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1. Introduction

In this paper we consider the second order quasilinear ordinary differen-
tial equation

(|x′|αsgn x′
)′ + p(t)|x|βsgn x = 0, (1.1)

where α and β are positive constants and p(t) is a positive and continuous
function on an interval [t0,∞). By a solution of (1.1) we mean a real-
valued function x = x(t) such that x ∈ C1[T,∞), T ≥ t0, and |x′|αsgn x′ ∈
C1[T,∞) and x(t) satisfies (1.1) at every point of [T,∞), where T may
depend on x(t). A solution x(t) of (1.1) is said to be oscillatory if there is
a sequence {ti}∞i=1 such that lim

i→∞
ti = ∞ and x(ti) = 0 (i = 1, 2, . . . ). If a

solution x(t) of (1.1) is not oscillatory, then it is said to be nonoscillatory.
In other words, a solution x(t) of (1.1) is called nonoscillatory if x(t) is
eventually positive or eventually negative. If x(t) is a solution of (1.1), then
so is −x(t). Therefore there is no loss of generality in assuming that a
nonoscillatory solution of (1.1) is eventually positive.

It is easily shown (Elbert [2], Elbert and Kusano [3]) that an eventually
positive solution x(t) of (1.1) satisfies one and only one of the following
three conditions:

lim
t→∞

x(t) exists and is a positive finite number; (1.2)

lim
t→∞

x(t) = ∞ and lim
t→∞

x(t)
t

= 0; (1.3)

lim
t→∞

x(t)
t

exists and is a positive finite number. (1.4)

A solution x(t) of (1.1) which satisfies (1.2) [resp. (1.4)] is asymptotically
equal to a positive constant function c [resp. a linear function ct] as t →∞
for some constant c > 0. The asymptotic growth of a solution x(t) of (1.1)
which satisfies (1.3) is asymptotically bigger than positive constant func-
tions, and is asymptotically smaller than positive unbounded linear func-
tions. In this paper we refer to eventually positive solutions x(t) satisfying
(1.3) as slowly growing positive solutions. Eventually positive solutions x(t)
satisfying (1.2), (1.3) and (1.4) are sometimes called subdominant solutions,
intermediate solutions and dominant solutions, respectively ([1]).

It is well known that the following results hold ([2], [3], [7], [8]).

(A) Equation (1.1) has an eventually positive solution x(t) satisfying
(1.2) if and only if

∞∫

t0

[ ∞∫

t

p(s) ds

]1/α

dt < ∞. (1.5)
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(B) Equation (1.1) has an eventually positive solution x(t) satisfying
(1.4) if and only if

∞∫

t0

tβp(t) dt < ∞. (1.6)

(C) Let α < β. Equation (1.1) has an eventually positive solution if and
only if (1.5) is satisfied.

(D) Let α > β. Equation (1.1) has an eventually positive solution if and
only if (1.6) is satisfied.

Now consider the problem of the existence of an eventually positive solu-
tion x(t) satisfying (1.3), namely, a slowly growing positive solution. For the
case α > β this problem has been solved finally by Naito [9]. The following
statement is true:

(E) Let α > β. Equation (1.1) has a slowly growing positive solution if
and only if

∞∫

t0

tβp(t) dt < ∞ and

∞∫

t0

[ ∞∫

t

p(s) ds

]1/α

dt = ∞. (1.7)

More precisely, the statement (E) was proved by Kusano and Naito [6]
for the case α = 1 > β. The “if” part of (E) for the general case α > β was
proved by Elbert and Kusano [3]. Very recently, the “only if” part of (E)
for the general case α > β has been proved by Naito [9].

A characterization of the existence of slowly growing positive solutions
of (1.1) for the case α < β seems to be a more difficult problem. For
some results related to this case, see Cecchi, Došlá and Marini [1] and the
references therein.

In this paper we attempt to discuss the existence of slowly growing pos-
itive solutions of (1.1) for the case α < β. For this purpose, let us first
consider the particular equation

(|x′|αsgn x′
)′ + κt−µ|x|βsgn x = 0 (α < β), (1.8)

where κ is a positive constant and µ is a real constant. It is easy to see
that (1.8) has a slowly growing positive solution of the form ctν (c > 0,
0 < ν < 1) if and only if α + 1 < µ < β + 1, and that this solution is
uniquely determined by

x0(t) = c0t
ν0 (1.9)

with

ν0 =
µ− 1− α

β − α
and c0 =

[α(1− ν0)ν α
0

κ

]1/(β−α)

. (1.10)

Observe here that 0 < ν0 < 1 under the conditions α < β and α + 1 < µ <
β + 1. Then we may conjecture that if p(t) is close to the function κt−µ
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(κ > 0, α + 1 < µ < β + 1) in some sense, then (1.1) has a slowly growing
positive solution x(t) satisfying{

x(t) = x0(t)(1 + o(1)) (t →∞),
x′(t) = x′0(t)(1 + o(1)) (t →∞),

(1.11)

where x0(t) is defined by (1.9) and (1.10). This conjecture is true to a certain
extent. In fact, the following theorem can be proved. For convenience, we
write the equation (1.1) in the form

(|x′|αsgn x′
)′ + κt−µ(1 + ε(t))|x|βsgn x = 0, (1.12)

where ε(t) is a continuous function on [t0,∞), t0 > 0, such that 1+ε(t) > 0
for t ≥ t0.

Theorem 1.1. Consider the equation (1.12) under the condition

0 < α < β, α + 1 < µ < β + 1, κ > 0. (1.13)

Set x0(t) = c0t
ν0 , where c0 and ν0 are constants given by (1.10). Suppose

that there exists ` > 0 such that

`(`− 2ν0 + 1)− |1− α|(1− ν0)`− (β − α)(1− ν0)ν0 > 0 (1.14)

and

lim
t→∞

t`−2ν0+1

∞∫

t

s2(ν0−1)|ε(s)| ds = 0. (1.15)

Then the equation (1.12) has a slowly growing positive solution x(t) with
the asymptotic property{

x(t) = x0(t)
(
1 + O(t−`)

)
(t →∞),

x′(t) = x′0(t)
(
1 + O(t−`)

)
(t →∞).

The condition (1.14) is satisfied if ` > 0 is taken sufficiently large. There-
fore, if

lim
t→∞

tm
∞∫

t

s2(ν0−1)|ε(s)| ds = 0 for all m > 0, (1.16)

then there is `0 > 0 such that for all ` ≥ `0, both of the conditions (1.14)
and (1.15) are satisfied. On the other hand, it is easy to see that (1.16) is
equivalent to

∞∫

t0

sn|ε(s)| ds < ∞ for all n > 0. (1.17)

Thus we can conclude the following result as a corollary of Theorem 1.1.

Corollary 1.1. Consider the equation (1.12) under the condition (1.13).
If (1.17) holds, then the equation (1.12) has a slowly growing positive solu-
tion x(t) with the asymptotic property (1.11).

We give a simple example illustrating our theorem in the case α = 1.
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Example 1.1. Consider the equation

x′′ + κt−3(1 + ε(t))|x|3sgn x = 0, κ > 0, (1.18)

where ε(t) is a continuous function on [1,∞) such that 1+ε(t) > 0 for t ≥ 1.
For this equation, α = 1, β = 3, µ = 3, κ > 0; and hence ν0 = 1/2 and
c0 = 1/

[
2
√

κ
]
. Consequently, the conditions (1.14) and (1.15) reduce to

` >

√
2

2
and lim

t→∞
t`

∞∫

t

|ε(s)|
s

ds = 0. (1.19)

Therefore, by Theorem 1.1, we can conclude that if (1.19) is satisfied for
some `, then (1.18) has a slowly growing positive solution x(t) such that





x(t) =
1

2
√

κ
t1/2

(
1 + O(t−`)

)
(t →∞),

x′(t) =
1

4
√

κ
t−1/2

(
1 + O(t−`)

)
(t →∞).

In the case 0 < α < β, assuming the existence of slowly growing positive
solutions of (1.1), Kamo and Usami [4] have obtained the asymptotic forms
as t → ∞ of such solutions under a certain condition. Note, however, that
the existence of slowly growing positive solutions of (1.1) is not proved.

In the case 0 < β < α, the asymptotic forms as t →∞ of slowly growing
positive solutions of (1.1) has been discussed by Naito [9]. See also [4], [5].

2. Proof of Theorem 1.1

In this section we give the proof of Theorem 1.1. First notice that if x(t)
is a positive solution of (1.1) on an interval [T,∞), T ≥ t0, then x′(t) > 0
for t ≥ T . This fact is easily checked. For the proof of Theorem 1.1, we
make use of the following lemma. In this lemma we consider the equations
(1.1) and the auxiliary equation

(|x′|αsgn x′
)′ + p0(t)|x|βsgn x = 0, (2.1)

where p0(t) is a positive continuous function on [t0,∞), t0 > 0.

Lemma 2.1. Let x0(t) be an eventually positive solution of the auxiliary
equation (2.1). If x(t) is an eventually positive solution of (1.1), then

u(t) =
x(t)
x0(t)

and v(t) = x0(t)2
( x(t)

x0(t)

)′
(2.2)

satisfy

u(t) > 0 and
1

x0(t)
v(t) + x′0(t)u(t) > 0 (2.3)
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for all large t, and (u(t), v(t)) is a solution of the binary nonlinear system





u′ =
1

x0(t)2
v,

v′ =
1
α

{
p0(t)x0(t)β+1x′0(t)

−α+1u−

−p(t)x0(t)β+1
[ 1
x0(t)

v + x′0(t)u
]−α+1

uβ

}
(2.4)

for all large t.
Conversely, if (u(t), v(t)) is a solution of (2.4) satisfying (2.3), then

x(t) = x0(t)u(t) is an eventually positive solution of (1.1).

Proof. Let x(t) be an eventually positive solution of (1.1). By (2.2), we
have

x′(t) =
1

x0(t)
v(t) + x′0(t)u(t).

Since x′(t) > 0 for all large t, it is obvious that (u(t), v(t)) satisfies (2.3) for
all large t. Moreover, x(t) satisfies

x′′(t) +
1
α

p(t)x(t)βx′(t)−α+1 = 0

for all large t. An analogous equality also holds for x0(t). Then we easily
see that (u(t), v(t)) satisfies (2.4) for all large t. This proves the first half
of the lemma.

To prove the second half, let (u(t), v(t)) be a solution of (2.4) satisfying
(2.3). Then, a straightforward computation shows that x(t) = x0(t)u(t) is
an eventually positive solution of (1.1). The details are left to the reader.
The proof of Lemma 2.1 is complete. ¤

Proof of Theorem 1.1. We apply Lemma 2.1 to the case p0(t) = κt−µ and
x0(t) = c0t

ν0 , where c0 and ν0 are constants given by (1.10). Then the
existence of a solution x(t) of (1.1) which satisfies lim

t→∞
[x(t)/x0(t)] = 1 is

equivalent to the existence of a solution (u(t), v(t)) of (2.4) which satisfies

lim
t→∞

u(t) = 1 (2.5)

and

1
x0(t)

v(t) + x′0(t)u(t) > 0 (2.6)
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for all large t. Thus it is natural to consider the integral equation of the
form





u(t) = 1−
∞∫

t

1
x0(s)2

v(s) ds,

v(t) = − 1
α

∞∫

t

{
p0(s)x0(s)β+1x′0(s)

−α+1u(s)−

−p(s)x0(s)β+1
[ 1
x0(s)

v(s) + x′0(s)u(s)
]−α+1

u(s)β

}
ds,

(2.7)

where p(t) = p0(t)(1 + ε(t)) = κt−µ(1 + ε(t)).
Denote by X the set of all vector functions (u(t), v(t)) ∈ C[T,∞) ×

C[T,∞) such that

|u(t)− 1| ≤ Lt−` and |v(t)| ≤ Mt−`+2ν0−1 for t ≥ T, (2.8)

where ` is a positive constant satisfying (1.14) and (1.15), and L,M, T are
positive constants to be determined later. Note that, because of ` > 0, the
condition (1.14) implies `− 2ν0 + 1 > 0. We seek for a solution (u(t), v(t))
of (2.7) in the set X.

On account of (1.14), we can take a sufficiently small positive number d
such that 0 < d < 1/2 and

`(`− 2ν0 + 1)− |1− α|(1− ν0)`(1− 2d)−α(1 + d)β−
− (β − α)(1− ν0)ν0(1 + d) > 0. (2.9)

Let M be an arbitrary positive number, and set L = M/(`c 2
0 ) (> 0). Then,

by (2.9),

L

`− 2ν0 + 1
c 2
0 (β − α)(1− ν0)ν0(1 + d)+

+
M

`− 2ν0 + 1
|1− α|(1− ν0)(1− 2d)−α(1 + d)β < M.

For simplicity, let us use the letters C1 and C2 to denote, respectively, the
first and the second terms in the left-hand side of the above inequality:

C1 =
L

`− 2ν0 + 1
c 2
0 (β − α)(1− ν0)ν0(1 + d) ( > 0) (2.10)

and

C2 =
M

`− 2ν0 + 1
|1− α|(1− ν0)(1− 2d)−α(1 + d)β (≥ 0). (2.11)

We have C1 + C2 < M . Further, let

C3 = Dc 2
0 (1− ν0)ν0(1 + d)β ( > 0), (2.12)
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where D is the positive constant defined by

D =

{
(1 + 2d)−α+1 for 0 < α ≤ 1,

(1− 2d)−α+1 for α > 1.
(2.13)

Since

lim
u→1

u− u−α+β+1

u− 1
= α− β,

there is δ > 0 such that

|u− u−α+β+1| ≤ (1 + d)(β − α)|u− 1| for |u− 1| ≤ δ. (2.14)

We take a number T sufficiently large so that the following inequalities hold
for t ≥ T :

Lt−` ≤ d,
M

c 2
0 ν0

t−` ≤ d, Lt−` ≤ δ, (2.15)

and

C1 + C2 + C3t
`−2ν0+1

∞∫

t

s2(ν0−1)|ε(s)| ds ≤ M. (2.16)

Note that the inequality C1 + C2 < M and the assumption (1.15) ensure
the inequality (2.16).

Let X be the set of all vector functions (u(t), v(t)) ∈ C[T,∞)×C[T,∞)
such that (2.8) holds. Define the operator Φ : X → C[T,∞)× C[T,∞) by
Φ(u, v)(t) = (Φ1(u, v)(t), Φ2(u, v)(t)) with

Φ1(u, v)(t) = 1−
∞∫

t

1
x0(s)2

v(s) ds, t ≥ T,

and

Φ2(u, v)(t) = − 1
α

∞∫

t

{
p0(s)x0(s)β+1x′0(s)

−α+1u(s)−

− p(s)x0(s)β+1

[
1

x0(s)
v(s) + x′0(s)u(s)

]−α+1

u(s)β

}
ds, t ≥ T.

It will be shown with the aid of the Schauder–Tychonoff theorem that Φ
has a fixed point (u(t), v(t)) in X (⊂ C[T,∞)× C[T,∞)). Here, the space
C[T,∞) × C[T,∞) is regarded as the Fréchet space consisting of all con-
tinuous vector functions (u(t), v(t)) on [T,∞) with the topology of uniform
convergence on compact subintervals of [T,∞).

(i) The operator Φ is well defined on X and maps X into X.

Let (u(t), v(t)) ∈ X. Then, by the first inequality in (2.15), we obtain
|u(t)− 1| ≤ Lt−` ≤ d for t ≥ T . Therefore,

(0 <) 1− d ≤ u(t) ≤ 1 + d, t ≥ T. (2.17)
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We can show that

− 1
x0(t)

|v(t)|+ x′0(t)u(t) ≥ (1− 2d)c0ν0t
ν0−1, t ≥ T, (2.18)

and
1

x0(t)
|v(t)|+ x′0(t)u(t) ≤ (1 + 2d)c0ν0t

ν0−1, t ≥ T. (2.19)

In fact, it follows from (2.17) and the second inequality in (2.15) that

− 1
x0(t)

|v(t)|+ x′0(t)u(t) ≥ − 1
c0tν0

Mt−`+2ν0−1 + c0ν0t
ν0−1(1− d) =

= (1− d)c0ν0t
ν0−1

{
1− M

(1− d)c 2
0 ν0

t−`
}
≥

≥ (1− d)c0ν0t
ν0−1

(
1− d

1− d

)
=

= (1− 2d)c0ν0t
ν0−1, t ≥ T,

which shows that (2.18) holds. The inequality (2.19) can be shown in a
similar way.

Now let us define y(t) by

y(t) =
1

x0(t)
v(t) + x′0(t)u(t), t ≥ T.

Then it follows from (2.18) and (2.19) that

(1− 2d)c0ν0t
ν0−1 ≤ y(t) ≤ (1 + 2d)c0ν0t

ν0−1, t ≥ T.

In particular, we have y(t) > 0 for t ≥ T and

y(t)−α+1 ≤ Dc−α+1
0 ν −α+1

0 t(ν0−1)(−α+1), t ≥ T, (2.20)

where D is the positive constant defined by (2.13).
For brevity, we define ϕ1(u, v)(t) and ϕ2(u, v)(t) by

ϕ1(u, v)(t) =
1

x0(t)2
v(t),

ϕ2(u, v)(t) = p0(t)x0(t)β+1x′0(t)
−α+1u(t)−

− p(t)x0(t)β+1

[
1

x0(t)
v(t) + x′0(t)u(t)

]−α+1

u(t)β ,

so that

Φ1(u, v)(t) = 1−
∞∫

t

ϕ1(u, v)(s) ds, t ≥ T,

Φ2(u, v)(t) = − 1
α

∞∫

t

ϕ2(u, v)(s) ds, t ≥ T.
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By (2.8), we obtain

|ϕ1(u, v)(t)| ≤ 1
x0(t)2

|v(t)| ≤ M(c0t
ν0)−2 t−`+2ν0−1 = L`t−`−1 (2.21)

for t ≥ T . Thus, Φ1(u, v)(t) is well defined on X and

|Φ1(u, v)(t)− 1| ≤ L`

∞∫

t

s−`−1 ds = Lt−`, t ≥ T. (2.22)

Since p(t) = p0(t)(1 + ε(t)), the function ϕ2(u, v)(t) can be estimated as
follows:

|ϕ2(u, v)(t)| ≤
≤

∣∣∣p0(t)x0(t)β+1x′0(t)
−α+1u(t)− p0(t)x0(t)β+1x′0(t)

−α+1u(t)−α+β+1
∣∣∣+

+
∣∣∣p0(t)x0(t)β+1x′0(t)

−α+1u(t)−α+β+1−

− p0(t)(1 + ε(t))x0(t)β+1y(t)−α+1u(t)β
∣∣∣ ≤

≤ p0(t)x0(t)β+1x′0(t)
−α+1

∣∣u(t)− u(t)−α+β+1
∣∣+

+ p0(t)x0(t)β+1
∣∣∣
[
x′0(t)u(t)

]−α+1 − y(t)−α+1
∣∣∣u(t)β+

+ p0(t)|ε(t)|x0(t)β+1y(t)−α+1u(t)β .

Denote the first, second and third term of the last side in the above inequal-
ity by ψ1(u, v)(t), ψ2(u, v)(t) and ψ3(u, v)(t), respectively. Then

|ϕ2(u, v)(t)| ≤ ψ1(u, v)(t) + ψ2(u, v)(t) + ψ3(u, v)(t), t ≥ T. (2.23)

In view of (2.8) and (2.15), we get |u(t) − 1| ≤ Lt−` ≤ δ for t ≥ T .
Therefore, it follows from (2.14) that

∣∣u(t)− u(t)−α+β+1
∣∣ ≤ L(1 + d)(β − α)t−`, t ≥ T.

Then it is easy to see that

ψ1(u, v)(t) = p0(t)x0(t)β+1x′0(t)
−α+1|u(t)− u(t)−α+β+1| ≤

≤ κt−µ(c0t
ν0)β+1

(
c0ν0t

ν0−1
)−α+1

L(1 + d)(β − α)t−` =

= α(`− 2ν0 + 1)C1t
−`+2ν0−2, t ≥ T,

where C1 is the constant given by (2.10).
The mean value theorem implies that if A > 0 and A + B > 0, then the

equality
A−α+1 − (A + B)−α+1 = (α− 1)(A + θB)−αB

holds for some θ, 0 < θ < 1. Applying the above equality to the cases
A = x′0(t)u(t) > 0 and B = x0(t)−1v(t), and noting that A + B = y(t) > 0,
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we obtain∣∣∣
[
x′0(t)u(t)

]−α+1 − y(t)−α+1
∣∣∣ =

= |α− 1|[x′0(t)u(t) + θx0(t)−1v(t)
]−α

x0(t)−1|v(t)| ≤
≤ |α− 1|[x′0(t)u(t)− x0(t)−1|v(t)|]−α

x0(t)−1|v(t)|
for t ≥ T . Then, by (2.18) and (2.8), we get

∣∣∣
[
x′0(t)u(t)

]−α+1 − y(t)−α+1
∣∣∣ ≤

≤ |α− 1|[(1− 2d)c0ν0t
ν0−1

]−α(c0t
ν0)−1Mt−`+2ν0−1 =

= |α− 1|(1− 2d)−αc−α−1
0 ν −α

0 Mt−α(ν0−1)−`+ν0−1

for t ≥ T . Then it is easy to see that

ψ2(u, v)(t) = p0(t)x0(t)β+1
∣∣[x′0(t)u(t)

]−α+1 − y(t)−α+1
∣∣u(t)β ≤

≤ κt−µ(c0t
ν0)β+1 |α− 1|(1− 2d)−αc−α−1

0 ν −α
0 ×

×Mt−α(ν0−1)−`+ν0−1(1 + d)β =

= α(`− 2ν0 + 1)C2t
−`+2ν0−2, t ≥ T,

where C2 is the constant given by (2.11).
By virtue of (2.20) and (2.17), we find that

ψ3(u, v)(t) = p0(t)|ε(t)|x0(t)β+1y(t)−α+1u(t)β ≤
≤ κt−µ|ε(t)|(c0t

ν0)β+1Dc−α+1
0 ν −α+1

0 t(ν0−1)(−α+1)(1 + d)β =

= αC3t
2(ν0−1)|ε(t)|, t ≥ T,

where C3 is the constant given by (2.12). Therefore, by the above estimates
for ψ1(u, v)(t), ψ2(u, v)(t) and ψ3(u, v)(t), and by (2.23), we conclude that

|ϕ2(u, v)(t)| ≤ α(C1 +C2)(`− 2ν0 +1)t−`+2ν0−2 +αC3t
2(ν0−1)|ε(t)| (2.24)

for t ≥ T . Therefore, Φ2(u, v)(t) is well defined on X. Moreover, on account
of (2.16), we can conclude that

|Φ2(u, v)(t)| ≤
(

C1 + C2 + C3t
`−2ν0+1

∞∫

t

s2(ν0−1)|ε(s)| ds

)
t−`+2ν0−1 ≤

≤ Mt−`+2ν0−1, t ≥ T.

Thus, the operator Φ = (Φ1, Φ2) is well defined on X and maps X into
itself. This proves the claim (i).

(ii) The operator Φ = (Φ1,Φ2) is continuous on X.

Assume that (un, vn) ∈ X (n = 1, 2, 3, . . . ), (u∞, v∞) ∈ X, and that
(un, vn) → (u∞, v∞) as n → ∞ uniformly on any compact subinterval
[T, S] of [T,∞). The inequality (2.21) implies that, for every (un, vn) ∈ X,
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the function |ϕ1(un, vn)(t)| is bounded by the integrable function L`t−`−1

on [T,∞). Therefore, by the Lebesgue dominated convergence theorem,

Φ1(un, vn)(t) → Φ1(u∞, v∞)(t) as n →∞
uniformly on any compact subinterval [T, S] of [T,∞). Similarly, using
(2.24) and the Lebesgue dominated convergence theorem, we see that

Φ2(un, vn)(t) → Φ2(u∞, v∞)(t) as n →∞
uniformly on any compact subinterval [T, S] of [T,∞). This proves the
claim (ii).

(iii) Φ(X) is relatively compact.

To prove the relative compactness of Φ(X), it is enough to show that
Φ(X) is uniformly bounded and equicontinuous on any compact subinterval
[T, S] of [T,∞). The former follows from the fact that the inequalities
|Φ1(u, v)(t)| ≤ 1 + Lt−` (t ≥ T ), which is a consequence of (2.22), and
|Φ2(u, v)(t)| ≤ Mt−`+2ν0−1 (t ≥ T ) hold for all (u, v) ∈ X. The latter
follows from the fact that the inequalities (2.21) and (2.24) hold for all
(u, v) ∈ X.

In view of (i)–(iii), the Schauder–Tychonoff theorem shows that Φ has
a fixed point (u, v) in X. This fixed point (u, v) = (u(t), v(t)) (∈ X) is
a solution of (2.7) on [T,∞), and satisfies (2.5) and (2.6). Consequently,
(u(t), v(t)) (∈ X) is a solution of (2.4) which satisfies (2.3). Therefore, by
Lemma 2.1, x(t) = x0(t)u(t) is an eventually positive solution of (1.12). By
the previous arguments it is easy to see that

x(t)
x0(t)

= u(t) = 1 + O(t−`) as t →∞

and
x′(t)
x′0(t)

= u(t) +
1

x0(t)x′0(t)
v(t) =

= u(t) +
1

c 2
0 ν0

t−2ν0+1v(t) = 1 + O(t−`) as t →∞.

This completes the proof of Theorem 1.1. ¤
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