)




8×8

,

where

L(1)(∂, σ) := (a1∆ + α′)I3 + b1Q(∂),

L(2)(∂, σ) = L(3)(∂, σ) := (c∆ + κ)I3 + dQ(∂),

L(4)(∂, σ) := (a2∆ + α′′)I3 + b2Q(∂),

L(4+j)(∂, σ) := −ηj∇>, L(6+j)(∂, σ) = −ζj∇>, j = 1, 2,

L(9)(∂, σ) := iση1∇, L(10)(∂, σ) := iσζ1∇,

L(11)(∂, σ) := iση2∇, L(12)(∂, σ) := iσζ2∇,

L(13)(∂, σ) := κ1∆ + α1, L(16)(∂, σ) := κ3∆ + α2,

L(14)(∂, σ) = L(15)(∂, σ) := κ2∆ + α;

here α′ = −κ + ρ1σ
2, α′′ = −κ + ρ2σ

2 α1 = −α + iσκ′, α2 = −α + iσκ′′,
∇ ≡ ∇(∂) := [∂1, ∂2, ∂3], ∂ = (∂1, ∂2, ∂3), ∂j = ∂/∂xj , j = 1, 2, 3, I3 is the
3× 3 unit matrix, Q(∂) := [∂k∂j ]3×3.

Applying these notation, the system (2.4) can be written as

L(∂, σ)U(x) = Φ(x),

where U = (u′, u′′, ϑ1, ϑ2)>, Φ = (−ρ1F
′,−ρ2F

′′,−G′,−G′′)>.
In what follows, we apply the following differential operators:

L0(∂) :=




L
(1)
0 (∂) L

(2)
0 (∂) [0]3×1 [0]3×1

L
(3)
0 (∂) L

(4)
0 (∂) [0]3×1 [0]3×1

[0]1×3 [0]1×3 κ1∆ κ2∆
[0]1×3 [0]1×3 κ2∆ κ3∆




8×8

, (2.5)

L̃0(∂) :=

[
L

(1)
0 (∂) L

(2)
0 (∂)

L
(3)
0 (∂) L

(4)
0 (∂)

]

6×6

,

where

L
(1)
0 (∂) := a1I3∆ + b1Q(∂),

L
(2)
0 (∂) = L

(3)
0 (∂) := cI3∆ + dQ(∂),

L
(4)
0 (∂) := a2I3∆ + b2Q(∂).
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Further let us introduce the operators

T (∂, n) :=
[
T (1)(∂, n) T (2)(∂, n)
T (3)(∂, n) T (4)(∂, n)

]

6×6

,

T (l)(∂, n) =
[
T

(l)
kj (∂, n)

]
3×3

, l = 1, 4,

(2.6)

where [15,16]

T
(1)
kj (∂, n) := (µ1 − λ5)δkj∂n + (µ1 + λ5)nj∂k+

+
(
λ1 − ρ2

ρ
α0

)
nk∂j ,

T
(2)
kj (∂, n) = T

(3)
kj (∂, n) := (µ3 + λ5)δkj∂n + (µ3 − λ5)nj∂k+

+
(
λ3 − ρ1

ρ
α0

)
nk∂j ,

T
(4)
kj (∂, n) := (µ2 − λ5)δkj∂n + (µ2 + λ5)nj∂k+

+
(
λ2 +

ρ1

ρ
α0

)
nk∂j ,

where ∂n = ∂/∂n is the normal derivative, n = (n1, n2, n3);

T̃ (∂, n) :=




T (1)(∂, n) T (2)(∂, n) [0]3×1 [0]3×1

T (3)(∂, n) T (4)(∂, n) [0]3×1 [0]3×1

[0]1×3 [0]1×3 κ1∂n κ2∂n

[0]1×3 [0]1×3 κ2∂n κ3∂n




8×8

,

P(∂, n) :=




T (1)(∂, n) T (2)(∂, n) −η1n
> −η2n

>

T (3)(∂, n) T (4)(∂, n) −ζ1n
> −ζ2n

>

[0]1×3 [0]1×3 κ1∂n κ2∂n

[0]1×3 [0]1×3 κ2∂n κ3∂n




8×8

,

P∗(∂, n) :=




T (1)(∂, n) T (2)(∂, n) −iση1n
> −iση2n

>

T (3)(∂, n) T (4)(∂, n) −iσζ1n
> −iσζ2n

>

[0]1×3 [0]1×3 κ1∂n κ2∂n

[0]1×3 [0]1×3 κ2∂n κ3∂n




8×8

, (2.7)

where T (l)(∂, n), l = 1, 2, 3, 4, are given by (2.6), n> = (n1, n2, n3)>.

3. Green’s Formulas

Let Ω+ be a finite three-dimensional region bounded by the Lyapunov
surface ∂Ω; Ω− := R3 \ Ω+.

Definition 3.1. A vector U = (u′, u′′, ϑ1, ϑ2)> will be called regular in
a domain Ω ⊂ R3 if U ∈ C2(Ω) ∩ C1(Ω).
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Let

U = (u, ϑ)>, V = (v, ϑ′)>, u = (u′, u′′)>, v = (v′, v′′)>,

ϑ = (ϑ1, ϑ2)>, ϑ′ = (ϑ′1, ϑ
′
2)
>.

It can be proved that for regular vectors u and v, the following Green’s
formula is valid [36]

∫

Ω+

v · L̃0(∂)u dx =
∫

∂Ω

[v(z)]+ · [T (∂, n)u(z)]+ ds−
∫

Ω+

E(u, v) dx, (3.1)

where the differential operator T (∂, n) is given by formula (2.6), n(z) is the

outward unit normal vector w.r.t. Ω+ at the point z ∈ ∂Ω, a · b =
3∑

j=1

ajbj

is the scalar product of vectors a and b, and E(u, v) is a quatratic form
defined as follows:

E(u, v) =
(
λ1 − %2

%
α0

)
div v′ div u′ +

(
λ2 +

%1

%
α0

)
div v′′ div u′′+

+
(
λ3 − %1

%
α0

)
(div v′ div u′′ + div v′′ div u′)+

+
µ1

2

3∑

k,j=1

(∂jv
′
k + ∂kv′j)(∂ju

′
k + ∂ku′j)+

µ2

2

3∑

k,j=1

(∂jv
′′
k + ∂kv′′j )(∂ju

′′
k + ∂ku′′j )+

+
µ3

2

3∑

k,j=1

[
(∂jv

′
k+∂kv′j)(∂ju

′′
k +∂ku′′j )+(∂jv

′′
k +∂kv′′j )(∂ju

′
k+∂ku′j)

]
−

− λ5

2

3∑

k,j=1

(∂jv
′
k−∂kv′j−∂jv

′′
k +∂kv′′j )(∂ju

′
k−∂ku′j−∂ju

′′
k +∂ku′′j ). (3.2)

Rewrite the vector L(∂, σ)U as

L(∂, σ)U = L0(∂)U + L′0(∂, σ)U, (3.3)

where

L′0(∂, σ)U =




α′u′ + κu′′ − η1∇>ϑ1 − η2∇>ϑ2

κu′ + α′′u′′ − ζ1∇>ϑ1 − ζ2∇>ϑ2

iση1∇u′ + iσζ1∇u′′ + α1ϑ1 + αϑ2

iση2∇u′ + iσζ2∇u′′ + αϑ1 + α2ϑ2




8×1

. (3.4)

Note that

V ·L0(∂)U = v ·L̃0(∂)u+ϑ′1(κ1∆ϑ1+κ2∆ϑ2)+ϑ′2(κ2∆ϑ1+κ3∆ϑ2). (3.5)
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The following equality is valid [43]
∫

Ω+

ϑ′k∆ϑj dx =

=
∫

∂Ω

[
ϑ′k(z)∂nϑj(z)

]+
ds−

∫

Ω+

(∇>ϑ′k · ∇>ϑj

)
dx, k, j = 1, 2. (3.6)

Using equalities (3.1) and (3.6), from (3.5) we have
∫

Ω+

V · L0(∂)U dx =
∫

∂Ω

[
V (z) · T̃ (∂, n)U(z)

]+
ds−

∫

Ω+

E(U, V ) dx, (3.7)

where

E(U, V ) = E(u, v) + κ1(∇>ϑ′1 · ∇>ϑ1)+

+ κ2

(∇>ϑ′1 · ∇>ϑ2 +∇>ϑ′2 · ∇>ϑ1

)
+ κ3(∇>ϑ′2 · ∇>ϑ2)

and E(u, v) is given by (3.2).
Multiplying both sides of equality (3.4) by vector V = (v, ϑ′)> and taking

into consideration the equality
∫

Ω+

v′ ·∇>ϑj dx =
∫

∂Ω

[
ϑj(z)(n(z)·v′(z))

]+
ds−

∫

Ω+

ϑj∇v′ dx, j = 1, 2, (3.8)

we obtain
∫

Ω+

V ·L′0(∂, σ)U dx=−
∫

∂Ω

[
(η1ϑ1+η2ϑ2)(n · v′)+(ζ1ϑ1+ζ2ϑ2)(n · v′′)

]+

ds+

+
∫

Ω+

[
v′(α′u′ + κu′′) + v′′(κu′ + α′′u′′)+

+ iσ
(
η1ϑ

′
1∇u′ + ζ1ϑ

′
1∇u′′ + η2ϑ

′
2∇u′ + ζ2ϑ

′
2∇u′′

)
+

+ ϑ′1(α1ϑ1 + αϑ2) + ϑ′2(αϑ1 + α2ϑ2)
]
dx. (3.9)

Combining equalities (3.7) and (3.9) we get
∫

Ω+

V · L(∂, σ)U dx =
∫

∂Ω

[
V (z) · P(∂, n)U(z)

]+

ds−
∫

Ω+

[
E(U, V )−v′ · (α′u′+κu′′)−v′′ · (κu′+α′′u′′)−iσϑ′1(η1∇u′+ζ1∇u′′)−

−iσϑ′2(η2∇u′ + ζ2∇u′′)− ϑ′1(α1ϑ1 + αϑ2)− ϑ′2(αϑ1 + α2ϑ2)
]
dx. (3.10)
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With the help of equality (3.10), we derive
∫

Ω+

[
V · L(∂, σ)U − U · L∗(∂, σ)V

]
dx =

=
∫

∂Ω

[
V (z) · P(∂, n)U(z)− U(z) · P∗(∂, n)V (z)

]+

ds, (3.11)

where L∗(∂, σ) =
[
L(−∂, σ)

]> and P∗(∂, n) is given by (2.7). The formulas
(3.10) and (3.11) are Green’s formulas.

Assume that a vector U =(u, ϑ)> is e solution of equation L(∂, σ)U = 0.
According to (3.3) we obtain

L0(∂)U + L′0(∂, σ)U = 0, (3.12)

where L0(∂) is given by formula (2.5) and L′0(∂, σ)U is defined by equal-
ity (3.4).

Let us multiply the first equation of (3.12) by the vector u′, the second
one by the vector u′′ and the complex conjugates of the third and fourth
equations, respectively, by the functions 1

iσ ϑ1 and 1
iσ ϑ2 and sum up. In

addition, taking into consideration equalities (3.1) and (3.8), we obtain
∫

Ω+

[
− E(u, u)+

i

κ3σ

(
d3|∇>ϑ1|2+|κ2∇>ϑ1+κ3∇>ϑ2|2

)
−κ|u′−u′′|2+

+ ρ1σ
2|u′|2 + ρ2σ

2|u′′|2 +
αi

σ
|ϑ1 − ϑ2|2 −

(
κ′|ϑ1|2 + κ′′|ϑ2|2

)]
dx+

+
∫

∂Ω

[
u(z)T (∂, n)u(z)− (η1ϑ1 + η2ϑ2)(n · u′)− (ζ1ϑ1 + ζ2ϑ2)(n · u′′)−

− i

κ3σ

(
d3ϑ1∂nϑ1 + (κ2ϑ1 + κ3ϑ2)(κ2∂nϑ1 + κ3∂nϑ2)

)]+

ds = 0. (3.13)

Here u is the complex conjugate of u and

E(u, u)=
d2

a1+b1
| div u′′|2+

1
a1+b1

∣∣(a1+b1) div u′+(c+d) div u′′
∣∣2+

+
d4

2µ1

3∑

k 6=j=1

|∂ju
′′
k +∂ku′′j |2+

1
2µ1

3∑

k 6=j=1

∣∣µ1(∂ju
′
j +∂ku′j)+µ3(∂ju

′′
k+∂ku′′j )

∣∣2−

− λ5

2

3∑

k,j=1

∣∣∂ju
′
k − ∂ku′j − ∂ju

′′
k + ∂ku′′j

∣∣2 > 0, (3.14)

where d4 = µ1µ2 − µ2
3 > 0. The sesquilinear form E(u, u) is obtained from

formula (3.2) by substituting the vectors v′ and v′′ by the vectors u′ and u′′,
respectively, and taking into consideration that λ1 − ρ2

ρ α0 = a1 + b1 − 2µ1,
λ2 + ρ1

ρ α0 = a2 + b2 − 2µ2, λ3 − ρ1
ρ α0 = c + d− 2µ3.
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4. Formulation of Problems. Uniqueness Theorems

Problem (I(σ))± (Dirichlet’s problem). Find a regular vector U =
(u′, u′′, ϑ1, ϑ2)> satisfying the system of differential equations

L(∂, σ)U(x) = Φ±(x), x ∈ Ω±, (4.1)

and the boundary conditions

{U(z)}± = f(z), z ∈ ∂Ω; (4.2)

Problem (II(σ))± (Neumann’s problem). Find a regular vector U =
(u′, u′′, ϑ1, ϑ2)> satisfying (4.1) and the boundary conditions

{P(∂, n) U(z)}± = F (z), z ∈ ∂Ω; (4.3)

here Φ± are eight-component given vectors in Ω±, respectively while

f = (f (1), f (2), f (3), f (4))>, F = (F (1), F (2), F (3), F (4))>,

f (j) = (f (j)
1 , f

(j)
2 , f

(j)
3 )>, F (j) = (F (j)

1 , F
(j)
2 , F

(j)
3 )>, j = 1, 2,

with f (j), F (j), j = 3, 4, being scalar function are assumed to be given on
the boundary ∂Ω±; n(z) is the outward unit normal vector w.r.t. Ω+ at the
point z ∈ ∂Ω.

In the case of the exterior problems for the domain Ω−, a vector U(x) in a
neighbourhood of infinity has to satisfy some sufficient vanishing conditions
allowing one to write Green’s formula (3.13) for the domain Ω−.

Theorem 4.1. If σ = σ1 + iσ2, where σ1 ∈ R, σ2 > 0, then the homo-
geneous problems (I(σ))+0 and (II(σ))+0 (Φ+ = 0, f = 0, F = 0) have only
the trivial solution.

Proof. If in equation (3.13) we take into consideration the homogeneous
boundary conditions, we obtain

∫

Ω+

[
− E(u, u)+

i

κ3σ

(
d3|∇>ϑ1|2+|κ2∇>ϑ1+κ3∇>ϑ2|2

)
−κ|u′−u′′|2+

+ ρ1σ
2|u′|2+ρ2σ

2|u′′|2+
αi

σ
|ϑ1−ϑ2|2−

(
κ′|ϑ1|2+κ′′|ϑ2|2

)]
dx=0. (4.4)

Separating the imaginary part of the equation (4.4), we obtain

σ1

∫

Ω+

[
1

κ3|σ|
(
d3|∇>ϑ1|2 + |κ2∇>ϑ1 + κ3∇>ϑ2|2

)
+

+ 2ρ1σ2|u′|2 + 2ρ2σ2|u′′|2 +
α

|σ|2 |ϑ1 − ϑ2|2
]

dx = 0. (4.5)
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Assuming that σ1 6= 0, from (4.5) we get u′(x) = 0, u′′(x) = 0, ϑ1(x) =
ϑ2(x) = const, x ∈ Ω+. Taking these data into account in (4.4), we obtain
ϑ1(x) = ϑ2(x) = 0, x ∈ Ω+. If σ1 = 0, then from (4.4) we have

∫

Ω+

[
E(u, u)+

1
κ3σ2

(
d3|∇>ϑ1|2+|κ2∇>ϑ1+κ3∇>ϑ2|2

)
+κ|u′−u′′|2+

+ ρ1σ
2
2 |u′|2+ρ2σ

2
2 |u′′|2+

α

σ2
|ϑ1−ϑ2|2+

(
κ′|ϑ1|2+κ′′|ϑ2|2

)]
dx=0.

From this equation we easily deduce u′(x) = 0, u′′(x) = 0, ϑ1(x) = 0,
ϑ2(x) = 0, x ∈ Ω+. ¤

5. Integral Representation Formulas

The fundamental matrix of solutions of the homogeneous system of differ-
ential equations of pseudo-oscillations of the two-temperature elastic mix-
tures theory reads as ( [14,42]):

Γ(x, σ) =

=
1

4πd1d2d3




Ψ̃1(x, σ) Ψ̃2(x, σ) ∇>Ψ13(x, σ) ∇>Ψ14(x, σ)

Ψ̃3(x, σ) Ψ̃4(x, σ) ∇>Ψ15(x, σ) ∇>Ψ16(x, σ)
∇Ψ17(x, σ) ∇Ψ18(x, σ) Ψ5(x, σ) Ψ6(x, σ)
∇Ψ19(x, σ) ∇Ψ20(x, σ) Ψ7(x, σ) Ψ8(x, σ)




, (5.1)

where d1, d2 are given by (2.2) and d3 is given by (2.3),

Ψ̃1(x, σ) = Ψ1(x, σ)I3 + Q(∂)Ψ9(x, σ),

Ψ̃2(x, σ) = Ψ2(x, σ)I3 + Q(∂)Ψ10(x, σ),

Ψ̃3(x, σ) = Ψ3(x, σ)I3 + Q(∂)Ψ11(x, σ),

Ψ̃4(x, σ) = Ψ4(x, σ)I3 + Q(∂)Ψ12(x, σ),

Ψl(x, σ) =
2∑

j=1

pjβ
∗
lj

eikj |x|

|x| , l = 1, 2, 3, 4,

Ψl−8(x, σ) =
6∑

j=3

pjβ
∗
lj

eikj |x|

|x| , l = 13, 14, 15, 16,

Ψl+8(x, σ) = −
6∑

j=1

pjγ
∗
lj

eikj |x|

|x| , l = 1, 2, 3, 4,

Ψl+8(x, σ) = i

6∑

j=3

pjδ
∗
lj

eikj |x|

|x| , l = 5, 6, . . . , 12.

(5.2)
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k2
j , j = 1, 2, and k2

j , j = 3, 4, 5, 6, are, respectively, the solutions of the
following equations

a(z) := d1z
2 − (a1α

′′ + a2α
′ − 2cκ)z + α′α′′ − κ2 = 0,

Λ(z) :=
[
d3z

2 − (α1κ3 + α2κ1 − 2ακ2)z + α1α2 − α2
]
(a(z) + zb(z))−

− iσz
[
(κ3ε1(z) + κ1ε3(z)− 2κ2ε2(z))z + 2αε2(z)− α2ε1(z)−

− α1ε3(z)
]− σ2(η1ζ2 − η2ζ1)2z2 = 0,

where

b(z) := (d2 − d1)z − (b1α
′′ + b2α

′ − 2κd),

ε1(z) := η1δ
′′
1 (z) + ζ1δ

′
1(z), ε3(z) := η2δ

′′
2 (z) + ζ2δ

′
2(z),

ε2(z) := η1δ
′′
2 (z) + ζ1δ

′
2(z) = η2δ

′′
1 (z) + ζ2δ

′
1(z),

δ′j(z) := ηj

[
κ − (c + d)z

]
+ ζj

[
(a1 + b1)z − α′

]
, j = 1, 2,

δ′′j (z) := ζj

[
κ − (c + d)z

]
+ ηj

[
(a2 + b2)z − α′′

]
, j = 1, 2;

β∗1j := Λ∗j (α
′′ − a2k

2
j ), β∗2j = β∗3j := Λ∗j (ck

2
j − κ),

β∗4j := Λ∗j (α
′−a1k

2
j ), β∗13j := a∗j

[
iσk2

j ε∗3j +(α2−κ3k
2
j )(a∗j +b∗jk

2
j )

]
,

β∗14j = β∗15j := −a∗j
[
iσk2

j ε∗2j + (α− κ2k
2
j )(a∗j + b∗jk

2
j )

]
,

β∗16j := a∗j
[
iσk2

j ε∗1j + (α1 − κ1k
2
j )(a∗j + b∗jk

2
j )

]
,

γ∗1j := a2Λ∗j −
[
a∗j (a2 + b2) + b∗jα

′′]H∗
j − α′′σ2(η1ζ2 − η2ζ1)2k2

j−
−iσ

[
(a∗jζ

2
1 + α′′ε∗1j)(α2 − κ3k

2
j ) + (a∗jζ

2
2 + α′′ε∗3j)(α1 − κ1k

2
j )−

−2(a∗jζ1ζ2 + α′′ε∗2j)(α− κ2k
2
j )

]
,

γ∗2j = γ∗3j := −cΛ∗j +
[
a∗j (c + d) + b∗jκ

]
H∗

j − κσ2(η1ζ2 − η2ζ1)2k2
j +

+iσ
[
(a∗jη1ζ1 + κε∗1j)(α2 − κ3k

2
j ) + (a∗jη2ζ2 + κε∗3j)(α1 − κ1k

2
j )+

+
(
2κε∗2j + (η1ζ2 + η2ζ1)a∗j

)
(α− κ2k

2
j )

]
,

γ∗4j := a1Λ∗j −
[
a∗j (a1 + b1) + b∗jα

′]H∗
j + α′σ2(η1ζ2 − η2ζ1)2k2

j−
−iσ

[
(a∗jη

2
1 + α′ε∗1j)(α2 − κ3k

2
j ) + (a∗jη

2
2 + α′ε∗3j)(α1 − κ1k

2
j )−

−2(a∗jη1η2 + α′ε∗2j)(α− κ2k
2
j )

]
,

δ∗5j := ia∗j
[
iσζ2(η1ζ2−η2ζ1)k2

j +δ′′1j(α2−κ3k
2
j )−δ′′2j(α−κ2k

2
j )

]
,

δ∗6j := ia∗j
[
− iσζ1(η1ζ2−η2ζ1)k2

j−δ′′1j(α−κ2k
2
j )+δ′′2j(α1−κ1k

2
j )

]
,

δ∗7j := ia∗j
[
− iση2(η1ζ2−η2ζ1)k2

j +δ′1j(α2−κ3k
2
j )−δ′2j(α−κ2k

2
j )

]
,

δ∗8j := ia∗j
[
iση1(η1ζ2−η2ζ1)k2

j−δ′1j(α−κ2k
2
j )+δ′2j(α1−κ1k

2
j )

]
,
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δ∗9j = −iσδ∗5j , δ∗10j = −iσδ∗7j , δ∗11j = −iσδ∗6j , δ∗12j = −iσδ∗8j .

a∗j := d1

2∏

j 6=q=1

(k2
j − k2

q), b∗j := (d2 − d1)k2
j − b2α

′ − b1α
′′ + 2κd,

Λ∗j :=d2d3

6∏

j 6=q=3

(k2
j−k2

q), H∗
j :=d3k

4
j−(α1κ3+α2κ1−2ακ2)k2

j +α1α2−α2;

δ′lj := ηl

[
κ − (c + d)k2

j

]
+ ζl

[
(a1 + b1)k2

j − α′
]
, l = 1, 2,

δ′′lj := ζl

[
κ − (c + d)k2

j

]
+ ηl

[
(a2 + b2)k2

j − α′′
]
, l = 1, 2,

ε∗1j = η1δ
′′
lj + ζ1δ

′
1j , ε∗2j = η1δ

′′
2j + ζ1δ

′
2j , ε∗3j = η2δ

′′
2j + ζ2δ

′
2j ,

pj =
6∏

j 6=q=1

(
k2

j − k2
q

)−1
.

Remark 5.1. Using formulas (5.1) and (5.2), and the equalities

k2m
1 p1 + k2m

2 p2 + · · ·+ k2m
6 p6 = 0, m = 0, 4,

k10
1 p1 + k10

2 p2 + · · ·+ k10
6 p6 = 1,

we conclude that in a vicinity of the origin the functions Ψj(x, σ), j = 1, 8,
and Ψj(x, σ), j = 9, 20, are, respectively, of order const + O(|x|−1) and
O(|x|−1).

Hereinafter, we shall always assume that kj 6= kp, j 6= p, =kj > 0,
j = 1, 6. According to these requirements regarding to equalities (5.2), all
entries of Γ(x, σ) exponentially decay at infinity.

Let us introduce the generalized single and double-layer potentials, and
the Newton type volume potential

V (ϕ)(x) =
∫

S

Γ(x− y, σ) ϕ(y) dSy, x ∈ R3 \ S, (5.3)

W (ϕ)(x) =
∫

S

[P∗(∂, n)Γ>(x− y, σ)]> ϕ(y) dSy, x ∈ R3 \ S, (5.4)

NΩ±(ψ)(x) =
∫

Ω±

Γ(x− y, σ)ψ(y) dy, x ∈ R3,

where P∗(∂, n) is the boundary differential operator defined by (2.7), Γ(·, σ)
is the fundamental matrix given by (5.1), ϕ = (ϕ1, · · · , ϕ8)> is a den-
sity vector-function defined on S, while a density vector-function ψ =
(ψ1, · · · , ψ8)> is defined on Ω±, and we assume that in the case of Ω−

the support of the density vector-function ψ of the Newtonian potential is
a compact set.

Due to the equality
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8∑

j=1

Lkj(∂x, σ)
(
[P∗(∂, n)Γ>(x− y, σ)]>

)
jp

=

=
8∑

j, q=1

Lkj(∂x, σ)P∗pq(∂, n)Γjq(x− y, σ) =

=
8∑

j, q=1

P∗pq(∂, n)Lkj(∂x, σ)Γjq(x− y, σ) = 0, x 6= y, k, p = 1, 8,

it can be easily checked that the potentials defined by (5.3) and (5.4) are
C∞–smooth in R3 \S and solve the homogeneous equation L(∂, σ)U(x) = 0
in R3 \ S for an arbitrary Lp-summable vector-function ϕ. The Newtonian
potential solves the nonhomogeneous equation

L(∂, σ)NΩ±(ψ) = ψ in Ω± for ψ ∈ [C0,k(Ω±)]8.

This relation holds true for an arbitrary ψ ∈ [Lp(Ω±)]8 with 1 < p < ∞.
It is easy to show that Γ(−x, σ) is a fundamental matrix of the formally
adjoint operator L∗(∂, σ), i.e.

L∗(∂, σ)
[
Γ(−x, σ)

]> = I8δ(x). (5.5)

With the help of Green’s formulas (3.11) and (5.5) by standard arguments
we can prove the following assertions (cf., e.g., [7, 26, 27] and [36, Ch. I,
Lemma 2.1; Ch. II, Lemma 8.2]).

Theorem 5.2. Let S = ∂Ω+ be C1, k-smooth with 0 < k ≤ 1, either
σ = 0 or σ = σ1 + i σ2 with σ2 > 0, and let U be a regular vector of the
class [C2(Ω+)]8. Then there holds the integral representation formula

W
({U}+)

(x)− V
({PU}+)

(x) + NΩ+

(
L(∂, σ)U

)
(x) =

=

{
U(x) for x ∈ Ω+,

0 for x ∈ Ω−.

Proof. For the smooth case it easily follows from Green’s formula (3.11)
with the domain of integration Ω+ \ B(x, ε′), where x ∈ Ω+ is treated as
a fixed parameter, B(x, ε′) is a ball with the centre at the point x and
radius ε′ > 0 and B(x, ε′) ⊂ Ω+. One needs to take the j-th column of the
fundamental matrix Γ∗(y − x, σ) for V (y), calculate the surface integrals
over the sphere Σ(x, ε′) := ∂B(x, ε′) and pass to the limit as ε′ → 0. ¤

Similar representation formula holds in the exterior domain Ω− if a vector
U and its derivatives possess some asymptotic properties at infinity. In
particular, the following assertion holds.

Theorem 5.3. Let S = ∂Ω− be C1, k-smooth with 0 < k ≤ 1 and let
U be a regular vector of the class [C2(Ω−)]8 such that for any multi-index
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α = (α1, α2, α3) with 0 ≤ |α| = α1 + α2 + α3 ≤ 2, the function ∂αUj is
polynomially bounded at infinity, i.e., for sufficiently large |x|∣∣∂αUj(x)

∣∣ ≤ C0 |x|m, j = 1, 8, (5.6)

with some constants m and C0 > 0. Then there holds the integral represen-
tation formula

−W
({U}−)

(x) + V
({PU}−)

(x) + NΩ−
(
L(∂, σ)U

)
(x) =

=

{
0 for x ∈ Ω+,

U(x) for x ∈ Ω−,
(5.7)

with σ = σ1 + i σ2, where σ2 > 0.

Proof. The proof immediately follows from Theorem 5.2 and Remark 3.1
(cf. [14]). Indeed, one needs to write the integral representation formula
(5.2) for the bounded domain Ω− ∩ B(0, R), and then send R to +∞ and
take into consideration that the surface integral over Σ(0, R) tends to zero
due to the conditions (5.6) and the exponential decay of the fundamental
matrix at infinity. ¤

Corollary 5.4. Let σ = σ1 + i σ2 with σ1 ∈ R and σ2 > 0, and U
be a solution to the homogeneous equation L(∂, σ)U = 0 in Ω± satisfying
the condition (5.6) and U ∈ [C1,k(Ω±)]8 for some 0 < k ≤ 1. Then the
representation formula

U(x) = W ([U ]S)(x)− V ([PU ]S)(x), x ∈ Ω±,

holds, where [U ]S = {U}+ − {U}− and [PU ]S = {PU}+ − {PU}− on S.

Proof. It Immediately follows from Theorems 5.2 and 5.3. ¤

Theorem 5.5. Assume that S = ∂Ω ∈ Cm,k, m ≥ 1 and 0 < k ≤ 1. If
g ∈ [C0,k′(S)]8, h ∈ [C0,k′(S)]8, 0 < k′ < k, then for each z ∈ S,

[V (g)(z)]± = V (g)(z) = Hg(z), (5.8)
[P(∂, n)V (g)(z)

]± = [∓2−1I8 +K]g(z), (5.9)

[W (h)(z)]± =
[± 2−1I8 +N ]

h(z), (5.10)
[P(∂, n)W (h)(z)

]+ =
[P(∂, n)W (h)(z)

]− = Lh(z), (5.11)

where

Hg(z) :=
∫

S

Γ(z − y, σ)g(y) dSy,

Lh(z) := lim
Ω±3x→z∈S

P(∂x, n(x))
∫

S

[P∗(∂y, n(y))Γ>(x− y, σ)
]>

h(y) dSy,

Kg(z) :=
∫

S

[P(∂, n)Γ(z − y, σ)
]
g(y) dSy,
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Nh(z) :=
∫

S

[P∗(∂, n)Γ>(z − y, σ)
]>

h(y) dSy.

The prove of this theorem is analogous to that given in [25,35].

Theorem 5.6. Assume that S = ∂Ω ∈ Cm,k, m ≥ 2, 0 < k′ < k ≤ 1,
l ≤ m− 1, σ = σ1 + iσ2, σ2 > 0. If g ∈ [C0,k′(S)]8, h ∈ [C1,k′(S)]8, then

V : [Cl,k′(S)]8 −→ [Cl+1,k′(Ω±)]8,

W : [Cl,k′(S)]8 −→ [Cl,k′(Ω±)]8,

H : [Cl,k′(S)]8 −→ [Cl+1,k′(S)]8,

K : [Cl,k′(S)]8 −→ [Cl,k′(S)]8,

N : [Cl,k′(S)]8 −→ [Cl,k′(S)]8,

L : [Cl,k′(S)]8 −→ [Cl−1,k′(S)]8.

Remark 5.7. Assume that σ = σ1 + iσ2, σ2 > 0 and =kj > 0. From
equation (5.7) it follows that if L(∂, σ)U(x) = 0, x ∈ Ω−, then U is ex-
ponentially decaying at infinity and therefore in the unbounded domain Ω−

Green’s formula (3.13) holds true,:
∫

Ω−

[
− E(u, u)+

i

κ3σ

(
d3|∇>ϑ1|2+|κ2∇>ϑ1+κ3∇>ϑ2|2

)
−κ|u′−u′′|2+

+ ρ1σ
2|u′|2 + ρ2σ

2|u′′|2 +
αi

σ
|ϑ1 − ϑ2|2 −

(
κ′|ϑ1|2 + κ′′|ϑ2|2

)]
dx−

−
∫

∂Ω

[
u(z) · T (∂, n)u(z)− (η1ϑ1 + η2ϑ2)(n · u′)− (ζ1ϑ1 + ζ2ϑ2)(n · u′′)−

− i

κ3σ

(
d3ϑ1∂nϑ1+(κ2ϑ1+κ3ϑ2)

(
κ2∂nϑ1+κ3∂nϑ2

))]−
ds=0, (5.12)

where the sesquilinear form E(u, u) is given by (3.14) and the operator
T (∂, n) by formula (2.6).

Similarly to Theorem 4.1 in view of formula (5.12) the following theorem
takes place.

Theorem 5.8. If σ = σ1 + iσ2, where σ1 ∈ R, σ2 > 0, then the homo-
geneous problems (I(σ))−0 and (II(σ))−0 (Φ±, f = 0, F = 0) have only the
trivial solution.

The following theorem is valid.

Theorem 5.9. Let S = ∂Ω ∈ Cm,k with integer m ≥ 2 and 0 < k ≤ 1.
Then:

(a) The principal homogenous symbol matrices of the singular integral
operators ∓2−1I8 + K and ±2−1I8 + N are non-degenerate, while
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the principal homogenous symbol matrices of the operators H and
L are positive definite;

(b) the operators H, ∓2−1I8+K, ±2−1I8+N and L are elliptic pseudo-
differential operators (of order −1, 0, 0 and 1, respectively) with zero
index;

(c) the following equalities hold in appropriate function spaces:
NH = HK, LN = KL,

HL = −4−1I8 +N 2, LH = −4−1I8 +K2.
(5.13)

The proof of this theorem is word for word of the proof of its counterparts
in [31,33,35,36].

6. Existence of Classical Solutions of the Boundary Value
Problems

This section provides the study of problems stated in Section 4 using the
theory of potentials and theory of integral equations. We seek solutions of
the problems in the form of single or double-layer potentials allowing one to
reduce the BVPs to the correspond boundary integral equations. Simulta-
neously, the question of invertibility of the obtained integral operators will
be considered.

6.1. Investigation of Dirichlet’s problem by the double-layer po-
tential. We seek solutions of problems (I(σ))+ and (I(σ))− (see (4.1), Φ± =
0, (4.2)) by means of the double-layer potential W (h)(x) (see (5.4)), where
h ∈ C1,β(S) is the sought for vector-function. Taking into consideration the
boundary condition (4.2) and the jump formulas (5.10), for the density h
we obtain the following integral equations of second kind

BVP (I(σ))+ :
[
2−1I8 +N ]

h = f on S, (6.1)

BVP (I(σ))− :
[− 2−1I8 +N ]

h = f on S. (6.2)

In the left hand side of(6.1) and (6.2) we have singular integral operators of
normal type with the index equal to zero (see Theorem 5.9).

Theorem 6.1. If S ∈ C2,α and f ∈ C1,β, 0 < β < α ≤ 1, then the prob-
lem (I(σ))+ has a unique solution representable by the double-layer potential
W (h), where h is determined from uniquely solvable integral equation (6.1).

Proof. Uniqueness follows from Theorem 4.1. Now, let us show that the
operator

2−1I8 +N : C1,β(S) −→ C1,β(S) (6.3)
is invertible. Note that the operator −2−1I8 +N the arguments are verba-
tim. By virtue of Theorem 5.9,operator (6.3) is Fredholm with zero index
and therefore for proving its invertibility it is sufficient to show that its
kernel ker(2−1I8 +N ) is trivial, i.e. we have to show that the homogeneous
equation [

2−1I8 +N ]
h = 0 on S (6.4)
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has only the trivial solution. Indeed, assume that h is a solution of (6.4)
and construct the double-layer potential W (h). In view of the inclusion h ∈
C1.β(S), we have W (h) ∈ C1,β(Ω±). It easy to see that equation (6.4) corre-
sponds to Dirichlet’s interior homogeneous problem [W (h)(z)]+ = 0, z ∈ S.
Since this problem has only the trivial solution, we conclude W (h)(x) = 0,
x ∈ Ω+. Therefore we have [P(∂, n)W (h)(z)]+ = 0, z ∈ S, and ac-
cording to the Lyapunov-Tauber theorem we deduce [P(∂, n)W (h)(z)]+ =
[P(∂, n)W (h)(z)]− = 0, z ∈ S (see Theorem 5.6). This means that W (h)(x)
is a solution to the homogeneous problem (II(σ))− which possesses only the
trivial solution. Thus W (h)(x) = 0, x ∈ Ω− and by virtue of formula (5.10)
we conclude that [W (h)(z)]+ − [W (h)(z)]− = h(z) = 0, z ∈ S, i.e. integral
equation (6.4) has only the trivial solution. Hence, the operator (6.3) is
invertible and therefore the equation (6.1) is unique solvable for arbitrary
vector-function f ∈ C1,β(S), which proves the theorem. ¤

The following theorem can be proved similarly.

Theorem 6.2. If S ∈ C2,α and f ∈ C1,β(S), 0 < β < α ≤ 1, then the
problem (I(σ))− has a unique solution, which is representable by the double-
layer potential W (h), where h is determined from unique by solvable integral
equation (6.2).

6.2. Investigation of Neumann’s problem by single-layer potential.
Solutions to the problems (II(σ))+ and (II(σ))− (see (4.1), Φ± = 0, (4.3))
are sought by single-layer potential V (g)(x), where g ∈ C0,β(S) (see (5.3)).
Taking into consideration the boundary conditions (4.3) and the jump for-
mulas (5.9) for the density g we obtain, the following integral equations of
second kind respectively

BVP (II(σ))+ :
[− 2−1I8 +K]

g = F on S, (6.5)

BVP (II(σ))− :
[
2−1I8 +K]

g = F on S. (6.6)

The operators in the left hand side of(6.5) and (6.6) are singular integral
operators of normal type with the index equal to zero (see Theorem 5.9).

Theorem 6.3. If S ∈ C1,α and F ∈ C0,β(S), 0 < β < α ≤ 1, then
the problem (II(σ))+ has a unique solution, which is representable by the
single-layer potential V (g)(x), where g is determined from uniquely solvable
integral equation (6.5).

Proof. Uniqueness follows from Theorem 4.1. Now, let us show that the
operator

−2−1I8 +K : C0,β(S) −→ C0,β(S) (6.7)

is invertible. Note that the invertibility of the operator 2−1I8 + K can
be performed by word for word arguments. By virtue of Theorem 5.9,
the operator (6.7) is Fredholm with zero index and therefore for proving its
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invertibility it is sufficient to show that its kernel ker(−2−1I8 +K) is trivial,
i.e. we have to show that the homogeneous equation

[− 2−1I8 +K]
g = 0 on S (6.8)

has only the trivial solution. Indeed, assume that g is e solution of (6.8).
Construct the single-layer potential V (g). Since g ∈ C0,β(S), we have
V (g) ∈ C1,β(Ω±). The equation (6.8) corresponds to Neumann’s interior
homogeneous problem [P(∂, n)V (g)(z)]+ = 0, z ∈ S. Since this prob-
lem has only the trivial solution, we get V (g)(x) = 0, x ∈ Ω+. Since
[V (g)(z)]− = [V (g)(z)]+ = 0, z ∈ S, we have that V (g)(x) is a solu-
tion of Dirichlet’s exterior homogeneous problem and hence V (g)(x) = 0,
x ∈ Ω−. On the other hand, by virtue of formula (5.9) we obtain that
[P(∂z, n(z))V (g)(z)]− − [P(∂z, n(z))V (g)(z)]+ = g(z) = 0, z ∈ S, i.e. the
integral equation (6.8) has only the trivial solution. Consequently, the oper-
ator (6.7) is invertible and therefore equation (6.5) is solvable for arbitrary
vector-function F ∈ C0,β(S), which proves the theorem. ¤

The following theorem can be proved similarly.

Theorem 6.4. If S ∈ C1,α and F ∈ C0,β(S), 0 < β < α ≤ 1, then
the problem (II(σ))− has a unique solution, which is representable by the
single-layer potential V (g), where g is determined from unique by solvable
integral equation (6.6).

6.3. Investigation of Dirichlet’s problem by single-layer potential.
We seek solutions of the problems (I(σ))+ and (I(σ))− (see (4.1), Φ± = 0,
(4.2)) by means of the single-layer potential V (g)(x) (see (5.3)), where g ∈
C0,β(S) is the sought for vector-function. Taking into consideration the
boundary condition (4.2) and the jump formula (5.8), for the density g we
obtain the following integral equation of the first kind:

Hg = f on S. (6.9)

Theorem 6.5. If S ∈ C2,α and f ∈ C1,β(S), 0 < β < α ≤ 1, then
the problem (I(σ))± has a unique solution, which can be represented by the
single-layer potential V (g), where g is determined from uniquely solvable
integral equation (6.9).

Proof. Uniqueness follows from Theorems 4.1 and 5.9. Now, let us show
that the operator

H : C0,β(S) −→ C1,β(S) (6.10)

is invertible. Applying the operator L to both sides of the equation (6.9),
we obtain (see (5.13)) the singular integral equation

LHg=(−4−1I8+K2)g=(−2−1I8+K)(2−1I8+K)g=Lf, (6.11)

where Lf ∈C0,β(S) and the operator

LH = (−2−1I8 +K)(2−1I8 +K) : C0,α(S) −→ C0,α(S)
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is a singular operator of normal type with the index equal to zero.By the
same arguments applied in [33], it can be shown that the operator (6.11) is
invertible. Therefore we can write

g = (2−1I8 +K)−1(−2−1I8 +K)−1Lf.

Let us show that (6.9) and (6.11) are equivalent integral equations. In-
deed, if g ∈ C0,β(S) is a solution to the equation (6.9), then it will be a
solution to the equation (6.11) as well. Assume now that g is a solution to
the equation (6.11). Introduce notation

ϕ := (Hg − f) ∈ C1,β(S). (6.12)

Then equation (6.11) can be rewritten as

Lϕ = 0 on S. (6.13)

Construct the double-layer potential W (ϕ) with the density ϕ determined by
equation (6.12). Then it follows that W (ϕ) solves Neumann’s homogeneous
problem [P(∂z, n(z))W (ϕ)(z)]± = 0, z ∈ S, in view of equation (6.13).
Since this problem has only the trivial solution, we infer W (ϕ)(x) = 0,
x ∈ Ω±. According to (5.10) we have [W (ϕ)(z)]+− [W (ϕ)(z)]− = ϕ(z) = 0,
z ∈ S, i.e. g is a solution to equation (6.9). Hence operator (6.10) is
invertible. ¤

Corollary 6.6. Solution to problem (I(σ))± is presentable in the follow-
ing form:

U(x) = V (H−1f)(x), x ∈ Ω±,

where [U(z)]± = f(z), z ∈ S.

This representation plays a crucial role in the study of mixed boundary
value problems, when on a part of the boundary ∂Ω the Dirichlet condition
is given, while on the remainder part the Neumann condition is prescribed

6.4. Investigation of Neumann’s problem by double-layer poten-
tial. We seek a solution to problem (II(σ))± (see (4.1), Φ± = 0, (4.3)) in
the form of double-layer potential W (h), where h ∈ C1,β(S) is the sought
vector (see (5.4)). Taking into consideration the boundary conditions (4.3)
and formula (5.11), for the density h we obtain the following integral equa-
tion of the “first kind”:

Lh = F on S. (6.14)

Theorem 6.7. If S ∈ C1,α and F ∈ C0,β(S), 0 < β < α ≤ 1, then the
problem (II(σ))± has a unique solution, which is representable by double-
layer potential W (h), where h is determined from uniquely solvable integral
equation (6.14).

Proof. Uniqueness follows from Theorems 4.1 and 5.9. Now, let us show
that the operator

L : C1,β(S) −→ C0,β(S) (6.15)
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is invertible. Apply the operatorH to both sides of equation (6.14) to obtain
the singular integral equation

HLh = (−4−1I8 +N 2)h = (−2−1I8 +N )(2−1I8 +N )h = HF, (6.16)

where HF ∈ C1,β(S) and the operator

HL = (−2−1I8 +N )(2−1I8 +N ) : C1,β(S) −→ C1,β(S) (6.17)

is a singular operator of normal type with zero index. Again, applying the
arguments as in [33] we can shown that (6.17) is invertible, and therefore
we can write

h = (2−1I8 +N )−1(−2−1I8 +N )−1HF.

Note that the operators (−2−1I8 +N ) and (2−1I8 +N ) commute.
Let us show that (6.14) and (6.16) are equivalent integral equations.

Indeed, if h ∈ C1,β(S) is e solution to equation (6.14), then it will be
solution to equation (6.16) as well. Introduce notation

ψ := (Lh− F ) ∈ C0,β(S). (6.18)

Then equation (6.16) can be rewritten as

Hψ = 0 on S. (6.19)

Construct the single-layer potential V (ψ) with the density ψ determined by
equation (6.18). Dirichlet’s problem [V (ψ)(z)]± = 0, z ∈ S, corresponds to
the equation (6.19). As this problem has only the trivial solution, we have
V (ψ)(x) = 0, x ∈ Ω±, from which we obtain that ψ(z) = 0, z ∈ Ω±, i.e. h is
a solution to equation (6.14) and hence the operator (6.15) is invertible. ¤

Corollary 6.8. The solution to the problem (II(σ))± is represented in
the following form:

U(x) = W (L−1F )(x), x ∈ Ω±,

where F (z) = [P (∂z, n(z))U(z)]±, z ∈ S.
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