Liliya Koltsova and Alexander Kostin

> THE ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF MONOTONE TYPE OF FIRST-ORDER NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS, UNRESOLVED FOR THE DERIVATIVE

Abstract. For the first-order nonlinear ordinary differential equation

$$
F\left(t, y, y^{\prime}\right)=\sum_{k=1}^{n} p_{k}(t) y^{\alpha_{k}}\left(y^{\prime}\right)^{\beta_{k}}=0
$$

unresolved for the derivative, asymptotic behavior of solutions of monotone type is established for $t \rightarrow+\infty$.

2010 Mathematics Subject Classification. 34D05, 34E10.
Key words and phrases. Nonlinear differential equations, monotone solutions, asymptotic properties.

This article describes a first-order real ordinary differential equation:

$$
\begin{equation*}
F\left(t, y, y^{\prime}\right)=\sum_{k=1}^{n} p_{k}(t) y^{\alpha_{k}}\left(y^{\prime}\right)^{\beta_{k}}=0 \tag{1}
\end{equation*}
$$

$\left(t, y, y^{\prime}\right) \in D, D=\Delta(a) \times \mathbb{R}_{1} \times \mathbb{R}_{2}, \Delta(a)=\left[a ;+\infty\left[, a>0, \mathbb{R}_{1}=\mathbb{R}_{+}\right.\right.$, $\mathbb{R}_{2}=\mathbb{R}_{-} \vee \mathbb{R}_{+} ; p_{k}(t) \in \mathrm{C}_{\Delta(a)}(k=\overline{1, n}, n \geq 2) ; \alpha_{k}, \beta_{k} \geq 0(k=\overline{1, n})$, $\sum_{k=1}^{n} \beta_{k} \neq 0$.

Further, we assume that all the expressions, appearing in the equation, make sense; and all functions we consider in the present paper are real.

We investigate the question on the existence and on the asymptotic behavior (as $t \rightarrow+\infty$) of unboundedly continuable to the right solutions (R-solutions) $y(t)$ of equation (1) and derivatives $y^{\prime}(t)$ of these solutions which possess the following properties:
A) $0<y(t) \in \mathrm{C}_{\Delta\left(t_{1}\right)}^{1}, \Delta\left(t_{1}\right) \subset \Delta(a)$, where t_{1} is defined in the course of proving each theorem;
B) among the summands $p_{k}(t)(y(t))^{\alpha_{k}}\left(y^{\prime}(t)\right)^{\beta_{k}}(k=\overline{1, n})$, the terms with numbers $i=\overline{1, s}(2 \leq s \leq n)$ are asymptotically principal for the given R-solution $y(t)$, i.e., there exist:

$$
\begin{aligned}
& \lim _{t \rightarrow+\infty} \frac{p_{i}(t)(y(t))^{\alpha_{i}}\left(y^{\prime}(t)\right)^{\beta_{i}}}{p_{1}(t)(y(t))^{\alpha_{1}}\left(y^{\prime}(t)\right)^{\beta_{1}}} \neq 0, \pm \infty \quad(i=\overline{1, s}), \\
& \lim _{t \rightarrow+\infty} \frac{p_{j}(t)(y(t))^{\alpha_{j}}\left(y^{\prime}(t)\right)^{\beta_{j}}}{p_{1}(t)(y(t))^{\alpha_{1}}\left(y^{\prime}(t)\right)^{\beta_{1}}}=0 \quad(j=\overline{s+1, n})
\end{aligned}
$$

It is obvious that $p_{i}(t) \neq 0(i=\overline{1, s})$.
Lemma 1. Let the equation

$$
\begin{equation*}
\widetilde{F}(t, \xi, \eta)=0 \tag{2}
\end{equation*}
$$

$(t, \xi, \eta) \in D_{1}, D_{1}=\Delta(a) \times\left[-h_{1} ; h_{1}\right] \times\left[-h_{2} ; h_{2}\right], h_{k} \in \mathbb{R}_{+}(k=1,2)$, satisfy the conditions:

1) $\widetilde{F}(t, \xi, \eta) \in \mathrm{C}_{t}^{s_{1} s_{2} s_{3}} \underset{\eta}{ }\left(D_{1}\right), s_{1}, s_{2}, s_{3} \in\{0,1,2, \ldots\}, s_{2} \geq 1, s_{3} \geq 2$;
2) $\exists \widetilde{F}(+\infty, 0,0)=0$;
3) $\exists \widetilde{F}_{\eta}^{\prime}(+\infty, 0,0)=A_{1} \in \mathbb{R} \backslash\{0\}$;
4) $\sup _{D_{1}}\left|\widetilde{F}_{\eta \eta}^{\prime \prime}(t, \xi, \eta)\right|=A_{2} \in \mathbb{R}_{+}$.

Then in some domain $D_{2}=\Delta\left(t_{0}\right) \times\left[-\widetilde{h}_{1} ; \widetilde{h}_{1}\right] \times\left[-\widetilde{h}_{2} ; \widetilde{h}_{2}\right]$, where $t_{0} \geq a$, $0<\widetilde{h}_{1} \leq h_{1}, 0<\widetilde{h}_{2}<\min \left\{h_{2} ; \frac{\left|A_{1}\right|}{4 A_{2}}\right\}$, the equation (2) defines a unique function $\eta=\widetilde{\eta}(t, \xi)$, such that $\widetilde{\eta}(t, \xi) \in \mathrm{C}_{t}^{s_{1} s_{2}}\left(D_{3}\right), D_{3}=\Delta\left(t_{0}\right) \times\left[-\widetilde{h}_{1} ; \widetilde{h}_{1}\right]$, $\exists \widetilde{\eta}(+\infty, 0)=0, \widetilde{F}(t, \xi, \widetilde{\eta}(t, \xi)) \equiv 0$. Moreover, for $\xi=0$, the function $\widetilde{\eta}(t, \xi)$
has the property

$$
\begin{equation*}
\widetilde{\eta}(t, 0) \sim-\frac{\widetilde{F}(t, 0,0)}{\widetilde{F}_{\eta}^{\prime}(t, 0,0)} \tag{3}
\end{equation*}
$$

Proof. Let us expand the function $\widetilde{F}(t, \xi, \eta)$ with respect to the variable η for $t \in \Delta(a), \xi \in\left[-h_{1} ; h_{1}\right]$ by using the Maclaurin's formula. Then the equation (2) can be written as:

$$
\begin{equation*}
\widetilde{F}(t, \xi, \eta)=\widetilde{F}(t, \xi, 0)+\widetilde{F}_{\eta}^{\prime}(t, \xi, 0) \eta+R(t, \xi, \eta)=0 \tag{4}
\end{equation*}
$$

Obviously,

$$
R(t, \xi, 0) \equiv 0
$$

The equation (4) is equivalent to the implicit equation

$$
\begin{equation*}
\eta(t, \xi)=\frac{-\widetilde{F}(t, \xi, 0)-R(t, \xi, \eta(t, \xi))}{\widetilde{F}_{\eta}^{\prime}(t, \xi, 0)} \tag{5}
\end{equation*}
$$

where

$$
R(t, \xi, \eta)=\widetilde{F}(t, \xi, \eta)-\widetilde{F}(t, \xi, 0)-\widetilde{F}_{\eta}^{\prime}(t, \xi, 0) \eta
$$

and, therefore,

$$
R_{\eta}^{\prime}(t, \xi, \eta)=\widetilde{F}_{\eta}^{\prime}(t, \xi, \eta)-\widetilde{F}_{\eta}^{\prime}(t, \xi, 0) .
$$

Applying the Lagrange's theorem with respect to the variable η to the right-hand side of the above equation, we get:

$$
\begin{aligned}
\widetilde{F}_{\eta}^{\prime}\left(t, \xi, \eta_{2}\right)- & \left.\widetilde{F}_{\eta}^{\prime}\left(t, \xi, \eta_{1}\right)=\widetilde{F}_{\eta \eta}^{\prime \prime}\left(t, \xi, \eta^{*}\right)\left(\eta_{2}-\eta_{1}\right), \eta^{*} \in\right] \eta_{1} ; \eta_{2}[\\
& \sup _{D_{1}}\left|\widetilde{F}_{\eta}^{\prime}\left(t, \xi, \eta_{2}\right)-\widetilde{F}_{\eta}^{\prime}\left(t, \xi, \eta_{1}\right)\right| \leq \\
\leq & \sup _{D_{1}}\left|\widetilde{F}_{\eta \eta}^{\prime \prime}(t, \xi, \eta)\right|\left|\eta_{2}-\eta_{1}\right|=A_{2}\left|\eta_{2}-\eta_{1}\right| .
\end{aligned}
$$

Assuming $\eta_{1}=0, \eta_{2}=\eta$, we obtain:

$$
\sup _{D_{1}}\left|R_{\eta}^{\prime}(t, \xi, \eta)\right| \leq A_{2}|\eta| .
$$

We consider and evaluate also the difference $R\left(t, \xi, \eta_{2}\right)-R\left(t, \xi, \eta_{1}\right)$, $\left(t, \xi, \eta_{i}\right) \in D_{1}(i=1,2)$, applying the Lagrange's theorem with respect to the variable η :

$$
\begin{gathered}
\left.R\left(t, \xi, \eta_{2}\right)-R\left(t, \xi, \eta_{1}\right)=R_{\eta}^{\prime}\left(t, \xi, \eta^{* *}\right)\left(\eta_{2}-\eta_{1}\right), \quad \eta^{* *} \in\right] \eta_{1} ; \eta_{2}[, \\
\sup _{D_{1}}\left|R\left(t, \xi, \eta_{2}\right)-R\left(t, \xi, \eta_{1}\right)\right| \leq \sup _{D_{1}}\left|R_{\eta}^{\prime}(t, \xi, \eta)\right|\left|\eta_{2}-\eta_{1}\right| \leq A_{2}\left|\eta_{2}-\eta_{1}\right|^{2} .
\end{gathered}
$$

Assuming $\eta_{1}=0, \eta_{2}=\eta$, we get

$$
\sup _{D_{1}}|R(t, \xi, \eta)| \leq A_{2}|\eta|^{2}
$$

Consider the domain $D_{2} \subset D_{1}$ in which

1) $\sup _{D_{2}}|\widetilde{F}(t, \xi, 0)| \leq \frac{\widetilde{h}_{2}\left|A_{1}\right|}{4}$;
2) $\inf _{D_{2}}\left|\widetilde{F}_{\eta}^{\prime}(t, \xi, 0)\right|>\frac{\left|A_{1}\right|}{2}$;
3) $\sup _{D_{2}}|R(t, \xi, \eta)| \leq A_{2}|\eta|^{2} \leq A_{2} \widetilde{h}_{2}^{2}$.

The fulfilment of conditions 1), 2) can be achieved by increasing t_{0} and reducing \widetilde{h}_{1} (by virtue of the conditions of the Lemma). The fulfilment of condition 3) is obvious.

To the equation (5) we put into the correspondence the operator

$$
\eta(t, \xi)=T(t, \xi, \widetilde{\eta}(t, \xi)) \equiv \frac{-\widetilde{F}(t, \xi, 0)-R(t, \xi, \widetilde{\eta}(t, \xi))}{\widetilde{F}_{\eta}^{\prime}(t, \xi, 0)}
$$

where $\widetilde{\eta}(t, \xi) \in B_{1} \subset B, B=\left\{\widetilde{\eta}(t, \xi): \widetilde{\eta}(t, \xi) \in \mathrm{C}_{t}^{s_{1} s_{2}}\left(D_{3}\right), \widetilde{\eta}(+\infty, 0)=0\right.$, $\|\widetilde{\eta}(t, \xi)\|=\sup |\widetilde{\eta}(t, \xi)|\}$ is the Banach space, $B_{1}=\{\widetilde{\eta}(t, \xi): \widetilde{\eta}(t, \xi) \in B$, $\left.\|\widetilde{\eta}(t, \xi)\| \leq \widetilde{h}_{2}\right\}$ is a closed subset of the Banach space B.

We apply here the principle of contractive mappings.

1) Let us prove that if $\widetilde{\eta}(t, \xi) \in B_{1}$, then $\eta(t, \xi)=T(t, \xi, \widetilde{\eta}(t, \xi)) \in B_{1}$: $\widetilde{\eta}(t, \xi) \in \mathrm{C}_{t}^{s_{1} s_{2}}\left(D_{3}\right)$ and $\widetilde{\eta}(+\infty, 0)=0$, then by virtue of the structure of the operator, we get

$$
\begin{gathered}
\eta(t, \xi) \in \mathrm{C}_{t}^{s_{1} s_{2}}\left(D_{3}\right), \quad \eta(+\infty, 0)=0 \\
\|\widetilde{\eta}(t, \xi)\| \leq \widetilde{h}_{2} \Longrightarrow\|\eta(t, \xi)\|=\|T(t, \xi, \widetilde{\eta}(t, \xi))\|= \\
=\left\|\frac{-\widetilde{F}(t, \xi, 0)-R(t, \xi, \widetilde{\eta}(t, \xi))}{\widetilde{F}_{\eta}^{\prime}(t, \xi, 0)}\right\| \leq \\
\leq \frac{1}{\inf _{D_{2}}\left|\widetilde{F}_{\eta}^{\prime}(t, \xi, \eta)\right|}\left(\sup _{D_{2}}|\widetilde{F}(t, \xi, 0)|+\sup _{D_{2}}|R(t, \xi, \widetilde{\eta}(t, \xi))|\right) \leq \\
\leq \frac{2}{\left|A_{1} t\right|}\left(\sup _{D_{2}}|\widetilde{F}(t, \xi, 0)|+A_{2} \widetilde{h}_{2}^{2}\right) \leq \frac{\widetilde{h}_{2}}{2}+\frac{\widetilde{h}_{2}}{2} \leq \widetilde{h}_{2} .
\end{gathered}
$$

2) Let us check the condition of contraction:

$$
\begin{gathered}
\widetilde{\eta}_{1}(t, \xi), \widetilde{\eta}_{2}(t, \xi) \in B_{1} \Longrightarrow\left\|\eta_{2}(t, \xi)-\eta_{1}(t, \xi)\right\|= \\
=\left\|\frac{R\left(t, \xi, \widetilde{\eta}_{2}(t, \xi)\right)-R\left(t, \xi, \widetilde{\eta}_{1}(t, \xi)\right)}{\widetilde{F}_{\eta}^{\prime}(t, \xi, 0)}\right\| \leq \\
\quad \leq \frac{A_{2}}{\inf _{D_{2}}\left|\widetilde{F}_{\eta}^{\prime}(t, \xi, \eta)\right|}\left\|\widetilde{\eta}_{2}(t, \xi)-\widetilde{\eta}_{1}(t, \xi)\right\|^{2} \leq \\
\leq \frac{2 A_{2}}{\left|A_{1}\right|}\left(\left\|\widetilde{\eta}_{2}(t, \xi)\right\|+\left\|\widetilde{\eta}_{1}(t, \xi)\right\|\right)\left\|\widetilde{\eta}_{2}(t, \xi)-\widetilde{\eta}_{1}(t, \xi)\right\| \leq \\
\leq \frac{4 A_{2} \widetilde{h}_{2}}{\left|A_{1}\right|}\left\|\widetilde{\eta}_{2}(t, \xi)-\widetilde{\eta}_{1}(t, \xi)\right\|=\gamma\left\|\widetilde{\eta}_{2}(t, \xi)-\widetilde{\eta}_{1}(t, \xi)\right\|
\end{gathered}
$$

where $\gamma=\frac{4 A_{2} \widetilde{h}_{2}}{\left|A_{1}\right|}<1$.

As a result, we have found that by the contractive mapping principle the equation (5) admits a unique solution $\eta=\widetilde{\eta}(t, \xi) \in B_{1}$.

Since $\widetilde{F}(t, \xi, \eta) \in \mathrm{C}_{t}^{s_{1} s_{2} s_{3}}{ }_{\eta}\left(D_{1}\right)$, then by a local theorem on the differentiability of an implicit function, it can be stated that $\widetilde{\eta}(t, \xi) \in \mathrm{C}_{t}^{s_{1} s_{2}}\left(D_{3}\right)$.

Let us prove that $\widetilde{\eta}(t, \xi)$ has the property (3) for $\xi=0$.
The function $\widetilde{\eta}(t, \xi) \in D_{3}$ satisfies the equation (4), which can be written as

$$
\begin{equation*}
\widetilde{F}(t, 0,0)+\widetilde{F}_{\eta}^{\prime}(t, 0,0) \widetilde{\eta}(t, 0)+O\left(\widetilde{\eta}^{2}\right) \equiv 0 \tag{6}
\end{equation*}
$$

assuming $\xi=0$.
As $O\left(\widetilde{\eta}^{2}\right)=O(1) \widetilde{\eta}^{2}=o(1) \widetilde{\eta}$, then the equation (6) is equivalent to the equation

$$
\widetilde{F}(t, 0,0)+\widetilde{F}_{\eta}^{\prime}(t, 0,0) \widetilde{\eta}(t, 0)+o(1) \widetilde{\eta}(t, 0) \equiv 0
$$

Hence, taking into account that $\widetilde{F}_{\eta}^{\prime}(+\infty, 0,0)=A_{1} \in \mathbb{R} \backslash\{0\}$, we can write

$$
\begin{equation*}
\widetilde{\eta}(t, 0)\left(1+\frac{o(1)}{\widetilde{F}_{\eta}^{\prime}(t, 0,0)}\right)=-\frac{\widetilde{F}(t, 0,0)}{\widetilde{F}_{\eta}^{\prime}(t, 0,0)} \tag{7}
\end{equation*}
$$

The property (3) follows from the equality (7).
Lemma 2 ([2]). Let the differential equation

$$
\begin{equation*}
\xi^{\prime}=\alpha(t) f(t, \xi) \tag{8}
\end{equation*}
$$

$(t, \xi) \in D_{3}, D_{3}=\Delta\left(t_{0}\right) \times\left[-\widetilde{h}_{1} ; \widetilde{h}_{1}\right]\left(\widetilde{h}_{1} \in \mathbb{R}_{+}\right)$, satisfy the conditions:

1) $0 \neq \alpha(t) \in \mathrm{C}\left(\Delta\left(t_{0}\right)\right), \int_{t_{0}}^{+\infty} \alpha(t) d t= \pm \infty$;
2) $f(t, \xi) \in \mathrm{C}_{t \xi}^{01}\left(D_{3}\right), \exists f(+\infty, 0)=0, \exists f_{\xi}^{\prime}(+\infty, 0) \neq 0$;
3) $f_{\xi}^{\prime}(t, \xi) \rightrightarrows f_{\xi}^{\prime}(t, 0)$ under $\xi \rightarrow 0$ uniformly with respect to $t \in \Delta\left(t_{0}\right)$.

Then there exists $t_{1} \geq t_{0}$, such that the equation (8) has a non-empty set of o-solutions

$$
\Omega=\left\{\xi(t) \in \mathrm{C}_{\Delta\left(t_{1}\right)}^{1}: \xi(+\infty)=0\right\}
$$

where
a) if $\operatorname{sign}\left(\alpha f_{\xi}^{\prime}(+\infty, 0)\right)=-1$, then Ω is a one-parametric family of o-solutions of the equation (8);
b) if $\operatorname{sign}\left(\alpha f_{\xi}^{\prime}(+\infty, 0)\right)=1$, then Ω contains a unique element.

The Existence and Asymptotics of R-Solutions of the
Equation (1) with the Condition $y(+\infty)=0 \vee+\infty$
The supposed asymptotics (to within a constant factor) of R-solution $y(t)$ with the condition $y(+\infty)=0 \vee+\infty$ can be found from the ratio of the first two summands (we consider all possible cases with respect to the values of parameters $\left.\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}\right)$. Taking into account that $p_{1}(t), p_{2}(t) \neq 0$
$(t \in \Delta(a))$, we find that $y(t) \dot{\sim} v(t)>0^{*}\left(v \in\left\{v_{i}\right\}, i=\overline{1,4}\right)$ under the condition that $v(+\infty)=0 \vee+\infty$:

1) $v_{1}=\left|\frac{p_{1}(t)}{p_{2}(t)}\right|^{\frac{1}{\alpha_{2}-\alpha_{1}}}\left(\alpha_{1} \neq \alpha_{2}, \beta_{1}=\beta_{2}\right)$, moreover, $p_{1}(t), p_{2}(t) \in$ $\mathrm{C}_{\Delta(a)}^{1}$.
In all the rest asymptotics is used the function
$I(A, t)=\int_{A}^{t}\left|\frac{p_{1}(t)}{p_{2}(t)}\right|^{\frac{1}{\beta_{2}-\beta_{1}}} d t, \quad A= \begin{cases}a & (I(a,+\infty)=+\infty), \\ +\infty & \left(I(a,+\infty) \in \mathbb{R}_{+} \cup\{0\}\right) .\end{cases}$
2) $v_{2}=|I(A, t)|\left(\alpha_{1}=\alpha_{2}, \beta_{1} \neq \beta_{2}\right)$.
3) $v_{3}=|I(A, t)|^{\left(\frac{\alpha_{2}-\alpha_{1}}{\beta_{2}-\beta_{1}}+1\right)^{-1}}\left(\alpha_{1} \neq \alpha_{2}, \beta_{1} \neq \beta_{2}, \alpha_{1}+\beta_{1} \neq \alpha_{2}+\beta_{2}\right)$.
4) $v_{4}=e^{\ell_{0}|I(a, t)|}\left(\ell_{0} \in \mathbb{R} \backslash\{0\}\right.$ and satisfies the conditions (13), (14), (16); $\left.\alpha_{1} \neq \alpha_{2}, \beta_{1} \neq \beta_{2}, \alpha_{1}+\beta_{1}=\alpha_{2}+\beta_{2} \neq 0 ; I(a,+\infty)=+\infty\right)$.

A solution is sought in the form

$$
\begin{equation*}
y(t)=v(t)(\ell+\xi(t)) \tag{9}
\end{equation*}
$$

where $\ell \in \mathbb{R}_{+} ; \xi(t) \in \mathrm{C}_{\Delta(a)}^{1}, \xi(+\infty)=0 ; v(t)=v_{k}(t) \in \mathrm{C}_{\Delta(a)}^{1}$ (k is fixed, $k=\overline{1,4}$).

Differentiating the equation (9), we obtain:

$$
y^{\prime}(t)=v^{\prime}(t)(\ell+\xi(t))+v(t) \xi^{\prime}(t)=v^{\prime}(t)\left(\ell+\xi(t)+\frac{v(t)}{v^{\prime}(t)} \xi^{\prime}(t)\right)
$$

Having denoted

$$
\begin{equation*}
\xi(t)+\frac{v(t)}{v^{\prime}(t)} \xi^{\prime}(t)=\eta(t) \tag{10}
\end{equation*}
$$

$\eta(t) \in \mathrm{C}_{\Delta(a)}$, we get

$$
\begin{equation*}
y^{\prime}(t)=v^{\prime}(t)(\ell+\eta(t)) \tag{11}
\end{equation*}
$$

The condition $y^{\prime}(t) \sim \ell v^{\prime}(t)$ requires the assumption that $\eta(+\infty)=0$.
Substituting (9) and (11) into the equation (1), we obtain the equality

$$
\begin{align*}
& F\left(t, v(\ell+\xi), v^{\prime}(\ell+\eta)\right)= \\
& =\sum_{k=1}^{n} p_{k}(t)(v)^{\alpha_{k}}(\ell+\xi)^{\alpha_{k}}\left(v^{\prime}\right)^{\beta_{k}}(\ell+\eta)^{\beta_{k}}=0 \tag{12}
\end{align*}
$$

which is satisfied by the functions $\xi(t), \eta(t)$ and $\left(v^{\prime}(t)\right)^{\beta_{k}}: \Delta(a) \rightarrow \mathbb{R}_{2}$ ($k=\overline{1, n}$).

$$
{ }^{*} f_{i} \dot{\sim} f_{j}(i \neq j) \text { means that } \exists \lim _{t \rightarrow+\infty} \frac{f_{i}}{f_{j}} \neq 0, \pm \infty .
$$

According to the condition B), indicated in the statement of the problem, we assume that

$$
\begin{gather*}
\frac{p_{i}(t)(v(t))^{\alpha_{i}}\left(v^{\prime}(t)\right)^{\beta_{i}}}{p_{1}(t)(v(t))^{\alpha_{1}}\left(v^{\prime}(t)\right)^{\beta_{1}}}= \\
=c_{i}^{*}+\varepsilon_{i}(t), \quad c_{i}^{*} \in \mathbb{R} \backslash\{0\}, \quad \varepsilon_{i}(+\infty)=0 \quad(i=\overline{1, s}) \tag{13}\\
\frac{p_{j}(t)(v(t))^{\alpha_{j}}\left(v^{\prime}(t)\right)^{\beta_{j}}}{p_{1}(t)(v(t))^{\alpha_{1}}\left(v^{\prime}(t)\right)^{\beta_{1}}}=\varepsilon_{j}(t), \quad \varepsilon_{j}(+\infty)=0 \quad(j=\overline{s+1, n}) \tag{14}
\end{gather*}
$$

Then, after the division by $p_{1}(t)(v(t))^{\alpha_{1}}\left(v^{\prime}(t)\right)^{\beta_{1}}$, the equation (12) takes the form

$$
\begin{align*}
& \widetilde{F}(t, \xi, \eta)=\sum_{i=1}^{s}\left(c_{i}^{*}+\varepsilon_{i}(t)\right)(\ell+\xi)^{\alpha_{i}}(\ell+\eta)^{\beta_{i}}+ \\
&+\sum_{j=s+1}^{n} \varepsilon_{j}(t)(\ell+\xi)^{\alpha_{j}}(\ell+\eta)^{\beta_{j}}=0 \tag{15}
\end{align*}
$$

Obviously, the condition $\widetilde{F}(+\infty, 0,0)=0$ is necessary for the existence of a solution and of its derivative of the form (9), (11), respectively.

Thus, for $v=v_{k}(t)(k=\overline{1,4})$ it takes the form

$$
\begin{equation*}
\sum_{i=1}^{s} c_{i}^{*} \ell^{\alpha_{i}+\beta_{i}}=0 \tag{16}
\end{equation*}
$$

For $v=v_{4}(t): \operatorname{sign}\left(v^{\prime}\right)=\operatorname{sign}\left(\ell_{0}\right), c_{i}^{*}=c_{i}^{*}\left(\ell_{0}\right), \ell_{0}, \ell_{0}^{\beta_{i}} \in \mathbb{R} \backslash\{0\}(i=\overline{1, s})$.
By virtue of its structure, the functions $\widetilde{F}(t, \xi, \eta) \in \mathrm{C}_{t \xi \eta}^{0 \infty \infty}\left(D_{1}\right), \frac{\partial^{n} \widetilde{F}}{\partial \xi^{n}}$, $\frac{\partial^{m} \widetilde{F}}{\partial \eta^{m}}, \frac{\partial^{n+m} \widetilde{F}}{\partial \xi^{n} \partial \eta^{m}}(n=\overline{1, \infty}, \quad m=\overline{1, \infty})$ are bounded in D_{1}, where $D_{1}=$ $\Delta(a) \times\left[-h_{1} ; h_{1}\right] \times\left[-h_{2} ; h_{2}\right], 0<h_{k}<\ell(k=1,2)$.

Next, we will need expressions for the first and second order derivatives of the function $\widetilde{F}(t, \xi, \eta)$ with respect to the variables ξ and η :

$$
\begin{aligned}
\widetilde{F}_{\xi}^{\prime}(t, \xi, \eta)= & \sum_{i=1}^{s} \alpha_{i} c_{i}^{*}(\ell+\xi)^{\alpha_{i}-1}(\ell+\eta)^{\beta_{i}}+ \\
& +\sum_{k=1}^{n} \alpha_{k} \varepsilon_{k}(t)(\ell+\xi)^{\alpha_{k}-1}(\ell+\eta)^{\beta_{k}} \\
\widetilde{F}_{\eta}^{\prime}(t, \xi, \eta)= & \sum_{i=1}^{s} \beta_{i} c_{i}^{*}(\ell+\xi)^{\alpha_{i}}(\ell+\eta)^{\beta_{i}-1}+ \\
& +\sum_{k=1}^{n} \beta_{k} \varepsilon_{k}(t)(\ell+\xi)^{\alpha_{k}}(\ell+\eta)^{\beta_{k}-1} \\
\widetilde{F}_{\xi \xi}^{\prime \prime}(t, \xi, \eta)= & \sum_{i=1}^{s} \alpha_{i}\left(\alpha_{i}-1\right) c_{i}^{*}(\ell+\xi)^{\alpha_{i}-2}(\ell+\eta)^{\beta_{i}}+
\end{aligned}
$$

$$
\begin{gathered}
+\sum_{k=1}^{n} \alpha_{k}\left(\alpha_{k}-1\right) \varepsilon_{k}(t)(\ell+\xi)^{\alpha_{k}-2}(\ell+\eta)^{\beta_{k}} \\
\widetilde{F}_{\xi \eta}^{\prime \prime}(t, \xi, \eta)=\widetilde{F}_{\eta \xi}^{\prime \prime}(t, \xi, \eta)=\sum_{i=1}^{s} \alpha_{i} \beta_{i} c_{i}^{*}(\ell+\xi)^{\alpha_{i}-1}(\ell+\eta)^{\beta_{i}-1}+ \\
\\
\quad+\sum_{k=1}^{n} \alpha_{k} \beta_{k} \varepsilon_{k}(t)(\ell+\xi)^{\alpha_{k}-1}(\ell+\eta)^{\beta_{k}-1} \\
\widetilde{F}_{\eta \eta}^{\prime \prime}(t, \xi, \eta)=\sum_{i=1}^{s} \beta_{i}\left(\beta_{i}-1\right) c_{i}^{*}(\ell+\xi)^{\alpha_{i}}(\ell+\eta)^{\beta_{i}-2}+ \\
\\
\quad+\sum_{k=1}^{n} \beta_{k}\left(\beta_{k}-1\right) \varepsilon_{k}(t)(\ell+\xi)^{\alpha_{k}}(\ell+\eta)^{\beta_{k}-2}
\end{gathered}
$$

as well as the following notation:

$$
\begin{aligned}
\psi_{00}(t)= & \sum_{k=1}^{n} \ell^{\alpha_{k}+\beta_{k}} \varepsilon_{k}(t), \\
\psi_{l 0}(t)= & \sum_{k=1}^{n} \alpha_{k}\left(\alpha_{k}-1\right) \cdots\left(\alpha_{k}-l+1\right) \varepsilon_{k}(t) \ell^{\alpha_{k}+\beta_{k}}, \\
\psi_{0 m}(t)= & \sum_{k=1}^{n} \beta_{k}\left(\beta_{k}-1\right) \cdots\left(\beta_{k}-m+1\right) \varepsilon_{k}(t) \ell^{\alpha_{k}+\beta_{k}}, \\
\psi_{l m}(t)= & \sum_{k=1}^{n} \alpha_{k}\left(\alpha_{k}-1\right) \cdots\left(\alpha_{k}-l+1\right) \times \\
& \times \beta_{k}\left(\beta_{k}-1\right) \cdots\left(\beta_{k}-m+1\right) \varepsilon_{k}(t) \ell^{\alpha_{k}+\beta_{k}}, \\
S_{l 0}= & \sum_{i=1}^{s} \alpha_{i}\left(\alpha_{i}-1\right) \cdots\left(\alpha_{i}-l+1\right) c_{i}^{*} \ell^{\alpha_{i}+\beta_{i}}, \\
S_{0 m}= & \sum_{i=1}^{s} \beta_{i}\left(\beta_{i}-1\right) \cdots\left(\beta_{i}-m+1\right) c_{i}^{*} \ell^{\alpha_{i}+\beta_{i}}, \\
S_{l m}= & \sum_{i=1}^{s} \alpha_{i}\left(\alpha_{i}-1\right) \cdots\left(\alpha_{i}-l+1\right) \times \\
& \times \beta_{i}\left(\beta_{i}-1\right) \cdots\left(\beta_{i}-m+1\right) c_{i}^{*} \ell^{\alpha_{i}+\beta_{i}}, \\
S_{l 0}, S_{0 m}, S_{l m} \in \mathbb{R} & (l, m \in \mathbb{N}), \quad S=S_{10}^{2} S_{02}-2 S_{10} S_{01} S_{11}+S_{01}^{2} S_{20}, \\
\lambda_{1}= & \frac{2 S_{01}^{3}}{S} \in \mathbb{R}, \quad \lambda_{2}=-\frac{2 S_{01}^{2} \ell^{2}}{S} \in \mathbb{R} .
\end{aligned}
$$

Theorem 1. Let a function $v(t)=v_{k}(t)(k=\overline{1,4})$ be a possible asymptotics of an R-solution of the equation (1), which satisfies the conditions $v(+\infty)=0 \vee+\infty$, (13), and (14). Let, moreover, there exist $\ell \in \mathbb{R}_{+}$, satisfying the condition (16).

Then in order for the R-solution $y(t) \in \mathrm{C}_{\Delta\left(t_{1}\right)}^{1}$ of the differential equation (1) with the asymptotic properties

$$
\begin{equation*}
y(t) \sim \ell v(t), \quad y^{\prime}(t) \sim \ell v^{\prime}(t) \tag{17}
\end{equation*}
$$

to exist, it is sufficient that the two following conditions

$$
\begin{align*}
S_{01} & \neq 0 \tag{18}\\
S_{10}+S_{01} & \neq 0 \tag{19}
\end{align*}
$$

be fulfilled. Moreover, if $\operatorname{sign}\left(\frac{v^{\prime}\left(S_{10}+S_{01}\right)}{S_{01}}\right)=1$, then there exists a oneparameter set of R-solutions with the asymptotic properties (17); if $\operatorname{sign}\left(\frac{v^{\prime}\left(S_{10}+S_{01}\right)}{S_{01}}\right)=-1$, then R-solution with the asymptotic (17) is unique. Proof. For the proof we will need the following properties of the function $\widetilde{F}(t, \xi, \eta)$:

$$
\begin{aligned}
& \widetilde{F}_{\xi}^{\prime}(+\infty, 0,0)=\frac{S_{10}}{\ell} \\
& \widetilde{F}_{\eta}^{\prime}(+\infty, 0,0)=\frac{S_{01}}{\ell} \neq 0
\end{aligned}
$$

by virtue of the condition (18).
Owing to the conditions (16), (18) and to the properties of the function $\widetilde{F}(t, \xi, \eta)$, in some domain $D_{2} \subset D_{1}, D_{2}=\Delta\left(t_{0}\right) \times\left[-\widetilde{h}_{1} ; \widetilde{h}_{1}\right] \times\left[-\widetilde{h}_{2} ; \widetilde{h}_{2}\right]$, $t_{0} \geq a, 0<\widetilde{h}_{1} \leq h_{1}, 0<\widetilde{h}_{2}<\min \left\{h_{2} ; \frac{\left|S_{01}\right|}{4 \ell \sup _{D_{1}}\left|\widetilde{F}_{\eta \eta}^{\prime \prime}(t, \xi, \eta)\right|}\right\}$, for the equation (15) the conditions of Lemma 1 are satisfied. Consequently, there exists a unique function $\eta=\widetilde{\eta}(t, \xi) \in \mathrm{C}_{t \xi}^{0 \infty}\left(D_{3}\right), D_{3}=\Delta\left(t_{0}\right) \times\left[-\widetilde{h}_{1} ; \widetilde{h}_{1}\right]$, $\sup _{D_{3}}\left|\frac{\partial^{n} \widetilde{n}}{\partial \xi^{n}}\right|<$ $+\infty(n=\overline{1, \infty})$, such that $\widetilde{F}(t, \xi, \widetilde{\eta}(t, \xi)) \equiv 0, \widetilde{\eta}(+\infty, 0)=0,\|\widetilde{\eta}(t, \xi)\| \leq \widetilde{h}_{2}$. Moreover, we can write

$$
\frac{\partial \widetilde{\eta}(t, \xi)}{\partial \xi}=-\frac{\widetilde{F}_{\xi}^{\prime}(t, \xi, \widetilde{\eta})}{\widetilde{F}_{\eta}^{\prime}(t, \xi, \widetilde{\eta})}
$$

Thus, in view of the replacement (10), we obtain the differential equation with respect to ξ :

$$
\begin{equation*}
\xi^{\prime}=\frac{v^{\prime}}{v}(-\xi+\widetilde{\eta}(t, \xi)) \tag{20}
\end{equation*}
$$

The question on the existence of solutions of the form (9) reduces to the study of the differential equation (20).

Let us show that the conditions 1)-3) of Lemma 2 are satisfied for the equation (20). In this case we have: $\alpha(t)=\frac{v^{\prime}(t)}{v(t)}, f(t, \xi)=-\xi+\widetilde{\eta}(t, \xi)$.

Obviously, the conditions 1) and 2) are satisfied.

1) Since $0<v(t) \in \mathrm{C}^{1}(\Delta(a))$, therefore

$$
0 \neq \alpha(t) \in \mathrm{C}\left(\Delta\left(t_{0}\right)\right), \quad \int_{t_{0}}^{+\infty} \alpha(t) d t=\int_{t_{0}}^{+\infty} \frac{v^{\prime}(t)}{v(t)} d t= \pm \infty
$$

2) Since $\widetilde{\eta}(t, \xi) \in \mathrm{C}_{t}^{0 \infty}\left(D_{3}\right)$, then

$$
\begin{gathered}
f(t, \xi) \in \mathrm{C}_{t \xi}^{0 \infty}\left(D_{3}\right), \quad \exists f(+\infty, 0)=\widetilde{\eta}(+\infty, 0)=0, \\
f_{\xi}^{\prime}(t, \xi)=-1+\widetilde{\eta}_{\xi}^{\prime}(t, \xi)=-1-\frac{\widetilde{F}_{\xi}^{\prime}(t, \xi, \widetilde{\eta})}{\widetilde{F}_{\eta}^{\prime}(t, \xi, \widetilde{\eta})}, \\
f_{\xi}^{\prime}(+\infty, 0)=-1-\frac{\widetilde{F}_{\xi}^{\prime}(+\infty, 0, \widetilde{\eta}(+\infty, 0))}{\widetilde{F}_{\eta}^{\prime}(+\infty, 0, \widetilde{\eta}(+\infty, 0))}=-\frac{S_{10}+S_{01}}{S_{01}} \neq 0
\end{gathered}
$$

by virtue of the condition (19).
Let us check that the condition 3) is satisfied, that is,

$$
\left\|f_{\xi}^{\prime}(t, \xi)-f_{\xi}^{\prime}(t, 0)\right\|=\left\|\frac{\widetilde{F}_{\xi}^{\prime}(t, \xi, \widetilde{\eta}(t, \xi))}{\widetilde{F}_{\eta}^{\prime}(t, \xi, \widetilde{\eta}(t, \xi))}-\frac{\widetilde{F}_{\xi}^{\prime}(t, 0, \widetilde{\eta}(t, 0))}{\widetilde{F}_{\eta}^{\prime}(t, 0, \widetilde{\eta}(t, 0))}\right\| \Longrightarrow 0
$$

as $\xi \rightarrow 0$ uniformly with respect to $t \in \Delta\left(t_{0}\right)$.
Towards this end, it suffices to verify that the following properties are satisfied:
$\left.3_{1}\right) \underset{\sim}{\widetilde{\eta}}(t, \xi) \rightrightarrows \widetilde{\eta}(t, 0)$ if $\underset{\sim}{\xi} \rightarrow 0$ uniformly with respect to $t \in \Delta\left(t_{0}\right)$,
$\left.3_{2}\right) \widetilde{F}_{\xi}^{\prime}(t, \xi, \widetilde{\eta}(t, \xi)) \rightrightarrows \widetilde{F}_{\xi}^{\prime}(t, 0, \widetilde{\eta}(t, 0))$ as $\xi \rightarrow 0$ uniformly with respect to $t \in \Delta\left(t_{0}\right)$,
$\left.3_{3}\right) \widetilde{F}_{\eta}^{\prime}(t, \xi, \widetilde{\eta}(t, \xi)) \rightrightarrows \widetilde{F}_{\eta}^{\prime}(t, 0, \widetilde{\eta}(t, 0))$, as $\xi \rightarrow 0$ uniformly with respect to $t \in \Delta\left(t_{0}\right)$ with regard for the fact that $F_{\eta}^{\prime}(+\infty, 0, \eta(+\infty, 0))=S_{01} \neq 0$.

Let us estimate the differences $\widetilde{\eta}(t, \xi)-\widetilde{\eta}(t, 0), \widetilde{F}_{\xi}^{\prime}(t, \xi, \widetilde{\eta}(t, \xi))-$ $\widetilde{F}_{\xi}^{\prime}(t, 0, \widetilde{\eta}(t, 0)), \widetilde{F}_{\eta}^{\prime}(t, \xi, \widetilde{\eta}(t, \xi))-\widetilde{F}_{\eta}^{\prime}(t, 0, \widetilde{\eta}(t, 0))$, applying the Lagrange's theorem to the first difference with respect to the variable ξ :

$$
\left.\widetilde{\eta}(t, \xi)-\widetilde{\eta}(t, 0)=\widetilde{\eta}_{\xi}^{\prime}\left(t, \xi^{*}\right) \xi, \quad \xi^{*} \in\right] 0 ; \xi[
$$

As the functions $\varepsilon_{k}(t)(k=\overline{1, n})$ are bounded in $\Delta(a)$ and $\|\widetilde{\eta}(t, \xi)\| \leq \widetilde{h}_{2}$ in D_{3}, then we get the estimates in the form:

$$
\begin{aligned}
& \left.3_{1}\right) \quad|\widetilde{\eta}(t, \xi)-\widetilde{\eta}(t, 0)|=\left|\widetilde{\eta}_{\xi}^{\prime}\left(t, \xi^{*}\right)\right||\xi|= \\
& \quad=\left|-\frac{\widetilde{F}_{\xi}^{\prime}\left(t, \xi^{*}, \widetilde{\eta}\left(t, \xi^{*}\right)\right)}{\widetilde{F}_{\eta}^{\prime}\left(t, \xi^{*}, \widetilde{\eta}\left(t, \xi^{*}\right)\right)}\right||\xi| \leq O(1)|\xi|=O(\xi) \longrightarrow 0
\end{aligned}
$$

as $\xi \rightarrow 0$ uniformly with respect to $t \in \Delta\left(t_{0}\right)$;
$\left.3_{2}\right)$ taking into account that $(\ell+\xi)^{\alpha_{i}-1} \rightarrow \ell^{\alpha_{i}-1}$ as $\xi \rightarrow 0,(\ell+\widetilde{\eta}(t, \xi))^{\beta_{i}} \rightarrow$ $(\ell+\widetilde{\eta}(t, 0))^{\beta_{i}}$ as $\xi \rightarrow 0$ uniformly with respect to $t \in \Delta\left(t_{0}\right)(i=\overline{1, s})$, we get

$$
\begin{aligned}
& \left|\widetilde{F}_{\xi}^{\prime}(t, \xi, \widetilde{\eta}(t, \xi))-\widetilde{F}_{\xi}^{\prime}(t, 0, \widetilde{\eta}(t, 0))\right|= \\
& \quad=\mid \sum_{i=1}^{s} \alpha_{i} c_{i}^{*}\left[(\ell+\xi)^{\alpha_{i}-1}(\ell+\widetilde{\eta}(t, \xi))^{\beta_{i}}-\ell^{\alpha_{i}-1}(\ell+\widetilde{\eta}(t, 0))^{\beta_{i}}\right]+ \\
& \quad+\sum_{k=1}^{n} \alpha_{k} \varepsilon_{k}(t)\left[(\ell+\xi)^{\alpha_{k}-1}(\ell+\widetilde{\eta}(t, \xi))^{\beta_{k}}-\ell^{\alpha_{k}-1}(\ell+\widetilde{\eta}(t, 0))^{\beta_{k}}\right] \mid \longrightarrow 0
\end{aligned}
$$

as $\xi \rightarrow 0$ uniformly with respect to $t \in \Delta\left(t_{0}\right)$;
3_{3}) analogously to 3_{2}), we get:

$$
\begin{aligned}
& \left|\widetilde{F}_{\eta}^{\prime}(t, \xi, \widetilde{\eta}(t, \xi))-\widetilde{F}_{\eta}^{\prime}(t, 0, \widetilde{\eta}(t, 0))\right|= \\
& \quad=\mid \sum_{i=1}^{s} \beta_{i} c_{i}^{*}\left[(\ell+\xi)^{\alpha_{i}}(\ell+\widetilde{\eta}(t, \xi))^{\beta_{i}-1}-\ell^{\alpha_{i}}(\ell+\widetilde{\eta}(t, 0))^{\beta_{i}-1}\right]+ \\
& +\sum_{k=1}^{n} \beta_{k} \varepsilon_{k}(t)\left[(\ell+\xi)^{\alpha_{k}}(\ell+\widetilde{\eta}(t, \xi))^{\beta_{k}-1}-\ell^{\alpha_{k}}(\ell+\widetilde{\eta}(t, 0))^{\beta_{k}-1}\right] \mid \longrightarrow 0
\end{aligned}
$$

as $\xi \rightarrow 0$ uniformly with respect to $t \in \Delta\left(t_{0}\right)$.
Since $\widetilde{\eta}(+\infty, 0)=0$, therefore $F_{\eta}^{\prime}(+\infty, 0, \widetilde{\eta}(+\infty, 0))=S_{01} \neq 0$ by virtue of the condition (18).

Consequently, condition 3) is satisfied.
Then if $\operatorname{sign}\left(\frac{v^{\prime}\left(S_{10}+S_{01}\right)}{S_{01}}\right)=1$, then there exists a one-parameter set of o-solutions of the equation (20) in $\Delta\left(t_{1}\right) \subseteq \Delta\left(t_{0}\right)$.

If $\operatorname{sign}\left(\frac{v^{\prime}\left(S_{10}+S_{01}\right)}{S_{01}}\right)=-1$, then a set of o-solutions of the equation (20) in $\Delta\left(t_{1}\right)$ contains the unique element.

Finally, having the dimension of a set of o-solutions of the equation (20), we have obtained the dimension of a set of R-solutions of the equation (1) with the asymptotic properties (17) in $\Delta\left(t_{1}\right)$.

Theorem 2. Let the conditions of Theorem 1, except for (19), be satisfied, and

$$
\begin{align*}
S & \neq 0 \tag{21}\\
\psi_{00}(t) \ln ^{2} v(t) & =o(1) \tag{22}\\
\left(\psi_{10}(t)+\psi_{01}(t)\right) \ln v(t) & =o(1) \tag{23}
\end{align*}
$$

Then there exists a one-parameter set of R-solutions $y(t) \in \mathrm{C}_{\Delta\left(t_{1}\right)}^{1}$ of the differential equation (1) with the asymptotic properties

$$
\begin{equation*}
y(t)=v(t)(\ell+\xi(t)), \quad y^{\prime}(t) \sim \ell v^{\prime}(t), \tag{24}
\end{equation*}
$$

where $\xi(t) \sim \frac{\lambda_{1} \ell}{\ln v(t)}$.
Proof. To prove the theorem, we will need the following properties and expressions of the function $\widetilde{F}(t, \xi, \eta)$:

$$
\begin{aligned}
\widetilde{F}(t, 0,0) & =\psi_{00}(t), \\
\widetilde{F}_{\xi}^{\prime}(t, 0,0) & =\frac{1}{\ell} \sum_{i=1}^{s} \alpha_{i} c_{i}^{*} \ell^{\alpha_{i}+\beta_{i}}+\frac{1}{\ell} \sum_{k=1}^{n} \alpha_{k} \ell^{\alpha_{k}+\beta_{k}} \varepsilon_{k}(t), \\
\widetilde{F}_{\xi}^{\prime}(+\infty, 0,0) & =\frac{S_{10}}{\ell} \\
\widetilde{F}_{\eta}^{\prime}(t, 0,0) & =\frac{1}{\ell} \sum_{i=1}^{s} \beta_{i} c_{i}^{*} \ell^{\alpha_{i}+\beta_{i}}+\frac{1}{\ell} \sum_{k=1}^{n} \beta_{k} \ell^{\alpha_{k}+\beta_{k}} \varepsilon_{k}(t),
\end{aligned}
$$

$$
\begin{aligned}
\widetilde{F}_{\eta}^{\prime}(+\infty, 0,0)= & \frac{S_{01}}{\ell} \neq 0 \text { by virtue of condition (18); } \\
\widetilde{F}_{\xi \xi}^{\prime \prime}(t, 0,0)= & \frac{1}{\ell^{2}} \sum_{i=1}^{s} \alpha_{i}\left(\alpha_{i}-1\right) c_{i}^{*} \ell^{\alpha_{i}+\beta_{i}}+ \\
& +\frac{1}{\ell^{2}} \sum_{k=1}^{n} \alpha_{k}\left(\alpha_{k}-1\right) \ell^{\alpha_{k}+\beta_{k}} \varepsilon_{k}(t), \\
\widetilde{F}_{\xi \xi}^{\prime \prime}(+\infty, 0,0)= & \frac{S_{20}}{\ell^{2}} ; \\
\widetilde{F}_{\xi \eta}^{\prime \prime}(t, 0,0)= & \widetilde{F}_{\eta \xi}^{\prime \prime}(t, 0,0)= \\
= & \frac{1}{\ell^{2}} \sum_{i=1}^{s} \alpha_{i} \beta_{i} c_{i}^{*} \ell^{\alpha_{i}+\beta_{i}}+\frac{1}{\ell^{2}} \sum_{k=1}^{n} \alpha_{k} \beta_{k} \ell^{\alpha_{k}+\beta_{k}} \varepsilon_{k}(t), \\
\widetilde{F}_{\xi \eta}^{\prime \prime}(+\infty, 0,0)= & \widetilde{F}_{\eta \xi}^{\prime \prime}(+\infty, 0,0)=\frac{S_{11}}{\ell^{2}} ; \\
\widetilde{F}_{\eta \eta}^{\prime \prime}(t, 0,0)= & \frac{1}{\ell^{2}} \sum_{i=1}^{s} \beta_{i}\left(\beta_{i}-1\right) c_{i}^{*} \ell^{\alpha_{i}+\beta_{i}}+ \\
& +\frac{1}{\ell^{2}} \sum_{k=1}^{n} \beta_{k}\left(\beta_{k}-1\right) \ell^{\alpha_{k}+\beta_{k}} \varepsilon_{k}(t), \\
\widetilde{F}_{\eta \eta}^{\prime \prime}(+\infty, 0,0)= & \frac{S_{02}}{\ell^{2}}
\end{aligned}
$$

By virtue of the condition (18) and owing to the properties of the function $\widetilde{F}(t, \xi, \eta)$, in some domain $D_{2} \subset D_{1}, D_{2}=\Delta\left(t_{0}\right) \times\left[-\widetilde{h}_{1} ; \widetilde{h}_{1}\right] \times\left[-\widetilde{h}_{2} ; \widetilde{h}_{2}\right]$, $t_{0} \geq a, 0<\widetilde{h}_{1} \leq h_{1}, 0<\widetilde{h}_{2}<\min \left\{h_{2} ; \frac{\left|S_{01}\right|}{4 \ell \sup _{D_{1}}\left|\widetilde{F}_{\eta_{\eta}^{\prime}}^{\prime}(t, \xi, \eta)\right|}\right\}$, for the equation (15) the conditions of Lemma 1 are fulfilled. Consequently, there exists a unique function $\eta=\widetilde{\eta}(t, \xi), \widetilde{\eta}(t, \xi) \in \mathrm{C}_{t \xi}^{0 \infty}\left(D_{3}\right), D_{3}=\Delta\left(t_{0}\right) \times\left[-\widetilde{h}_{1} ; \widetilde{h}_{1}\right]$, $\sup _{D_{3}}\left|\frac{\partial^{n} \widetilde{n}}{\partial \xi^{n}}\right|<+\infty(n=\overline{1, \infty})$, such that $\widetilde{F}(t, \xi, \widetilde{\eta}(t, \xi)) \equiv 0, \widetilde{\eta}(+\infty, 0)=0$, $\|\widetilde{\eta}(t, \xi)\| \leq \widetilde{h}_{2}$. Moreover, we can write:

$$
\begin{aligned}
\widetilde{\eta}(t, 0) & \sim-\frac{\widetilde{F}(t, 0,0)}{\widetilde{F}_{\eta}^{\prime}(t, 0,0)}, \\
\widetilde{\eta}_{\xi}^{\prime}(t, \xi) & =-\frac{\widetilde{F}_{\xi}^{\prime}(t, \xi, \widetilde{\eta})}{\widetilde{F}_{\eta}^{\prime}(t, \xi, \widetilde{\eta})}, \\
\frac{\partial^{2} \widetilde{\eta}(t, \xi)}{\partial \xi^{2}} & =-\frac{\left(\widetilde{F}_{\xi}^{\prime}\right)^{2} \widetilde{F}_{\eta \eta}^{\prime \prime}-2 \widetilde{F}_{\xi}^{\prime} \widetilde{F}_{\eta}^{\prime} \widetilde{F}_{\xi \eta}^{\prime \prime}+\left(\widetilde{F}_{\eta}^{\prime}\right)^{2} \widetilde{F}_{\xi \xi}^{\prime \prime}}{\left(\widetilde{F}_{\eta}^{\prime}\right)^{3}} .
\end{aligned}
$$

Thus, taking into account the replacement (10), we obtain the differential equation with respect to ξ :

$$
\begin{equation*}
\xi^{\prime}=\frac{v^{\prime}}{v}(-\xi+\widetilde{\eta}(t, \xi)) \tag{20}
\end{equation*}
$$

The question of the existence of solutions of the type (9) reduces to the study of the differential equation (20).

Let us show that the conditions 1)-3) of Lemma 2 are satisfied for the equation (20). In this case we have: $\alpha(t)=\frac{v^{\prime}(t)}{v(t)}, f(t, \xi)=-\xi+\widetilde{\eta}(t, \xi)$.

1) Since $0<v(t) \in \mathrm{C}^{1}(\Delta(a))$, therefore

$$
0 \neq \alpha(t) \in \mathrm{C}\left(\Delta\left(t_{0}\right)\right), \quad \int_{t_{0}}^{+\infty} \alpha(t) d t=\int_{t_{0}}^{+\infty} \frac{v^{\prime}(t)}{v(t)} d t= \pm \infty
$$

2) Since $\widetilde{\eta}(t, \xi) \in \mathrm{C}_{t}^{0 \infty}\left(D_{3}\right)$, therefore

$$
\begin{gathered}
f(t, \xi) \in \mathrm{C}_{t}^{0 \infty}\left(D_{3}\right), \quad \exists f(+\infty, 0)=\widetilde{\eta}(+\infty, 0)=0, \\
f_{\xi}^{\prime}(t, \xi)=-1+\widetilde{\eta}_{\xi}^{\prime}(t, \xi)=-1-\frac{\widetilde{F}_{\xi}^{\prime}(t, \xi, \widetilde{\eta})}{\widetilde{F}_{\eta}^{\prime}(t, \xi, \widetilde{\eta})}
\end{gathered}
$$

Taking into account the properties of the functions $\varepsilon_{k}(t)(k=\overline{1, n})$ and also the conditions of the theorem, we obtain:

$$
f_{\xi}^{\prime}(+\infty, 0)=-1-\frac{\widetilde{F}_{\xi}^{\prime}(+\infty, 0, \widetilde{\eta}(+\infty, 0))}{\widetilde{F}_{\eta}^{\prime}(+\infty, 0, \widetilde{\eta}(+\infty, 0))}=-\frac{S_{10}+S_{01}}{S_{01}}=0
$$

Thus, condition 2) is not satisfied, and we cannot apply Lemma 2 to the equation (20).

Since $f_{\xi \xi}^{\prime \prime}(t, \xi)=\widetilde{\eta}_{\xi \xi}^{\prime \prime}(t, \xi)$, therefore

$$
f_{\xi \xi}^{\prime \prime}(+\infty, 0)=\widetilde{\eta}_{\xi \xi}^{\prime \prime}(+\infty, 0)=-\frac{S}{\ell S_{01}^{3}}=-\frac{2}{\lambda_{1} \ell} .
$$

Consider the auxiliary differential equation with respect to ξ_{1} :

$$
\xi_{1}^{\prime}=-\frac{v^{\prime}(t)}{\lambda_{1} \ell v(t)} \xi_{1}^{2}
$$

and find one of its non-trivial solutions:

$$
\xi_{1}=\frac{\lambda_{1} \ell}{\ln v(t)}, \quad 0 \neq \xi(t)_{1} \in \mathrm{C}_{\Delta\left(t_{1}\right)}^{1}\left(t_{1} \geq t_{0}\right), \quad \xi_{1}(+\infty)=0
$$

We consider the question on the existence in the equation (20) of solutions of the form $\xi=\xi_{1}(1+\widetilde{\xi})$, where $\widetilde{\xi}(t) \in \mathrm{C}_{\Delta\left(t_{1}\right)}^{1}, \widetilde{\xi}(+\infty)=0$. For the unknown function $\widetilde{\xi}$ we obtain the following differential equation:

$$
\begin{gather*}
\widetilde{\xi}^{\prime}=\frac{v^{\prime} \xi_{1}}{v}\left(-\frac{1}{\xi_{1}}-\frac{v \xi_{1}^{\prime}}{v^{\prime} \xi_{1}^{2}}+\left(-\frac{1}{\xi_{1}}-\frac{v \xi_{1}^{\prime}}{v^{\prime} \xi_{1}^{2}}\right) \widetilde{\xi}+\frac{\widetilde{\eta}\left(t, \xi_{1}(1+\widetilde{\xi})\right)}{\xi_{1}^{2}}\right), \tag{25}\\
(t, \widetilde{\xi}) \in D_{4}, D_{4}=\Delta\left(t_{1}\right) \times\left[-h_{4} ; h_{4}\right]\left(0<h_{4} \leq \widetilde{h_{1}}\right), \frac{v(t) \xi_{1}^{\prime}(t)}{v^{\prime}(t) \xi_{1}^{2}(t)} \equiv-\frac{1}{\lambda_{1} \ell} .
\end{gather*}
$$

Let us show that the conditions 1)-3) of Lemma 2 are satisfied for the equation (25). In this case we have:

$$
\begin{aligned}
\alpha(t) & =\frac{v^{\prime}(t) \xi_{1}}{v(t)}=\frac{\lambda_{1} \ell v^{\prime}(t)}{v(t) \ln v(t)} \\
f(t, \widetilde{\xi}) & =-\frac{1}{\xi_{1}}+\frac{1}{\lambda_{1} \ell}+\left(-\frac{1}{\xi_{1}}+\frac{1}{\lambda_{1} \ell}\right) \widetilde{\xi}+\frac{\widetilde{\eta}\left(t, \xi_{1}(1+\widetilde{\xi})\right)}{\xi_{1}^{2}} .
\end{aligned}
$$

Using the properties of functions $v(t), \widetilde{\eta}(t, \xi), \xi_{1}(t)$, we obtain:

1) $0 \neq \alpha(t) \in \mathrm{C}\left(\Delta\left(t_{1}\right)\right), \int_{t_{1}}^{+\infty} \alpha(t) d t=\lambda_{1} \ell \int_{t_{1}}^{+\infty} \frac{v^{\prime}(t)}{v(t) \ln v(t)} d t=\infty$;
2) $f(t, \widetilde{\xi}) \in \mathrm{C}_{t}^{0 \infty}\left(D_{4}\right)$;

$$
\begin{aligned}
f(t, 0) & =-\frac{1}{\xi_{1}}+\frac{1}{\lambda_{1} \ell}+\frac{\widetilde{\eta}\left(t, \xi_{1}\right)}{\xi_{1}^{2}} \\
f_{\widetilde{\xi}}^{\prime}(t, \widetilde{\xi}) & =-\frac{1}{\xi_{1}}+\frac{1}{\lambda_{1} \ell}+\frac{\widetilde{\eta}_{\xi}^{\prime}\left(t, \xi_{1}(1+\widetilde{\xi})\right)}{\xi_{1}} \\
f_{\widetilde{\xi}}^{\prime}(t, 0) & =-\frac{1}{\xi_{1}}+\frac{1}{\lambda_{1} \ell}+\frac{\widetilde{\eta}_{\xi}^{\prime}\left(t, \xi_{1}\right)}{\xi_{1}}
\end{aligned}
$$

Let us expand the functions $\widetilde{\eta}\left(t, \xi_{1}\right)$ and $\widetilde{\eta}_{\xi}^{\prime}\left(t, \xi_{1}\right)$ with respect to the variable ξ_{1} in D_{4} using the Maclaurin's formula:

$$
\begin{aligned}
\widetilde{\eta}\left(t, \xi_{1}\right) & =\widetilde{\eta}(t, 0)+\widetilde{\eta}_{\xi_{1}}^{\prime}(t, 0) \xi_{1}+\frac{1}{2} \widetilde{\eta}_{\xi_{1}^{2}}^{\prime \prime}(t, 0) \xi_{1}^{2}+O\left(\xi_{1}^{3}\right) \\
\widetilde{\eta}_{\xi}^{\prime}\left(t, \xi_{1}\right) & =\widetilde{\eta}_{\xi}^{\prime}(t, 0)+\widetilde{\eta}_{\xi \xi_{1}}^{\prime \prime}(t, 0) \xi_{1}+O\left(\xi_{1}^{2}\right)
\end{aligned}
$$

Using Lemma 1, we obtain:

$$
\begin{gathered}
\widetilde{\eta}(t, 0) \sim-\frac{\ell \psi_{00}(t)}{S_{01}+o(1)} \\
\widetilde{\eta}_{\xi_{1}}^{\prime}(t, 0)=\widetilde{\eta}_{\xi}^{\prime}(t, 0)= \\
=-\frac{\sum_{i=1}^{s} \alpha_{i} c_{i}^{*} \ell^{\alpha_{i}-1}(\ell+\widetilde{\eta}(t, 0))^{\beta_{i}}+\sum_{k=1}^{n} \alpha_{k} \varepsilon_{k}(t) \ell^{\alpha_{k}-1}(\ell+\widetilde{\eta}(t, 0))^{\beta_{k}}}{\sum_{i=1}^{s} \beta_{i} c_{i}^{*} \ell^{\alpha_{i}}(\ell+\widetilde{\eta}(t, 0))^{\beta_{i}-1}+\sum_{k=1}^{n} \beta_{k} \varepsilon_{k}(t) \ell^{\alpha_{k}}(\ell+\widetilde{\eta}(t, 0))^{\beta_{k}-1}} \\
\widetilde{\eta}_{\xi_{1}}^{\prime}(+\infty, 0)=\widetilde{\eta}_{\xi}^{\prime}(+\infty, 0)=-\frac{S_{10}}{S_{01}} \\
\widetilde{\eta}_{\xi_{1}^{2}}^{\prime \prime}(+\infty, 0)=\widetilde{\eta}_{\xi \xi_{1}}^{\prime \prime}(+\infty, 0)=\widetilde{\eta}_{\xi^{2}}^{\prime \prime}(+\infty, 0)=-\frac{2}{\lambda_{1} \ell}
\end{gathered}
$$

Then

$$
\begin{aligned}
f(t, 0) & =\frac{\widetilde{\eta}(t, 0)}{\xi_{1}^{2}}+\frac{\widetilde{\eta}_{\xi_{1}}^{\prime}(t, 0)-1}{\xi_{1}}+\frac{1}{2} \widetilde{\eta}_{\xi_{1}^{2}}^{\prime \prime}(t, 0)+\frac{1}{\lambda_{1} \ell}+O\left(\xi_{1}\right) \\
f_{\tilde{\xi}}^{\prime}(t, 0) & =\frac{\widetilde{\eta}_{\xi}^{\prime}(t, 0)-1}{\xi_{1}}+\widetilde{\eta}_{\xi \xi_{1}}^{\prime \prime}(t, 0)+\frac{1}{\lambda_{1} \ell}+O\left(\xi_{1}\right)
\end{aligned}
$$

From the conditions (22), (23) and $S_{10}+S_{01}=0$ it follows that

$$
\begin{gathered}
\lim _{t \rightarrow+\infty} \frac{\widetilde{\eta}(t, 0)}{\xi_{1}^{2}}=-\lim _{t \rightarrow+\infty} \frac{\psi_{00}(t) \ln ^{2} v(t)}{\ell S_{01} \lambda_{1}^{2}}=0 \\
\lim _{t \rightarrow+\infty} \frac{\widetilde{\eta}_{\xi_{1}}^{\prime}(t, 0)-1}{\xi_{1}}=\lim _{t \rightarrow+\infty} \frac{\widetilde{\eta}_{\xi}^{\prime}(t, 0)-1}{\xi_{1}}= \\
\lim _{t \rightarrow+\infty} \frac{\ln v(t)}{\lambda_{1} S_{01}}\left(\sum_{k=0}^{\infty} \frac{S_{1 k}+S_{0 k+1}}{k!\ell^{k+1}} \widetilde{\eta}^{k}(t, 0)+\right. \\
\left.+\sum_{k=0}^{\infty} \frac{\psi_{1 k}+\psi_{0 k+1}}{k!\ell^{k+1}} \widetilde{\eta}^{k}(t, 0)\right)=0, \\
\lim _{t \rightarrow+\infty}\left(\frac{1}{2} \widetilde{\eta}_{\xi_{1}^{2}}^{\prime \prime}(t, 0)+\frac{1}{\lambda_{1} \ell}\right)=0, \\
\lim _{t \rightarrow+\infty}\left(\frac{1}{2} \widetilde{\eta}_{\xi \xi_{1}}^{\prime \prime}(t, 0)+\frac{1}{\lambda_{1} \ell}\right)=-\frac{1}{\lambda_{1} \ell} .
\end{gathered}
$$

As a result, we have found that $f(+\infty, 0)=0, f_{\tilde{\xi}}^{\prime}(+\infty, 0)=-\frac{1}{\lambda_{1} \ell} \neq 0$.
3) Since

$$
\begin{gathered}
f_{\tilde{\xi}^{2}}^{\prime \prime}(t, \widetilde{\xi})=\widetilde{\eta}_{\xi^{2}}^{\prime \prime}\left(t, \xi_{1}(1+\widetilde{\xi})\right), \quad f_{\xi^{2}}^{\prime \prime}(t, 0)=\widetilde{\eta}_{\xi^{2}}^{\prime \prime}\left(t, \xi_{1}\right)=\widetilde{\eta}_{\xi^{2}}^{\prime \prime}(t, 0)+O\left(\xi_{1}\right) \\
f_{\tilde{\xi}^{2}}^{\prime \prime}(+\infty, 0)=\widetilde{\eta}_{\xi^{2}}^{\prime \prime}(+\infty, 0)=-\frac{2}{\lambda_{1} \ell} \neq 0
\end{gathered}
$$

the condition 3) of Lemma 2 is automatically satisfied.
Then the differential equation (25) satisfies the conditions of Lemma 2, where since $\operatorname{sign}\left(\frac{v^{\prime} \xi_{1}}{\lambda_{1} \ell v}\right)=1$, there exists for the fixed ℓ a one-parameter set of o-solutions of the equation (25) in $\Delta\left(t_{1}\right)$.

Finally, having the dimension of the set of o-solutions of the equation (25), we have likewise obtained the dimension of a set of R-solutions of the equation (1) with the asymptotic properties (24) in $\Delta\left(t_{1}\right)$.

Consider now separately the exponential asymptotics $v_{4}=e^{\ell_{0}|I(a, t)|}$ (the values of the constants and functions we used, have been identified previously). We proceed from the assumption that of principal importance remain the first s terms, and also the fact that

1) $\alpha_{k}+\beta_{k}=\alpha_{1}+\beta_{1} \neq 0(k=\overline{2, s})$;
2) $\alpha_{k}+\beta_{k}=\alpha_{1}+\beta_{1} \neq 0\left(k=\overline{s+1, s_{1}}\right)$;
3) $\alpha_{k}+\beta_{k} \neq \alpha_{1}+\beta_{1}\left(k=\overline{s_{1}+1, n}\right)$.

The possibility that the summands with powers of type 2) or 3) are absent is not excluded.

The assumptions 1)-3) and the condition (18) imply that the condition (19) is not satisfied, as

$$
\begin{aligned}
S_{10}+S_{01}=\sum_{i=1}^{s} \alpha_{i} & c_{i}^{*} \ell^{\alpha_{i}+\beta_{i}}+\sum_{i=1}^{s} \beta_{i} c_{i}^{*} \ell^{\alpha_{i}+\beta_{i}}= \\
= & \sum_{i=1}^{s}\left(\alpha_{i}+\beta_{i}\right) c_{i}^{*} \ell^{\alpha_{i}+\beta_{i}}=\left(\alpha_{1}+\beta_{1}\right) \sum_{i=1}^{s} c_{i}^{*} \ell^{\alpha_{i}+\beta_{i}}=0
\end{aligned}
$$

Therefore, Theorem 1 cannot be applied to the given asymptotics. If Theorem 2 is likewise not satisfied, then under certain conditions we can achieve fulfilment of the conditions of Theorem 2 by defining the asymptotics $v_{4}(t)$ more exactly.

Consider the more precise asymptotics

$$
\begin{equation*}
v_{41}(t)=e^{\ell_{0} \int_{a}^{t} I_{t}^{\prime}(a, t)(1+z(t)) d t} \tag{26}
\end{equation*}
$$

where

$$
\begin{gathered}
I_{t}^{\prime}(a, t)=\left|\frac{p_{1}(t)}{p_{2}(t)}\right|^{\frac{1}{\beta_{2}-\beta_{1}}} \\
z(t) \in \mathrm{C}_{\Delta(a)}, \quad z(+\infty)=0 \Longrightarrow v_{41}(+\infty)=v_{4}(+\infty)=0 \vee+\infty .
\end{gathered}
$$

A solution will be sought in the form

$$
\begin{equation*}
y(t)=v_{41}(t)(\ell+\xi(t)) \tag{27}
\end{equation*}
$$

where $\xi(t) \in \mathrm{C}_{\Delta(a)}^{1}, \xi(+\infty)=0$.
Differentiating the equation (27), we obtain:

$$
\begin{gather*}
y^{\prime}(t)=v_{41}^{\prime}(t)(\ell+\eta(t)) \tag{28}\\
\eta(t)=\xi(t)+\frac{v_{41}(t)}{v_{41}^{\prime}(t)} \xi^{\prime}(t), \quad \eta(t) \in \mathrm{C}_{\Delta(a)} .
\end{gather*}
$$

The condition $y^{\prime}(t) \sim \ell v_{41}^{\prime}(t)$ requires the assumption that $\eta(+\infty)=0$. Substituting (27) and (28) into the equation (1), we obtain the equality:

$$
\begin{equation*}
\sum_{k=1}^{n} p_{k}(t)\left(v_{41}(t)\right)^{\alpha_{k}}\left(v_{41}^{\prime}(t)\right)^{\beta_{k}}(\ell+\xi)^{\alpha_{k}}(\ell+\eta)^{\beta_{k}}=0 \tag{29}
\end{equation*}
$$

In the equation (29) we put $\xi=0, \eta=0$ and get

$$
\begin{equation*}
\sum_{k=1}^{n} \ell^{\alpha_{k}+\beta_{k}} p_{k}(t)\left(v_{41}(t)\right)^{\alpha_{k}}\left(v_{41}^{\prime}(t)\right)^{\beta_{k}}=0 \tag{30}
\end{equation*}
$$

In accordance with the condition B), indicated in the statement of the problem, we consider the relations of the functions:

$$
\begin{gather*}
\frac{p_{i}(t)\left(v_{41}(t)\right)^{\alpha_{i}}\left(v_{41}^{\prime}(t)\right)^{\beta_{i}}}{p_{1}(t)\left(v_{41}(t)\right)^{\alpha_{1}}\left(v_{41}^{\prime}(t)\right)^{\beta_{1}}}=\left(c_{i}^{*}+\varepsilon_{i}(t)\right)(1+z(t))^{\beta_{i}-\beta_{1}}=c_{i}^{*}+\varepsilon_{i 1}(t), \tag{31}\\
\varepsilon_{i 1}(+\infty)=0 \quad(i=\overline{1, s})
\end{gather*}
$$

$$
\begin{align*}
\frac{p_{j}(t)\left(v_{41}(t)\right)^{\alpha_{j}}\left(v_{41}^{\prime}(t)\right)^{\beta_{j}}}{p_{1}(t)\left(v_{41}(t)\right)^{\alpha_{1}}\left(v_{41}^{\prime}(t)\right)^{\beta_{1}}} & =\varepsilon_{j}(t)(1+z(t))^{\beta_{j}-\beta_{1}}=\varepsilon_{j 1}(t), \tag{32}\\
\varepsilon_{j 1}(+\infty) & =0\left(j=\overline{\left.s+1, s_{1}\right)} ;\right. \\
\frac{p_{k}(t)\left(v_{41}(t)\right)^{\alpha_{k}}\left(v_{41}^{\prime}(t)\right)^{\beta_{k}}}{p_{1}(t)\left(v_{41}(t)\right)^{\alpha_{1}}\left(v_{41}^{\prime}(t)\right)^{\beta_{1}}} & =\frac{e^{\ell_{0}\left(\alpha_{k}+\beta_{k}\right) \int_{a}^{t} I_{t}^{\prime}(a, t)(1+z(t)) d t}}{\ell_{0}\left(\alpha_{1}+\beta_{1}\right) \int_{a}^{t} I_{t}^{\prime}(a, t)(1+z(t)) d t} \times \\
\times(1+z(t))^{\beta_{k}-\beta_{1}} & =\varepsilon_{k 1}(t) \quad\left(k=\overline{s_{1}+1, n}\right) \tag{33}
\end{align*}
$$

where

$$
\lim _{t \rightarrow+\infty} \frac{e^{\ell_{0}\left(\alpha_{k}+\beta_{k}\right) \int_{a}^{t} I_{t}^{\prime}(a, t) d t}}{e^{\ell_{0}\left(\alpha_{1}+\beta_{1}\right) \int_{a}^{t} I_{t}^{\prime}(a, t) d t}}=0 \Longrightarrow \varepsilon_{k 1}(+\infty)=0 \quad\left(k=\overline{s_{1}+1, n}\right)
$$

Then, after the division by $p_{1}(t)\left(v_{41}(t)\right)^{\alpha_{1}}\left(v_{41}^{\prime}(t)\right)^{\beta_{1}}$, the equation (30) takes the form:

$$
\begin{aligned}
& \ell^{\alpha_{1}+\beta_{1}}\left(\sum_{i=1}^{s} c_{i}^{*}(1+z(t))^{\beta_{i}-\beta_{1}}+\sum_{j=1}^{s_{1}} \varepsilon_{j}(t)(1+z(t))^{\beta_{j}-\beta_{1}}\right)+ \\
& \quad+\sum_{k=s_{1}+1}^{n} \frac{e^{\ell_{0}\left(\alpha_{k}+\beta_{k}\right) \int_{a}^{t} I_{t}^{\prime}(a, t)(1+z(t)) d t}}{e^{\ell_{0}\left(\alpha_{1}+\beta_{1}\right) \int_{a}^{t} I_{t}^{\prime}(a, t)(1+z(t)) d t}(1+z(t))^{\beta_{k}-\beta_{1}} \ell^{\alpha_{k}+\beta_{k}}=0}
\end{aligned}
$$

or

$$
\begin{align*}
F(t, z)= & \ell^{\alpha_{1}+\beta_{1}}\left(\sum_{i=1}^{s} c_{i}^{*}(1+z)^{\beta_{i}}+\sum_{j=1}^{s_{1}} \varepsilon_{j}(t)(1+z)^{\beta_{j}}\right)+ \\
& +\sum_{k=s_{1}+1}^{n} \frac{e^{\ell_{0}\left(\alpha_{k}+\beta_{k}\right) \int_{a}^{t} I_{t}^{\prime}(a, t)(1+z(t)) d t}}{e^{\ell_{0}\left(\alpha_{1}+\beta_{1}\right) \int_{a}^{t} I_{t}^{\prime}(a, t)(1+z(t)) d t}(1+z)^{\beta_{k}} \ell^{\alpha_{k}+\beta_{k}}=0 .} \tag{34}
\end{align*}
$$

We introduce into consideration the domain $\widetilde{D}=\Delta(a) \times[-h ; h]$. The function $F(t, z) \in \mathrm{C}_{t z}^{0 \infty}(\widetilde{D})$.

We consider in \widetilde{D} a part of the function $F(t, z)$:

$$
\begin{equation*}
\widetilde{F}(t, z)=\ell^{\alpha_{1}+\beta_{1}}\left(\sum_{i=1}^{s} c_{i}^{*}(1+z)^{\beta_{i}}+\sum_{j=1}^{s_{1}} \varepsilon_{j}(t)(1+z)^{\beta_{j}}\right) \tag{35}
\end{equation*}
$$

Taking into account the conditions (16), (18), we get:

$$
\begin{aligned}
\widetilde{F}(+\infty, 0) & =0 \\
\widetilde{F}_{z}^{\prime}(+\infty, 0) & =S_{01} \neq 0 \\
\widetilde{F}_{z^{2}}^{\prime \prime}(+\infty, 0) & =S_{02}
\end{aligned}
$$

Then, by Lemma 1, the equation (35) determines a unique function $z=$ $\widetilde{z}(t, \xi)$, such that $\widetilde{z}(t) \in \mathrm{C}\left(\Delta\left(a_{1}\right)\right)\left(a_{1} \geq a\right), \widetilde{z}(+\infty)=0$.

As $\widetilde{z}(t)$ we take an approximate solution of the equation (35):

$$
\begin{equation*}
\widetilde{z}(t)=-\frac{\ell^{\alpha_{1}+\beta_{1}} \sum_{j=1}^{s_{1}} \varepsilon_{j}(t)}{S_{01}+\ell^{\alpha_{1}+\beta_{1}} \sum_{j=1}^{s_{1}} \beta_{j} \varepsilon_{j}(t)} \tag{36}
\end{equation*}
$$

Next, we will need the following functions:

$$
\begin{aligned}
& \widetilde{\psi}_{00}(t)=\sum_{k=1}^{n} \ell^{\alpha_{k}+\beta_{k}} \varepsilon_{k 1}(t) \\
& \widetilde{\psi}_{10}(t)=\sum_{k=1}^{n} \alpha_{k} \varepsilon_{k 1}(t) \ell^{\alpha_{k}+\beta_{k}} \\
& \widetilde{\psi}_{01}(t)=\sum_{k=1}^{n} \beta_{k} \varepsilon_{k 1}(t) \ell^{\alpha_{k}+\beta_{k}}
\end{aligned}
$$

We express $\tilde{\psi}_{00}(t), \widetilde{\psi}_{10}(t)+\tilde{\psi}_{01}(t)$ through the previously introduced functions:

$$
\begin{aligned}
\widetilde{\psi}_{00}(t) & =\sum_{k=1}^{n} \ell^{\alpha_{k}+\beta_{k}} \varepsilon_{k 1}(t)= \\
& =\frac{\widetilde{z}^{2}(t)}{(1+\widetilde{z}(t))^{\beta_{1}}}\left[S_{02}+\psi_{02}(t)+O(\widetilde{z})\right]=O\left(\psi_{00}^{2}(t)\right) \\
\widetilde{\psi}_{10}(t)+\widetilde{\psi}_{01}(t) & =\sum_{k=1}^{n}\left(\alpha_{k}+\beta_{k}\right) \varepsilon_{k 1}(t) \ell^{\alpha_{k}+\beta_{k}}= \\
& =\frac{\left(\alpha_{1}+\beta_{1}\right) \widetilde{z}^{2}(t)}{(1+\widetilde{z}(t))^{\beta_{1}}}\left[S_{02}+\psi_{02}(t)+O(\widetilde{z})\right]=O\left(\psi_{00}^{2}(t)\right)
\end{aligned}
$$

Thus, using Theorem 2, we formulate a theorem for the more precise asymptotics

$$
\begin{equation*}
v_{41}=e^{\ell_{0} \int_{a}^{t} I_{t}^{\prime}(a, t)(1+\tilde{z}(t)) d t} \tag{37}
\end{equation*}
$$

Theorem 3. Let for the function $v=v_{41}(t)$ of the form (37) the conditions of Theorem 1, except for (19), be fulfilled, and

$$
\begin{align*}
S & \neq 0, \tag{21}\\
S_{02} & \neq 0 \tag{38}\\
\psi_{00}(t) \ln v_{41}(t) & =o(1) \tag{39}
\end{align*}
$$

Then there exists a one-parameter set of R-solutions $y(t) \in \mathrm{C}_{\Delta\left(t_{1}\right)}^{1}$ of the differential equation (1) with the asymptotic properties

$$
\begin{equation*}
y(t)=v_{41}(t)(\ell+\xi(t)), \quad y^{\prime}(t) \sim \ell v_{41}^{\prime}(t) \tag{40}
\end{equation*}
$$

where $\xi(t) \sim \frac{\lambda_{1} \ell}{\ln v_{41}(t)}$.

The Existence and Asymptotics of R-Solutions of the

Equation (1) with the Condition $y(+\infty)=\gamma \in \mathbb{R}_{+}$
Since $y(+\infty)=\gamma \in \mathbb{R}_{+}$, a supposed asymptotics will be sought for the derivative of n-solutions $y^{\prime}(t)$ to within a constant factor of the ratio of the first two summands. Taking into account $p_{1}(t), p_{2}(t) \neq 0(t \in \Delta(a))$, we get:

$$
y^{\prime}(t) \dot{\sim} w(t)=\left|\frac{p_{1}(t)}{p_{2}(t)}\right|^{\frac{1}{\beta_{2}-\beta_{1}}} \quad\left(\beta_{1} \neq \beta_{2}\right)
$$

where $0<w(t) \in \mathrm{C}_{\Delta(a)}$.
In the sequel, we will need the assumption that

$$
\begin{equation*}
\int_{a}^{+\infty} w(t) d t<+\infty \tag{41}
\end{equation*}
$$

Let

$$
\begin{equation*}
y^{\prime}(t)=w(t)(\ell+\eta(t)) \tag{42}
\end{equation*}
$$

where $\ell, \ell^{\beta_{k}} \in \mathbb{R} \backslash\{0\}(k=\overline{1, n}) ; \eta(t) \in \mathrm{C}_{\Delta(a)}, \eta(+\infty)=0$.
Integrating (42), we obtain:

$$
y(t)=\gamma-\int_{t}^{+\infty} w(\tau)(\ell+\eta(\tau)) d \tau
$$

where $\gamma \in \mathbb{R}_{+}$. Next, we show that the constants ℓ and γ are related to each other by the equation (49).

Denoting

$$
\begin{equation*}
-\int_{t}^{+\infty} w(\tau)(\ell+\eta(\tau)) d \tau=\xi(t) \tag{43}
\end{equation*}
$$

$\xi(t) \in \mathrm{C}_{\Delta(a)}^{1}, \xi(+\infty)=0$, we obtain:

$$
\begin{equation*}
y(t)=\gamma+\xi(t) \tag{44}
\end{equation*}
$$

We substitute (42) and (44) into the equation (1) and obtain the equality:

$$
\begin{equation*}
F(t, \gamma+\xi, w(\ell+\eta))=\sum_{k=1}^{n} p_{k}(t)(\gamma+\xi)^{\alpha_{k}} w^{\beta_{k}}(\ell+\eta)^{\beta_{k}}=0 \tag{45}
\end{equation*}
$$

which is satisfied by the functions $\xi(t)$ and $\eta(t)$.
In accordance with the condition B), indicated in the statement of the problem, we assume that:

$$
\begin{equation*}
\frac{p_{i}(t)(w(t))^{\beta_{i}}}{p_{1}(t)(w(t))^{\beta_{1}}}=\widetilde{c}_{i}+\varepsilon_{i}(t), \quad \varepsilon_{i}(+\infty)=0, \quad \widetilde{c}_{i} \in \mathbb{R} \backslash\{0\} \quad(i=\overline{1, s}) \tag{46}
\end{equation*}
$$

$$
\begin{equation*}
\frac{p_{j}(t)(w(t))^{\beta_{j}}}{p_{1}(t)(w(t))^{\beta_{1}}}=\varepsilon_{j}(t), \quad \varepsilon_{j}(+\infty)=0 \quad(j=\overline{s+1, n}) \tag{47}
\end{equation*}
$$

Then, after the division by $p_{1}(t)(w(t))^{\beta_{1}}$, the equation (45) takes the form:

$$
\begin{align*}
\widetilde{F}(t, \xi, \eta)=\sum_{i=1}^{s}\left(\widetilde{c}_{i}+\varepsilon_{i}(t)\right)(\gamma & +\xi)^{\alpha_{i}}(\ell+\eta)^{\beta_{i}}+ \\
& +\sum_{j=s+1}^{n} \varepsilon_{j}(t)(\gamma+\xi)^{\alpha_{j}}(\ell+\eta)^{\beta_{j}}=0 \tag{48}
\end{align*}
$$

Obviously, the condition

$$
\begin{equation*}
\widetilde{F}(+\infty, 0,0)=\sum_{i=1}^{s} \widetilde{c}_{i} \gamma^{\alpha_{i}} \ell^{\beta_{i}}=0 \tag{49}
\end{equation*}
$$

is necessary for the existence of a solution of the form (44) and of its derivative of the form (42).

Theorem 4. Let a function $w(t)$ be a possible asymptotics of the derivative of R-solution of the equation (1), which satisfies the conditions (41), (46), (47). Moreover, let there exist $\gamma \in \mathbb{R}_{+}, \ell \in \mathbb{R} \backslash\{0\}$, satisfying the condition (49).

Then for the existence of R-solution $y(t) \in \mathrm{C}_{\Delta\left(t_{1}\right)}^{1}$ of the differential equation (1) with the asymptotic properties

$$
\begin{equation*}
y(t) \sim \gamma, \quad y^{\prime}(t) \sim \ell w(t) \tag{50}
\end{equation*}
$$

it is sufficient that the condition

$$
\begin{equation*}
\sum_{i=1}^{s} \beta_{i} \widetilde{c}_{i} \gamma^{\alpha_{i}} \ell^{\beta_{i}} \neq 0 \tag{51}
\end{equation*}
$$

be satisfied.
In this connection, for each pair (γ, ℓ) the differential equation (1) admits a unique R-solution $y(t)$ with the asymptotic properties (50).
Proof. Owing to its structure, the functions $\widetilde{F}(t, \xi, \eta) \in \mathrm{C}_{t \xi \eta}^{0 \infty \infty}\left(D_{1}\right), \frac{\partial^{n} \widetilde{F}}{\partial \xi^{n}}$, $\frac{\partial^{m} \widetilde{F}}{\partial \eta^{m}}, \frac{\partial^{n+m} \widetilde{F}}{\partial \xi^{n} \partial \eta^{m}}(n=\overline{1, \infty}, m=\overline{1, \infty})$ are bounded in D_{1}, where $D_{1}=$ $\Delta(a) \times\left[-h_{1} ; h_{1}\right] \times\left[-h_{2} ; h_{2}\right], 0<h_{1}<\gamma, 0<h_{2}<|\ell|$.

To prove the above theorem, we will need expressions of the derivatives of the function $\widetilde{F}(t, \xi, \eta)$ of first and order with respect to the variables ξ, η and also some of their properties:

$$
\begin{aligned}
\widetilde{F}_{\xi}^{\prime}(t, \xi, \eta)= & \sum_{i=1}^{s} \alpha_{i} \widetilde{c}_{i}(\gamma+\xi)^{\alpha_{i}-1}(\ell+\eta)^{\beta_{i}}+ \\
& +\sum_{k=1}^{n} \alpha_{k} \varepsilon_{k}(t)(\gamma+\xi)^{\alpha_{k}-1}(\ell+\eta)^{\beta_{k}}
\end{aligned}
$$

$$
\begin{aligned}
\widetilde{F}_{\xi}^{\prime}(+\infty, 0,0)= & \sum_{i=1}^{s} \alpha_{i} \widetilde{c}_{i} \gamma^{\alpha_{i}-1} \ell^{\beta_{i}}=\frac{1}{\gamma} \sum_{i=1}^{s} \alpha_{i} \widetilde{c}_{i} \gamma^{\alpha_{i}} \ell^{\beta_{i}} \\
\widetilde{F}_{\eta}^{\prime}(t, \xi, \eta)= & \sum_{i=1}^{s} \beta_{i} \widetilde{c}_{i}(\gamma+\xi)^{\alpha_{i}}(\ell+\eta)^{\beta_{i}-1}+ \\
& +\sum_{k=1}^{n} \beta_{k} \varepsilon_{k}(t)(\gamma+\xi)^{\alpha_{k}}(\ell+\eta)^{\beta_{k}-1} \\
\widetilde{F}_{\eta}^{\prime}(+\infty, 0,0)= & \sum_{i=1}^{s} \beta_{i} \widetilde{c}_{i} \gamma^{\alpha_{i}} \ell^{\beta_{i}-1}=\frac{1}{\ell} \sum_{i=1}^{s} \beta_{i} \widetilde{c}_{i} \gamma^{\alpha_{i}} \ell^{\beta_{i}} \neq 0
\end{aligned}
$$

by virtue of condition (51);

$$
\begin{aligned}
\widetilde{F}_{\eta \eta}^{\prime \prime}(t, \xi, \eta)= & \sum_{i=1}^{s} \beta_{i}\left(\beta_{i}-1\right) \widetilde{c}_{i}(\gamma+\xi)^{\alpha_{i}}(\ell+\eta)^{\beta_{i}-2}+ \\
& +\sum_{k=1}^{n} \beta_{k}\left(\beta_{k}-1\right) \varepsilon_{k}(t)(\gamma+\xi)^{\alpha_{k}}(\ell+\eta)^{\beta_{k}-2}
\end{aligned}
$$

Owing to the conditions (49), (51) and the properties of the function $\widetilde{F}(t, \xi, \eta)$, in some domain $D_{2} \subset D_{1}, D_{2}=\Delta\left(t_{0}\right) \times\left[-\widetilde{h}_{1} ; \widetilde{h}_{1}\right] \times\left[-\widetilde{h}_{2} ; \widetilde{h}_{2}\right]$, $t_{0} \geq a, 0<\widetilde{h}_{1} \leq h_{1}, 0<\widetilde{h}_{2}<\min \left\{h_{2} ; \frac{\left|\sum_{i=1}^{s} \beta_{i} \widetilde{c}_{i} \gamma^{\alpha_{i}} \ell^{\beta_{i}}\right|}{4 \ell \sup _{D_{1}}\left|\widetilde{F}_{\eta_{\eta}^{\prime \prime}(t, \xi, \eta)}\right|}\right\}$, the equation (48) satisfies the conditions of Lemma 1. Consequently, there exists a unique function $\eta=\widetilde{\eta}(t, \xi), \widetilde{\eta}(t, \xi) \in \mathrm{C}_{t \xi}^{0 \infty}\left(D_{3}\right)$, $\sup _{D_{3}}\left|\frac{\partial^{n} \tilde{\eta}}{\partial \xi^{n}}\right|<+\infty(n=\overline{1, \infty})$, such that $\widetilde{F}(t, \xi, \widetilde{\eta}(t, \xi)) \equiv 0, \widetilde{\eta}(+\infty, 0)=0,\|\widetilde{\eta}(t, \xi)\| \leq \widetilde{h}_{2}$. Moreover, we can write $\frac{\partial \widetilde{\eta}(t, \xi)}{\partial \xi}=-\frac{\widetilde{F}_{\xi}^{\prime}(t, \xi, \tilde{\eta})}{\widetilde{F}_{\eta}^{\prime}(t, \xi, \widetilde{\eta})}, \sup _{D_{3}}\left|\frac{\partial \widetilde{\eta}}{\partial \xi}\right|=M>0$.

In view of the replacement (43), we obtain the integral equation:

$$
\begin{equation*}
-\int_{t}^{+\infty} w(\tau)[\ell+\widetilde{\eta}(\tau, \xi(\tau))] d \tau=\xi(t) \tag{52}
\end{equation*}
$$

The solution of the equation (52) will be sought in the class $\xi(t) \in \mathrm{C}_{\Delta\left(t_{1}\right)}^{1}$ $\left(t_{1} \geq t_{0}\right)$.

Next, we consider and estimate the difference $\widetilde{\eta}\left(t, \xi_{2}\right)-\widetilde{\eta}\left(t, \xi_{1}\right),\left(t, \xi_{i}\right) \in$ $D_{3}(i=1,2)$, applying the Lagrange's theorem with respect to the variable ξ :

$$
\begin{gathered}
\left.\widetilde{\eta}\left(t, \xi_{2}\right)-\widetilde{\eta}\left(t, \xi_{1}\right)=\widetilde{\eta}_{\xi}^{\prime}\left(t, \xi^{*}\right)\left(\xi_{2}-\xi_{1}\right), \quad \xi^{*} \in\right] \xi_{1} ; \xi_{2}[; \\
\left|\widetilde{\eta}\left(t, \xi_{2}\right)-\widetilde{\eta}\left(t, \xi_{1}\right)\right| \leq \sup _{D_{3}}\left|\widetilde{\eta}_{\xi}^{\prime}(t, \xi)\right|\left|\xi_{2}-\xi_{1}\right|=M\left|\xi_{2}-\xi_{1}\right| .
\end{gathered}
$$

Assuming $\xi_{1}=0, \xi_{2}=\xi$, we get:

$$
|\widetilde{\eta}(t, \xi)| \leq M|\xi|
$$

To the equation (49) we out into the correspondence the operator

$$
\xi(t)=T(t, \widetilde{\xi}(t)) \equiv-\int_{t}^{+\infty} w(\tau)[\ell+\widetilde{\eta}(\tau, \widetilde{\xi}(\tau))] d \tau
$$

where $\widetilde{\xi}(t) \in B_{1} \subset B, B=\left\{\widetilde{\xi}(t): \widetilde{\xi}(t) \in \mathrm{C}_{\Delta\left(t_{1}\right)}^{1}, \widetilde{\xi}(+\infty)=0,\|\widetilde{\xi}(t)\|=\right.$ $\left.\sup _{\Delta\left(t_{1}\right)}|\widetilde{\xi}(t)|\right\}$ is the Banach space, $B_{1}=\left\{\widetilde{\xi}(t): \widetilde{\xi}(t) \in B,\|\widetilde{\xi}(t)\| \leq \widetilde{h}_{1}\right\}$ is a $\Delta\left(t_{1}\right)$ closed subset of the Banach space B.

Using the contraction mapping principle, we:

1) prove that if $\widetilde{\xi}(t) \in B_{1}$, then $\xi(t)=T(t, \widetilde{\xi}(t)) \in B_{1}: \widetilde{\xi}(t) \in \mathrm{C}_{\Delta\left(t_{1}\right)}^{1}$ and $\widetilde{\xi}(+\infty)=0$, and by virtue of the structure of the operator, we get $\xi(t) \in \mathrm{C}_{\Delta\left(t_{1}\right)}^{1}, \xi(+\infty)=0 ;$

$$
\begin{aligned}
\|\widetilde{\xi}(t)\| \leq & \widetilde{h}_{1} \\
& =\|\xi(t)\|=\|T(t, \widetilde{\xi}(t))\|= \\
& \left\|\int_{t}^{+\infty} w(\tau)[\ell+\widetilde{\eta}(\tau, \widetilde{\xi}(\tau))] d \tau\right\| \leq \int_{t_{1}}^{+\infty} w(\tau)\left(|\ell|+\widetilde{h}_{2}\right) d \tau \leq \widetilde{h}_{1}
\end{aligned}
$$

if t_{1} is sufficiently large.
2) check the condition of contraction:

$$
\begin{aligned}
\widetilde{\xi}_{1}(t), \widetilde{\xi}_{2}(t) \in B_{1} & \Longrightarrow\left\|\xi_{2}(t)-\xi_{1}(t)\right\|= \\
=\| & \int_{t}^{+\infty} w(\tau)\left[\widetilde{\eta}\left(\tau, \widetilde{\xi}_{2}(\tau)\right)-\widetilde{\eta}\left(\tau, \widetilde{\xi}_{1}(\tau)\right)\right] d \tau \| \leq \\
& \leq M \int_{t_{1}}^{+\infty} w(\tau) d \tau\left\|\widetilde{\xi}_{2}(t)-\widetilde{\xi}_{1}(t)\right\|=\gamma\left\|\widetilde{\xi}_{2}(\tau)-\widetilde{\xi}_{1}(\tau)\right\|
\end{aligned}
$$

where $\gamma=M \int_{t_{1}}^{+\infty} w(\tau) d \tau<1$, if t_{1} is sufficiently large.
Thus, t_{1} should necessarily be such that

$$
\int_{t_{1}}^{+\infty} w(\tau) d \tau<\min \left\{\frac{\widetilde{h}_{1}}{|\ell|+\widetilde{h}_{2}}, \frac{1}{M}\right\}
$$

As a result, we have found that by the contractive mapping principle the equation (52) admits a unique solution $\xi=\widetilde{\xi}(t) \in B_{1}$.

Thus, we have obtained that for each pair of constants (γ, ℓ), satisfying the condition (49), the differential equation (1) admits a unique R-solution $y(t)$ with the asymptotic properties (50) in $\Delta\left(t_{1}\right)$. Thus the Theorem is complete.

References

1. A. V. Kostin, The asymptotic properties of solutions of first order ordinary differential equations. (Russian). Differencial'nye Uravnenija 4 (1968), 1184-1195.
2. A. V. Kostin, On the question of the existence of bounded particular solutions and of particular solutions tending to zero as $t \rightarrow+\infty$ for a system of ordinary differential equations. (Russian) Differencial'nye Uravnenija 1 (1965), 585-604.
3. A. V. Kostin, Asymptotics of the regular solutions of nonlinear ordinary differential equations. (Russian) Differentsial'nye Uravneniya 23 (1987), No. 3, 524-526.
4. A. V. Kostin, Stability and asymptotics of quasilinear nonautonomous differential systems. (Russian) Uchebnoe posobie, Izd-vo OGU, Odessa, 1984.
(Received 13.07.2011)

Authors' address:

Odessa I. I. Mechnikov National University, 2 Dvoryanskaya St., Odessa 65082, Ukraine.

E-mail: a_kostin@ukr.net; koltsova.liliya@gmail.com

