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Abstract. The sharp sufficient conditions of the existence of general-
ized regularly varying solutions (in the sense of Karamata) of differential
equations of the type

(
p(t)ϕ(x′(t))

)′ ±
n∑

i=1

[
qi(t)ϕ

(
x(gi(t))

)
+ ri(t)ϕ

(
x(hi(t))

)]
= 0

are established. Here, p, qi, ri : [a,∞) → (0,∞) are continuous functions,
gi, hi : [a,+∞) → R are continuous and increasing functions such that
gi(t) < t, hi(t) > t for t ≥ a, lim

t→∞
gi(t) = ∞ and ϕ(ξ) ≡ |ξ|α sgn ξ, α > 0.
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totic behavior of a solution.

îâäæñéâ. áŽáàâêæèæŽ çŽîŽéŽðŽï àŽêäëàŽáëâĲñèæ Žäîæå îâàñ-
èŽîñèŽá ùãŽèâĲŽáæ ŽéëêŽýïêâĲæï ŽîïâĲëĲæï ŽîŽàŽñéþëĲâïâĲŽáæ ïŽç-
éŽîæïæ ìæîëĲâĲæ

(
p(t)ϕ(x′(t))

)′ ±
n∑

i=1

[
qi(t)ϕ

(
x(gi(t))

)
+ ri(t)ϕ

(
x(hi(t))

)]
= 0

ïŽýæï áæòâîâêùæŽèñîæ àŽêðëèâĲâĲæïŽåãæï, ïŽáŽù p, qi, ri : [a,∞) →
(0,∞) ñûõãâðæ òñêóùæâĲæŽ, gi, hi : [a, +∞) → R æïâåæ ñûõãâðæ ŽîŽ-
äîáŽáæ òñêóùæâĲæŽ, îëé gi(t) < t, hi(t) > t, îëùŽ t ≥ a, lim

t→∞ gi(t) =

∞, ýëèë ϕ(ξ) ≡ |ξ|α sgn ξ, α > 0.
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1. Introduction

The equation to be studied in this paper is

(
p(t)ϕ(x′(t))

)′ ±
n∑

i=1

[
qi(t)ϕ

(
x(gi(t))

)
+ ri(t)ϕ

(
x(hi(t))

)]
= 0 (A±)

(
ϕ(ξ) = |ξ|α sgn ξ, α > 0, ξ ∈ R )

,

where p, qi, ri : [a,∞) → (0,∞) are continuous functions, gi, hi are contin-
uous and increasing functions with gi(t) < t, hi(t) > t and lim

t→∞
gi(t) = ∞

for i = 1, 2, . . . , n. In what follows we always assume that the function p(t)
satisfies

∞∫

a

dt

p(t)
1
α

= ∞. (1.1)

It is shown in the monograph [8] that the class of regularly varying func-
tions in the sense of Karamata is a well-suited framework for the asymptotic
analysis of nonoscillatory solutions of the second order linear differential
equation of the form

x′′(t) = q(t)x(t), q(t) > 0.

The study of asymptotic analysis of nonoscillatory solutions of functional
differential equations with deviating arguments in the framework of regu-
larly varying functions (called Karamata functions) was first attempted by
Kusano and Marić [5], [6]. They established a sharp condition for the exis-
tence of a slowly varying solution of the second order functional differential
equation with retarded argument of the form

x′′(t) = q(t)x(g(t)), (1.2)

and the following functional differential equation of the form

x′′(t)± [
q(t)x(g(t)) + r(t)x(h(t))

]
= 0, (1.3)

where q, r : [a,∞) → (0,∞) are continuous functions, g, h are continuous
and increasing with g(t) < t, h(t) > t for t = a, lim

t→∞
g(t) = ∞.

It is well known that there is the qualitative similarity between linear dif-
ferential equations and half-linear differential equations (see the book Došlý
and Řehák [2]). Therefore, in our previous papers [4], [7] we proved how
useful the regularly varying functions were for the study of nonoscillation
and asymptotic analysis of the half-linear differential equation involving
nonlinear Sturm–Liouville type differential operator of the form

(
p(t)ϕ(x′(t))

)′ ± f(t)ϕ(x(t)) = 0, p(t) > 0, (B±)

and the half-linear functional differential equation with both retarded and
advanced arguments of the form

(
ϕ(x′(t))

)′ ±
[
q(t)ϕ

(
x(g(t))

)
+ r(t)ϕ

(
x(h(t))

)]
= 0, (1.4)
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where f : [a,∞) → (0,∞) is a continuous function, p, g, h are just as in
the above equations.

Theorem A (J. Jaroš, T. Kusano and T. Tanigawa [4]). Suppose
that (1.1) holds. The equations (B±) have a normalized slowly varying
solution with respect to P (t) and a normalized regularly varying solution of
index 1 with respect to P (t) if and only if

lim
t→∞

P (t)α

∞∫

t

f(s) ds = 0, (1.5)

where the function P (t) is defined by

P (t) =

t∫

a

ds

p(s)
1
α

. (1.6)

Theorem B (J. Manojlović and T. Tanigawa [7]). Suppose that

lim
t→∞

g(t)
t

= 1 and lim
t→∞

h(t)
t

= 1

hold. Then the equations (1.4) have a slowly varying solution and a regularly
varying solution of index 1 if and only if

lim
t→∞

tα
∞∫

t

q(s) ds = lim
t→∞

tα
∞∫

t

r(s) ds = 0.

The objective of this paper is to establish a sharp condition of the ex-
istence of a normalized slowly varying solution with respect to P (t) and a
normalized regularly varying solution of index 1 with respect to P (t) of the
equation (A±). Our main result is the following

Theorem 1.1. Suppose that

lim
t→∞

P (gi(t))
P (t)

= 1 for i = 1, 2, . . . , n (1.7)

and

lim
t→∞

P (hi(t))
P (t)

= 1 for i = 1, 2, . . . , n (1.8)

hold. The equation (A±) possesses a normalized slowly varying solution
with respect to P (t) and a normalized regularly varying solution of index 1
with respect to P (t) if and only if

lim
t→∞

P (t)α

∞∫

t

qi(s) ds= lim
t→∞

P (t)α

∞∫

t

ri(s) ds=0 for i=1, 2, . . . , n. (1.9)
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This paper is organized as follows. In Section 2 we briefly recall the defi-
nitions and properties of the slowly varying and regularly varying functions
of index ρ with respect to P (t) which are called the generalized regularly
varying functions introduced by Jaroš and Kusano [3]. Explicit expressions
for the normalized slowly varying solution with respect to P (t) and the
normalized regularly varying solution of index 1 with respect to P (t) of
the equations (B±) obtained in [4] do not meet our need for application
to the functional differential equations (A±), and thus we present a modi-
fied proof of Theorem A in Section 3. The proof of Theorem 1.1 which is
based on Theorems A and B will be presented in Section 4. Some examples
illustrating our result will also be presented in Section 5.

2. Definitions and Properties of the Generalized Regularly
Varying Functions

For the reader’s convenience we first state the definitions and some basic
properties of the regularly varying functions and then refer to the general-
ized regularly varying functions. The generalized regularly varying functions
are introduced for the first time by Jaroš and Kusano [3] in order to gain
useful information about an asymptotic behavior of nonoscillatory solutions
for the self-adjoint differential equations of the form

(
p(t)x′(t)

)′ + f(t)x(t) = 0.

The definitions and properties of regularly varying functions:

Definition 2.1. A measurable function f : [a,∞) → (0,∞) is said to be
a regularly varying of index ρ if it satisfies

lim
t→∞

f(λt)
f(t)

= λρ for any λ > 0, ρ ∈ R.

Proposition 2.1 (Representation Theorem). A measurable function f :
[a,∞) → (0,∞) is regularly varying of index ρ if and only if it can be written
in the form

f(t) = c(t) exp
{ t∫

t0

δ(s)
s

ds

}
, t = t0,

for some t0 > a, where c(t) and δ(t) are measurable functions such that

lim
t→∞

c(t) = c ∈ (0,∞) and lim
t→∞

δ(t) = ρ.

The totality of regularly varying functions of index ρ is denoted by RV(ρ).
The symbol SV is used to denote RV(0) and a member of SV = RV(0) is
referred to as a slowly varying function. If f(t) ∈ RV(ρ), then f(t) = tρL(t)
for some L(t) ∈ SV. Therefore, the class of slowly varying functions is of
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fundamental importance in the theory of regular variation. In addition to
the functions tending to positive constants as t →∞, the following functions

N∏

i=1

(logi t)mi (mi ∈ R), exp
{ N∏

i=1

(logi t)ni

}
(0 < ni < 1), exp

{ log t

log2 t

}
,

where log1 t = log t and logk t = log logk−1 t for k = 2, 3, . . . , N , also belong
to the set of slowly varying functions.

Proposition 2.2. Let L(t) be any slowly varying function. Then, for
any γ > 0,

lim
t→∞

tγL(t) = ∞ and lim
t→∞

t−γL(t) = 0.

Proposition 2.3 (Karamata’s integration theorem). Let L(t) ∈ SV.
Then

(i) if γ > −1,
t∫

a

sγL(s) ds ∼ tγ+1

γ + 1
L(t), as t →∞;

(ii) if γ < −1,
∞∫

t

sγL(s) ds ∼ − tγ+1

γ + 1
L(t), as t →∞.

Here and hereafter the notation ϕ(t) ∼ ψ(t) as t → ∞ is used to mean
the asymptotic equivalence of ϕ(t) and ψ(t): lim

t→∞
ψ(t)/ϕ(t) = 1.

For an excellent explanation of the theory of regularly varying functions
the reader is referred to the book [1].

The definitions and properties of generalized regularly varying
functions:

Definition 2.2. A measurable function f : [a,∞) → (0,∞) is said to be
slowly varying with respect to P (t) if the function f◦P (t)−1 is slowly varying
in the sense of Karamata, where the function P (t) is defined by (1.6) and
P (t)−1 denotes the inverse function of P (t). The totality of slowly varying
functions with respect to P (t) is denoted by SVP .

Definition 2.3. A measurable function g : [a,∞) → (0,∞) is said to
be regularly varying function of index ρ with respect to P (t) if the function
g ◦P (t)−1 is regularly varying of index ρ in the sense of Karamata. The set
of all regularly varying functions of index ρ with respect to P (t) is denoted
by RVP (ρ).

Of fundamental importance is the following representation theorem for
the generalized slowly and regularly varying functions, which is an immedi-
ate consequence of Proposition 2.1.
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Proposition 2.4.
(i) A function f(t) is slowly varying with respect to P (t) if and only if

it can be expressed in the form

f(t) = c(t) exp
{ t∫

t0

δ(s)
p(s)

1
α P (s)

ds

}
, t = t0 (2.1)

for some t0 > a, where c(t) and δ(t) are measurable functions such
that

lim
t→∞

c(t) = c ∈ (0,∞) and lim
t→∞

δ(t) = 0.

(ii) A function g(t) is regularly varying of index ρ with respect to P (t)
if and only if it has the representation

g(t) = c(t) exp
{ t∫

t0

δ(s)
p(s)

1
α P (s)

ds

}
, t = t0 (2.2)

for some t0 > a, where c(t) and δ(t) are measurable functions such
that

lim
t→∞

c(t) = c ∈ (0,∞) and lim
t→∞

δ(t) = ρ.

If the function c(t) in (2.1) (or (2.2)) is identically a constant on [t0,∞),
then the function f(t) (or g(t)) is called normalized slowly varying (or nor-
malized regularly varying of index ρ) with respect to P (t). The totality of
such functions is denoted by n-SVP (or n-RVP ).

It is easy to see that if g(t) ∈ RVP (ρ) (n-RVP (ρ)), then g(t) = P (t)ρf(t)
for some f(t) ∈ SVP (or n-SVP ).

Proposition 2.5. Let f(t) ∈ SVP . Then, for any γ > 0,

lim
t→∞

P (t)γf(t) = ∞ and lim
t→∞

P (t)−γf(t) = 0. (2.3)

The Karamata’s integration theorem is generalized in the following man-
ner.

Proposition 2.6 (The generalized Karamata’s integration theorem). Let
f(t) ∈ n-SVP . Then

(i) If γ > −1,
t∫

t0

P (s)γ

p(s)
1
α

f(s) ds ∼ P (t)γ+1

γ + 1
f(t) as t →∞; (2.4)

(ii) If γ < −1,
∞∫
t0

P (t)γf(t)/p(t)
1
α dt < ∞ and

∞∫

t

P (s)γ

p(s)
1
α

f(s) ds ∼ −P (t)γ+1

γ + 1
f(t) as t →∞. (2.5)
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3. The Existence of Generalized Regularly Varying Solution
of Self-Adjoint Differential Equation without Deviating

Arguments

Theorem 3.1. Put F (t) = P (t)α
∞∫
t

f(s) ds, F̂ (t) = sup
s=t

F (s),

F+(t, w) = |1 + F (t)− w|1+ 1
α +

(
1 +

1
α

)
w − 1, (3.1)

and

F−(t, w) = 1 +
(
1 +

1
α

)
w − |1 + F (t)− w|1+ 1

α . (3.2)

(i) The equation (B+) possesses a n-SVP solution x(t) having the ex-
pression

x(t) = exp
{ t∫

t0

(v(s) + F (s)
p(s)P (s)α

) 1
α

ds

}
, t = t0 (3.3)

for some t0 > a, in which v(t) satisfies

v(t) = αP (t)α

∞∫

t

(v(s) + F (s))1+
1
α

p(s)
1
α P (s)α+1

ds, t = t0 (3.4)

and
0 5 v(t) 5 F̂ (t0) for t = t0 (3.5)

if and only if (1.5) holds.
(ii) The equation (B+) possesses a n-RVP (1) solution x(t) having the

expression

x(t) = exp
{ t∫

t1

(1 + F (s)− w(s)
p(s)P (s)α

) 1
α

ds

}
, t = t1 (3.6)

for some t1 > a, in which w(t) satisfies

w(t) =
α

P (t)

∞∫

t

F+(s, w(s)) ds, t = t1 (3.7)

and

0 5 w(t) 5
√

F̂ (t1) for t = t1 (3.8)

if and only if (1.5) holds.
(iii) The equation (B−) possesses a n-SVP solution x(t) having the ex-

pression

x(t) = exp
{ t∫

t0

(v(s)− F (s)
p(s)P (s)α

) 1
α∗

ds

}
, t = t0 (3.9)
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for some t0 > a, in which v(t) satisfies

v(t) = αP (t)α

∞∫

t

|v(s)− F (s)|1+ 1
α

p(s)
1
α P (s)α+1

ds, t = t0 (3.10)

and (3.5) if and only if (1.5) holds. Here, the meaning of the as-
terisk notation is defined by ξγ∗ = |ξ|γ sgn ξ, γ > 0, ξ ∈ R.

(iv) The equation (B−) possesses a n-RVP (1) solution x(t) having the
expression

x(t) = exp
{ t∫

t1

(1− F (s) + w(s)
p(s)P (s)α

) 1
α

ds

}
, t = t1 (3.11)

for some t1 > a, in which w(t) satisfies

w(t) =
α

P (t)

∞∫

t

F−(s, w(s)) ds, t = t1 (3.12)

and (3.8) if and only if (1.5) holds.

Our purpose in this section is to give a proof of the above Theorem 3.1.
The following lemma will be needed for our purpose.

Lemma 3.1.

(i) If x(t), a nonoscillatory solution of (B±), is not zero on [a,∞),
then the function u(t) = p(t)ϕ(x′(t)/x(t)) satisfies the generalized
Riccati equation

u′(t) + α
|u(t)|1+ 1

α

p(t)
1
α

± f(t) = 0, t = a. (C±)

(ii) If u(t) is a solution of (C±), then the function

x(t) = exp
{ t∫

a

(u(s)
p(s)

) 1
α∗

ds

}

is a nonoscillatory solution of (B±) on [a,∞).

Proof of Theorem 3.1. Since the idea of the proof of Theorem 3.1 for the
equation (B−) is similar to the way of proving the equation (B+), we restrict
our attention to the proof for equation (B+).

(The “only if” part): Let x(t) be a positive solution of (B+) belonging
to n-SVP or n-RVP (1), respectively. Then, by the representation theorem,

x(t) = exp
{ t∫

t0

δ(s)
p(s)

1
α P (s)

ds

}
, t = t0,
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for some t0 > a, where lim
t→∞

δ(t) = 0 or 1 according as x(t) ∈ n-SVP or

x(t) ∈ n-RVP (1). Since the function

u(t) = p(t)ϕ
(x′(t)

x(t)

)
= ϕ

( δ(t)
P (t)

)

satisfies the generalized Riccati equation (C+) and u(t) → 0 as t →∞, we
obtain

u(t) = α

∞∫

t

|P (s)αu(s)|1+ 1
α

p(s)
1
α P (s)α+1

ds +

∞∫

t

f(s) ds

or

P (t)αu(t) = αP (t)α

∞∫

t

|P (s)αu(s)|1+ 1
α

p(s)
1
α P (s)α+1

ds+

+ P (t)α

∞∫

t

f(s) ds, t = t0. (3.13)

Letting t → ∞ in (3.13), we easily conclude that (1.5) holds in either case
of P (t)αu(t) → 0 or P (t)αu(t) → 1 as t →∞.

(The “if” part) Suppose that (1.5) holds.
(The existence of a n-SVP solution of (B+)): Choose t0 > max{a, 1} so

large that

φ = (2F̂ (t0))
1
α max

{
2, 1 +

1
α

}
< 1, (3.14)

and define the set of continuous functions V and the integral operators F
by

V =
{

v ∈ C0[t0,∞) : 0 5 v(t) 5 F̂ (t0), t = t0

}
(3.15)

and

Fv(t) = αP (t)α

∞∫

t

(v(s) + F (s))1+
1
α

p(s)
1
α P (s)α+1

ds, t = t0, (3.16)

where C0[t0,∞) denotes the Banach space consisting of all continuous func-
tions on [t0,∞) and tend to 0 as t → ∞ and equipped with the norm
‖v‖0 = sup

t=t0

|v(t)|. It can be verified that F is a contraction mapping on V .

In fact, using (3.14), we see that v ∈ V implies lim
t→∞

Fv(t) = 0 and

Fv(t) 5 α(2F̂ (t0))1+
1
α P (t)α

∞∫

t

ds

p(s)
1
α P (s)α+1

= (2F̂ (t0))1+
1
α 5 F̂ (t0),
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and that v1, v2 ∈ V implies
∣∣∣ |v1(t) + F (t)|1+ 1

α −
∣∣v2(t) + F (t)

∣∣1+ 1
α

∣∣∣ 5

5
(
1 +

1
α

)
(2F̂ (t0))

1
α |v1(t)− v2(t)| 5 φ|v1(t)− v2(t)|, t = t0,

which ensures that F is a contraction mapping. Therefore, there exists a
unique element v0 ∈ V such that v0 = Fv0, that is,

v0(t) = αP (t)α

∞∫

t

(v0(s) + F (s))1+
1
α

p(s)
1
α P (s)α+1

ds, t = t0.

Obviously, v0(t) satisfies the integral equation
( v0(t)

P (t)α

)′
+

(v(t) + F (t))1+
1
α

p(t)
1
α P (t)α+1

= 0, t = t0. (3.17)

By virtue of the function v0(t) we define the function

x0(t) = exp
{ t∫

t0

(v0(s) + F (s)
p(s)P (s)α

) 1
α

ds

}
, t = t0.

Since the function u(t) = v0(t)+F (t)/P (t)α satisfies the generalized Riccati
equation (C+) associated with (B+) which is easily seen to be equivalent to
(3.17), x0(t) is a solution of the differential equation (B+).

(The existence of a n-RVP (1) solution of (B+)): We will construct a
n-RVP (1) solution of (B+). Let us consider the function

x(t) = exp
{ t∫

t1

(1 + F (s)− w(s)
p(s)P (s)α

) 1
α∗

ds

}
, t = t1 (3.18)

for some t1 > a to be determined later. According to (ii) of Lemma 3.1, the
function x(t) is a solution of (B+) on [t1,∞) if w(t) is chosen in such way
that u(t) = 1 + F (t)−w(t)/P (t)α satisfies the generalized Riccati equation
(C+) on [t1,∞). Then the differential equation for w(t) is derived:

w′(t)− α

p(t)
1
α P (t)

w(t) +
α

p(t)
1
α P (t)

[
1− |1 + F (t)−w(t)|1+ 1

α

]
= 0. (3.19)

We rewrite (3.19) as

(P (t)w(t))′ − α

p(t)
1
α

F+(t, w(t)) = 0, (3.20)

where F+(t, w(t)) is defined with (3.1). It is convenient to express F+(t, w) as

F+(t, w) = G(t, w) + H(t, w) + k(t), (3.21)

with G(t, w), H(t, w) and k(t) defined, respectively, by

G(t, w) = |1+F (t)−w|1+ 1
α +

(
1+

1
α

)
(1+F (t))

1
α w−(1+F (t))1+

1
α , (3.22)
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H(t, w) =
(
1 +

1
α

){
1− (1 + F (t))

1
α

}
w, (3.23)

and

k(t) = (1 + F (t))1+
1
α − 1. (3.24)

Since F (t) → 0 as t →∞ by hypothesis, we can choose t1 > max{a, 1} such
that (

1 +
1
α

)
[K + L + α]

√
F̂ (t1) 5 1, (3.25)

where K and L are positive constants such that

K =
(4

3

)1− 1
α

and L = 1 if α > 1;

K =
(3

2

) 1
α−1

and L =
(5

4

) 1
α−1

if α 5 1.

(3.26)

Noting that since 1+1/α > 1 and K +L+α = 2, we have in view of (3.25)

that
√

F̂ (t1) 5 1/2 and F (t) 5 1/4 for all t = t1. It is easily shown that,
using the mean value theorem and L’Hospital rule, the following inequalities
hold for (3.22), (3.23) and (3.24):

∣∣∣∂G(t, w)
∂w

∣∣∣ 5 1
α

(
1 +

1
α

)
K|w|, (3.27)

∣∣∣∂H(t, w)
∂w

∣∣∣ 5 1
α

(
1 +

1
α

)
L F (t), (3.28)

|G(t, w)| 5 1
α

(
1 +

1
α

)
L w2, (3.29)

|H(t, w)| 5 1
α

(
1 +

1
α

)LF (t)|w|, (3.30)

and

|k(t)| 5
(
1 +

1
α

)
F (t) (3.31)

for t = t1 and for |w| 5 1/4.
Consider the set W ⊂ C0[t1,∞) defined by

W =
{

w ∈ C0[t1,∞) : |w(t)| 5
√

F̂ (t1) , t = t1

}
(3.32)

and define the integral operator G : W → C0[t1,∞) by

Gw(t) =
α

P (t)

t∫

t1

F+(s, w(s))
p(s)

1
α

ds, t = t1, (3.33)

where F+(t, w) is given by (3.1). Then, it can be shown that G is a con-
traction mapping on W . In fact, if w ∈ W , then, by means of (3.29)–(3.31)
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and (3.25), we can see that

|Gw(t)| 5 α

P (t)

t∫

t1

1
p(s)

1
α

[
|G(s, w)|+ |H(s, w)|+ |k(s)|

]
ds 5

5
(
1 +

1
α

) 1
P (t)

t∫

t1

1
p(s)

1
α

[
Lw(s)2 + LF (s)|w(s)|+ αF (s)

]
ds 5

5
(
1 +

1
α

)[
LF̂ (t1) + LF̂ (t1)

3
2 + αF̂ (t1)

]
=

=
(
1 +

1
α

)
F̂ (t1)

[
L + L

√
F̂ (t1) + α

]
5

5
√

F̂ (t1)
(
1 +

1
α

)
[K + L + α]

√
F̂ (t1) 5

√
F̂ (t1) , t = t1.

Since F+(t, w(t)) → 0 as t →∞, we obtain lim
t→∞

Gw(t) = 0. Thus, it follows
that Gw ∈ W , and hence G maps W into itself. Moreover, if w1, w2 ∈ W ,
then, using (3.27) and (3.28), we obtain

∣∣Gw1(t)− Gw2(t)
∣∣ 5 α

P (t)
×

×
t∫

t1

1
p(s)

1
α

[ ∣∣G(s, w1(s))−G(s, w2(s))
∣∣+∣∣H(s, w1(s))−H(s, w2(s))

∣∣
]
ds 5

5
(
1 +

1
α

)[
K

√
F̂ (t1) + L F̂ (t1)

]
‖w1 − w2‖0 5

5
(
1 +

1
α

)
[K + L]

√
F̂ (t1) ‖w1 − w2‖0,

which implies that

∥∥Gw1 − Gw2

∥∥
0

5
(
1 +

1
α

)
[K + L]

√
F̂ (t1) ‖w1 − w2‖0.

In view of (3.25) this shows that G is a contraction mapping on W . There-
fore, the contraction mapping principle ensures the existence of a unique
fixed element w1 ∈ W such that w1 = Gw1, which is equivalent to the
integral equation

w1(t) =
α

P (t)

t∫

t1

F+(s, w1(s))
p(s)

1
α

ds, t = t1. (3.34)

Differentiation of (3.34) shows that w1(t) satisfies the differential equation
(3.20), and substitution of this w1(t) into (3.6) gives rise to a solution x(t)
of the half-linear differential equation (B+) defined on [t1,∞). Further-
more, since lim

t→∞
w1(t) = 0, it follows from the representation theorem that



136 Tomoyuki Tanigawa

x(t) ∈ n-RVP (1). This completes the proof of Theorem 3.1 for the equa-
tion (B+). ¤

Remark 3.1. Consider another half-linear differential equation
(
p(t)ϕ(x′(t))

)′ + f̃(t)ϕ(x(t)) = 0, (B̃+)

where f̃(t) is a positive continuous function such that

f̃(t) = f(t), t = a

and

lim
t→∞

P (t)α

∞∫

t

f̃(s) ds = 0.

We take t0 > max{a, 1} so large that

(2F̃ (t0))
1
α max

{
2, 1 +

1
α

}
< 1 where F̃ (t) = P (t)α

∞∫

t

f̃(s) ds.

Then, by means of Theorem 3.1, both x0(t) and x̃0(t) are given, respectively,
by (3.3) and

x̃0(t) = exp
{ t∫

t0

( ṽ0(s) + F̃ (s)
p(s)P (s)α

) 1
α

ds

}
, t = t0,

where ṽ0(t) is a solution of the integral equation

ṽ0(t) = α P (t)α

∞∫

t

(ṽ0(s) + F̃ (s))1+
1
α

p(s)
1
α P (s)α+1

ds, t = t0.

We here compare x0(t) with x̃0(t). From the proof of Theorem 3.1, v0(t)
and ṽ0(t) are the fixed points of the contraction mapping F and F̃ given,
respectively, by (3.16) and

F̃ ṽ(t) = α P (t)α

∞∫

t

(ṽ(s) + F̃ (s))1+
1
α

p(s)
1
α p(s)α+1

ds, t = t0.

Noting that v0(t) and ṽ0(t) are the limit points of uniform convergence on
[t0,∞) of the sequences defined by

vn+1(t) = Fvn(t), t = t0, n = 1, 2, . . . , v1(t) = 0

and

ṽn+1(t) = F̃ ṽn(t), t = t0, n = 1, 2, . . . , ṽ1(t) = 0.

We conclude that ṽ0(t) = v0(t), t = t0, which implies that x̃0(t) = x0(t) for
t = t0.
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4. The Existence of Generalized Regularly Varying Solution
of Self-Adjoint Functional Differential Equation with

Deviating Arguments

In this section we first present the proof of Theorem 1.1 for equation
(A+) and then give the proof for the equation (A−).

4.1. The proof of Theorem 1.1 for the equation (A+). (The “only
if” part) Suppose that there exists a positive solution x1(t) ∈ n-SVP or
x2(t) ∈ n-RVP (1) of (A+). The equation (A+) can be written as the half-
linear differential equation without retarded and advanced arguments

(
p(t)ϕ(x′(t))

)′ +
n∑

i=1

[
qx,gi

(t) + rx,hi
(t)

]
ϕ(x(t)) = 0, (4.1)

where

qx,gi(t) = qi(t)ϕ
(x(gi(t))

x(t)

)
and rx,hi(t) = ri(t)ϕ

(x(hi(t))
x(t)

)
, (4.2)

i = 1, 2, . . . , n.

Here, applying Theorem 3.1, we see that

lim
t→∞

P (t)α

∞∫

t

n∑

i=1

[
qx,gi(s) + rx,hi(s)

]
ds = 0

or

lim
t→∞

P (t)α

∞∫

t

n∑

i=1

qx,gi(s) ds = lim
t→∞

P (t)α

∞∫

t

n∑

i=1

rx,hi(s) ds = 0.

By the representation theorem, xj(t), j = 1, 2 can be expressed as

xj(t) = exp
{ t∫

t0

δj(s)
p(s)

1
α P (s)

ds

}
, j = 1, 2

for some t0 > a, where δj(t) satisfies

lim
t→∞

δj(t) =

{
0 (j = 1)
1 (j = 2).

The solutions xj(t), j = 1, 2 satisfy

xj(gi(t))
xj(t)

= exp
{
−

t∫

gi(t)

δj(s)
p(s)

1
α P (s)

ds

}
, t = t1,

and

xj(hi(t))
xj(t)

= exp
{ hi(t)∫

t

δj(s)
p(s)

1
α P (s)

ds

}
, t = t1,
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respectively, where t1 is such that gi(t1) = t0, i = 1, 2, . . . , n. Then, using
the properties of δj(t), (1.7) and (1.8), we see that

t∫

gi(t)

|δj(s)|
p(s)

1
α P (s)

ds 5 sup
s=gi(t)

|δj(s)| · log
P (t)

P (gi(t))
→ 0 as t →∞

and
hi(t)∫

t

|δj(s)|
p(s)

1
α P (s)

ds 5 sup
s=t

|δj(s)| · log
P (hi(t))

P (t)
→ 0 as t →∞.

Thus, it follows that

lim
t→∞

xj(gi(t))
xj(t)

= lim
t→∞

xj(hi(t))
xj(t)

= 1, i = 1, 2, . . . , n, j = 1, 2. (4.3)

Consequently, from (4.3) we find that (1.9) holds.
(The “if” part)
(The existence of a n-SVP solution of (A+)): Suppose that (1.9) is sat-

isfied. Choose t0 > a so large that t∗ = min
i=1,2,...,n

{
inf
t=t0

gi(t)
}

> max{a, 1},
{

2
n∑

i=1

[
Q̂i(t0) + 2αR̂i(t0)

]} 1
α

max
{

2, 1 +
1
α

}
< 1 (4.4)

and
(
2

n∑

i=1

[
Qi(t0) + 2αRi(t0)

]) 1
α

log
P (hi(t))

P (t)
5 log 2, t = t0, (4.5)

where Qi(t), Ri(t), Q̂i(t) and R̂i(t) for i = 1, 2 . . . , n are defined by

Qi(t) = P (t)α

∞∫

t

qi(s) ds, Q̂i(t) = sup
s=t

Qi(s) (4.6)

and

Ri(t) = P (t)α

∞∫

t

ri(s) ds, R̂i(t) = sup
s=t

Ri(s). (4.7)

Let Ξ denote the set of all positive continuous nondecreasing functions
ξ(t) on [t∗,∞) satisfying

ξ(t) = 1 for t∗ 5 t 5 t0; (4.8)

ξ(t) 5 exp

{ ∞∫

t0

(v0(s) +
n∑

i=1

[Qi(s) + 2αRi(s)]

p(s)P (s)α

) 1
α

ds

}
for t = t0; (4.9)

ξ(hi(t))
ξ(t)

5 2 for t = t0 (4.10)
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for i = 1, 2, . . . , n, where v0(t) satisfies the following integral equation:

v0(t) = αP (t)α

∞∫

t

(v0(s) +
n∑

i=1

[Qi(s) + 2αRi(s)])1+
1
α

p(s)
1
α P (s)α+1

ds, t = t0. (4.11)

We note that the function

X0(t) = exp

{ t∫

t0

(v0(s) +
n∑

i=1

[Qi(s) + 2αRi(s)]

p(s)P (s)α

) 1
α

ds

}
, t = t0 (4.12)

is a solution of the half-linear differential equation

(
p(t)ϕ(x′(t))

)′ +
n∑

i=1

[
qi(t) + 2αri(t)

]
ϕ(x(t)) = 0, (4.13)

since the function

u(t) =
v0(t) +

n∑
i=1

[Qi(t) + 2αRi(t)]

P (t)α
(4.14)

satisfies the generalized Riccati equation

u′(t) + α
|u(t)|1+ 1

α

p(t)
1
α

+
n∑

i=1

[
qi(t) + 2αri(t)

]
= 0. (4.15)

Since v0(t)+
n∑

i=1

[Qi(t)+2αRi(t)] → 0 as t →∞, X0(t) is a normalized slowly

varying function with respect to P (t) by the representation theorem. It is
obvious that Ξ is a nonvoid closed and convex subset of the locally convex
space C[t0,∞) of all continuous functions on [t0,∞) equipped with the
metric topology of uniform convergence on compact subintervals of [t0,∞).

For any ξ ∈ Ξ, we define qξ,gi(t) and rξ,hi(t) by

qξ,gi(t) = qi(t)ϕ
(ξ(gi(t))

ξ(t)

)
and rξ,hi(t) = ri(t)ϕ

(ξ(hi(t))
ξ(t)

)
, (4.16)

respectively. Taking into account (4.10), we have
n∑

i=1

qξ,gi(t) 5
n∑

i=1

qi(t),
n∑

i=1

rξ.hi(t) 5 2α
n∑

i=1

ri(t), (4.17)

and accordingly,
n∑

i=1

Qξ,gi(t) 5
n∑

i=1

Qi(t),
n∑

i=1

Rξ,hi(t) 5 2α
n∑

i=1

Ri(t) (4.18)

where Qξ,gi(t) and Rξ,hi(t) are defined by

Qξ,gi(t) = P (t)α

∞∫

t

qξ,gi(s) ds, Rξ,hi(t) = P (t)α

∞∫

t

rξ,hi(s) ds. (4.19)
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Consequently, it follows from (4.4) that
{

2
n∑

i=1

[
Q̂ξ,gi(t0) + 2αR̂ξ,hi

(t0)
]} 1

α

max
{

2, 1 +
1
α

}
< 1, (4.20)

where Q̂ξ,gi(t) = sup
s=t

Qξ,gi(t) and R̂ξ,hi(t) = sup
s=t

Rξ,hi(s). Thus, Theo-

rem 3.1 implies that for any ξ ∈ Ξ the half-linear differential equation

(
p(t)ϕ(x′(t))

)′ +
n∑

i=1

[
qx,gi

(t) + rx,hi
(t)

]
ϕ(x(t)) = 0 (4.21)

has a n-SVP solution

Xξ(t) = exp

{ t∫

t0

(vξ(s) +
n∑

i=1

[Qξ,gi(s) + Rξ,hi(s)]

p(s)P (s)α

) 1
α

ds

}
, t = t0, (4.22)

where vξ(t) is a solution of the integral equation

vξ(t) = αP (t)α

∞∫

t

(
vξ(s) +

n∑
i=1

[Qξ,gi(s) + Rξ,hi(s)]
)1+ 1

α

p(s)
1
α P (s)α+1

ds, t = t0, (4.23)

and satisfies

05vξ(t)5
n∑

i=1

[
Q̂ξ,gi(t0)+R̂ξ,hi(t0)

]
5

n∑

i=1

[
Q̂i(t0)+2αR̂i(t0)

]
for t= t0.

Let us now define the mapping Φ which assigns to each ξ ∈ Ξ the function
given by

Φξ(t) = 1 for t∗ 5 t 5 t0, Φξ(t) = Xξ(t) for t = t0. (4.24)

To apply the Schauder–Tychonoff fixed point theorem to Φ we will show
that Φ is a continuous mapping which sends Ξ into a relatively compact
subset of Ξ.

(i) Φ maps Ξ into itself. Let ξ ∈ Ξ. Then

Φξ(t) = Xξ(t) = exp

{ t∫

t0

(vξ(s) +
n∑

i=1

[Qξ,gi(s) + Rξ,hi(s)]

p(s)P (s)α

) 1
α

ds

}
5

5 exp

{ t∫

t0

(vξ(s) +
n∑

i=1

[Qi(s) + 2αRi(s)]

p(s)P (s)α

) 1
α

ds

}
5

5 exp

{ t∫

t0

(v0(s)+
n∑

i=1

[Qi(s)+2αRi(s)]

p(s)P (s)α

) 1
α

ds

}
, t= t0,
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where we make use of the fact that vξ(t) 5 v0(t), t = t0 for all ξ ∈ Ξ (cf.

Remark 3.1). Furthermore, since vξ(t) 5
n∑

i=1

[Q̂i(t0)+2αR̂i(t0)], using (4.5),

we see that

Φ(ξ(hi(t)))
Φ(ξ(t))

= exp

{ hi(t)∫

t

(vξ(s) +
n∑

i=1

[Qξ,gi(s) + Rξ,hi(s)]

p(s)P (s)α

) 1
α

ds

}
5

5 exp

{(
2

n∑

i=1

[
Q̂i(t0) + 2αR̂i(t0)

]) 1
α

hi(t)∫

t

ds

p(s)
1
α P (s)

}
=

= exp

{(
2

n∑

i=1

[
Q̂i(t0)+2αR̂i(t0)

]) 1
α

log
P (hi(t))

P (t)

}
52, t= t0.

This shows that Φξ ∈ Ξ, that is, Φ is a self-map on Ξ.
(ii) Φ(Ξ) is relatively compact in C[t∗,∞). Since Φ maps Ξ into itself,

that is, Φ(Ξ) ⊂ Ξ, Φ(Ξ) is locally uniformly bounded on [t∗,∞), and since
ξ ∈ Ξ implies

0 5 d

dt
Φξ(t) =

d

dt
Xξ(t) =

= exp

{ t∫

t0

(vξ(s) +
n∑

i=1

[Qξ,gi(s) + Rξ,hi(s)]

p(s)P (s)α

) 1
α

ds

}
×

×
(vξ(t) +

n∑
i=1

[Qξ,gi(t) + Rξ,hi(t)]

p(t)P (t)α

) 1
α

5

5 exp

{( n∑

i=1

[Q̂i(t0) + 2αR̂i(t0)]
) 1

α

log
P (t)
P (t0)

}
×

×
(2

n∑
i=1

[Q̂i(t0) + 2αR̂i(t0)]

p(t)P (t)α

) 1
α

,

Φ(Ξ) is locally equi-continuous on [t∗,∞). From the Arzela–Ascoli lemma
it then follows that Φ(Ξ) is relatively compact in C[t∗,∞).

(iii) Φ is a continuous mapping. Let {ξm(t)} be a sequence of functions
in Ξ converging to δ(t) uniformly on the compact subintervals of [t∗,∞).
To prove the continuity of Φ, we have to prove that {Φξm(t)} converges
to Φδ(t) uniformly on compact subintervals in [t∗,∞). Applying the mean
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value theorem, for t = t∗ we obtain
∣∣Φξm(t)− Φδ(t)

∣∣ = |Xξm(t)−Xδ(t)| =

=

∣∣∣∣∣ exp

{ t∫

t0

(vξm(s) +
n∑

i=1

[Qξm,gi(s) + Rξm,hi(s)]

p(s)P (s)α

) 1
α

ds

}
−

− exp

{ t∫

t0

(vδ(s) +
n∑

i=1

[Qδ,gi
(s) + Rδ,hi

(s)]

p(s)P (s)α

) 1
α

ds

}∣∣∣∣∣

5 exp

{ t∫

t0

(v0(s) +
n∑

i=1

[Q̂i(s) + 2αR̂i(s)]

p(s)P (s)α

) 1
α

ds

}
×

×
t∫

t0

1
p(s)

1
α

∣∣∣∣∣
(vξm

(s) +
n∑

i=1

[Qξm,gi
(s) + Rξm,hi

(s)]

P (s)α

) 1
α

−

−
(vδ(s) +

n∑
i=1

[Qδ,gi(s) + Rδ,hi(s)]

P (s)α

) 1
α

∣∣∣∣∣ ds.

By means of the inequality |xλ−yλ| 5 |x−y|λ for x, y ∈ R+ and 0 < λ < 1,
we find that the integrand of the last integral in the previous inequality is
bounded from above by the function

∣∣∣∣∣
(vξm(t) +

n∑
i=1

[Qξm,gi(t) + Rξm,hi(t)]

P (t)α

) 1
α

−

−
(vδ(t) +

n∑
i=1

[Qδ,gi(t) + Rδ,hi(t)]

P (t)α

) 1
α

∣∣∣∣∣ 5

5
( |vξm(t)−vδ(t)|+

n∑
i=1

|Qξm,gi(t)−Qδ,gi(t)|+
n∑

i=1

|Rξm,hi(t)−Rδ,hi(t)|
P (t)α

) 1
α

if α > 1.

Similarity, using the mean value theorem, we find that

∣∣∣∣∣
(vξm(t) +

n∑
i=1

[Qξm,gi(t) + Rξm,hi(t)]

P (t)α

) 1
α

−

−
(vδ(t) +

n∑
i=1

[Qδ,gi(t) + Rδ,hi(t)]

P (t)α

) 1
α

∣∣∣∣∣ 5
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5 C1

|vξm(t)−vδ(t)|+
n∑

i=1

|Qξm,gi(t)−Qδ,gi(t)|+
n∑

i=1

|Rξm,hi(t)−Rδ,hi(t)|
P (t)α

if α 5 1,

where C1 is a constant depending only on α, Q̂i(t0) and R̂i(t0). Accordingly,
the continuity of Φ is guaranteed if we prove that the two sequences

|vξm
(t)−vδ(t)|
P (t)α

,

n∑
i=1

|Qξm,gi
(t)−Qδ,gi

(t)|+
n∑

i=1

|Rξm,hi
(t)−Rδ,hi

(t)|
P (t)α

(4.25)

converge to 0 on any compact subinterval of [t∗,∞). In fact, it can be shown
more strongly that they converge to 0 uniformly on [t∗,∞). The uniform
convergence of the second sequence in (4.25) follows from the Lebesgue
dominated convergence theorem applied to the inequality

n∑
i=1

|Qξm,gi
(t)−Qδ,gi

(t)|+
n∑

i=1

|Rξm,hi
(t)−Rδ,hi

(t)|
P (t)α

5

5
∞∫

t

[
n∑

i=1

qi(s)
∣∣∣∣ϕ

(ξm(gi(s))
ξm(s)

)
− ϕ

(δ(gi(s))
δ(s)

)∣∣∣∣+

+
n∑

i=1

ri(s)
∣∣∣∣ϕ

(ξm(hi(s))
ξm(s)

)
− ϕ

(δ(hi(s))
δ(s)

)∣∣∣∣
]

ds

for t = t0. To examine the first sequence in (4.25) we proceed as follows.
Using (4.23) and the mean value theorem, we obtain

|vξm(t)− vδ(t)|
P (t)α

5 α

∞∫

t

1
p(s)

1
α P (s)α+1

×

×
∣∣∣∣∣
(
vξm(s) +

n∑

i=1

[Qξm,gi(s) + Rξm,hi(s)]
)1+ 1

α−

−
(
vδ(s) +

n∑

i=1

[Qδ,gi(s) + Rδ,hi(s)]
)1+ 1

α

∣∣∣∣∣ ds.

Therefore, we have

|vξm(t)− vδ(t)|
P (t)α

5

5 ατ1

[ ∞∫

t

1
p(s)

1
α

|vξm(s)− vδ(s)|
P (s)α+1

ds +

∞∫

t

1
p(s)

1
α

Sm,n(s)
P (s)α+1

ds

]
, (4.26)
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where τ1 is a positive constant defined by

τ1 =
(
1 +

1
α

){
2

n∑

i=1

[Q̂i(t0) + 2αR̂i(t0)]
} 1

α

(4.27)

and Sm,n(t) is defined by

Sm,n(t) =
n∑

i=1

[∣∣Qξm,gi
(t)−Qδ,gi

(t)
∣∣ +

∣∣Rξm,hi
(t)−Rδ,hi

(t)
∣∣
]
.

Note that τ1 < 1 by (4.27). Letting

Zm(t) =

∞∫

t

|vξm
(s)− vδ(s)|

p(s)
1
α P (s)α+1

ds, (4.28)

we derive from (4.26) the following differential inequality for zm(t):

(
P (t)ατ1Zm(t)

)′ = −ατ1
P (t)ατ1−1

p(t)
1
α

∞∫

t

Sm,n(s)
p(s)

1
α P (s)α+1

ds. (4.29)

Noting that P (t)ατ1Zm(t) → ∞ and that the right-hand side of (4.29) is
integrated over [t,∞), we obtain

Zm(t) 5 1
P (t)ατ1

∞∫

t

Sm,n(s)
p(s)

1
α P (s)1+α−ατ1

ds, t = t0. (4.30)

Combining (4.26) with (4.30), we have

|vξm(t)− vδ(t)|
P (t)α

5

5 ατ1

[
1

P (t)ατ1

∞∫

t

Sm,n(s)
p(s)

1
α P (s)1+α−ατ1

ds +

∞∫

t

Sm,n(s)
p(s)

1
α P (s)α+1

ds

]
5

5 ατ1

P (t)ατ1

∞∫

t

Sm,n(s)
p(s)

1
α P (s)1+α−ατ1

ds, t = t0.

This shows that |uξm(t)− vδ(t)|/P (t)α converges to 0 uniformly on [t∗,∞).
We therefore conclude that the mapping Φ defined by (4.24) is continuous
in the topology of C[t∗,∞). Thus, all the hypotheses of the Schauder–
Tychonoff fixed point theorem are fulfilled, and hence there exists ξ0(t) ∈ Ξ
satisfying the half-linear functional differential equation

(
p(t)ϕ(ξ′0(t))

)′ +
n∑

i=1

[
qξ0,gi(t) + rξ0,hi(t)

]
ϕ(ξ0(t)) = 0, t = t0,

which is rewritten as
(
p(t)ϕ(ξ′0(t))

)′ +
n∑

i=1

[
qi(t)ϕ

(
ξ0(gi(t))

)
+ ri(t)ϕ

(
ξ0(hi(t))

)]
= 0, t = t0.
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This implies that the equation (A+) has a n-SVP solution ξ0(t) existing on
[t0,∞).

(The existence of a n-RVP (1) solution of (A+)): Next, we will be con-
cerned with the construction of a n-RVP (1) solution of equation (A+) under
the condition (1.9). Choose t1 > a so large that t∗ = min

i=1,2,...,n

{
inf
t=t1

gi(t)
}

>

max{a, 1},
(
1 +

1
α

)
[K + L + α]

√√√√
n∑

i=1

[
Q̂i(t1) + 2αR̂i(t1)

]
5 1, t = t1 (4.31)

and
(

3
2

+
n∑

i=1

[
Q̂i(t1) + 2αR̂i(t1)

]) 1
α

log
P (hi(t))

P (t)
5 log 2, t = t1. (4.32)

LetH denote the set of all continuous nondecreasing functions η(t) on [t∗,∞)
satisfying

η(t) = 1 for t∗ 5 t 5 t1; (4.33)

1 5 η(t) 5 exp

{ t∫

t1

( 3
2 +

n∑
i=1

[Qi(s) + 2αRi(s)]

p(s)P (s)α

) 1
α

ds

}
for t = t1; (4.34)

η(hi(t))
η(t)

5 2 for t = t1, i = 1, 2, . . . , n. (4.35)

For any η ∈ H we consider the differential equation

(
p(t)ϕ(x′(t))

)′ +
n∑

i=1

[qη,gi(t) + rη,hi(t)]ϕ(x(t)) = 0, t = t1, (4.36)

where

qη,gi
(t)=qi(t)ϕ

(η(gi(t))
η(t)

)
and rη,hi

(t)=ri(t)ϕ
(η(hi(t))

η(t)

)
, i=1, 2, . . . , n.

Since η(gi(t))/η(t) 5 1 and η(hi(t))/η(t) 5 2, we have

qη,gi(t) 5 qi(t) and rη,hi(t) 5 2αri(t), t = t1 for i = 1, 2, . . . , n,

so that

Qη,gi(t) := P (t)α

∞∫

t

qη,gi(s) ds5P (t)α

∞∫

t

qi(s) ds=Qi(t), t= t1, (4.37)

Rη,hi(t) := P (t)α

∞∫

t

rη,hi(s) ds52αP (t)α

∞∫

t

ri(s) ds=2αRi(t), t= t1. (4.38)
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Accordingly, from (4.31) we have

(
1 +

1
α

)
[K + L + α]

√√√√
n∑

i=1

[
Q̂η,gi

(t1) + R̂η,hi
(t1)

]
5 1, (4.39)

where Q̂η,gi(t) = sup
s=t

Qη,gi(s) and R̂η,hi(t) = sup
s=t

Rη,hi(s). Moreover, we

notice that from K + L + α > 2 and 1 + 1
α > 1 follows

√√√√
n∑

i=1

[
Q̂η,gi(t1) + R̂η,hi(t1)

]
5 1

2
. (4.40)

This enables us to apply Theorem 3.1 and thus we conclude that half-linear
differential equation (4.36) has a n-RVP (1) solution of the form

Xη(t) = exp

{ t∫

t1

(1 +
n∑

i=1

[Qη,gi
(s) + Rη,hi

(s)]− wη(s)

p(s)P (s)α

) 1
α

ds

}
, t = t1,

(4.41)
where wη(t) is a solution of the integral equation

wη(t) =
α

P (t)

∞∫

t

Fη(s, wη(s))
p(s)

1
α

ds, t = t1, (4.42)

satisfying |wη(t)| 5
√

n∑
i=1

[Q̂η,gi(t1) + R̂η,hi(t1)] for t = t1. Furthermore, it

follows from (4.40) that |wη(t)| 5 1/2 for t = t1. Here Fη(t, wη(t)) is

Fη(t, wη)=
∣∣∣∣1+

n∑

i=1

[
Qη,gi(t)+Rη,hi(t)

]−wη

∣∣∣∣
1+ 1

α

+
(
1+

1
α

)
wη−1, t= t1.

Denote by Ψ the mapping which assigns to each η ∈ H the function Ψη(t)
defined by

Ψη(t) = 1 for t∗ 5 t 5 t1, Ψη(t) = Xη(t) for t = t1. (4.43)

(i) Ψ is a self-map on H. For any η ∈ H from (4.37) and (4.38), for t = t1
we find that

∣∣∣∣1 +
n∑

i=1

[
Qξ,gi(t) + Rξ,hi(t)

]− wη(t)
∣∣∣∣ 5

5 1 +
n∑

i=1

[
Qi(t) + 2αRi(t)

]
+ |wη(t)| 5

5 3
2

+
n∑

i=1

[
Qi(t) + 2αRi(t)

]
,
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or accordingly,

Xη(t) 5 exp

{ t∫

t1

( 3
2 +

n∑
i=1

[Qi(s) + 2αRi(s)]

p(s)P (s)α

) 1
α

ds

}
, t = t1.

Moreover, we have

Ψη(hi(t))
Ψη(t)

= exp

{ hi(t)∫

t

(1 +
n∑

i=1

[Qη,gi
(s) + Rη,hi

(s)]− wη(s))
1
α

p(s)
1
α P (s)

ds

}
5

5 exp

{ hi(t)∫

t

(
3
2 +

n∑
i=1

[Qi(s) + 2αRi(s)]
) 1

α

p(s)
1
α P (s)

ds

}
5

5 exp

{(
3
2

+
n∑

i=1

[
Q̂i(s) + 2αR̂i(s)

]) 1
α

hi(t)∫

t

ds

p(s)
1
α P (s)

}
5

5 exp

{(
3
2

+
n∑

i=1

[
Q̂i(s)+2αR̂i(s)

]) 1
α

log
P (hi(t))

P (t)

}
52, t= t1.

(ii) Ψ(H) is relatively compact in C[t∗,∞). This is a consequence of the
inclusion Ψ(H) ⊂ H and the following inequality holding for any η ∈ H:

0 5 d

dt
Ψη(t) =

d

dt
Xη(t) =

(1 +
n∑

i=1

[Qη,gi(t) + Rη,hi(t)]− wη(t)

p(t)P (t)α

) 1
α

Xη(t) 5

5
( 3

2 +
n∑

i=1

[Q̂i(t1) + 2αR̂i(t1)]

p(t)P (t)α

) 1
α

×

× exp

{(
3
2

+
n∑

i=1

[
Q̂i(t1) + 2αR̂i(t1)

]) 1
α

log
P (t)
P (t1)

}
.

(iii) Ψ is continuous in the topology of C[t∗,∞). Let {ηn} be a sequence
in H converging to θ ∈ H, which amounts to supposing that the sequence
{ηn(t)} converges to θ(t) uniformly on the compact subintervals of [t∗,∞).
We will show that {Ψηn(t)} converges to Ψθ(t) uniformly on the compact
subintervals [t∗,∞). In order to simplify notation, for arbitrary η ∈ H we
denote

Vη(t) =
1 +

n∑
i=1

[Qη,gi(t) + Rη,hi(t)]− wη(t)

P (t)α
, t = t1. (4.44)
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In view of (4.41), we have

∣∣Ψηm(t)−Ψθ(t)
∣∣ =

∣∣Xηm
(t)−Xθ(t)

∣∣ =

=

∣∣∣∣∣ exp
{ t∫

t1

(Vηm(s)

p(s)

) 1
α

ds

}
− exp

{ t∫

t1

(Vθ(s)
p(s)

) 1
α

ds

}∣∣∣∣∣ 5

5 exp

{ t∫

t1

( 3
2 +

n∑
i=1

[Qi(s) + 2αRi(s)]

p(s)P (s)α

) 1
α

ds

}
×

×
t∫

t1

1
p(s)

1
α

∣∣∣(Vηm
(s))

1
α − (Vθ(s))

1
α

∣∣∣ ds.

As in the previous part of the proof, we can verify that the integrand of the
last integral is bounded from the above by

( n∑
i=1

|Qηm,gi(t)−Qθ,gi(t)|+
n∑

i=1

|Rηm,hi(t)−Rθ,hi(t)|+|wηm(t)−wθ(t)|
P (t)α

) 1
α

if α > 1,

C2

n∑
i=1

|Qηm,gi(t)−Qθ,gi(t)|+
n∑

i=1

|Rηm,hi(t)−Rθ,hi(t)|+|wηm(t)−wθ(t)|
P (t)α

if α 5 1,

where C2 is a constant depending only on α, Q̂i(t1) and R̂i(t1). Accordingly,
it suffices to prove the uniform convergence to 0 on the compact subintervals
of the two sequences

|wηm(t)− wθ(t)|
P (t)α

and
πm,n(t)
P (t)α

,

where

πm,n(t) =
n∑

i=1

∣∣Qηm,gi(t)−Qθ,gi(t)
∣∣ +

n∑

i=1

∣∣Rηm,hi(t)−Rθ,hi(t)
∣∣.

The uniform convergence of the sequence πm,n(t)/P (t)α is an immediate
consequence of the Lebesgue dominated convergence theorem. Therefore,
let us examine the sequence |wηm(t) − wθ(t)|/P (t)α. Applying the mean
value theorem to Fηm(t, wηm(t)) and Fθ(t, wθ(t)) in |wηm(t)−wθ(t)|/P (t)α,



Generalized Regularly Varying Solutions . . . 149

we obtain for t = t1

∣∣Fηm(t, wηm(t))− Fθ(t, wθ(t))
∣∣ 5

(
1 +

1
α

)
|wηm(t)− wθ(t)|+

+

∣∣∣∣∣
∣∣∣∣1 +

n∑

i=1

[
Qηm,gi(t) + Rηm,hi(t)

]− wηm(t)
∣∣∣∣
1+ 1

α

−

−
∣∣∣∣1 +

n∑

i=1

[
Qθ,gi(t) + Rθ,hi(t)

]− wθ(t)
∣∣∣∣
1+ 1

α

∣∣∣∣∣ 5

5
(
1 +

1
α

)
(1 + τ2)|wηm

(t)− wθ(t)|+
(
1 +

1
α

)
τ2πn,m(t),

where τ2 is a positive constant depending only on α, Q̂i(t1) and R̂i(t1).
Consequently, the sequence |wηm

(t)− wθ(t)|/P (t)α implies

|wηm
(t)− wθ(t)|
P (t)α

5 (α + 1)(1 + τ2)
P (t)α+1

t∫

t1

|wηm
(s)− wθ(s)|
P (s)α

ds+

+
(α + 1)τ2

P (t)α+1

t∫

t1

πm,n(s)
p(s)

1
α

ds, t = t1. (4.45)

Putting for simplicity

Wm(t) =

t∫

t1

|wηm(s)− wθ(s)|
P (s)α

ds, (4.46)

we transform (4.45) into

(
P (t)−(α+1)(1+τ2)Wm(t)

)′5 (α + 1)τ2

p(t)
1
α P (t)(α+1)(1+τ2)+1

t∫

t1

πm,n(s) ds, t= t1,

which, after integration over [t1, t], yields

Wm(t) 5 τ2

1 + τ2
P (t)(α+1)(1+τ2)

t∫

t1

πm,n(s)
P (s)(α+1)(1+τ2)

ds, t = t1. (4.47)

Combining (4.45) with (4.47), we have

|wηm(t)− wθ(t)|
P (t)α

5 (α + 1)τ2

P (t)−(α+1)τ2

t∫

t1

πm,n(s)
P (s)(α+1)(1+τ2)

ds+

+
(α + 1)τ2

P (t)α+1

t∫

t1

πm,n(s)
p(s)

1
α

ds, t = t1.
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This ensures the desired convergence of the sequence |wηm(t)−wθ(t)|/P (t)α,
whence the continuity of the mapping Ψ has been assured. Thus, all the
hypotheses of the Schauder–Tychonoff fixed point theorem are fulfilled, and
so there exists η0 ∈ H such that η0 = Ψη0. Since η0(t) = Xη0(t) for t = t1,
η0(t) satisfies the differential equation

(
p(t)ϕ(η′0(t))

)′ +
n∑

i=1

[
qη0,gi

(t) + rη0,hi
(t)

]
ϕ(η0(t)) = 0, t = t1

or
(
p(t)ϕ(η′0(t))

)′ +
n∑

i=1

[
qi(t)ϕ

(
η0(gi(t))

)
+ ri(t)ϕ

(
η0(hi(t))

)]
= 0, t = t1.

Therefore, η0(t) is a desired n-RVP (1) solution of the functional differential
equation (A+) on [t1,∞).

The proof of Theorem 1.1 for the equation (A−).
(The existence of a n-SVP solution of (A−)): Suppose that (1.9) holds.

Choose t0 > a so large that t∗ = min
i=1,2,...,n

{
inf
t=t0

gi(t)
}

> max{a, 1} and such

that
(
2

n∑

i=1

[
2αQ̂i(t0) + R̂i(t0)

]) 1
α

max
{

2, 1 +
1
α

}
< 1, (4.48)

(
2

n∑

i=1

[
2αQ̂i(t0) + R̂i(t0)

]) 1
α

log
P (t)

P (gi(t))
< log 2, (4.49)

are satisfied for all t = t0, where Q̂i(t) and R̂i(t) are defined by (4.6)
and (4.7).

Let M denote the set of all positive continuous nonincreasing functions
µ(t) on [t∗,∞) with the properties

µ(t) = 1 for t∗ 5 t 5 t0; (4.50)

µ(t) = exp

{
−

t∫

t0

(
2

n∑
i=1

[2αQ̂i(s) + R̂i(s)]
) 1

α

p(s)
1
α P (s)

ds

}
for t = t0; (4.51)

µ(gi(t))
µ(t)

5 2 for t = t0, i = 1, 2, . . . , n. (4.52)

We here consider the following differential equation:

(
p(t)ϕ(x′(t))

)′ =
n∑

i=1

[
qµ,gi(t) + rµ,hi(t)

]
ϕ(x(t)) (4.53)

where, for arbitrary µ ∈ M, the functions qµ,gi(t) and rµ,hi(t) are defined
by (4.2). In view of Theorem 3.1, for each µ ∈ M, the equation (4.53) has
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a n-SVP solution Xµ(t) having the representation

Xµ(t)=exp

{ t∫

t0

(rµ(s)−
n∑

i=1

[Qµ,gi
(s)+Rµ,hi

(s)]

p(s)P (s)α

) 1
α∗

ds

}
, t= t0, (4.54)

where rµ(t) is a solution of the integral equation

rµ(t) = αP (t)α

∞∫

t

|rµ(s)−
n∑

i=1

[Qµ,gi
(s) + Rµ,hi

(s)]|1+ 1
α

p(s)
1
α P (s)α+1

ds, t = t0, (4.55)

satisfying the inequality

0 5 rµ(t) 5
n∑

i=1

[
Q̂µ,gi

(t0) + R̂µ,hi
(t0)

]
5

5
n∑

i=1

[
2αQ̂i(t0) + R̂i(t0)

]
, t ≥ t0. (4.56)

Here Qµ,gi(t) and Rµ,hi(t) are defined by (4.19) and Q̂µ,gi(t) = sup
s=t

Qµ,gi(s)

and R̂µ,hi(t) = sup
s=t

Rµ,hi(s). Furthermore, using the decreasing nature of

µ(t), we have

qµ,gi(t) 5 2αqi(t) and rµ,hi(t) 5 ri(t), t = t0, i = 1, 2, . . . , n,

accordingly,
n∑

i=1

[
Qµ,gi(t) + Rµ,hi(t)

]
5

n∑

i=1

[
2αQi(t) + Ri(t)

]
5

5
n∑

i=1

[
2αQ̂i(t0) + R̂i(t0)

]
, t = t0. (4.57)

Let us now define H to be the mapping which assigns to each µ ∈ M the
function Hµ given by

Hµ(t) = 1 for t∗ 5 t 5 t0, Hµ(t) = Xµ(t) for t = t0. (4.58)

Proceeding as in the proof of the existence of n-SVP solution of (A+), it can
be proved that H maps M into a relatively compact subset of M with the
help of the Schauder–Tychonoff fixed point theorem, so that there exists a
µ0 ∈M such that

µ0(t) = Xµ0(t) =

= exp

{ t∫

t0

(rµ0(s)−
n∑

i=1

[Qµ0,gi(s) + Rµ0,hi(s)]

p(s)P (s)α

) 1
α∗

ds

}
, t = t0.
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This means that µ0(t) is a solution satisfying the functional differential
equation

(
p(t)ϕ(µ′0(t))

)′ =
n∑

i=1

[
qµ0,gi

(t) + rµ0,hi
(t)

]
ϕ(µ0(t)), t = t0

or consequently,

(
p(t)ϕ(µ′0(t))

)′ =
n∑

i=1

[
qi(t)ϕ

(
µ0(gi(t))

)
+ ri(t)ϕ

(
µ0(hi(t))

)]
, t = t0.

Therefore, we conclude that the equation (A−) has a n-SVP solution.

(The existence of a n-RVP (1) solution of (A−)): Suppose that (1.9) is
satisfied. Choose t1 > a so large that t∗ = min

i=1,2,...,n

{
inf
t=t1

gi(t)
}

> max{a, 1}

(
1 +

1
α

)
[K̃ + L̃ + α]

√√√√
n∑

i=1

[
Q̂i(t1) + 2αR̂i(t1)

]
5 1 (4.59)

and
{

1 +

√√√√
n∑

i=1

[Q̂i(t1) + 2αRi(t1)]

} 1
α

log
P (hi(t))

P (t)
5 log 2, (4.60)

where the functions Qi(t), Ri(t), Q̂i(t) and R̂i(t) are defined by (4.6) and
(4.7), while

K̃ =





(4
3

)1− 1
α

if α > 1
(3

2

) 1
α−1

if α 5 1
and L̃ =





(4
3

)1− 1
α

if α > 1

1 if α 5 1
. (4.61)

Let K define the set of all positive continuous nondecreasing functions ν(t)
on [t∗,∞) satisfying

ν(t) = 1 for t∗ 5 t 5 t1; (4.62)

1 5 ν(t) 5 exp
{ t∫

t1

( 1 + ρ(s)
p(s)P (s)α

) 1
α

ds

}
for t = t1; (4.63)

ν(hi(t))
ν(t)

5 2 for t = t1, i = 1, 2, . . . , n, (4.64)

where ρ(t) is a solution of the integral equation

ρ(t) =
(
1 +

1
α

) n∑

i=1

[
Q̂i(t1) + 2αR̂i(t1)

] 1
P (t)

t∫

t1

[L̃ρ(s) + L̃ + α]
p(s)

1
α

ds. (4.65)
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In order to verify that ρ(t) is a solution of (4.65), we now consider the
integral operator R defined by

Rρ(t) =
(
1 +

1
α

) n∑

i=1

[
Q̂i(t1) + 2αR̂i(t1)

]×

× 1
P (t)

t∫

t1

1
p(s)

1
α

[
L̃ρ(s) + L̃ + α

]
ds (4.66)

on the set

P =

{
ρ ∈ C0[t1,∞) : 0 5 ρ(t) 5

√√√√
n∑

i=1

[
Q̂i(t1) + 2αR̂i(t1)

]
, t = t1

}
.

It is easy to see that R sends P into itself and satisfies

∥∥Rρ1 −Rρ2

∥∥ 5
n∑

i=1

[
Q̂i(t1) + 2αR̂i(t1)

](
1 +

1
α

)
L̃‖ρ1 − ρ2‖0, ρ1, ρ2 ∈ R.

Therefore, there exists a unique fixed point of R which solves the integral
equation (4.65).

Consider a family of half-linear differential equations

(
p(t)ϕ(x′(t))

)′ =
n∑

i=1

[
qν,gi(t) + rν,hi(t)

]
ϕ(x(t)), t = t1, (4.67)

where, for any ν ∈ K, the functions qν,gi(t) and rν,hi(t) are defined by

qν,gi(t) = qi(t)ϕ
(ν(gi(t))

ν(t)

)
and rν,hi(t) = ri(t)ϕ

(ν(hi(t))
ν(t)

)
.

Then, we define Qν,gi(t), Rν,hi(t) for every ν ∈ K by (4.19) and Q̂ν,gi(t) =
sup
s=t

Qν,gi(t), R̂ν,hi(t) = sup
s=t

Rν,hi(t). It follows from Theorem 3.1 that for

each ν ∈ K, the equation (4.67) has a n-RVP (1) solution Xν(t) expressed
in the form

Xν(t) = exp

{ t∫

t1

(1−
n∑

i=1

[Qν,gi(s) + Rν,hi(s)] + wν(s)

p(s)P (s)α

) 1
α

ds

}
, (4.68)

t = t1,

where wν(t) is a solution of the integral equation

wν(t) =
α

P (t)

t∫

t1

F̃ν(s, wν(s))
p(s)

1
α

ds, t = t1 (4.69)
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and

F̃ν(t, wν) = 1+
(
1+

1
α

)
wν−

∣∣∣1−
n∑

i=1

[
Qν,gi

(t)+Rν,hi
(t)

]
+wν

∣∣∣
1+ 1

α

. (4.70)

We notice that for some fixed ν ∈ K, wν(t) is a fixed point of the contraction
mapping Fν defined by

Fνwν(t) =
α

P (t)

t∫

t1

F̃ν(s, wν(s))
p(s)

1
α

ds, t = t1, (4.71)

which satisfies

|wν(t)| 5
√√√√

n∑

i=1

[
Q̂ν,gi

(t1) + R̂ν,hi
(t1)

]
, t = t1. (4.72)

Furthermore, using the increasing nature of ν(t), we obtain

qν,gi(t) 5 qi(t), rν,hi(t) 5 2αri(t) for t = t1, ν ∈ K,

or consequently,

n∑

i=1

[
Qν,gi(t) + Rν,hi(t)

]
5

5
n∑

i=1

[
Qi(t) + 2αRi(t)

]
5

n∑

i=1

[
Q̂i(t1) + 2αR̂i(t1)

]
, t = t1. (4.73)

We will show that for every ν ∈ K,

|wν(t)| 5 ρ(t), t = t1. (4.74)

To this end, it is convenient to express F̃ν(t, wν) as

F̃ν(t, wν) = G̃ν(t, wν) + H̃ν(t, wν) + k̃ν(t),

where G̃ν(t, wν), H̃ν(t, wν) and k̃ν(t) are defined, respectively, by

G̃ν(t, wν) =
(
1−

n∑

i=1

[
Qν,gi(t) + Rν,hi(t)

])1+ 1
α

+

+
(
1 +

1
α

)(
1−

n∑

i=1

[
Qν,gi(t) + Rν,hi(t)

])1+ 1
α

wν−

−
∣∣∣1−

n∑

i=1

[
Qν,gi(t) + Rν,hi(t)

]
+ wν

∣∣∣
1+ 1

α

,

H̃ν(t, wν) =
(
1 +

1
α

){
1−

(
1−

n∑

i=1

[
Qν,gi(t) + Rν,hi(t)

]) 1
α

}
wν ,
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and

k̃ν(t) = 1−
(
1−

n∑

i=1

[
Qν,gi

(t) + Rν,hi
(t)

])1+ 1
α

.

Using the mean value theorem, we find that for some θ ∈ (0, 1) the inequal-
ities hold:

∣∣H̃ν(t, wν(t))
∣∣ 5 1

α

(
1+

1
α

)∣∣∣∣1−(1−θ)
( n∑

i=1

[
Qν,gi

(t)+Rν,hi
(t)

])∣∣∣∣
1
α−1

×

×
n∑

i=1

[
Qν,gi

(t) + Rν,hi
(t)

]|wν(t)|

5 1
α

(
1 +

1
α

)
L̃

n∑

i=1

[
Q̂i(t1) + 2αR̂i(t1)

]|wν(t)| (4.75)

and ∣∣k̃ν(t)
∣∣ 5

5
(
1+

1
α

)∣∣∣∣1−(1−θ)
n∑

i=1

[
Qν,gi(t)+Rν,hi(t)

]∣∣∣∣
1
α

n∑

i=1

[
Qν,gi(t)+Rν,hi(t)

]
5

5
(
1 +

1
α

) n∑

i=1

[
Q̂i(t1) + 2αR̂i(t1)

]
, t = t1. (4.76)

Moreover, by means of the mean value theorem and L’Hospital rule, it
follows that

∣∣G̃ν(t, wν(t))
∣∣ 5 1

α

(
1 +

1
α

)
L̃w2

ν(t), t = t1. (4.77)

Let ν ∈ K be fixed. Recalling that ρ and wν are the fixed point of the
contraction mappings R and Fν defined by (4.66) and (4.71), we see that ρ
and wν are constructed, respectively, as the limits as n →∞ of the sequences
{ρn = Rρn−1, n = 1, 2, . . . , with ρ0 = 0} and {wn = Fνwn−1, n =
1, 2, . . . , n, with w0 = 0}. First we note that for t = t1,

|w1(t)| = Fνw0(t) =

=
α

P (t)

t∫

t1

1
p(s)

1
α

[
1−

∣∣∣1 +
n∑

i=1

[
Qν,gi(s) + Rν,hi(s)

]∣∣∣
1+ 1

α

]
ds 5

5 α + 1
P (t)

t∫

t1

1
p(s)

1
α

n∑

i=1

[
Qν,gi(s) + Rν,hi(s)

]
ds 5

5 (α + 1)
n∑

i=1

[
Q̂i(t1)(t) + 2αR̂i(t1)

]
5

5
[
Q̂i(t1)(t) + 2αR̂i(t1)

](
1 +

1
α

)
[L̃ + α] = ρ1(t), t = t1.



156 Tomoyuki Tanigawa

Then, assuming that |wn(t)| 5 ρn(t), t = t1, for some n ∈ N and using
(4.75), (4.76) and (4.77), we have

|wn+1(t)| = Fνwn(t) =

=
α

P (t)

t∫

t1

1
p(s)

1
α

[ ∣∣G̃ν(s, wn(s))
∣∣ +

∣∣H̃ν(s, wn(s))
∣∣ +

∣∣k̃ν(s)
∣∣
]
ds 5

5 α + 1
P (t)

t∫

t1

1
p(s)

1
α

[
L̃

α
w2

ν(s) +
L̃

α

n∑

i=1

[
Q̂i(t1) + 2αR̂i(t1)

]|wn(s)|+

+
n∑

i=1

[
Q̂i(t1) + 2αR̂i(t1)

]]
ds 5

5
(
1+

1
α

) n∑

i=1

[
Q̂i(t1)+2αR̂i(t1)

] 1
P (t)

t∫

t1

[L̃ + L̃ρn(s) + α]
p(s)

1
α

ds = ρn+1(t).

Therefore, inductive arguments ensure the validity of (4.74).
We define by M the mapping which assigns to each ν ∈ K the function

Hν(t) defined by

Mν(t) = 1 for t∗ 5 t 5 t1, Mν(t) = Xν(t) for t = t1.

(i) M is a self-map on K, since it readily follows from (4.60) and 0 5 ρ(t) 5√
n∑

i=1

[Q̂i(t) + 2αR̂i(t1)] , t = t1 that

1 5 Xν(t) 5 exp
{ t∫

t1

( 1 + ρ(s)
p(s)P (s)α

) 1
α

}
, t = t1 for any ν ∈ K

and

Mν(hi(t))
Mν(t)

=

= exp

{ hi(t)∫

t

(1−
n∑

i=1

[Qν,gi(s) + Rν,hi(s)] + wν(s)

p(s)P (s)α

) 1
α∗

ds

}
5

5 exp

{ hi(t)∫

t

( 1 + ρ(s)
p(s)P (s)α

) 1
α

ds

}
5

5 exp

{(
1 +

√√√√
n∑

i=1

[Q̂i(t1) + 2αR̂i(t1)]
) 1

α

log
P (hi(t))

P (t)

}
5 2, t = t1.
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(ii) M(K) is relatively compact in C[t∗,∞). The inclusion M(K) ⊂ K
shows that M(K) is locally uniformly bounded on [t∗,∞). Since

0 5 d

dt
Mν(t) =

d

dt
Xν(t) =

=
(1−

n∑
i=1

[Qν,gi(t) + Rν,hi(t)] + wν(t)

p(t)P (t)α

) 1
α

Xν(t) 5

5

{
1 +

√
n∑

i=1

[Q̂i(t1) + 2αR̂i(t1)]
} 1

α

p(t)
1
α P (t)

×

× exp

{(
1 +

√√√√
n∑

i=1

[Q̂i(t1) + 2αR̂i(t1)]
) 1

α

log
P (t)
P (t1)

}
,

we conclude that M(K) is locally equi-continuous on [t∗,∞).
(iii) M is continuous in the topology of C[t∗,∞). Let {νm(t)} be a sequence
in K converging to δ(t) uniformly on compact subintervals of [t∗,∞). We
have to prove that {Mνm(t)} converges toMδ(t) uniformly on any compact
subintervals of [t∗,∞). In order to simplify the notation, for arbitrary ν ∈ K
we define

Zν(t) =
1−

n∑
i=1

[qν,gi(t) + Rν,hi(t)] + wν(t)

P (t)α
, t = t1. (4.78)

Then, using (4.68) and the mean value theorem, we get

∣∣Mνm(t)−Mδ(t)
∣∣ =

∣∣Xνm(t)−Xδ(t)
∣∣ =

=

∣∣∣∣∣ exp
{ t∫

t1

(Zνm(s)
p(s)

) 1
α

ds

}
− exp

{ t∫

t1

(Zδ(s)
p(s)

) 1
α

ds

}∣∣∣∣∣ 5

5 exp
{ t∫

t1

( 1 + ρ(s)
p(s)P (s)α

) 1
α

ds

} t∫

t1

|(Zνm(s))
1
α − (Zδ(s))

1
α |

p(s)
1
α

ds.

As in the proof of the existence of a n-RVP (1) solution of the equation (A+),
we can show that the integrand of the last integral is bounded from above
by the functions

(
n∑

i=1

|Qνm,gi(t)−Qδ,gi(t)|+
n∑

i=1

|Rνm,hi(t)−Rδ,hi(t)|+|wνm(t)−wδ(t)|
P (t)α

) 1
α

if α > 1,
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C3

n∑
i=1

|Qνm,gi(t)−Qδ,gi(t)|+
n∑

i=1

|Rνm,hi(t)−Rδ,hi(t)|+ |wνm(t)−wδ(t)|
P (t)α

if α 5 1,

where C3 is a positive constant depending only on α and ρ(t1). Therefore, it
suffices to prove the uniform convergence to 0 on the compact subintervals
of the two sequences

|wνm
(t)− wδ(t)|
P (t)α

and

n∑
i=1

|Qνm,gi
(t)−Qδ,gi

(t)|+
n∑

i=1

|Rνm,hi
(t)−Rδ,hi

(t)|
P (t)α

=
S̃n,m(t)
P (t)α

.

(4.79)

The second sequence in (4.79) can be dealt with exactly as in the case of
n-RVP (1) solution of the equation (A+). In order to prove the uniform
convergence of the first sequence in (4.79), we consider F̃νm

(t, wνm
) and

F̃δ(t, wδ) defined by (4.70). Applying the mean value theorem, for t = t1
we get

∣∣F̃νm(t, wνm(t))− F̃δ(t, wδ(t))
∣∣ 5

(
1 +

1
α

)∣∣wνm(t)− wδ(t)
∣∣+

+
∣∣∣∣
∣∣∣1−

n∑

i=1

[
Qνm,gi(t) + Rνm,hi(t)

]
+ wνm(t)

∣∣∣
1+ 1

α−

−
∣∣∣1−

n∑

i=1

[
Qδ,gi(t) + Rδ,hi(t)] + wδ(t)

∣∣∣
1+ 1

α

∣∣∣∣ 5

5
(
1+

1
α

)∣∣wνm(t)−wδ(t)
∣∣+

(
1+

1
α

)
τ3

{
S̃m,n(t)+

∣∣wνm(t)−wδ(t)
∣∣
}

=

=
(
1 +

1
α

)
(1 + τ3)

∣∣wνm(t)− wδ(t)
∣∣ +

(
1 +

1
α

)
τ3S̃m,n(t),

where τ3 is a positive constant depending only on α, Q̂i(t1) and R̂i(t1).
Consequently, the first sequence in (4.79) implies that

|wνm(t)− wδ(t)|
P (t)α

5 (α + 1)(1 + τ3)
P (t)(α+1)

t∫

t1

|wνm(s)− wδ(s)|
p(s)

1
α

ds+

+
(α + 1)τ3

P (t)α+1

t∫

t1

S̃m,n(s)
p(s)

1
α

ds, t = t1. (4.80)

Putting for brevity

W̃m(t) =

t∫

t1

|wνm(s)− wδ(s)|
p(s)

1
α

ds,
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we derive the following differential inequality for W̃m(t):

(
P (t)−(α+1)(1+τ3)W̃m(t)

)′ 5

5 (α + 1)τ3

p(t)
1
α P (t)(α+1)(τ3+1)+1

t∫

t1

S̃m,n(s)
p(s)

1
α

ds, t = t1. (4.81)

Integrating (4.81) from t1 to t, we obtain

W̃m(t)5 τ3

τ3+1
1

P (t)(α+1)(τ3+1)

t∫

t1

S̃m,n(s)
p(s)

1
α P (s)(α+1)(τ3+1)

ds, t= t1. (4.82)

Using (4.80) and (4.82), we conclude that

|wνm
(t)− wδ(t)|
P (t)α

5 (α + 1)τ3

P (t)(α+1)(τ3+2)

t∫

t1

S̃m,n(s)
p(s)

1
α P (s)(α+1)(τ3+1)

ds+

+
(α + 1)τ3

P (t)α+1

t∫

t1

S̃m,n(s)
p(s)

1
α

ds, t = t1,

whence it follows that the sequence |wνm(t) − wδ(t)|/P (t)α converges to
0 uniformly on [t1,∞). Therefore, we have proved that the mapping M
is continuous in the topology of C[t∗,∞). Thus, applying the Schauder–
Tychonoff fixed point theorem, M has a fixed point ν0 in K. Since ν0 =
Xν0(t) for t = t1, ν0(t) satisfies the functional differential equation

(
p(t)ϕ(ν′0(t))

)′=
n∑

i=1

[
qi(t)ϕ

(
ν0(gi(t))

)
+ri(t)ϕ

(
ν0(hi(t))

)]
, t= t1. (4.83)

It is obvious that ν0(t) is a n-RVP (1) solution of the equation (A−). This
completes the proof of Theorem 1.1.

5. Examples

We here present four examples illustrating application of Theorem 1.1 to
the functional differential equations of the type (A+) and (A−), respectively.
We begin with two examples of the existence of n-SVP and n-RVP (1) solu-
tions of the type (A+) with the case i = 1.

Example 5.1. Consider the following functional differential equation
with both retarded and advanced arguments

(
e−αtϕ(x′(t))

)′ + q(t)ϕ
(
x
(
t− 1

log t

))
+ r(t)ϕ

(
x
(
t +

1
log t

))
= 0, (5.1)

t = e,



160 Tomoyuki Tanigawa

where the functions q(t) and r(t) are given by

q(t) =
α

2eαt tα

(
1 +

λ

log t

)α−1
[
1− λ

t log t
+

λ(λ− 1)
t(log t)2

+
λ

log t

]
×

×
(
1− 1

t log t

)−α
{

1 +
log(1− 1

t log t )

log t

}−αλ

and

r(t) =
α

2eαttα

(
1 +

λ

log t

)α−1
[
1− λ

t log t
+

λ(λ− 1)
t(log t)2

+
λ

log t

]
×

×
(
1 +

1
t log t

)−α
{

1 +
log(1 + 1

t log t )

log t

}−αλ

for λ being a positive constant. The function p(t) = e−αt satisfies (1.1) and
the function P (t) given by (1.6) is P (t) ∼ et. Moreover, the functions

g(t) = t− 1
log t

and h(t) = t +
1

log t
(5.2)

satisfy the conditions (1.7) and (1.8). The condition (1.9) is satisfied for
this equation, since

∞∫

t

q(s) ds ∼ α

2tαeαt
and

∞∫

t

h(s) ds ∼ α

2tαeαt
as t →∞.

Therefore, equation (5.1) has a n-SVet solution x(t) by Theorem 1.1. One
such solution is x(t) = t(log t)λ.

Example 5.2. Consider the following functional differential equation:
(
tαϕ(x′(t))

)′ + q(t)ϕ
(
x(te−

1
t )

)
+ r(t)ϕ

(
x(te

1
t )

)
= 0, t = ee, (5.3)

where the functions q(t) and r(t) are given by

q(t) =
αµ

2t(log t)α+1 log2 t

(
1− µ

log2 t

)α−1(
1− µ + 1

log2 t

)
×

×
(
1− 1

t log t

)−α
{

1 +
log(1− 1

t log t )

log2 t

}αµ

and

r(t) =
αµ

2t(log t)α+1 log2 t

(
1− µ

log2 t

)α−1(
1− µ + 1

log2 t

)
×

×
(
1 +

1
t log t

)−α
{

1 +
log(1 + 1

t log t )

log2 t

}αµ

,

respectively, and µ is a positive constant. The function p(t) = tα satisfies
(1.1) and the function P (t) reduces to P (t) ∼ log t, while the functions
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g(t) = te−
1
t and h(t) = te

1
t satisfy the conditions (1.7) and (1.8). Moreover,

since
∞∫

t

q(s) ds ∼ αµ

2t(log t)α+1 log2 t
and

∞∫

t

h(s) ds ∼ αµ

2t(log t)α+1 log2 t

as t →∞,

the condition (1.9) is satisfied and thus, the equation (5.3) possesses a n-
RVlog t solution by Theorem 1.1. One such solution is log t/(log2 t)µ.

Next, two examples illustrating application of Theorem 1.1 to the func-
tional differential equation of the type (A−) with the case i = 1 will be
presented below.

Example 5.3. We consider the functional differential equation with both
retarded and advanced arguments
(
e−αtϕ(x′(t))

)′ = q(t)ϕ
(
x
(
t− 1

log t

))
+r(t)ϕ

(
x
(
t+

1
log t

))
, t = e, (5.4)

where the functions q(t) and r(t) are given by

q(t) =
α

2tαeαt

(
1− λ

log t

)α−1

×

×
[(

1 +
2
t

)(
1− λ

log t

)
+

λ

t log t

(
1− λ

log t

)
+

λ

t(log t)2

]
×

×
(
1− 1

t log t

)α
{

1 +
log(1− 1

t log t )

log t

}−αλ

,

r(t) =
α

2tαeαt

(
1− λ

log t

)α−1

×

×
[(

1 +
2
t

)(
1− λ

log t

)
+

λ

t log t

(
1− λ

log t

)
+

λ

t(log t)2

]
×

×
(
1 +

1
t log t

)α
{

1 +
log(1 + 1

t log t )

log t

}−αλ

for λ being a positive constant. As in Example 5.1, it could be shown
without difficulty that all conditions of Theorem 1.1 are satisfied, so that
the equation (5.4) has a n-SVet solution x(t) by Theorem 1.1. One such
solution is (log t)λ/t.

Example 5.4. Consider the following functional differential equation:
(
tαϕ(x′(t))

)′ = q(t)ϕ
(
x(te−

1
t )

)
+ r(t)ϕ

(
x(te

1
t )

)
, t = ee, (5.5)

where the functions q(t) and r(t) are given by

q(t) =
αµ

2t(log t)α+1 log2 t

(
1 +

µ

log2 t

)α−1(
1 +

µ− 1
log2 t

)
×
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×
(
1− 1

t log t

)−α
{

1 +
log(1− 1

t log t )

log2 t

}−αµ

and

r(t) =
αµ

2t(log t)α+1 log2 t

(
1 +

µ

log2 t

)α−1(
1 +

µ− 1
log2 t

)
×

×
(
1 +

1
t log t

)−α
{

1 +
log(1 + 1

t log t )

log2 t

}−αµ

,

respectively, and µ is a positive constant. As in Example 5.2, it can be
verified that all conditions of Theorem 1.1 are satisfied. Therefore, the
equation (5.5) possesses a n-RVlog t solution x(t). One such solution is
x(t) = log t(log2 t)µ.
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