Mem. Differential Equations Math. Phys. 58 (2013), 111-123

Short Communications

MALKHAZ ASHORDIA

ON A TWO-POINT SINGULAR
BOUNDARY VALUE PROBLEM FOR SYSTEMS
OF NONLINEAR GENERALIZED
ORDINARY DIFFERENTIAL EQUATIONS

Abstract. The two-point boundary value problem is considered for the
system of nonlinear generalized ordinary differential equations with singu-
larities on a non-closed interval. Singularity is understood in a sense of
the vector-function corresponding to the system which belongs to the local
Carathéodory class with respect to the matrix-function corresponding to
the system.

The general sufficient conditions are established for the unique solvabil-
ity of this problem. Relying on these results, the effective conditions are
established for the unique solvability of the problem.
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1. STATEMENT OF THE PROBLEM AND BASIC NOTATION

In the present paper, for a system of linear generalized ordinary differ-
ential equations with singularities

dx; = fi(t,z1,...,2,)da;(t) for t € [a,b] (i=1,...,n) (1.1)
we consider the two-point boundary value problem

zi(a+)=0 (i=1,...,n9), z;(b—=)=0 (i=nog+1,...,n), (1.2)
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where —oco < a < b < +o0, ng € {1,...,n}, z1,...,x, are the components
of a desired solution z, a; : [a,b] — R (i = 1,...,n) are nondecreasing
functions, and f; :]a,b[ xR™ — R is a function belonging to the local Cara-
théodory class Carjoc(]a, b[ xR™,R; a;) corresponding to the function a; for
every i € {1,...,n}.

We investigate the question of solvability of the problem (1.1), (1.2), when
the system (1.1) has singularities. Singularity is understood in a sense that
the components of the vector-function f may have non-integrable compo-
nents at the boundary points a and b, in general. We present a general
theorem for the solvability of this problem. On the basis of this theorem we
obtain the effective criteria for the solvability of the problem.

Analogous and related questions are investigated in [13]-[18] (see also re-
ferences therein) for the singular two-point and multipoint boundary value
problems for linear and nonlinear systems of ordinary differential equations,
and in [1]-[7] (see also references therein) for regular two-point and multi-
point boundary value problems for systems of linear and nonlinear gener-
alized differential equations. As for the two-point and multipoint singular
boundary value problems for generalized differential systems, they are little
studied and, despite some results given in [8-10] for two-point and mul-
tipoint singular boundary value problem, their theory is rather far from
completion even in the linear case. Therefore, the problem under consider-
ation is actual.

To a considerable extent, the interest in the theory of generalized ordi-
nary differential equations has been motivated by the fact that this theory
enables one to investigate ordinary differential, impulsive and difference
equations from a unified point of view (see e.g. [1]-[12], [19]-[22] and refer-
ences therein).

Throughout the paper, the use will be made of the following notation
and definitions.

R =] — 00, +00[; Ry = [0,+00[; [a,b], ]a,b] and ]a, b], [a, b are, respec-
tively, closed, open and half-open intervals.

R™ ™ is the space of all real n x m-matrices X = ()

n,m
z

j_, With the norm

n,m

X1 = |eal.

il=1

R}X™ = {(xil)?”l;”l cau>0(i=1,...,n;l=1,...,m)}.

Opnxm (or O) is the zero n X m matrix.

If X = (zg);7) € R™™, then [X| = (|lzal);Z,

R™ = R™*! is the space of all real column n-vectors z = (z;)/,; R} =
Rnxl

gkl

If X € R"™" then X!, det X and r(X) are, respectively, the matrix
inverse to X, the determinant of X and the spectral radius of X; I,, is the
identity n x n-matrix.
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d
V (X), where a < ¢ < d < b, is the variation of the matrix-function
c

X :la,b[— R™ ™ on the closed interval [c,d], i.e., the sum of total vari-
ations of the latter components z; (i = 1,...,n; [ = 1,...,m) on this

interval; if d < ¢, then \j/(X) = 7\2 (X); V(X)(t) = (v(za)(t); 2, where

¢
v(xi)(co) =0, v(zy)(t) =V (zy) for a <t < b, and cg = (a + b)/2.
(&)

X (t—) and X (t+) are the left and the right limits of the matrix-function
X :]a,b[— R™™ at the point ¢ € ]a, b[ (we assume X (t) = X (a+) fort <a
and X (t) = X (b—) for t > b, if necessary).

i X(t) = X(t) — X(t—), do X (t) = X (t+) — X (t).

BV ([a, b], R™*™) is the set of all matrix-functions of bounded variation

b

X : [a,b] — R™™ (i.e., such that \/ (X) < +o0).

BVioc(]a, b[,R™"*™) is the set of all matrix-functions X :]a,b[— R™*™

d

such that \/ (X) < 400 for every a < ¢ < d < b.

If X € BVioe(Ja, b, R™™), det(I, + (~1)7d; X (t)) # 0 for t €]a,b] (j =

)j
1,2),and Y € BV,c(]a, b[, R™"*™), then A(X,Y)(t) = B(X,Y)(co, t), where
B is the operator defined as follows:

B(X,Y)(t,t) = Opxm for t €la,b[,
B(X,Y)(s,t) =Y (t) —Y(s) + Z di X (1) (I, — le(T))_1d1Y(T)—

s<t<t
N X (1) (In+daX (7)) daY (1) for a<s<t<b

s<t<t

and
B(X,Y)(s,t) = —B(X,Y)(t,s) for a<t<s<b.

A matrix-function is said to be continuous, nondecreasing, integrable,
etc., if each of its components is such.

If & : [a,b] — R is a nondecreasing function, then D, = {t € [a,}] :
dla(t) + ngé(t) #* 0}

If & € BV([a, b], R) has no more than a finite number of points of discon-
tinuity, and m € {1,2}, then Dam = {tami,-- s tamnay, } (tami < -+ <
tamna.,) 1S the set of all points from [a,b] for which dp,a(t) # 0, and
tom = max{dma(t): t € Doy} (m=1,2).

If 8 € BV([a,b],R), then

Vampy = IMNax {d]ﬁ(tocml) + Z djﬁ(T) = 1, . ;nam}

tami+1—-m <T<taml+2—m

(j,m =1,2); here tao0 = a — 1, tain,,+1 = b+ 1.
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s1,82,8¢ : BV([a,b],R) — BV([a,b],R) (j = 0,1,2) are the operators
defined, respectively, by

s1(z)(a) = s2(x)(a) =0,
si(@)(t) = Y diz(r) and sy(z)(t) = Y dox(r) for a <t <b,

a<t<t a<t<t
and
se()(t) = z(t) — s1(z)(t) — s2(x)(t) for t € [a,b].
If g : [a,b] — R is a nondecreasing function, = : [a,b] - R and a < s <
t < b, then
¢

[amdsn) = [ amdsao))+ X w)digln)+ Y alr)dag(r)
. o] s<r<t s<r<t

where [ x(7)dso(g)() is the Lebesgue-Stieltjes integral over the open
interva]187f;,t[ with respect to the measure pg(so(g)) corresponding to the
function so(g); if @ = b, then we assume fbx(t) dg(t) = 0; thus, ftx(T) dg(T)

is the Kurzweil-Stieltjes integral (see [19], [20], [22]). Moreover, we put

[amrdsr) =t [ ardgtr)
s+ 7 s+e

and
[emrdstr) = tim_ [ a(r)agir)

LP([a,b],R;g) (1 < p < 400) is the space of all functions z : [a,b] — R
measurable and integrable with respect to the measure p(g.(g)) for which

Yo lxOFdig(r) + Y fa(t)]*dag(t) < +oc,

a<t<b a<t<b

o= ( /b |x<t>|Pdg<t>)’l7

L*°([a,b],R; g) is the space of all u(so(g))-measurable and p(sq(g))-
essentially bounded functions x : [a,b] — R such that sup{|z(t)|] : ¢t €
D,} < 400, with the norm

with the norm

[

]| 400, = inf {r >0 |z(t)| < r

for p(so(g))-almost all ¢ € [a,b] and for t € Da}.
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If g(t) = g1(t) — g2(t), where g1 and g2 are nondecreasing functions, then

t t
/ac(T) dg(T) = /x(T) dgy(7) —/x(T) dgs(7) for s <t.
s S S
If G = (gik)i’,zzl : [a,b] — R™™ is a nondecreasing matrix-function

and D C R™*™  then L([a,b], D;G) is the set of all matrix-functions X =
(Tj)g j=1 * la,b] — D such that zy; € L([a,b], Rygix) (1 = 1,....01 k =
1,...,n;5=1,...,m);

I,m

/th(T)-X(T): <k§n:/txkj(7)dgik(7)> for a <s <t <b,
=1

J ij=1

S5(G)(t) = (s;(g) (D)1, (G=0,1,2).

The inequalities between the vectors and between the matrices are un-
derstood componentwise.

If D; C R™ and D5 C R, then Car([a,b] X Dy, Da; g) is the Carathéodory
class, i.e., the set of all mappings f : [a,b] x D; — D5 such that:

(i) the function f(-,z) : [a,b] — D is u(g)-measurable for every = €
Dy;

(ii) the function f(¢,-) : D; — Ds is continuous for u(g)-almost all
t € [a,b], and

sup {|f(-,2)|: = € Do} € L([a,b], R; g)
for every compact Dy C D;.

Carjoe(]a, b X D1, Da; g) is the set of all mappings f :]a,b] xD; — Dy
the restriction of which on every closed interval [c,d] of ]a,b[ belongs to
Car([c,d] x D1, Ds;g). Analogously are defined the sets Carjoc(]a,b] x
D1, D2; G) and Caryoe([a, b] X D1, Da; G).

We assume that a; : [a,b] — R (i = 1,...,n) are nondecreasing func-
tions and f; € Car(Ja,b[ xR™,R";q;) (i = 1,...,n). A vector-function
x = (x;)_, is said to be a solution of the system (1.1) if z; € BV,,¢(]a, b],R)
(t=1,...,n0), z; € BVio([a,b],R) (i=np+1,...,n) and

zi(t) :zi(s)+Z/fl(Taxl(T)a~~-7$n(7_))dail(7—)
=1

for a<s<t<b if i€{l,...,n0} and for a<s<i<b if i€{no+1,...,n}.

Under the solution of the problem (1.1),(1.2) we mean a solution z(t) =
(xi(t)), of the system (1.1) such that the one-sided limits z;(a+) (i =
1,...,mn0) and z;(b—) (i =no+1,...,n) exist and the equalities (1.2) are
fulfilled. We assume z;(a) =0 (i = 1,...,n9) and x;(b) = 0 (i = ng +
1,...,n), if necessary.
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A vector-function « = (x;)"4, x € BV(Ja,b[,R), is said to be a solution
of the system of generalized differential inequalities

d;(t Z t) dby(t) (=) for t €la,b] (i=1,...,n),

where by : [a,0] — R (i,I = 1,...,n) are nondecreasing functions, if

2it) — 24(s) gz/xl(f) dba(r) (3) for a<s<t<b (i=1,...,n).

=1

S

Without loss of generality, we assume that a;(a) = Opxn (i =1,...,n).
Moreover, we assume

det (I, + (—=1)7dja;(t)) #0 for t€la,b] (j=1,2;i=1,...,n). (L3)

The above inequalities guarantee the unique solvability of the Cauchy
problem for the corresponding system (see [22, Theorem III.1.4]).
If s €]a,b] and a € BVy,.(Ja, b, R) are such that

+(=1)7d;B8(t) #0 for (=1)/(t—5) <0 (j=1,2),
then by v3(-, s) we denote the unique solution of the Cauchy problem
dy(t) = y(t)dB(t), y(s)=1.

It is known (see [11], [12]) that

exp (s0(8)(t) — s0(B)(s)) %
x [](1=dia(r)™ J] 1 +d2B(r)) for t > s,
Yalt,5) = { exp (s0(B(t) — s0(B(s))x (1.4)
x [T=dip(r) T (1+daB(r))™" for t <s,
1 - e for t =s.

It is evident that if the last inequalities are fulfilled on the whole interval
[a, b], then v, 1 (t) exists for every t € [a, b].

Definition 1.1. Let a; : [a,b] — R (¢ = 1,...,n) be nondecreasing func-
tions and ng € {1,...,n}. We say that the matrix-function C' = (cq)},—, €
BV([a,b], R*™) belongs to the set U(a+,b—;ay,...,an;ng), if the system

1
sgn (no + 5 z) dx;(t) <
< chl Yy (t) da;(t) for t € la,b] (i=1,...,n) (1.5)

has no nontrivial nonnegative solution satisfying the condition (1.2).
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Definition 1.2. We say that a vector-function g : [a,b] x R® — R™,
g(t,x) = (gi(t,x1,...,2n)),, is nondecreasing outside of the diagonal
elements (or quasi-nondecreasing) with respect to nondecreasing vector-
function o = («;)f, if from the condition

1 <Y1y Tim1 SYim1, ikl S Yitls - Tn S Yn
follows
Gt X1y i1, iy ooy X)) < Gi(E Y1y - ooy Yie1s iy Yid 1y - - Yn)
for p(a;)-almost all ¢t (i =1,...,n).

Definition 1.3. Let a; : [a,b] — R (i = 1,...,n) be nondecreasing

functions and ny € {1,...,n}. We say that a vector-function g(¢,z) =
(gi(t, 21, .., 20)) 1, 9; € Car([a,b] x R",R;a;) (i = 1,...,n), belongs to
the set Up(a+,b—;aq,...,an;no) if it is nonnegative, quasi-nondecreasing

and there exists a positive number r € Ry such that
0<z(t) <r for t € [a,b]

for every nonnegative solution z = (z;)7_; of the system

1
sgn (no + 5~ Z) dz;(t) <
< gi(t,xy,...,xn(t))da;(t) for t€la,b] (i=1,...,n) (1.6)
under the boundary condition (1.2).

The similar definition of the sets Uy and U has been introduced by I. Ki-
guradze for ordinary differential equations (see [13]-[15]).

Theorem 1.1. Let the functions f; € Carpe(]a, b xR™, R";a;) (i =
1,...,n) be such that

.
filt,z1, ..., @,) sgn ((no t5- z)xz> < =bi(O)|zi] + gi(t, |21l - -y |2nl)
for u(s.(a;))-almost all t € [a,b] and for every t € D,,,
(zr)fey €ER™ (i=1,...,n),

fi(t, T1,... ,.In)dgai(t) sgn (J?l + fi(t, T1y... ,J)n)dQCLi(t)) <
< _bl(t)"rl‘ + i (t’ |Z‘1|, s ‘JZ‘"D
for t € la,b] and (z)f—; €R™ (i=1,...,n9)
and
filt @1, ... zn)diai () sgn (z; — fi(t 21, ..., 2n)diai(t)) >
> bi(t)|zil — gi(t, |z1l, - - ., [2al)
for t € la,b] and (z)i—q €R"™ (i=no+1,...,n),
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where g; € Car([a,b] x R",Ry;a;) (i = 1,...,n), the functions b, €
Lioe(]a, b, R;a;) for (i = 1,...,n9) and b; € Lioe([a,b],R;a;) for (i =
ng+1,...,n) are nonnegative. Let, moreover,

g = (gl)?zl € Z/{O(a+a b_; A1y ...,0n; nO)v

tlim+ bi(t)dgai(t) <1 (Z =1,... 7’I’L0)7

1.
and
tlim klim SUp e, (t,a+1/k) =0 (i=1,...,n0),
ot koo (1.8)

lim lim sup~,,(t,b—1/k)=0 (i=no+1,...,n),

t—b— k—oo
¢
where o;(t) = [ bi(7)da;i(T) (i = 1,...,n), co = (a+b)/2, and 7o, (i =
co

1,...,n) are the functions defined according to (1.4). Then the problem
(1.1), (1.2) is solvable.

Theorem 1.2. Let the functions f; € Carpc(]a, b xR™, R";a;) (i =
1,...,n) be such that

1
fi(t,{l?l,...,l’n)sgn ((”0 + 5 —Z)$z> <

< —bi(t)| x| + Zm—l(t)lwzl + ¢ (t, Z Ifle)
=1 =1

for u(sc(ai))-almost all t € [a,b] and for every t € D,,,
(xr)iey €R™ (i=1,...,n), (1.9)

fi(t, T1y... ,Z‘n)ani(t) sgn (Z‘i + fi(t, T1,... ,xn)dgai(t)) <

S—bi(t)|xi|+zn:nil(t)|xl|+qi (t,zn:|xl|) for tela,b] (i=1,...,m0) (1.10)
=1 =1
and
filt,z1, ..., xp)d1a;(t) sgn (zzcZ — filt,xq, ... ,xn)dlai(t)) >
zbl-(t)|xi|fiml@)qui (ti]xlo for tela,b] (i=no+1,...,n) (L.11)
=1 =1
where 1y € L([a,b],R; a;) (i,1=1,...,n), the functions b; € Lipc(]a,b], R; a;)
(i=1,...,n0) and b; € Lioc([a,b[,R;a;) (i = no+1,...,n) are nonnegative,

and q; € Car([a,b] x Ry, Ry;a;) (i =1,...,n) are nondecreasing functions
in the second variable. Let, moreover, the conditions (1.7), (1.8),

C = (ci)i1=1 €U(a+,b—;a1,...,an;n0),



119

and

lim %/qi(t,p)dai(t) =0 (i=1,...,n) (1.12)

be valid, where c;(t fb Yda;(t) (i=1,...,n), co = (a+b)/2, c;(t) =

fml Yda;(T) (i,1 = 1,...,n), and v, (i = 1,...,n) are the functions
deﬁned according to (1.4). Then the problem (1.1), (1.2) is solvable.

Corollary 1.1. Let the functions f; € Carje(]a,b[xR™, R";a;) (i =
1,...,n) be such that the conditions (1.9)~(1.12) hold, where the functions
a; (1t = 1,...,n) have not more than a finite number of points of dis-
continuity, the functions b; € Lio.(]a,b,R;a;) (i = 1,...,n9) and b; €
Lioe([a, 0], R; a;) (z = ng + 1,...,n) are nonnegative, ¢; € Car([a,b] x
R+,R+,az) (z = 1,...,n) are nondecreasing functions in the second vari-

able, a;(t fb Yda;(1) (i=1,...,n),co=(a+b)/2, Yo, (i=1,...,n)

are the functwns defined according to (1.4),

t
/nzl da'z /hzl dﬁl (a - ,...,’I’L),

B (1=1,...,n) are the functions nondecreasing on [a, b], h;; € L*([a, b], R; 3;),
hia € LP([a,b],Ry;6) (i £ 1 4,0=1,...,n), 1 <p < +oo. Let, moreover,

r(H) <1, (1.13)

where the 3n x 3n-matric H = (H;11 m+1)im:0 is defined by

Hj+1 m+1 — ()\kzng”hzk‘lu,sm(,@l))i -1 ( '7m = 07 1a 2);

&5 = (55(8)(0) = 55(A)(@)" (G=0,1,2; i=1,....n)
_ (;)“5,%0 if s0(8:)(8) = s0(B) (1),

Akoi0 =
Eroio if s0(Bi)(t) # so(Be)(t) (i,k=1,...,n);
Nemij =Eem&ij if m*+5°>0, mj=0 (j;m=0,1,2; i,k=1,...,n),

NI

1 . ™ . )
Akmij :<Z HomVoyma;j S 2 m) (.]7 m:17 27 2 kzla v ,TL),

and % + 2 =1. Then the problem (1.1),(1.2) is solvable.
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Remark 1.1. The 3n x 3n-matrix H, appearing in Corollary 1.1 can be
replaced by the n x n-matrix

2
(max { Z Akmij | ikl g, 80 () + M= 0,1, 2})
=0

Remark 1.2. If a;(t) = ao(t) (i = 1,...,n), where the function ag has not
more than a finite number of points of discontinuity, then we can assume
that hy(t) = 0y (t) and Gi(t) = ao(t) (i,1=1,...,n).

n

ik=1

By Remark 1.1, Corollary 1.1 has the following form for a;(t) = ag(t),
bi(t) = bo(t), nu(t) = na = const, ¢;(t,x) = q(t,z) (i,l = 1,...,n) and
i = o0 since, by the choice of hy(t) = nu(t) = na (4,1 = 1,...,n), we
have §;(t) = ao(t) (I =1,...,n) in this case.

Corollary 1.2. Let the functions f; € Carjpe(]a, b xR™ R™; ag) be such
that the conditions (1.12),

1
fit,x1,...,zp)sgn ((no + 3 —z)xl> <

< —bo(t)|zi| + > mirla] + g (t, > |$l|>
=1

=1
for p(sc(ag))-almost all t € [a,b] and for every t € D,,

(Th)hmr €R™ (i=1,...,n),
filt, w1, .. an)doa;(t) sgn (zi + fi(t, @1, ..., wn)d2ai(t)) <

< ~bo(®)|ei] + Y maled + i (63 |} for ¢ € [a,B] (i =1,...,no),
=1

=1
filt, oy, .. xn)dya;(t) sgn (zi — fi(t, @1, ..., 2n)dra;(t) >

> bo(t)|xi] — Zszsz - qi(t, Z |xl|) for te€la,b] (i=no+1,...,n)
I=1 =1
and
b

1
lim = [ q(t,p)dag(t) =0
pgrfmp/q( p) dao(t)

hold, where ag is a nondecreasing function on [a, b] having no more than a fi-
nite number of points of discontinuity, by € L([a,b],R4;ag), g € Car([a, b] X
Ry, Ry ;a0) is a nondecreasing function in the second variable, the function

t
a(t) = [b(r)da(r), co = (a+b)/2, satisfies the conditions (1.7) and (1.8),

Yo 18 the function defined according to (1.4), ny; € R, ny € Ry (i # 1;
i,0=1,...,n). Let, moreover,

Po T<H> <1,



where

2
H = (nik)?,k:p Po = maX{Z)\mj T m = 0,172},

J=0

Noo = = (s0la0)(4) = s(a) (@),

Nl

Moj = Ajo = (s0(a0)(b) — so(a0) (@) * (s;(a0(b) — 5;(a0(@))* (j =1,2),
Amj = (Naml/amaj)% sin”! 471(127_’_2 (m,j =1,2).

A NN

1), (1.2) is solvable.

Theorem 1.3. Let the functions f; € Carpc(]a, b xR™, R";a;) (i =
1,...,n) be such that the conditions (1.7)-(1.12),

dofi(a) <0 and 0 < di6;(t) < |m|™" for a<t<b (i=1,...,n0),
d1Bi(b) <0 and 0 < dafi(t) < ||~ for a<t<b (i=no+1,...,n)

and

Then the problem (1

t
/Uil(T) da(T) = haBi(t) + Bu(t) for t €[q,b] (i,l=1,...,n)

are fulfilled, where n; € L([a,b],R;a;) (4,1 = 1,...,n), the functions b; €

Lioe(Ja, b, R;a;) (i =1,...,n0) and b; € Lioe([a, b[ R a;) (z =no+1,...,n)

are nonnegative, and ¢; € Car([a,b] x R+,R+,al) (i = 1 ,n) are non-

decreasing functions in the second wvariable, «;(t) = fb Ydai(T) (1 =

1,...,n), co = (a+b)/2, and v,, (i =1,..., ) are the functions defined
accordingto( 4), hyy <0, hy >0, n, <0 (@ #I; 4,0 =1,...,n), Bu
(¢ =1,...,n) are the functions nondecreasing on [a,b]; Bi, B; € BV([a b],R)
(1 # l, i, l =1,...,n) are the functions nondecreasing on the interval ]a, b]
fori € {1,...,n0} and on the interval [a,b] fori € {no+1,...,n}. Let,
moreover, the condition (1.16) hold, where H = (§u)}'—y,

=i Ea= ik AL =),

; V(,A(Cixyi))(b) — ( (Ci,'yi))(a—i—) for ie{l,...,np},
i = V(AG,%))(b=) = V(A(G, 7)) (a) for i€ {ng+1,...,n};

t)=> Balt) (i=1,...,n);
k=l

A
A

and

(Bi(t) — Bila+))hiz for a<t<b (i=1,...,np),
(ﬁl(b—)—ﬁl(t))h“ for a<t<b (i:n0+1,...,n).

’Yz‘(t)
i (t)
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Then the problem (1.1), (1.2) is solvable.
Remark 1.3. If

X<l (i=1,...,n), (1.14)
then, in Theorem 1.2, we can assume that
hit . )
i=0, &4=——"—— (i#£Li,l=1,...,n). (1.15)
(1= Ao)[hiil
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