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îâäæñéâ. àŽêýæèñèæŽ çãŽäæûîòæã øãâñèâĲîæã áæòâîâêùæŽèñî àŽê-
ðëèâĲŽåŽ öâĲîñêâĲñè ŽéëùŽêâĲåŽê áŽçŽãöæîâĲñèæ ŽîŽûîòæãæ æêðâ-
àîŽèñîæ àŽêðëèâĲâĲæ. éæéáâãîëĲæåæ éæŽýèëâĲæï éâåëáæïŽ áŽ ûæ-
èŽáñîæ Žôîæùýãæï àŽéëõâêâĲæå áŽéðçæùâĲñèæŽ éŽåæ àèëĲŽèñîæ Žéë-
ýïêŽáëĲŽ.
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1. Introduction

In the present paper we will establish a global existence theorem of so-
lutions to integral equations of the form

T (p) = 2
( m

m + 1

)1/(m+1)
p∫

0

dv
( p∫

v

f(u) du
)1/(m+1)

, 0 ≤ p ≤ R, (1.1)

where m,R > 0 are constants, T (p) is a given positive function. We seek
for a solution f , that is of the class C[0, R] and f(u) > 0 on (0, R]. If we

set F (u) =
u∫
0

f(ξ)dξ, then (1.1) is rewritten as

T (p) = 2
( m

m + 1

)1/(m+1)
p∫

0

(
F (p)− F (v)

)−1/(m+1)
dv, 0 ≤ p ≤ R. (1.2)

Though equation (1.1) has a complicated appearance, it arises naturally
from the following inverse problem for quasilinear ordinary differential equa-
tions:

Problem 1.1. Let T (p) be a given positive function on [0, R]. Determine
a nonlinearity f(u) of an ordinary differential equation

(|u′|m−1u′
)′ + f(u) = 0 (1.3)

so that, for each p ∈ (0, R], the solution u(t) = u(t; p) of the equation with
the stationary (maximal) value p has a half-period T (p). (Note that when
f(0) = 0 and f(u) is extended to the interval [−R,R] as an odd function,
every solution of (1.3) oscillates and is periodic.)

In fact, we will explain how Problem 1.1 relates to equation (1.1). Let
p ∈ [0, R], and u = u(t; p) be the solution of (1.3) satisfying the constraints
in Problem 1.1, that is,

(|u′|m−1u′
)′ + f(u) = 0 on [0, T (p)],

u(0) = u(T (p)) = 0, and u(t) > 0 in (0, T (p)),

and

max
[0,T (p)]

u = u(T (p)/2) = p and u′(T (p)/2) = 0.

Here, the symmetry of u on [0, T (p)] has been employed. It is easy to see
that

T (p) = 2

p∫

0

(
u′(0)m+1 − m + 1

m
F (v)

)−1/(m+1)

dv.
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Since u′(0)m+1 = (m + 1)F (p)/m, we can get

T (p) = B0

p∫

0

(
F (p)− F (v)

)−1/(m+1)
dv, (1.4)

where

B0 = 2
( m

m + 1

)1/(m+1)

.

Accordingly, (1.2) has been obtained.
We transform equation (1.4) further to the form which is easy to analyze.

By the change of variables s = F (v), t = F (p), that is, p = p(t) = F−1(t),
this equation is transformed to

T (p(t)) = B0

t∫

0

p′(s)
(t− s)1/(m+1)

ds, 0 ≤ t ≤ F (R).

By using the Riemann–Liouville integral operator, which will be defined
later in the next section, this is rewritten as

T (p(t)) = B0Γ
( m

m + 1

)
Im/(m+1)p′(t).

Here, Γ denotes the Gamma function. Applying the Riemann–Liouville
integral operator I1/(m+1) to the both sides, we have

I1/(m+1)T (p)(t) = B0Γ
( m

m + 1

)
p(t),

that is,

p(t) =
1

B0Γ( m
m+1 )

I1/(m+1)T (p)(t), (1.5)

or equivalently,

p(t) =
sin ( π

m+1 )
πB0

t∫

0

T (p(s))
(t− s)1−1/(m+1)

ds. (1.6)

(Here we have employed the property (2.2) appearing in the next section.)
When m = 1 and T is Lipschitzian, it is shown conversely [1], [3] that a

solution p(t) of (1.5) (with m = 1) is necessarily differentiable and satisfies
(1.1) (with m = 1). Thus solving of equation (1.1) (as well as of Problem
1.1) is equivalent to finding a solution of (1.5) if m = 1.

In the paper we will show that such a result still holds for equation (1.5)
with m > 0. This is the main objective of the paper. In fact, we can establish
the following result:

Theorem 1.2. Let T (r) be a Lipschitz continuous positive function de-
fined on [0, R]. Then there exists a (unique) solution f of (1.1) that is
continuous on [0, R] and positive on (0, R].

When m = 1, this theorem reduces to [3, Theorem 1.2].
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The paper is organized as follows. In Section 2 we construct a solution of
equation (1.5) by the method of successive approximations as a preliminary
result. The proof of Theorem 1.2 is given in Section 3. Other related results
can be found in [2], [4], [6].

Though the arguments in the paper are based essentially on those in [3],
the fact that m 6= 1 causes some difficulties, in particular, in the proof of
Proposition 3.2.

2. Preliminary Results

As a first step, we must introduce the Riemann–Liouville integral oper-
ators. Let δ > 0 be a constant. We define the integral operator Iδ by

Iδφ(t) =
1

Γ(δ)

t∫

0

φ(s)
(t− s)1−δ

ds (2.1)

for φ ∈ C[0, R], where Γ is the Gamma function. We can show by inter-
change of the order of integration that

Iδ1Iδ2 = Iδ1+δ2 on C[0, R] (2.2)

for δ1, δ2 > 0. See, for example, [2], [5]. Note that this property has been
already used in the Introduction.

Let us construct a continuous solution of integral equation (1.5), namely
(1.6), by successive approximation.

Proposition 2.1. Suppose that T (r) is Lipschitz continuous on [0, R],
and T (r) > 0 there. Then there exists a positive number q and a continuous
function p(t) such that

(i) p(t) satisfies equation (1.5) on [0, q];

(ii) p(0) = 0 and p(q) = R;

(iii) 0 < p(t) < R for t ∈ (0, q).

Proof. Let L be a constant satisfying
∣∣T (r1)− T (r2)

∣∣ ≤ L|r1 − r2| (2.3)

for r1, r2 ∈ [0, R]. Put

T ∗ = max
[0,R]

T (r), T∗ = min
[0,R]

T (r), and R̃ = T ∗R/T∗.

We extend T (r) (defined on [0, R]) to the continuous function on [0, R̃ ] so
that T (r) ≡ T (R̃) on [R, R̃ ]. (In what follows, we may denote the extension
by the same symbol T for simplicity.) Then T still satisfies (2.3) for r1, r2 ∈
[0, R̃ ], and T∗ ≤ T (r) ≤ T ∗ on [0, R̃ ]. Furthermore, we set

A =
(m + 1) sin ( π

m+1 )
πB0

, t̃ =
( R

AT∗

)m+1

,
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and
p(t) = AT∗t1/(m+1), p(t) = AT ∗t1/(m+1) on [0, t̃ ].

Let us define the sequence {pn(t)}∞n=0 inductively by p0(t) = p(t) and

pn(t) =
1

B0Γ( m
m+1 )

I1/(m+1)T (pn−1)(t), n = 1, 2, . . . . (2.4)

We will show that pn(t), n = 1, 2, . . . , are well-defined, and

p(t) ≤ pn(t) ≤ p(t) on [0, t̃ ], (2.5)

for n = 0, 1, 2, . . . , and hence 0 ≤ pn(t) ≤ R̃.
For p0(t), inequalities (2.5) are obviously true. Let pn−1(t) satisfy them.

Since T (pn−1(t)) ≤ T ∗, we have

pn(t) ≤ T ∗

B0Γ( m
m+1 )

I1/(m+1)(1) =

=
T ∗

B0Γ( m
m+1 )Γ( 1

m+1 )

t∫

0

ds

(t− s)1−1/(m−1)
=

=
(m + 1)T ∗

B0
π

sin(π/(m+1))

t1/(m+1) = AT ∗t1/(m+1) =

= p(t) ≤ R̃.

Thus pn(t) is well-defined and satisfies pn(t) ≤ p(t). Similarly, we can show
that pn(t) ≥ p(t). We therefore find that (2.5) is true for all n = 0, 1, 2, . . . .

It follows from (2.4) that
∣∣pk+1(t)− pk(t)

∣∣ ≤ 1
B0Γ( m

m+1 )
I1/(m+1)

∣∣T (pk)− T (pk−1)
∣∣(t) ≤

≤ L

B0Γ( m
m+1 )

I1/(m+1)|pk − pk−1|(t) ≤

≤
( L

B0Γ( m
m+1 )

)2

I2/(m+1)|pk−1 − pk−2|(t)

for k = 2, 3, . . . . Repeating this procedure, we can get
∣∣pk+1(t)− pk(t)

∣∣ ≤
( L

B0Γ( m
m+1 )

)k

Ik/(m+1)|p1 − p0|(t).

Putting M = max
[0,t̃ ]

|p1 − p0|, we find that

max
[0,t̃ ]

|pk+1 − pk| ≤ (m + 1)M
kΓ( k

m+1 )

( L

B0Γ( m
m+1 )

)k

t̃k/(m+1) ≡ ck.

By the Stirling’s formula Γ(z) =
√

2π e−zzz−1/2(1 + O(1/z)), as |z| → ∞,
we find that ck+1/ck → 0 as k →∞.
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Consequently, the sequence {pn(t)} converges to a limit function p̃(t) ∈
C[0, t̃ ] uniformly on [0, t̃ ]. Moreover, by (2.5) we know that

p(t) ≤ p̃(t) ≤ p(t) on [0, t̃ ].

In particular, p̃(t̃) ≥ p(t̃) = R. So, there is a q ∈ (0, t̃) such that p̃(t) < R
on [0, q) and p̃(q) = R. We define a function p(t) by the restriction of p̃(t)
on [0, q] : p(t) = p̃

∣∣
[0,q]

(t). Then p(t) satisfies the desired properties (i)–(iii).
This completes the proof. ¤

3. Proof of Theorem 1.2

To see Theorem 1.2, we first prove that the solution p(t) constructed
in Proposition 2.1 is differentiable and p′(t) > 0 on (0, q]. The discussion
is based on the fractional calculus associated with the Riemann–Liouville
integral operators introduced in the Introduction by (2.1) and corresponding
differential operators Dδ defined by Dδ = (d/dt)I1−δ = DI1−δ, D = d/dt.

Below, we introduce the weighted Hölder spaces. Let 0 < b < ∞, 0 ≤
α ≤ 1, and η ∈ R. We put for φ ∈ C(0, b]

|φ|η = sup
t∈(0,b]

t−η|φ(t)|

and

|φ|α,η = sup
t,s∈(0,b], t 6=s

|tα−ηφ(t)− sα−ηφ(s)|
|t− s|α ,

and define the Banach space (Cα(0, b]η, ‖ · ‖α,η) by

Cα(0, b]η =
{

φ ∈ C(0, b]
∣∣ ‖φ‖α,η = |φ|η + |φ|α,η < ∞

}
.

It is easy to prove that Cα1 [0, b)η1 ⊃ Cα2 [0, b)η2 if α1 ≤ α2 and η1 ≤ η2.
Note that if η > 0, then φ ∈ Cα(0, b]η is a continuous function and φ(0) = 0.

Lemma 3.1. Let η > −1.

(i) Let 0 ≤ α < α + δ < 1. Then Iδ : Cα(0, b]η → Cα+δ(0, b]η+δ is a
bounded operator.

(ii) Let 0 < α < α + δ ≤ 1. Then Dδ : Cα+δ(0, b]η+δ → Cα(0, b]η is
a bounded operator. For φ ∈ Cα+δ(0, b]η+δ, the derivative Dδφ is
expressed as

Dδφ(t) =
1

Γ(1− δ)

(
φ(t)
tδ

+ δ

t∫

0

φ(t)− φ(s)
(t− s)δ+1

ds

)
.

The proof of this lemma can be found in [3]; and related results in [2].
Since equation (1.5) has somewhat complicated appearance, we will con-

sider equation (3.1) below instead of equation (1.5) without loss of genera-
lity.
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Proposition 3.2. Let τ be a Lipschitz continuous function defined on
an interval containing 0 and assume that τ(0) > 0. Suppose, furthermore,
that a continuous function x(t) defined on [0, b], 0 < b < ∞, satisfies x(t) =
I1/(m+1)(τ ◦ x)(t), 0 ≤ t ≤ b, that is,

x(t) =
1

Γ( 1
m+1 )

t∫

0

τ(x(s))
(t− s)1−1/(m+1)

ds, 0 ≤ t ≤ b. (3.1)

Then x(t) is differentiable and x′(t) > 0 on (0, b].

The following simple lemma is employed in proving Proposition 3.2:

Lemma 3.3. Let k, l > 0 be constants satisfying k + l ≤ 1. Then,

sk(tl − sl) ≤ (t− s)k+l, t ≥ s ≥ 0.

Proof of Proposition 3.2. In the sequel, we denote a Lipschitz constant of τ
by L. We may assume that m > 1, because the case where 0 < m ≤ 1 can
be treated similarly. The proof is divided into several steps.

Step 1. We show that

x ∈ Cβ+1/(m+1)(0, b]1/(m+1) for any β, 0 ≤ β < 1/(m + 1). (3.2)

To see this we first note that τ ◦ x ∈ C0(0, b]0. So the fact that x =
I1/(m+1)(τ ◦ x) and Lemma 3.1-(i) imply that x ∈ C1/(m+1)(0, b]1/(m+1).
Since the Lipschitz continuity implies that

∣∣τ(x(t))− τ(x(s))
∣∣ ≤ L|x(t)− x(s)| ≤
≤ L|x|1/(m+1),1/(m+1)|t− s|1/(m+1) ≤ C1|t− s|1/(m+1)

for some constant C1 > 0, it follows that
∣∣∣t1/(m+1)τ(x(t))− s1/(m+1)τ(x(s))

∣∣∣ ≤
≤ t1/(m+1)

∣∣τ(x(t))− τ(x(s))
∣∣ + |τ(x(s))| · ∣∣t1/(m+1) − s1/(m+1)

∣∣ ≤
≤ b1/(m+1)C1|t−s|1/(m+1)+

(
max
[0,b]

|τ ◦x|)|t−s|1/(m+1) ≤ C2|t−s|1/(m+1)

for some constant C2 > 0. Thus, τ ◦ x ∈ C1/(m+1)(0, b]0, and hence, τ ◦ x ∈
Cβ(0, b]0 for any β, 0 ≤ β < 1/(m + 1). Noting x(t) = I1/(m+1)(τ ◦ x)(t),
we can show (3.2) by Lemma 3.1-(i).

Step 2. We show that

τ(x(t))−τ(x(0))∈Cβ+1/(m+1)(0, b]1/(m+1) for any β, 0≤β<1/(m+1).

In fact, by Step 1, we know that for some C3 > 0,

|x(t)| ≤ C3t
1/(m+1), (3.3)

and ∣∣tβx(t)− sβx(s)
∣∣ ≤ C3|t− s|β+1/(m+1) (3.4)
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for any β, 0 ≤ β < 1/(m + 1). By the Lipschitz continuity of τ and (3.3),
we find that

∣∣τ(x(t))− τ(x(0))
∣∣ ≤ L|x(t)− x(0)| = L|x(t)| ≤ C4t

1/(m+1) (3.5)

for some C4 > 0. On the other hand, by the Lipschitz continuity of τ , (3.4),
and (3.5), we find that

∣∣∣tβ
{
τ(x(t))− τ(x(0))

}− sβ
{
τ(x(s))− τ(x(0))

}∣∣∣ =

=
∣∣∣tβ

{
τ(x(t))− τ(x(s))

}− (tβ − sβ)
{
τ(x(s))− τ(x(0))

}∣∣∣ ≤
≤ Ltβ |x(t)− x(s)|+ LC3s

1/(m+1)|tβ − sβ | =
= L

∣∣∣
{
tβx(t)− sβx(s)

}− (tβ − sβ)x(s)
∣∣ + LC3s

1/(m+1)|tβ − sβ | ≤

≤ L
(
C3|t− s|β+1/(m+1) + C3|t− s|βs1/(m+1)

)
+ LC3s

1/(m+1)|tβ − sβ | =
= 2LC3|t− s|β+1/(m+1) + LC3s

1/(m+1)|tβ − sβ |.
Employing Lemma 3.3, we can get
∣∣∣tβ

{
τ(x(t))− τ(x(0))

}− sβ
{
τ(x(s))− τ(x(0))

}∣∣∣ ≤ 3LC3|t− s|β+1/(m+1).

Step 3. We show that

x ∈ Cβ+1/(m+1)(0, b]1/(m+1) for any β, 0 ≤ β < 1− 1/(m + 1). (3.6)

Since the constant τ(x(0)) is of the class Cβ+1/(m+1)(0, b]0 and
Cβ+1/(m+1)(0, b]1/(m+1) ⊂ Cβ+1/(m+1)(0, b]0, we find by Step 2 that τ ◦x ∈
Cβ+1/(m+1)(0, b]0, 0 ≤ β < 1/(m + 1). Thus, by Lemma 3.1-(i) again,

x = I1/(m+1)(τ ◦ x) ∈ Cβ1+2/(m+1)(0, b]1/(m+1),

0 ≤ β1 < min
{m− 1

m + 1
,

1
m + 1

}
.

(3.7)

So, if 1 < m ≤ 2, then we have established (3.6).
Below, we suppose that m > 2. Then from (3.7), we get x ∈

Cβ2+1/(m+1)(0, b]1/(m+1), 0 ≤ β2 < 2/(m + 1). By the argument devel-
oped in Step 2, we find that τ(x(t)) − τ(x(0)) ∈ Cβ2+1/(m+1)(0, b]1/(m+1),
0 ≤ β2 < 2/(m + 1); and hence τ(x(t)) ∈ Cβ2+1/(m+1)(0, b]0, 0 ≤ β2 <
2/(m + 1). Again, applying Lemma 3-(i), we have

x = I1/(m+1)(τ ◦ x) ∈ Cβ2+2/(m+1)(0, b]1/(m+1),

0 ≤ β2 < min
{m− 1

m + 1
,

2
m + 1

}
.

So, if 2 < m ≤ 3, then we have established (3.6). If m > 3, then x ∈
Cβ3+1/(m+1)(0, b]1/(m+1), 0 ≤ β3 < 3/(m + 1).
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Continuing this procedure, we finally reach to the relation

x ∈ C β̃+1/(m+1)(0, b]1/(m+1), 0 ≤ β̃ <
[m]

m + 1
,

that is,

x ∈ C β̃+1/(m+1)(0, b]1/(m+1), 0 ≤ β̃ <
m− 1
m + 1

,

where [m] denotes the largest integer, not exceeding m, as usual. Then, one
more application of the argument in Step 2 and Lemma 3.1-(i) show that
(3.6) is valid.

Step 4. We show that x(t) is differentiable on (0, b], and

tm/(m+1)x′(t) =
τ(0)

Γ( 1
m+1 )

+ O
(
tm/(m+1)

)
as t → +0. (3.8)

Therefore, x′(t) > 0 near +0.
To see this, we notice by Step 3 and the observation in Step 2 that

τ ◦x(t)− τ ◦x(0) ∈ Cβ+1/(m+1)(0, b]1/(m+1), 0 ≤ β < 1−1/(m+1), (3.9)

and accordingly, τ ◦ x ∈ Cβ+1/(m+1)(0, b]0. Then, by Lemma 3.1-(ii),
Dm/(m+1)(τ ◦ x) ≡ DI1−m/(m+1)(τ ◦ x) is well-defined; and so,
x′ = DI1/(m+1)(τ ◦ x) is well-defined, and

x′ = DI1−m/(m+1)(τ ◦ x) ≡
≡ Dm/(m+1)(τ ◦ x) ∈ Cβ−(m−1)/(m+1)(0, b]−m/(m+1).

Therefore, we obtain

Im/(m+1)x′ = τ ◦ x ∈ Cβ+1/(m+1)(0, b]0, (3.10)

and

x′(t) = Dm/(m+1)
(
(τ ◦ x)(t)− (τ ◦ x)(0)

)
+ Dm/(m+1)((τ ◦ x)(0)) =

= Dm/(m+1)
(
(τ ◦ x)(t)− (τ ◦ x)(0)

)
+

τ(0)
Γ( 1

m+1 )
t−m/(m+1),

by Lemma 3.1-(ii). Since

Dm/(m+1)
(
(τ ◦ x)(t)− (τ ◦ x)(0)

) ∈ Cβ−(m−1)/(m+1)(0, b]0

by (3.9), we have

Dm/(m+1)
(
(τ ◦ x)(t)− (τ ◦ x)(0)

)
= O(1) as t → +0.

This implies the validity of (3.8).

Step 5. Finally, we show that x′(t) > 0 on (0, b].
The proof of this step is essentially the same as that of [3, Step 2 of the

proof of Proposition 3.2]. To see this, let 0 < ε < 1/(m + 1) and choose
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β ∈ (0, 1 − 1/(m + 1)), so that 1 − 1/(m + 1) − β < ε. (For example,
β = 1− 1/(m + 1)− ε/2.) We get from (3.10) that

D1/(m+1)−εx′ = D1−ε(τ ◦ x). (3.11)

By Lemma 3.1-(ii), the left-hand side of (3.11) can be rewritten as

D1/(m+1)−εx′(t) =

=
1

Γ(1− 1
m+1 + ε)

(
x′(t)

t1/(m+1)−ε
+

( 1
m + 1

−ε
) t∫

0

x′(t)−x′(s)

(t−s)1/(m+1)+1−ε
ds

)
.

To see x′(t) > 0 on (0, b] by contradiction, we assume the contrary. Since
x′(t) > 0 near the origin, there is an a ∈ (0, b] such that x′(t) > 0 on (0, a)
and x′(a) = 0. Noting that

a∫

0

x′(s)
(a− s)1+1/(m+1)−ε

ds >

> a−1−1/(m+1)+ε

a∫

0

x′(s) ds = a−1−1/(m+1)aεx(a),

we can find a constant ρ > 0 independent of ε such that

D1/(m+1)−εx′(t)
∣∣
t=a

=

= − 1/(m + 1)− ε

Γ(1− 1
m+1 + ε)

a∫

0

x′(s)
(a− s)1+1/(m+1)−ε

ds ≤ −ρ. (3.12)

On the other hand, the right-hand side of (3.11) with t = a can be rewrit-
ten as

D1−ε(τ ◦ x)(a) =
1

Γ(ε)

{
τ(x(a))
a1−ε

+ (1− ε)

a∫

0

τ(x(a))− τ(x(s))
(a− s)2−ε

ds

}
≡

≡ 1
Γ(ε)

{
τ(x(a))
a1−ε

+ (1− ε)

a−ε∫

0

+(1− ε)

a∫

a−ε

}
.

We observe that

(1− ε)

a−ε∫

0

= (1− ε)τ(x(a))

a−ε∫

0

ds

(a− s)2−ε
− (1− ε)

a−ε∫

0

τ(x(s))
(a− s)2−ε

ds =

= τ(x(a))(εε−1 − aε−1)− (1− ε)

a−ε∫

0

τ(x(s))
(a− s)2−ε

ds,
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so we get

D1−ε(τ ◦ x)(a) =
εε−1τ(x(a))

Γ(ε)
− 1− ε

Γ(ε)

a−ε∫

0

τ(x(s))
(a− s)2−ε

ds+

+
1− ε

Γ(ε)

a∫

a−ε

τ(x(a))− τ(x(s))
(a− s)2−ε

ds ≡

≡ J1(ε)− J2(ε) + J3(ε),

where Ji(ε), i = 1, 2, 3, are defined naturally by the last equality. Below we
will estimate each Ji(ε) separately.

It is easy to see that

J1(ε) =
εε

Γ(ε + 1)
τ(x(a)) −→ τ(x(a)) as ε → +0.

By the change of variables, the term J2(ε) is expressed as

J2(ε) =
(1− ε)εε

Γ(ε + 1)

a/ε∫

1

τ(x(a− εv))
v2−ε

dv =
(1− ε)εε

Γ(ε + 1)

∞∫

1

hε(v) dv,

where

hε(v) =

{
τ(x(a− εv))/v2−ε if 1 ≤ v ≤ a/ε,

0 if v ≥ a/ε.

Since |hε(v)| ≤ Cv−2 on [1,∞) for some constant C > 0, and lim
ε→+0

hε(v) =

τ(x(a))/v2, the dominated convergence theorem implies that

J2(ε) −→
∞∫

1

τ(x(a))
v2

dv = τ(x(a)) as ε → +0.

Finally, let us examine J3(ε). Recall that x′∈Cβ−(m−1)/(m+1)(0, b]−m/(m+1)

for any β, 0 ≤ β < 1− 1/(m + 1). Hence

tm/(m+1)|x′(t)| ≤ C4

and
∣∣∣tβ+1/(m+1)x′(t)− sβ+1/(m+1)x′(s)

∣∣∣ ≤ C4|t− s|β−(m−1)/(m+1)

for some constant C4 > 0. Therefore, for t0 > 0, we have

|x′(t)− x′(s)| ≤ t−β−1/(m+1)
∣∣∣tβ+1/(m+1)x′(t)− sβ+1/(m+1)x′(s)

∣∣∣+
+ t−β−1/(m+1)|x′(s)| · |t− s|β+1/(m+1) ≤ C(t0)|t− s|β , t, s ∈ [t0, b],
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where C(t0) > 0 is a constant depending on t0. Thus for s ≤ a near a, we
have

∣∣τ(x(a))− τ(x(s))
∣∣ ≤ L|x(a)− x(s)| ≤

≤ L

a∫

s

|x′(v)− x′(a)| dv ≤ LC5

a∫

s

(a− v)β dv =
LC5

β + 1
(a− s)β+1

for some C5 > 0. Consequently,

|J3(ε)| ≤ (1− ε)LC5

(β + 1)Γ(ε)

a∫

a−ε

(a− s)β+ε−1 ds =

=
(1− ε)LC5

(β + 1)(β + ε)Γ(ε + 1)
εβ+1+ε −→ 0 as ε → +0.

Hence lim
ε→+0

D1−ε(τ ◦ x)(t)
∣∣
t=a

= 0. By (3.11) this contradicts (3.12). So,

x′(t) > 0 on (0, b].
The proof of Proposition 3.2 is complete. ¤

We are now in a position to prove Theorem 1.2.

Proof of Theorem 1.2. Let p(t) be the solution of equation (1.5) constructed
in Proposition 2.1. By Proposition 3.2 we know that p(t) is differentiable,
p′(t) > 0 on (0, q], p′ ∈ C(0, q], and p(t) satisfies the asymptotic formula

tm/(m+1)p′(t) = C0 + O(tm/(m+1)) as t → +0

for some constant C0 > 0. Applying Im/(m+1) to the both sides of (1.5), we
get

I1T (p)(t) = B0Γ
( m

m + 1

)
Im/(m+1)p(t) = B0

t∫

0

(t− s)−1/(m+1)p(s) ds.

By the integration by parts, we have

I1T (p)(t) =
(m + 1)B0

m

t∫

0

(t− s)m/(m+1)p′(s) ds

Differentiating this, we conclude that

T (p(t)) = B0

t∫

0

p′(s)
(t− s)1/(m+1)

ds, 0 ≤ t ≤ q (3.13)

holds. Since p′(t) > 0 on (0, q], p = p(t) has the inverse function defined on
[0, R], which we denote by t = F (p). Then F is differentiable on [0, R] and
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satisfies F ′(u) = 1/p′(F (u)). By putting t = F (p) and s = F (v) in (3.13),
we have

T (p) = B0

p∫

0

(F (p)− F (v))−1/(m+1)
dv, 0 ≤ p ≤ R.

This means that F satisfies (1.2). So, the function f given by f(u) =
1/p′(F (u)) on [0, R] gives the solution of integral equation (1.1). This com-
pletes the proof. ¤
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Kyōritsushuppan, Tokyo, 2001.

3. Y. Kamimura, Global existence of a restoring force realizing a prescribed half-period.
J. Differential Equations 248 (2010), No. 10, 2562–2584.

4. T. Ohsawa and T. Takiguchi, Abel-type integral transforms and the exterior prob-
lem for the Radon transform. Inverse Probl. Sci. Eng. 17 (2009), No. 4, 461–471.

5. S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional integrals and deriva-
tives. Theory and applications. Edited and with a foreword by S. M. Nikol’skii. Trans-
lated from the 1987 Russian original. Revised by the authors. Gordon and Breach
Science Publishers, Yverdon, 1993.

6. R. Schaaf, Global solution branches of two-point boundary value problems. Lecture
Notes in Mathematics, 1458. Springer-Verlag, Berlin, 1990.

(Received 21.06.2012)

Authors’ addresses:

Hiroyuki Usami
Department of Mathematical and Design Engineering, Faculty of Engi-

neering, Gifu University, Gifu, 501-1193 Japan.
e-mail: husami@gifu-u.ac.jp

Takuro Yoshimi
Current affiliation is: Nippon Kouatsu Electric Co., Ltd., 8-288 Hi-

iragiyama, Obu, 474-0053, Japan.
Department of Mathematical and Design Engineering, Graduate School

of Engineering, Gifu University, Gifu, 501-1193 Japan.


