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Abstract. In the monograph we investigate three—dimensional interface
crack problems for metallic-piezoelectric composite bodies with regard to
thermal effects. We give a mathematical formulation of the physical prob-
lems when the metallic and piezoelectric bodies are bonded along some
proper parts of their boundaries where interface cracks occur. By the
potential method the interface crack problems are reduced to equivalent
strongly elliptic systems of pseudodifferential equations on manifolds with
boundary. We study the solvability of these systems in appropriate func-
tion spaces and prove uniqueness and existence theorems for the original
interface crack problems. We analyse the regularity properties of the cor-
responding thermo-mechanical and electric fields near the crack edges and
near the curves where the different boundary conditions collide. In particu-
lar, we characterize the stress singularity exponents and show that they can
be explicitly calculated with the help of the principal homogeneous sym-
bol matrices of the corresponding pseudodifferential operators. We expose
some numerical calculations which demonstrate that the stress singularity
exponents depend on the material parameters essentially.
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INTRODUCTION

The monograph is dedicated to investigation of a mathematical model
describing the interaction of the elastic, thermal, and electric fields in a
three-dimensional composite structure consisting of a piezoelectric (ceramic)
matrix and metallic inclusions (electrodes) bonded along some proper parts
of their boundaries where interface cracks occur.

In spite of the fact that the piezoelectric phenomena were discovered long
ago (see, e.g., [74]), the practical use of piezoelectric effects became possi-
ble only when piezoceramics and other materials (metamaterials) with pro-
nounced piezoelectric properties were constructed. Nowadays, sensors and
actuators made of such materials are widely used in medicine, aerospace,
various industrial and domestic appliances, measuring and controlling de-
vices. Therefore investigation of the mathematical models for such com-
posite materials and analysis of the corresponding thermo-mechanical and
electric fields became very actual and important for fundamental research
and practical applications (for details see [31,32,46-48,52,59,61,70,71] and
the references therein).

Due to great theoretical and practical importance, problems of ther-
mopiezoelectricity became very popular among mathematicians and engi-
neers. Due to the references [34-42], during recent years more then 1000 sci-
entific papers have been published annually! Most of them are engineering-
technical papers dealing with the two-dimensional case.

Here we consider a general three-dimensional interface crack problem
(ICP) for an anisotropic piezoelectric-metallic composite with regard to
thermal effects and perform a rigorous mathematical analysis by the po-
tential method. Similar problems for different type of metallic-piezoelastic
composites without cracks and with interior cracks have been considered
in [6-8].

In our analysis, we apply the Voigt’s linear model in the piezoelectric
part and the usual classical model of thermoelasticity in the metallic part
to write the corresponding coupled systems of governing partial differential
equations (see, e.g., [33,56-58,74]). As a result, in the piezoceramic part
the unknown field is represented by a 5-component vector (three compo-
nents of the displacement vector, the electric potential function and the
temperature), while in the metallic part the unknown field is described by a
4-component vector (three components of the displacement vector and the
temperature). Therefore, the mathematical modeling becomes complicated
since we have to find reasonable efficient boundary, transmission and crack
conditions for the physical fields possessing different dimensions in adjacent
domains.

Since the crystal structures with central symmetry, in particular isotropic
structures, do not reveal the piezoelectric properties in Voight’s model, we
have to consider anisotropic piezoelectric media. This also complicates the
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investigation. Thus, we have to take into account the composed anisotropic
structure and the diversity of the fields in the ceramic and metallic parts.

The essential motivation for the choice of the interface crack problems
treated in the monograph is that in a piezoceramic material, due to its
brittleness, cracks arise often, especially when a piezoelectric device works
at high temperature regime or under an intensive mechanical loading. The
influence of the electric field on the crack growth has a very complex char-
acter. Experiments revealed that the electric field can either promote or
retard the crack growth, depending on the direction of polarization and can
even close an open crack [59].

As it is well known from the classical mathematical physics and the classi-
cal elasticity theory, in general, solutions to crack type and mixed boundary
value problems have singularities near the crack edges and near the lines
where different boundary conditions collide, regardless of the smoothness of
given boundary data. The same effect can be observed in the case of our in-
terface crack problems; namely, singularities of electric, thermal and stress
fields appear near the crack edges and near the lines, where the boundary
conditions collide and where the interfaces intersect the exterior boundary.
Throughout the monograph we shall refer to such lines as exceptional curves.

In this monograph, we apply the potential method and reduce the ICPs to
the equivalent system of pseudodifferential equations (¥DEs) on a proper
part of the boundary of the composed body. We analyse the solvability
of the resulting boundary-integral equations in Sobolev-Slobodetskii (W),
Bessel potential (/;), and Besov (B ;) spaces and prove the correspond-
ing uniqueness and existence theorems for the original ICPs. Moreover,
our main goal is a detailed theoretical investigation of regularity properties
of thermo-mechanical and electric fields near the exceptional curves and
qualitative description of their singularities.

The monograph is organized as follows. In Section 1, we collect the field
equations of the linear theory of thermoelasticity and thermopiezoelastic-
ity, introduce the corresponding matrix partial differential operators and the
generalized matrix boundary stress operators generated by the field equa-
tions, and formulate the boundary-transmission problems for a composed
body consisting of metallic and piezoelectric parts with interface cracks. De-
pending on the physical properties of the metallic and piezoelectric materials
and on surrounding media, one can consider different boundary, transmis-
sion and crack conditions for the thermal and electric fields. In particular,
depending on the thermal insulation and dielectric properties of the crack
gap, we present and discuss four possible mathematical models in Subsec-
tion 1.5, which are formulated as the interface crack problems:

(ICP-A) - the crack gap is thermally insulated dielectric,
(ICP-B) - the crack gap is thermally and electrically conductive,
(ICP-C) - the crack gap is thermally insulated and electrically con-
ductive, and
e (ICP-D) - the crack gap is heat-conducting dielectric.
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Using Green’s formulas, for these problems we prove the uniqueness theo-
rems in appropriate function spaces.

Section 2 is devoted to the theory of pseudodifferential equations on
manifolds with and without boundary which plays a crucial role in our
analysis.

In Sections 3 and 4, we investigate properties of potential operators and
prove some auxiliary assertions needed in our analysis. In particular, we
study mapping properties of layer potentials and the corresponding bound-
ary integral (pseudodifferential) operators in Sobolev—Slobodetskii, Bessel
potential and Besov function spaces and establish Plemelji’s type jump re-
lations. We derive special representation formulas of solutions in terms of
generalized layer potentials.

Sections 5 and 6 are the main parts of the present monograph. In Sec-
tion 5, the interface crack problem (ICP-A) is reduced equivalently to the
system of YDEs on manifolds with boundary and full analysis of solvability
of these equations is given. Properties of the principal homogeneous symbol
matrices are studied in detail and the existence, regularity and asymptotic
properties of the solution fields are established. In particular, the global
C *-regularity results are shown with some o € (0, 3). The exponent «
is defined by the eigenvalues of a matrix which is explicitly constructed
by the homogeneous symbol matrix of the corresponding pseudodifferential
operator. In turn, these eigenvalues depend on the material parameters, in
general. The exponent « actually defines the singularity exponents for the
first order derivatives of solutions. In particular, they define stress singu-
larity exponents. These questions are discussed in detail in Subsections 5.3
and 5.4. We calculate these exponents for particular cases explicitly, demon-
strate their dependence on the material parameters and discuss problems
related to the oscillating stress singularities. In Subsection 5.5, we present
some numerical results and compare stress singularities at different type
exceptional curves. As computations have shown, the stress singularities
at the exceptional curves are different from —0.5 and essentially depend on
the material parameters. We recall that for interior cracks the stress singu-
larities do not depend on the material parameters and equal to —0.5 (see,
e.g., [5,13,19,30,61]).

In Section 6, we consider the interface crack problem (ICP-B) which is
reduced equivalently to a nonclassical system of boundary pseudodifferen-
tial equations which essentially differs from the system of pseudodifferential
equations which appears in the study of the problem (ICP-A). This system
is very involved, contains different dimensional matrix operators defined
on overlapping submanifolds. Here we apply a different approach to carry
out our analysis in order to prove the existence and regularity results for
solutions of the problem (ICP-B). We study the asymptotic properties of
solutions near the exceptional curves and characterize the corresponding
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stress singularity exponents. It is shown that these exponents again essen-
tially depend on material parameters. The same approach can be applied
to the problems (ICP-C) and (ICP-D).

1. FORMULATION OF THE BASIC PROBLEMS AND UNIQUENESS RESULTS

1.1. Geometrical description of the composite configuration. Let
Q (™) and Q be bounded disjoint domains of the three-dimensional Euclidean
space R3 with boundaries Q™ and 09, respectively. Moreover, let 99 and
9Q(™) have a nonempty, simply connected intersection I (™) of a positive
measure, i.e., 02NN =T (M) mesT (™) > 0. From now on I' ™) will be
referred to as an interface surface. Throughout the paper n and v = n (™)
stand for the outward unit normal vectors to 9Q and to 9 (™| respectively.
Clearly, n(z) = —v(x) for z € T (™),

Further, let T (m) = F}’”)uré’”), where Fém) is an open, simply connected

proper part of I' ™). Moreover, F}m) N Fém) =@ and I (™) N Fém) =g.

We set Sjs,m) = 0Q M\ T (m) and S* := 90 \ T' (™). Further, we denote
by Sp some open, nonempty, proper sub-manifold of S* and put Sy :=
S*\ Sp. Thus, we have the following dissections of the boundary surfaces
(see Figure 1)

o =T"uri™ uSyuSy, a9 =rimuri™usi.

Throughout the paper, for simplicity, we assume that 9Q ™) 99, 95 Js,m),

ar\™ arl™. aSp, 89Sy are C*-smooth and dQ™ NS, = @, if not
otherwise stated. Some results, obtained in the paper, also hold true when
these manifolds and their boundaries are Lipschitz and we formulate them
separately.

Let Q be filled by an anisotropic homogeneous piezoelectric medium (ce-
ramic matrix) and 2 (m) be occupied by an isotropic or anisotropic homoge-
neous elastic medium (metallic inclusion). These two bodies interact along
the interface I' ™) where the interface crack I‘ém) occurs. Moreover, it is
assumed that the composed body is fixed along the sub-surface Sp (the

Dirichlet part of the boundary), while the sub-manifolds Sj(vm) and Sy are
the Neumann parts of the boundary (where the Neumann type boundary
conditions are prescribed). In the metallic domain Q™) we have a clas-
sical four-dimensional thermoelastic field represented by the displacement

vector u (™) = (ul(m), u2(m), uém))‘r and temperature distribution function

u4(m) =9 ("™) while in the piezoelectric domain  we have a five-dimensional
physical field described by the displacement vector u = (uy,u2,u3) ", tem-
perature distribution function u4 = 19 and the electric potential us = .

1.2. Thermoelastic field equations. Here we collect the field equations
of the linear theory of thermoelasticity and introduce the corresponding
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FIGURE 1. Metallic-piezoelectric composite

matrix partial differential operators (see [33,58]). We will treat the general
anisotropic case.

The basic governing equations of the classical thermoelasticity read as
follows:

Constitutive relations:
s = 2719, ul™ 40, ul™), (1.1)
(m) (m) (m) _(m) (m) 9 (m) _ cz(ﬂlk) alulgm) (m) 19(771)7 (1.2)

Oij ~ =05 = Cyke Sue ™ — Vig — Vij
Sm) — %(;n) si(;n) + o™ [To(m)]_1 ASON (1.3)
Fourier Law:
g™ =" T, (1.4)
Equations of motion:
gio ™ + X[ = ™) 92y ™ (1.5)

Equation of the entropy balance:
T 9,8 ™ = —0;0™ + X, (1.6)

Here v (™) = (ul(m), uém), uém))T is the displacement vector, ¢ (™) = 7 (™) —
To(m) is the relative temperature (temperature increment); O'k(;-n) is the

stress tensor in the theory of thermoelasticity, 3,5;71) is the strain tensor,

qm = (ql(m)7 qz(m), q?fm))T is the heat flux vector; S (™) is the entropy den-
) (m)

sity, 0 (") is the mass density, Cz‘(;:l are the elastic constants, %k;-n are the
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thermal conductivity constants; To(m) > ( is the initial temperature, that is

the temperature in the natural state in the absence of deformation and elec-
tromagnetic fields; ,Yk(;n) are the thermal strain constants; a (™) = o (™) z(m)
are the thermal material constants; ¢ (") is the specific heat per unit mass;
X (m) = (Xl(m),XQ(m),Xg(m))T is a mass force density; X4(m) is the heat
source density; we employ the notation

0= 81 = (61,82,83), 8j = a/ﬁzj, 8,5 = 8/815

The superscript (-) " denotes transposition operation.

Throughout the paper the Einstein convention about the summation over
the repeated indices is meant from 1 to 3, unless stated otherwise.

Constants involved in the above equations satisfy the symmetry condi-
tions:

cz(;:l) _Cj(lkl) _ck(llj)7 ’71_(] e _Wj(zm)7 %zgm) _%(m)7 ivju k7 I= 1; 27 3. (17)
Note that for an isotropic medium the thermomechanical coefficients are

1(;;2) = A 5,5 80y, 4+ ™ (840 651 + ik 550),
%-(j ™ =y 5, %f}-”’ = =" 55,

where A (™) and 1 (™) are the Lamé constants and di; is Kronecker’s delta.

We assume that there are positive constants ¢y and c¢; such that

ZJkl gz] gkl Co 51] 51_]7 515] C1 gz gz
for all gij = §ji S R, fj € R.
In particular, the first inequality implies that the density of potential energy

B 0,0 ) = ) o) o

(1.8)

corresponding to the displacement vector u (™), is positive definite with
respect to the symmetric components of the strain tensor sl(k m) s,ilm).

Substituting (1.2) into (1.5) leads to the system of equations:
el o oru™ — Mo 4 X = ptm 92y M j=1,2,3. (1.9)

Taking into account the Fourier law (1.4) and relation (1.3) from the equa-
tion of the entropy balance (1.6) we obtain the heat transfer equation

5™, 009 M) — (™) g9 (m) (M) ) 9,9, M) L x M — 0. (1.10)

The simultaneous equations (1.9) and (1.10) represent the basic system of
dynamics of the theory of thermoelasticity. If all the functions involved
in these equations are harmonic time dependent, that is they represent a
product of a function of the spatial variables (x1,x2,x3) and the multiplier
exp{Tt}, where 7 = ¢ + iw is a complex parameter, we have the pseudo-
oscillation equations of the theory of thermoelasticity. Note that the pseudo-
oscillation equations can be obtained from the corresponding dynamical
equations by the Laplace transform. If 7 = iw is a pure imaginary number,
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with the so called frequency parameter w € R, we obtain the steady state
oscillation equations. Finally, if 7 = 0, we get the equations of statics.
In this paper, we analyse the system of pseudo-oscillations

cl(JT,g 00 ulgm) — oM 72 uj(m) — "yi(jm) 99 ™) 4 Xj(m) =0,j=13,
—TTO(m) %gm) alui(m) + %z'(lm) 0;0,0 (m) _ T (m) 9 (m) + X4(m) —0.

(1.11)

In matrix form these equations can be rewritten as
A9, 7)Y U ™ (2) + X ™ (z) =0,
where U (™) = (4 (™) 9 (™) T is the unknown vector function, while X (™) =
(Xl(m), Xz(m), Xg(m), X4(m))T is a given vector, A (™) (9, 7) is a formally non-
selfadjoint matrix differential operator generated by equations (1.11),
A (9, 7)=[ASM0,7)],, 4 (1.12)
A0, 7) = 1) 0: 00— 0™ 72 6,
A7) = M 0, AR, 7) = —r Ty Ao,
AT 0,7) = 0,00 - o™, Gk =1,2,3.
By A(™)*(9,7) we denote the 4 x 4 matrix differential operator formally
adjoint to A(™(9,7), that is A"™)*(9,7) := [A(m™ (=9, 7)]T, where the
over-bar denotes the complex conjugation.

Denote by A (™9 (9) the principal homogeneous part of the operator
(1.12),

[Ci(]%) 0; 01]3x3 [0]3x1
[0]1x3 %i(lm) 0; 0, ixd

With the help of the symmetry conditions (1.7) and inequalities (1.8) it
can easily be shown that A (™ 9(9) is a selfadjoint elliptic operator with a
positive definite principal homogeneous symbol matrix, that is,

A0 =™ g2 n? for all € € R® and for all n e C*

Am 0 (g) = (1.13)

with some positive constant ¢ ™ > 0 depending on the material parameters.
Here and in what follows the central dot denotes the scalar product in
CN, ie., for a = (a1, -+ ,an) € CV and b = (by,--- ,by) € CV we set

N —
a-b:= > aybg.

k=1

Components of the mechanical thermostress vector acting on a surface
element with a normal v = (11, v, 3) read as follows
O.i(jm) v = C?SZC) Vi alulgm) - ’Yng) Vi 9 (m)a .] = 17 27 37

while the normal component of the heat flux vector (with opposite sign) has
the form

_qz(m) v; = %z(lm) v; 8[’[9 (m)
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We introduce the following generalized thermostress operator

TOY0,0) = [T40.0)],. (114)
T @) = el v, T 0.0) = =" v,
T (@,0) =0, TS (0,0) = 2™ vidi, jk=1,2,3.
For a four-vector U (™) = (4,(™) 9 (™) T we have
7 (m) gy (m) — (ai(lm) Vi, O'Z-(2m) Vi, ai(gm) Vi, —qi(m) v; )T. (1.15)

Clearly, the components of the vector 7 (™) U (™) given by (1.15) have the
following physical sense: the first three components correspond to the me-
chanical stress vector in the theory of thermoelasticity, while the forth one
is the normal component of the heat flux vector (with opposite sign).

We also introduce the boundary operator associated with the adjoint
operator A (™)*(9,7) which appears in Green’s formulae,

T (m) (67 v, T) = [%l(lm) (67 v, T) ] 4x4’
T @, 7) = vio, T (0,0,1) =TT A i,
f]z;m) ((9, v, T) = 07 ﬁz(lm) ((9, v, T) = %i(lm) Vi alv j, k= 17 27 3.
The principal parts of the operators 7 (™) and T (™) read as
[CZ(;ZZ) Vi Or]3xs [0]351

T m09,v) =T m0(9,v) = -
(0] 3 VO

(1.16)

4x4

1.3. Thermopiezoelastic field equations. In this subsection we collect
the field equations of the linear theory of thermopiezoelasticity for a general
anisotropic case and introduce the corresponding matrix partial differential
operators (cf. [56,61]). In the thermopiezoelasticity we have the following
governing equations:

Constitutive relations:

sij = 27105 uj + 8j ui), (1.17)
Oij = 0ji = Cijkl Skl — €ij Bl — Yij U = cijra Oug + eij O — 7359, (1.18)
S =i s+ gE +aTy o, (1.19)

Dj =ejr sp +eji b +g;9 =
=ejp Our — e Oip+9;9, 4,5 =1,2,3. (1.20)

Fourier Law:

g = —sy 0T, i=1,23. (1.21)

Equations of motion:

0ici; + X; = 007y, j=1,2,3. (1.22)
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Equation of the entropy balance:

TO 8t5 = —0544 + X4. (123)

Equation of static electric field:
0;D; — X5 =0. (1.24)

Here u = (uy,ug,u3)' is the displacement vector, ¢ is the electric poten-
tial, ¢ is the temperature increment, oy; is the stress tensor in the theory
of thermoelectroelasticity, si; is the strain tensor, D is the electric dis-
placement vector, F = (F1, E2, E3) := —grad ¢ is the electric field vec-
tor, ¢ = (q1,492,qs3) is the heat flux vector, S is the entropy density, o is
the mass density, c;;x; are the elastic constants, ey;; are the piezoelectric
constants, ey; are the dielectric (permittivity) constants, yx; are thermal
strain constants, s; are thermal conductivity constants, Ty is the initial
reference temperature, that is the temperature in the natural state in the
absence of deformation and electromagnetic fields, o := p¢ with ¢ being
the specific heat per unit mass, g; are pyroelectric constants characteriz-
ing the relation between thermodynamic processes and piezoelectric effects,
X = (X1, Xo, X3)T is a mass force density, X, is a heat source density, X5
is a charge density.

From the relations (1.18)—(1.24) we derive the linear system of the corre-
sponding pseudo-oscillation equations of the theory of thermopiezoelasticity:

Cijlkaialuk—QTQUj—")/ijai’ﬂ—l—elij 8181-@ + Xj =0, 5= 1,_3,
=7 To vir Orui + 21 0; 09 — T ¥ + 7T gi Oip + X4 = 0, (1.25)
—€ikl &&uk — g; 8119 +€q 81'81%0 + X5 = 0,
or in matrix form

AB,7)U(z) + X(z) =0 in Q, (1.26)

where U = (u,9,¢)7, X = (X1, X2, X3,X4,X5)", A(0,7) is a formally
nonselfadjoint matrix differential operator generated by equations (1.25)

A(0,7) = [qu(aa T)]5X57 (1.27)
Aje(0,7) = ciji 0; 01 — 07 8jie,  Aja(0,7) = —i; i,
Ajs5(0,7) = €14j010;, Aur(0,7) = =7 To w1 Oy,
Ay (0,7) = 23 0; 0 — T, Ays(0,7) =7Tp gi 0,
A5 (0,7) = =€ 0;0;,  Asa(0,7) = —g:0;,
As5(0,7) = €4 0;01, j,k=1,3.
By A*(d,7) := [A(=9,7)]"T we denote the operator formally adjoint to

A(0, 7). Clearly, from (1.25)—(1.27) we obtain the equations and the opera-
tors of statics if 7 = 0. Denote by A (®)(9) the principal homogeneous part
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of the operator (1.27),

[cijik 0; Ol)3xs  [0]sx1  [€1j010]3x1
A©9) = [0]1x3 1 0; Oy 0 . (1.28)
[—€irt 0i01]1x3 0 i1 0;0,

5X5

Evidently, the operator A (%)(9) is formally nonselfadjoint.
The constants involved in the above equations satisfy the symmetry condi-
tions:

Cijkl = Cjikl = Cklij, €ijk = C€ikj, Eij = Eji,
Yijg = Vjis ij = Xji, ivja k7l = 1a273'
Moreover, from physical considerations it follows that (see, e.g., [56]):
Cijki §ij €k = co&ij &ij for all §; =& € R, (1.29)
S M ZCinini, s nin; =cenin; for all m=(n1,n2,n3) R, (1.30)
where c¢g, c1, and ¢y are positive constants. In addition, we require that
(see, e.g., [56])
_ (0% 2 _
€T gy [¢|> —2Re (Caimy) =
> cs([¢P+|nf*) forall (€C, neC® (1.31)

with a positive constant ¢3. A sufficient condition for the inequality (1.31)
to be satisfied reads as

2
S 2>0
57, 9 >0

where g = max {|g1], |92, |gs]} and ¢; is the constant involved in (1.30).
With the help of the inequalities (1.29) and (1.30) it can easily be shown
that the principal part of the operator A(9, ) is strongly elliptic, that is,

Re AD(&)n-n=>cl¢)?|n? for all £ € R® and for all n € C*

with some positive constant ¢ > 0 depending on the material parameters.

In the theory of thermopiezoelasticity the components of the three-dimen-
sional mechanical stress vector acting on a surface element with a normal
n = (ny,ng,n3) have the form

045 Mg = Cijlk M Oug + €lij M 8l<p — Yij n; 9 for j= 1,2, 3,

while the normal components of the electric displacement vector and the
heat flux vector (with opposite sign) read as

—Din; = —ejni Our +€qn; Opp — ging ¥, —qing = s n; 00,
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Let us introduce the following matrix differential operator

T(9,n) = [Tpe(0,m) |, . (1.32)
Tik(0,n) = cijikni O,  Tj4(0,n) = —vi5 ng,
Ti5(0,n) = eijni O, Tarx(0,n) =0,
T44(0,n) = 5 n; 0, Tas(0,n) =0,
T5:(0,n) = —eikni O, Ts4(0,m) = —gini,
7’55((‘% TL) = &Ny alu j7 k= 17 23 3.
For a five-vector U = (u, 9, ) we have
T([), n) U = (0'1'1 Ng, 0;2MN;, 0;3M;, —(q; N4, —Dl n; )T. (133)

Clearly, the components of the vector 7 U given by (1.33) have the following
physical sense: the first three components correspond to the mechanical
stress vector in the theory of thermoelectroelasticity, the forth and fifth
ones are the normal components of the heat flux vector and the electric
displacement vector (with opposite sign), respectively.
In Green’s formulae there appear also the following boundary operator
associated with the adjoint differential operator A*(9, 1),
T0,n,7)= [’Z;q(a,nﬂ')h%,

Tii(0,n,7) = cijikni Oy,  Tja(0,n,7) =T Tovij ni,
;]35((9, n,T) = —e;ni o, ﬁk(a, n,7) =0,
ﬁ4(8,n77) = x5 n; 0], ﬁ5(8,n77) =0,
’]Ngk((?, n,T) = e N Oy, ’]~B4(8, n,7) = —T Ty g; ni,
Tss (0,m,T) =€un; 0.

The principal parts of the operators 7 and T read as

[Cijik i Otlaxs  [0]ax1  [esij mi Orlaxa
7 (0) (0,n) == (0], 5 ;M O 0 , (1.34)
| [—€iki i O]y 5 0 eani O | .
[lcijie mi Ollaxs [Osx1  [—ewj i Oilaxa
TO@,n) = |  [0]),4 st i Oy 0 . (1.35)
| [€ir1 ni O]y 3 0 gi1m; Oy oo

1.4. Green’s formulae. As it has been mentioned above, to avoid some
misunderstanding related to the directions of normal vectors on the contact
surface T'(™) | we denote by v and n the unit outward normal vectors to
90 (™) and 99 respectively. Here we recall Green’s formulae for the differ-
ential operators A("™)(9,7) and A(9,7) in Q™ and Q, respectively (see,
e.g., [4,6,7,9,29,30,53]).
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Let Q™ and Q be domains with smooth boundaries and

U = (™, g™ g™ u ™) e (@)1

m m m m T
)= (@™, ud™, uf™)
V) = (™ o™ o™ 0 ™M) e [C2QIM)]1,
m m m m)y T
)= (0™, 0™, uf™) T,

ul ,
v (
Then the following Green’s formulae hold:

/{Am) (0, 7)U ™) .y _grlm) . gmx(g 1) V<m>] do —

Qm)
_ / (T Uy romys oy (Feven] as, (136
o (m)
/ A (@, )Ty m) g — / (TMymY+ L (i g
Q(m) aQ(m)

{ B () ym)) 4 o(m)72q,(m) . (m) 4 % ™ 9™ 9 U4m>+

Q(m)
+ra™y, Elm) o™ + %(m) (TTOm)B ulm) (m) _ uflm)ajvlm))} dzx,

(1.37)

3 -
S [A @, U] Wy T (4G, T>U<m>]4u5;">] dx =

Qlm) J=1 7 |T|2T(§m)
—_— (m)
:_/ [E(m)(u(m)’“(m))+é’(m)72|u(m)|2+—a )|u4£m)|2
Q (m) 0
_ T m) g, (m) g  (m)
g S o }d”
3 [
m m) Tty (m)\+
[ vy gy
aam) J=1
+||T{T(’")U Yy fui™} }dﬁ (1.38)

Here E (™) (™) ¢ (m)) :ci(;ln,g 8l-uj(m) 8lvk(m) and the differential operators

A7), AM*(9,7),T ™ =T ™9 1) and T™ = T ™ (d,v,7) are

defined in Subsection 1.2.
Similarly, for arbitrary vector—functions

U == (u17u27u35u45u5) [CQ( ) 57 (u17u2;u3)T;

]
V:(vlav25v3;v4vv5) [CQ( )]57 v _(’017’02;”3)T;
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we have Green’s formulae involving the differential operators of the thermo-
electroelasticity theory:

/[A(87T)U~V—U~A*(87T)V}dx:
Q
:/ [(TUy (VY Uy (TV)*]as, (1.39)
o0
/A(a,T)U-dez/{TU}+ VYtds—
Q o
—/{E(uﬁ)—&—g#u-v—kwl(TToaju[M—w;%)—i—
Q
+5¢j1 Ojug Opva + T aus U3 + egij (Oyus Oivj — Oyu; Oyvs)—

—qi (TTQ O1us g + ug (91’1)5) + €51 ajU5 (9[1)5} dx, (1.40)

3
/[Z[A(a, T)Ul,; w5 + |7'|%T0 [A(67T)U]4U4 + [A(, T)U]5’U,5:| dx =
Q J=1
=— /{E(u 7) + om%|ul® + g|U4|2 + T 251 Ojua05us—
’ T() |T|2T0 7 J
Q

—2Re {gl Uy (91115} + 51 Orus 8ju5} dx+

+/[XBJ{TU}j{u—j}WM%R{W}j{M}H{ﬁ};{%}*] as. (1.41)

an J=1

Here E(u, ) = c;ju, Oiuj Ojvx and the differential operators A(9, ), A*(9,7),
T =T(9,n), and T = T(d,n,7) are defined in Subsection 1.3.

For 7 = 0 Green’s formulae (1.36), (1.37), (1.40), and (1.39) remain valid
and, in addition, there hold the following identities

S [AM@ UM uf™ e [AM@)UM], ui’”)} dz =

[ [0 T ey ) Bl o 0 |

w

+ [ [ {T<m>U<m>}j{u§»’”>}++c1{7<m>U<m>}i{ui”>}+] as, (1.42)

aqm) I=1

3
[ | X0 01w + e 4@ 01w + (AT us | e =
Q
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— —/[E(u,ﬂ)—&—c %jlalU48jU4—7le4aluj—glu_48W5+5lelu58ju5} dx+
Q

+/ {Z{TU}j{u_j}Jr-i-c{TU}j{ {agyt +{7TU} {u5}+] ds, (1.43)
oa I=1

where A(™)(9) := A™)(9,0) and A(d) := A(9,0), and ¢; and c are arbi-
trary constants.

Remark that by a standard limiting procedure the above Green’s formu-
lae (1.37), (1.38), (1.40), and (1.41) can be generalized to Lipschitz domains
and to vector—functions from the Sobolev spaces (see formulae (1.58), (1.59))

Um ¢ {W;(Q(m))yl’ v m) ¢ [W;/(Q(m))r,

5

Ue[WhQ)]", Ve Wh©)

with

In addition, if
A0, )V M € [Ly (@], A%, 7)V € [Ly ()P,
then formulae (1.36) and (1.39) hold true as well (see [25,44,50,55]).

1.5. Formulation of the interface crack problems. Let us consider the
metallic-piezoelectric composite structure described in Subsection 1.1 (see
Figure 1). We assume that

(1) the composed body is fixed along the sub-surface Sp, i.e, there are
given homogeneous Dirichlet data for the vector U = (u, 9, gp)T;

(2) the sub-surface Sj(vm) is either traction free or there is applied some

surface force, i.e., the components of the mechanical stress vector ai(jm) Vi,

7 =1,2,3, are given on Sj(vm);

(3) the sub-surface Sy is either traction free or there is applied some
surface force, i.e., the components of the mechanical stress vector o;; n;,
7 =1,2,3, are given on Sy;

(4) along the transmission interface submanifold F}m) the piezoelectric
and metallic solids are bonded, i.e., the rigid contact conditions are ful-
filled which means that the displacement and mechanical stress vectors are
continuous across F}m);

(m)

(5) the faces of the interface crack ', are traction free, i.e., the compo-

nents of the mechanical stress vectors 0’-(-m)

i Vi and o n;, j = 1,2, 3, vanish
on I‘ém).
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Depending on the physical properties of the metallic and piezoelectric
materials and also surrounding media, one can consider different boundary,
transmission and crack conditions for the thermal and electric fields. For
example,

(6) if some part of the boundary of the composed body is covered by a
thermally insulated material then the normal components of the heat flux
vectors —qi(m) v; and —g; n; should be zero on the corresponding submani-
fold; in particular, these conditions hold on the crack faces if the crack gap
is a thermal isolator;

(7) if some part of the boundary of the composed body is charge free, then
the normal component of the electric displacement vector —D; n; should be
zero on the corresponding submanifold;

(8) if some part of the boundary of the composed body is covered by
a metallic layer with applied charge, then the electric potential function ¢
should be given on the corresponding submanifold;

(9) if the crack gap is thermally conductive, the temperature and normal

heat flux functions should satisfy continuity condition on the crack surface

l—‘ém);

if the crack gap can be treated as a dielectric medium, the norma
10) if th k be treated dielectri di th 1
component of the electric displacement vector —D;n; should be zero on
F(m)

c
(11) due to the rigid contact conditions on F:(Fm), for the electric potential

function ¢ the Dirichlet condition should be given on F:(Fm).

From the above arguments it follows that the physical problem under
consideration is described by essentially mixed boundary, transmission and
crack type conditions. Solutions to this kind crack and mixed boundary
value problems and related mechanical, thermal and electrical character-
istics usually have singularities in a neighbourhood of exceptional curves,
arim, asp, or m.

Our goal is to formulate the above described problems mathematically,
study their solvability in appropriate function spaces and analyse regularity
properties of solutions. In particular, we describe dependence of the stress
singularity exponents on the material parameters. As we will see below this
dependence is quite nontrivial.

Let us introduce some notation.

Throughout the paper the symbol {-}* denotes the interior one-sided
trace operator on 99 from Q (respectively on 9 ™) from Q (")), Similarly,
{-}~ denotes the exterior one-sided trace operator on 9 from the exterior
of Q (respectively on 9Q (™) from the exterior of (™).

By Ly, W, Hy, and B,  withr >20,s € R, 1 <p < oo, 1< g <00, we
denote the well-known Lebesgue, Sobolev—Slobodetskii, Bessel potential,
and Besov function spaces, respectively (see, e.g., [43,72]). Recall that

Hy =Wy = By,, Hy = Bs,, Wt = B!, and Hf = W}, for any 7 > 0,
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for any s € R, for any positive and non-integer ¢, and for any non-negative
integer k. By C§(R™) we denote the set of functions with compact support
possessing continuous derivatives up to order k& > 0, C§°(R"™) = k?joo Ck(R™).

Let My be a smooth surface without boundary. For a smooth sub-
manifold M C Mgy we denote by ﬁ;(./\/l) and E;ﬁq(./\/l) the subspaces of
Hj(Moy) and B, (M), respectively,

H3(M) ={g: ge H(My), supp g C M},
B (M) ={g: g€ B (M), supp g C M},

p,q

while H;(M) and B, ,(M) denote the spaces of restrictions on M of func-
tions from Hj(My) and Bj (Mo), respectively,

Hy(M) = {ruf s £ € Hy(Mo)),
B (M) ={r, f: f€B; (Mo},
where r,, is the restriction operator onto M.

From now on without loss of generality we assume that the mass force
density, heat source density and charge density vanish in the corresponding
regions, that is, Xk(m) =0in QU for k = 1,4, X; =0in Q for j =
1,5. Otherwise, we can write particular solutions to the nonhomogeneous
differential equations (1.11) and (1.25) explicitly, in the form of volume
Newtonian potentials,

Ug"™ (@) = =N (X ™) (@) and Up(x) = =Ny (X) (),

where

N a) = [ W =X ) dy, 5 e 0,

Qm)

N (X)(z) := /\I/(:v —y,7) X(y)dy, z€Q,
Q
with ¥ (™) (2 —y,7) and ¥(z—y, 7) being the fundamental solution matrices
of the operators A (™) (9, 7) and A(9,T) respectively (see Subsection 4.1).
Note that for X ™ € [L,(Q™)]4 and X € [L,(Q)]°, we have U™ €
[W2(Q™)]* and Uy € [W2(2)])°, and

A™ (@, 7) N™(X M) (z) = X ™ (z), ze QM) (1.44)
A, T) N (X)(z) = X(z), z€Q, (1.45)

for almost all z € Q™) and for almost all z € Q respectively. In addition,
it XM e [C%(Qm)]* and X € [C%F(Q))° with some 3’ > 0, then
the relations (1.44) and (1.45) hold for all z € Q™) and for all z € Q
respectively (see Section 4, Theorem 4.1).

Therefore, without loss of generality in what follows we will consider
the homogeneous versions of the differential equations (1.11) and (1.25).
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However, we have to take into consideration that the homogeneous boundary
and transmission conditions described in the items (1)-(11) become then
nonhomogeneous, in general.

Further, without loss of generality and for simplicity, throughout the
paper we assume that the initial reference temperatures Ty and To(m) in the
adjacent domains  and Q (™) are the same: Ty = To(m).

Now we are in a position to formulate mathematically the above described
physical mixed interface crack problems. For illustration we formulate four

typical problems: (ICP-A), (ICP-B), (ICP-C), and (ICP-D).

Problem (ICP-A) - the crack gap is thermally insulated dielectric:
Find vector-functions

U = (ul(m) .

A

u™)T et
U=(uy,...,us) : Q—C°
belonging respectively to the spaces [W} (2 (™)]* and [W}(Q)]° with 1 <
p < oo and satisfying
(i) the systems of partial differential equations:
(A0, r) U™ ] =0 i QM j=T7, (1.46)
(A0, 7) U], =0 in Q k=15, (1.47)

(ii) the boundary conditions:

rgen {[TM@ UM} =@ on Sy, j=T4, (143
rsx {[T(@.n)U],}" =Qx on Sy, k=15, (1.49)
TSD{uk}Jr = fk on SD, k= 1,5, (150)
rgo{us)t = £ on T4, (1.51)

(iii) the transmission conditions on F}m) for j=1,4:
Tpgm {uj}Jr - (m>{u}(m)}+:f}(m) on F}m), (1.52)

r<m>{[ U]} +
o {70 (0 Y =F™ on T, (1.53)
(iv) the interface crack conditions on I‘ém) :

e (I T @ UM} =QF on DLV, j=T4,  (159)

rre{[T@n) UL} = Qr on D&Y, k=T, (1.55)
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where n = —v on I‘(m),
Qr € B, /P (Sn). Q™ e ByYP(S\™), f € BYY (Sp),
;M e By ™), B e B/ i), (1.56)

~A(m) A — m 1 1 - . N
Q'™ Que B VP im), St =L k=T5, j=T1

Note that the functions F , Qj, Q], Q-m) and Q( have to satisfy
some evident compatibility cond1t10ns (see Subsectlon 5. 1 inclusion (5.17)).
We set

Q17Q27Q35Q45Q5) [BP_E(SN):I55

1
P

=(

(Q17Q27Q37Q47Q5) € [Bps (Fé’”’)ﬁ

@““ (“") Q@) e By sy

QU = Q. Q.M. Q) e (B, &™), (157)
[ = fo fofus f5) T € [ BEn(Sp)]',

FOm = (gm0, g g )T e (B ),

F = (R B B R e ] B;E RN

A pair (U™, U) € [W}(Q™)]* x [W(€)]° will be called a solution to the
boundary-transmission problem (ICP-A) (1.46)—(1.55).

The differential equations (1.46) and (1.47) are understood in the dis-
tributional sense, in general. But note that if U (™ € [W}(Q(™)}* and
U e [W)(9)]® solve the homogeneous differential equations, then actually
U ¢ [0°(Q))* and U € [C=(2)]° due to the ellipticity of the cor-
responding differential operators. In fact, U (™ and U are complex valued
analytic vectors of spatial real variables (1, z2,23) in Q™) and Q, respec-
tively.

The Dirichlet-type conditions (1.50), (1.51), and (1.52) involving bound-
ary limiting values of the vectors U (™ and U are understood in the usual
trace sense, while the Neumann-type conditions (1.48), (1.49), (1.5), (1.54)
and (1.55) involving boundary limiting values of the vectors 7' (m) 4, (M) and

TU are understood in the functional sense defined by Green’s formulae
(1.37) and (1.40)

< (T ™) (9, 0)U M1+, {V(m)}+> —

o0 (m)

_ / A0 (9, UM V) g+ / [Em)(u<m>,—v<m>)4r
Q(m) Q (m)

0™ 724 (M) (M) 4 % ™ 9, u4m) o v4m)+
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ol (7T 0™ o >av/”>)+m " of™ | dx, (158)

({T(0,n)U}T, {V}+ A0, T)U -V dz+

D\

+/ [E(uﬁ) + QT2U"U+’7jl (TToajU[M—U4%)+
Q

+2j; Ojua Opva + T avua Ug + €51 Ojus Oyus+

+e1i5 (Orus ;v; — d;u; Oyvs) — g (T To Orus Vg + ua %)} dx, (1.59)

where V(™) = (v(m),vim))T € [Wpl,(Q(m))]‘1 and V = (v,v4,v5)" €
(W, (Q)]? are arbitrary vector-functions with v = (v1,va, v3)" and v(™ =
( (m) (m) (m))T

vy, Uy, Vg , while

E(m)( (m) (m)) = cgln,g 0; u m) &v—k(m), E(u,0) = cijik Opu; Oyvg.
Here (-, )aq om) (respectively (+,-)aqn) denotes the duality between the fun-
ction spaces [By. 5 (0Q(™)]* and [BE,)Z),((’?Q (m))]4 (respectively [B;p% (09)]°
and [ (GQ)] ) which extends the usual Ly inner product

(f\ 9)a /ijgg IM for f,g € [La(M)],

M =1

where M € {99 (™) 90},
By standard arguments it can easily be shown that the functionals, from

1

now on called “generalized traces”, {7 (™) (9, v)U "™+ € [B, j (90 (™)]*
_1

and {7 (9,n)U}" € [Byz (09)]°, are well defined by the above relations,

provided that A(3,7)U € [L,(€)]” and A™(8,7)U ™ € [L,(Q™)]"

Problem (ICP-B) - the crack gap is thermally and electrically conductive:

Find vector-functions

U = (ul(m) .

A

u4(m))T . Q(m) —’([:4,

U= (ug,...,us)" : Q—=C°
belonging respectively to the spaces [W, (92 (m))]* and (W) (Q)]° with 1 <
p < oo and satisfying

(i) the systems of partial differential equations:

[A<m>(az,r)U<m>] =0in QU j =171, (1.60)
[A(0y,7)U], =0 in Q, k=1,5, (1.61)
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(ii) the boundary conditions:

rgen {[TM@UM] YT =@ on Sy, j=T4,  (L62)
rsn{[T@.n)U],}" = Qi on Sy, k=T5, (1.63)
TSD{uk}Jr = fk on SD, k= 1,5, (164)
reom {us}t = ™ on 10, (1.65)
(iii) the transmission conditions for l =1,3:

Tpgm {u}t - TR {ul(m)}Jr:f(m) on F(m), (1.66)
rF;m){[T( } —H“F(m){ T (™) (0,v) (m) } = )on I‘(m) (1.67)
T (m) {U4} —rp <m){u4 }+=f4( ™) on rm, (1.68)
rren {70, m) UL} +rpom {700, U™],} '=F™ on T, (1.69)

(iv) the interface crack conditions I (m) forl=1,3:
rego {[TM@ U™} =Q™ on T, (1.70)
Trgn>{[ (&n)UL} =Q; on I‘ém). (1.71)

Problem (ICP-C) - the crack gap is thermally insulated and electrically
conductive:
Find vector-functions

U (m) z(ul(m),...,uim))T . QM
UZ(ul,...,U5)T : Q—>(C5

belonging respectively to the spaces [W,}(Q2(™)]* and [W}(Q)]° with 1 <
p < oo and satisfying

(i) the systems of partial differential equations:
(AT (@, U™ ] =0 in QUM j=T7, (1.72)
[A(GI,T)U]]C_O in Q, k=1,5, (1.73)

(ii) the boundary conditions:

rgen {[TM@ UM} =@ on Sy, j=T4,  (174)
rsN{[T(87n)U]k}+=Qk on Sy, k=1,5, (1.75)

re, {ur}t = fr on Sp, k=15, (1.76)

reem{us}t = f™ on T, (1.77)



Interface Crack Problems for Metallic-Piezoelectric Composite Structures 23

(iii) the transmission conditions on l":(pm) for j=1,4:

m)\+ m m
rrém>{uj}+—rrém){uj( )} zfj( ) on l"} ), (1.78)
+
TF’(Tm){[T(67n)U]j} +
e {7070, U™ = F™ on T, (1.79)

(m).

(iv) the interface crack conditions on T,
m m + ~(m m . —

reeo {[TM@ UM™Y =QF on T, j=T4,  (1.80)

rreo{[T@:m) U]} = Q5 on rim, j=174 (1.81)

Problem (ICP-D) - the crack gap is heat-conducting dielectric:
Find vector-functions

U (m z(ul(m),...,uim))T : QM
U:(ul,...,’u,5)T : Q—>(C5

belonging respectively to the spaces [W,}(2(™)]* and [W}(Q)]° with 1 <
p < oo and satisfying

(i) the systems of partial differential equations:
[A<m>(az,r)U<m>] =0in Q) j =171, (1.82)
[A(0y,7)U], =0 in Q, k=1,5, (1.83)

(ii) the boundary conditions:

rgen {[TM@OUM] YT =@ on Sy, j=T4,  (184)
rsy{[T(0,n)U ] }Jr =Qr on Sy, k=1,5, (1.85)
rep fu}t = fi on Sp, k=T1.5, (1.86)
Tpgm {us}* = f5(m) on F}m)v (1.87)

(iii) the transmission conditions for l =1,3:
r o {ur} =y (m{ul(m)}Jr:fl(m) on ™ (1.88)
reen {[T@, MU} 4 v { [T (0,10} = F™ on T1™, (1.89)
reemy{ua} T —rp (m>{u4 } f(m on T'(™(1.90)
reen {[T(0,n)U], } +rpem { [T (0,1 U™ 14} F=F™ onT(™ (1.91)

(m) .

(iv) the interface crack conditions on T,

reeo {[TM@ UM} =@ on TV, 1=1,2,3,  (1.92)
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e {[T@m U]} =@ on TFY, 1=1,2,35.  (1.93)

The boundary data in all the above formulated problems satisfy the inclu-
sions (1.56).

1.6. Uniqueness results. Here we prove the following uniqueness theorem
for p = 2. The similar uniqueness theorem for p # 2 will be proved later.

Theorem 1.1. Let QU™ and Q be Lipschitz and either T = o + iw with
o >0 or1=0. The above formulated interface crack problems (ICP-A)-
(ICP-D) have at most one solution in the space [Wa(Q )4 x [Wa(Q)]°,
provided mes Sp > 0.

Proof. Tt suffices to show that the corresponding homogeneous problems
have only the trivial solution. Let a pair (U™ U) € [WJ(Q™)]* x
[W3(2)]° be a solution to one of the above formulated homogeneous in-
terface crack problem.

Green’s formulae (1.37) and (1.40) with V (") = U (™) vV = U and Ty =
To(m) along with the homogeneous boundary and transmission conditions
then imply (see Subsection 1.4, formulae (1.38) and (1.41))

QOm
a(m

) _
4+ - |uim)|2} dx —I—/ {E(u,ﬂ) +o7? |u|2 + @ |U4|2 + €1 Oyus Ojus+
TO TO

-
7[> To

Q

+ ;i 8[’[1,4 8j’u,4 — 2Re {gl Uq 8lu5}:| dr = 0. (194)

T

7[> To

Note that due to the relations (1.8), (1.29), and (1.30) we have
E ) (M) 4 (m)) > 0, %l(jm) Bluim) @uim) =0, (1.95)
1 E(u,ﬂ) >0, Ojua 8jU4 >0, €51 81U5 8j’lL5 >0

with the equality only for complex rigid displacement vectors, constant tem-
perature distributions and a constant electric potential field,
u™ =a™ x x4+, Uim) = aim)v (1.96)

u=a X r+b, us=a4, us=as,

where a (™) (™) q b e C3, aim), a4,a5 € C, and x denotes the usual cross
product of two vectors.

Take into account the above inequalities and separate the real and imag-
inary parts of (1.94) to obtain

/ (B0 (@, ) + 0 (6 - w?) [u ™+

Q (m)
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o (m)

7 ™+

_|_

+ [ [Blam) + oo - )l + £ luaf+
0

Q
g e — [ [
+|7_|2—T0 %jl 8111,4 8jU4—2Re {gz Uyg 81U5}+6jl 8[11,5 8ju5 ] dCCZO, (197)

/ [2 0™ ow |u(m)|2 + |T|L;T0 %lg’m)aluim) (%—uim)} dr+
Q (m)

w R
+/ {2@0’&) |’LL|2 + |T|2—To 7l 8lu4 8ju4} dx = 0. (198)
Q

First, let us assume that ¢ > 0 and w # 0. With the help of the homo-
geneous boundary and transmission conditions we easily derive from (1.98)
that uj(m) =0in Q0 and u; =0 in Q, j = 1,4. From (1.97) we then con-
clude us = const in €2, whence us = 0 in 2 follows due to the homogeneous
boundary condition on Sp.

Thus U ™ =0in Q™ and U = 0 in Q.

The proof for the case ¢ > 0 and w = 0 is quite similar. The only
difference is that now, in addition to the above relations, we have to apply
the inequality in (1.31) as well.

For 7 = 0, by adding the relations (1.42) and (1.43) with ¢/Ty for ¢; and
¢, we arrive at the equality

/ B @, ulm) 4 s o™ o™ = ™ ;0™ | dot
Ty Y J J

Q(m)

C _ [

+ / [E(U,ﬂ) + T il Orug Ojug — 751 g Opuy — gp Ug Ojus+

0
)

+ €51 Ojus (9j’d5 dx =0, (1.99)

where c is an arbitrary constant parameter.

Dividing the equality by ¢ and sending ¢ to infinity we conclude that
u4(m) =0in Q0 and ugy = 0 in Q due to the homogeneous boundary
and transmission conditions for the temperature distributions. In view of
(1.99), this easily yields that U (™) =0 in Q™) and U = 0 in Q due to the

homogeneous boundary conditions on Sp. (Il

Note that for 7 = iw (i.e., for o = 0 and w # 0) the homogeneous problem
may possess a nontrivial solution, in general. These values of the frequency
parameter w correspond to resonance regimes and the corresponding exte-
rior steady state oscillation problems need special consideration related to
generalized Sommerfeld radiation conditions (cf. [29,30,51]).
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Below we apply the potential method and the theory of pseudodifferen-
tial equations to study the existence of solutions to the pseudo-oscillation
problems in different function spaces and to establish their regularity prop-
erties.

2. PSEUDODIFFERENTIAL EQUATIONS AND LOCAL PRINCIPLE

In the present section, for the readers convenience we collect some results
from the theory of pseudodifferential equations which we need in the study
of the above formulated mixed transmission-boundary vale problems. Note
that some results exposed below are known and are dispersed in scientific
papers (for details and historical notes see e.g. [12,20]), but some results,
in particular, Theorem 2.31 is new and plays a crucial role in our analysis.

2.1. YDOs: definition and basic properties. Let S(R™) denote the
Schwartz space of rapidly decaying smooth functions endowed with the semi-
norms

S(R") = {f € C®R™) : pm(f) < 00, m:o,1,...},
Pm(f) = sup (@)™ Y (0% f(@)], (x):= (14 [2[*)"/>.

zER™

(2.1)
lee|<m

The dual space S'(R™) to S(R™), the Frechet space of functionals over
S(R™), is known as the space of tempered distributions.

It is well known that the Frechet spaces S(R™) and S'(R™) are both
invariant with respect to the Fourier direct and inverse transforms

FEL o S(R™) — S(R™) and FE! o §'(R") — S'(R™), (2.2)

which are continuous operators there. For absolutely integrable functions
on R"™ they are defined as follows

Foelll = [ 1@, 72l = g [l e
s

Rn
A partial differential operator (PDO)
P(z,D) = Y aa(x)D* = Y aa(x)(id)* (2.3)
laf<m la<m
with scalar or matrix coefficients a, (), can also be written as follows
P(z,D,) = F L P(x,€) Fyoe, (2.4)
where D = i0 = (i@l, i82, iag),
Pl,6) = ) aa(x)E” (2.5)
la|<m

is the characteristic polynomial or the symbol of the operator P(z, D).
In this section, sometimes we do not distinguish between scalar and vector
spaces of functions when it does not lead to misunderstanding and it is
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clear from the context which space is appropriate for the operators under
consideration.

Another class of similar operators are convolutions: With a given tem-
pered distribution a € S'(R™) we associate the convolution operator

a(D)p =Wl := F 'aFyp for ¢ e SRM), (2.6)
which is a bounded transform
wo . S(R") — S'(R™). (2.7)

Indeed, a(D) = W2 represents a composition of three bounded operators
(see (2.2)):
F : S(R") — S(R™),
al : S(R") — S'(R™),
F~1 o S'(R™) — S/ (R™).
The distribution a € S'(R™) is referred to as the symbol of W.
For the composition of convolution operators we have:

WoWy = Wywyp = wy, (2.8)
whenever a,b € S'(R™) and the product ab = ba is a well defined distribution
ab € S'(R™).

Indeed, FWPp = FF1Fp = bFyp for all ¢ € S(R™). The product
abFp is well defined since ab € §'(R™) and Fo € S(R™). Moreover, abFp €
S/(R™) and the final result follows

WoWPe = FabFp] = Woe €S/ (R™) for ¢ € S(R™).

Equalities (2.4) and (2.6) demonstrate a similarity of PDOs and convolution
operators and justifies the following preliminary definition of a pseudodif-
ferential operator

a(z, D)u(z) = F {a(z, &) Fyeluy)]} = (2.9)

= /e—iwfa(m,g)(fu)(g)crg, u € S(R™),
]Rn

where .
d¢ = ——d
€= G
To make the definition (2.9) rigorous, we formulate conditions on the
symbol a.

Definition 2.1. For m € R the notation S (R" x R") = ST(R™ x R")
refers to the Hormander class of functions a € C*°(R™ x R™) which admit
the following estimate

0807, €)] < Cap(&)™ 1, (2.10)
for all z,£ € R™ and all «, 5 € N§j with Ny :={0,1,2,3,---}.
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Definition 2.2. Let a € S™(R™ x R™), m € R. The operator a(z, D)
in (2.9) is a pseudodifferential operator (abbreviation-WDO) of order m and
a(x,&) is the symbol of a(z, D).

The notation OPS™ refers to the set of all YDOs with symbols from the
class S™(R™ x R™).

In what follows, for the symbol of a pseudodifferential operator a(z, D) €
OPS™ we will use also another notation G, € S™(R™ x R™) and we write

a=F;" Ga(z,6)Fy .

E—x

A simplest boundedness result for a WDO is the following.

Proposition 2.3. Let m € R, a € S™(R"™ x R™) and S(R™) be the
Fréchet-Schwartz space of fast decaying test functions. The corresponding
UDO is a bounded operator in the space of fast decaying Fréchet-Schwartz
test functions

a(z,D) : S(R") — S(R")
and in the dual space of tempered distributions
a(z,D) : S(R") — S'(R™).

For the proof we refer to the monographs on ¥DOs, e.g. to [28, vol. 3,
Theorem 18.1.6, Theorem 18.1.7].

For a rigorous definition of a YDOs one can apply oscillatory integrals.

Let us consider a special cut off function x(-,-) € CF°(R} x Rf),
x(z,£) = 1 in some neighborhood of the diagonal z = £. Let g € S™(R™ X
R™). If the limit

lir%//x(am,s@g(m,f)eimfdwdf,
£—
R7 R?
exists, it is called the oscillatory integral and is denoted by Os(g(z, £)e®*¢)

Note, that the oscillatory integral for g € L1 (R} x Rf) coincides with the

usual one
Os(g(z. ) = [ [ gl e et e,
R7 R7

Proposition 2.4. For arbitrary a € S™(R™ xR™) the oscillatory integral
Os(a(x, &)e™8) exists and is independent of the choice of a cut-off function
x(z,§).

For the proof we refer, e.g., to the monograph [67, § 1].

Let a € S™(R™ x R™). The corresponding YDO

a(z, Dyu(x) = / e~ Ea(z, €)(Fu)(€)dE =

—7/6““’_’”)&(%5%(1/)55 dy =

Ry R}
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= //eiyga(%f)u(m +y)d&dy, ueSR™). (2.11)
Re Ry
exists as a xz-parameter dependent oscillatory integral:
a(z, D)u(z) = Os(eF ¥ a(z, Hu(z +vy)), = €R". (2.12)
The oscillatory integral in (2.11) extends to all smooth functions with poly-
nomial growth at infinity
u € CpoL(R") :=

;:{vecmaﬂ:<@*Wq@w@ngﬂaﬂ<a;AhaeN@.

Let the dotted Euclidean space R™ denote the one point compactification
of R™ with neighborhoods of infinity, defined as the complementary domains
U¢:=R"\U to compact domains U C R™. The Hérmander class of symbols

Sm(ﬂé" x R™) consists of those functions a(z,£) from S™(R™ x R™), which
have limits | llirn a(z, &) uniformly with respect to £ € R™.

Proposition 2.5 (Calderon—Vaillancourt). Let 1 < p < o0, 1 < ¢ < o0,
m,s €R and a € S™(R™ x R™). Then the YDOs
a(z,D) : Hy(R") — H;~™(R"),
: B;yq(R") — B;;Im (R™) (2.13)
are bounded.

For the proof we refer to [60] and, for the case p = 2, the monographs [28,
vol. 3, Theorem 18.1.13] and [67, § 7].

Let Q C R™ be a bounded domain with the Lipschitz boundary S :=
0f) # & and rq be the restriction operator to the domain 2. Let £ be the
extension by 0 from 2 to R™. Then, by definition,

H3(Q) := {p € H3(R™) : suppyp C Q}. (2.14)

fNI; (Q2) is a subspace of H;(R") and inherits the norm from the ambient
space.

The space H,(§2) represents restrictions of functions from H;(R"), i.e.,
Hy(Q) = roH;(R™). The space is endowed with the norm of the factor-
space H, (R")/ﬁ;(QC), where Q¢ := R™\ 0 is the complemented domain to
Q. It means that the norm of ¢ € H;(€2) is defined by the equality

s = ||@|HL (Q)]] = inf to | H; (R™ 2.15
el s ) = ||l Hy ()] s ) [|exta o Hy (R™)]], (2.15)
where extq is an extension operator from  to R™ preserving the space.

The spaces B, ,(Q2) and B, () are defined Similarly.
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Let Sm(ﬁ x R™) denote the Hérmander class S™(£2 x R™) if Q is compact
and consist of those functions a(x, &) from S™(Q2 x R™), which have limits
lim  a(z,§) uniformly with respect to £ € R™ if 2 is unbounded.

z€Q, |x|—o0

Corollary 2.6. Let 1 <p<oo,1<qg<o00,ms€ER and a e S™(Q x
R™). Then the DO

rea(z, D) : H3(Q) — H3™™(Q),

: By () — B, ™), (2.16)
is bounded. Moreover, if the symbol of the $DO a(x, D) is a rational func-
tion in & and s > —1/p, then the operators

roa(x, D)lq : HS(Q) — H;fm(Q)7
: By () — B,y ™(), (2.17)
are bounded as well.
The boundedness result (2.16) is a direct consequence of Proposition 1.8
and the above definition of the spaces. The boundedness result (2.17) follows
as a particular case of the boundedness result for YDOs which possess the

transmission property, because the WDOs with rational symbols have the
transmission property (see [2,3,22,26]).

Corollary 2.7. Ifa € C*(R™ xR") has a compact support in the second
variable, i.e., a(x,&) =0 for |£| > M for some M > 0 and all x € R™, the
UDO a(z, D) is infinitely smoothing and maps the spaces

a(z,D) : Hy(R") — C*(R"),
: B;_’q(R") — C*(R") (2.18)
foralll <p<oo,1<qg< oo andseR.

Definition 2.8. A symbol a € S™(R™ x R™) will be referred to as a
classical of order m and the corresponding ¥DO-a classical DO if there
exist homogeneous symbols

aj(z,\) = A" a;(x,€) YA>0, j=0,1,...,

such that for arbitrary non-negative integer N € Ny, the remainder term
N
a?\/-{-l (Ia 5) = a(x, 5) - Z 1/’(5)% (Ia 5)
j=0
satisfies the inclusion af,; € S"~N7HR" x R"), where ¢ € C*°(R") is a

smooth cut off function: ¥(&) =1 for [£| > 1 and (&) =0 for [¢] < 3.

In such a case we write

a(z,{) ~ Zaj(a?,é) (219)
=0
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and call the leading homogeneous of order m term in the asymptotic expan-
sion apr(x,§) = ap(x,§) the principal symbol of a(z, D).
Denote the class of above introduced symbols by CLS™(R™ x R™).

An important subclass of WDOs is the algebra of all partial differential
operators (PDOs) with C°*°—smooth N x N matrix coefficients. If all deriva-
tives of coefficients of a PDO of order m are uniformly bounded, symbol of
such PDO belongs obviously to the class S™(R™ x R™).

An important subclass of ¥DOs are elliptic operators:

Definition 2.9. A ¥DO a(x, D) with a symbol a(z,§) in S™(R™ x R™)
is called elliptic if
lim inf [det a(z, §)]

Jim o 40 Yz € R (2.20)

The most important property of elliptic operators is the existence of a
parametrix.

Definition 2.10. An operator R(z, D) is called a parametrix for a ¥DO
a(z, D) with a symbol a(z, ) in S™(R™ x R™) if
R(z,D)a(x,D) =1+ Ti(x,D), a(z,D)R(z,D) =1+ Ts(z,D), (2.21)
where T1(x, D), To(x, D) are infinitely smoothing operators and map spaces
Ti(z, D), Ta2(z,D) : Hy(R") — C*(R") for arbitrary 1 < p < co and
seR.
For a compact manifold M existence of a parametrix implies that a(x, D)

is a Fredholm operator (see Theorem 2.22), while in the case of R™ it helps,
for example, to prove local regularity of a solution.

Proposition 2.11. Let m € R and a € Sm(ﬂén x R™) be elliptic. Then
the WDO a(x, D) has a parametriz.

We drop the proof and refer the reader for details to [28, vol. 3, § 18.1],
[67, S 5.4] and [60].
Very important subclass of pseudodifferential operators are differential
operators with C'*°-smooth uniformly bounded matrix coefficients
A(z,D) := Z ao(2)0%, aq € C(R™). (2.22)
ler|<m
Assume that the differential operator A(z, D) in (2.22) has a fundamental
solution Ka (z,y)
Az, D)Ca(z,y) =6z —y)I, =,y e R" (2.23)

Then this operator has the inverse, written with the help of the fundamental
solution

ANz, D)p(x) = / Ka (e v)o(y) dy, o€ CFR). (2.24)
Rn
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If the operator A(xz,D) = A(D) has constant coefficients and is not
zero identically, the fundamental solution Ka (z,y) = Ka(x — y) exists and
depends on the difference of variables (see, e.g., [28, §10, Theorem 10.2.1]).
Moreover, inverse A1 (€) of the symbol

A©) = D aa(—i)eler, ¢eRrr,

laf<m

of elliptic PDO A(D) with constant coefficients and the Fourier transform
of the fundamental solution are equal A7!(§) = F,—¢[Ka(z)]. Thus, the
inverse operator A~!(z, D) looks like a ¥DO, but does not belong to the
class of YDOs defined above, since the symbol A~1(x,€) in elliptic case
might be unbounded, but is bounded for |§| > Ma if Ma is sufficiently
large. Let us consider a C°*°-smooth cut off function ¢(z) = 0 for || < Ma
and ¥(z) = 1 for |{| > Ma + 1. Then

AN 2, €) = Ay (2, §) + AT (2,€),
Agt (2, 8) = (A (2,8), AN (x,8) = [1 —(&A (9,

where Ay € S™(R" x R™), while A '(z,£) has a compact support in .
The corresponding DO A (z, D) is infinitely smoothing, like the operator
in (2.18) (cf. Corollary 2.7).

(2.25)

Definition 2.12. For m € R by gm(R" x R™) denote the extension of
Hormander’s class of symbols

a(z, &) = ap(x, &) + a1(x,§), ap € S"(R™ x R™), (2.26)

where the symbol aq(z,§) is such that the corresponding YDO a;(z, D),
defined by equality (2.11), is infinitely smoothing

ai(v, D) : H,(R") — C>*(R"),
. B, ,(R") — C(R") (2.27)

foralll <p<oo,1<g<ooandséeR.

The Freshet space H,,,.(€2) on a non-compact domain © (including the
case {2 = R") is defined as the space of functions ¢ which belong to H(€2)
locally: x¢ € Hy(Q) for all x € C5°(9).

The Freshet spaces Hp, ., (€2) on a non-compact domain 2 (including the
case () = R") is defined as the subspace of H () consisting of all functions
with compact supports.

If Q is compact, then evidently H ..., (Q2) = H,1,.(Q2) = H;(Q).

The spaces B, | 1,.(€2); By g com (), 1‘~Is)com(Q)7 E;)q)com(ﬂ) are defined

P P
similarly.
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_ Corollary 2.13. Let 1 < p < 00,1 < ¢ <00, ms € Randa €
S™(Q x R™). Then the ¥DOs

roa(z, D) : oS (Q) — H " (Q),

p,com p,loc
: B;7q7com(ﬂ) - B;:zjﬁ)c(ﬂ)a (228)

are bounded. Moreover, if the symbol of the WDO a(x, D) is a rational
function in € and s > —1/p, then the operators

roa(x, D)lq : H . .(Q) — H77"(Q),

p,com p,loc
By g.com () = By 6. (2), (2:29)

are bounded as well.
If a € S™(Q x R™), then the YDOs
roa(z, D) : H3(Q) — H3.™(Q),

p,loc

: B3 ,(Q) — B (9), (2.30)

p,q;loc

are bounded. Moreover, if the symbol of the ¥DO a(x, D) is a rational
function in € and s > —1/p, then the operators

TQa(I,D)éQ : H;(Q) — Hsim(ﬂ),

p,loc

L B, (Q) — BT (Q). (2.31)

p,q;loc

are bounded as well.
2.2. ¥YDOs on manifolds. Let us proceed by the definition of a manifold.

Definition 2.14. A topological space M is called a closed manifold (or
a manifold without boundary OM = @) if it is covered by a finite number
of coordinate patches M = U]A/il U; which are homeomorphic to subsets
in R™

7 Z‘/J‘—>Uj, V}CRm, j=1,....,M. (232)
Here m is the dimension of M, s¢; are called coordinate homeomorphisms,
the pairs {U}, 5; }-the coordinate charts and the collection {{U}, %j}}jj\il—the
coordinate atlas.

If all domains Vi, ..., Vs in (2.32) are compact (bounded), then M is a
compact manifold.

If x = 5;(z) € M, the Euclidean coordinates of x € R™ are called the
Cartesian coordinates of x € M.

If %j_l o, € CH(V; N Vg) for some 0 < g < oo and for all pairs (4, k)
whenever V; NV, # &, manifold M is p-smooth. C'*°-smooth manifold is
called smooth. _

Two coordinate atlases {Uj, 5¢;} and {Uj}, 3¢; } on a manifold M are equiv-
alent if there exists a third atlas {U;, %;} on M, which contains both atlases
(or, the merged set {U;, »; } U{ﬁj, %;} is an atlas on M).
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A compact manifold without boundary will be referred to as Manifold.

For the definition of a function spaces on M, including the spaces of dis-
tributions, and for many other purposes it is convenient to have a partition
of unity {¢; };‘il subordinated to a given covering {U; }Jl‘il

Z’t/]j(X)El, supp ¢; CU;, j=1,...,M. (2.33)

By /(M) we denote the the space of Schwartz distributions on a smooth
manifold M.

Definition 2.15. An operator
A C®(M) - D'(M) (2.34)

is called pseudodifferential A = a(x, D) with a symbol a € S™(M x R™), if:

i. x1Ax2I : H?(M) — C*°(M) are continuous for all s € R and all
pairs of functions with disjoint supports supp x1 Nsupp x2 = &; in
other words, x1Ax2l has order —oo

ii. the pull back operator

;. *z/J]ijx u=a%(z, Dyu, ue CF(R"), (2.35)
are YDOs for all j =1,..., M with the “pull back” symbols

a(j)(%j(x)7§) = ¢j(%j($))a($, [%;(‘T)]Tg)v a(j) € gm(M X Rn)v
x=uxzx)eV;CM, x€U; CR", {(eR"

and ;Y (x) = Y(s5(x)), %JTj(p(X) = w(%fl(x)), while s’ ()
denotes the corresponding Jacobian.

More precisely, the symbol a(z, ) of a YDO A = a(z, D) on a manifold
M is defined on the cotangent bundle 7 *M and is independent of the choice
of the coordinate diffeomorphisms and charts. For details of the definition
we refer to the monographs [28, vol. 3, Definition 18.1.20] and [67, § 4.3].

Definition 2.16. If X(R"™) is a function space on R™ (e.g., the Bessel
potential space H,(R") or the Besov space B, ,(R")), the corresponding
function space X(M) on a sufficiently smooth manifold M (e.g. the Bessel
potential space Hy(M) or the Besov space B, ,(M)) consists of functions
o € X(M) for which s . [Yp](z) = P(5(x))p(x(z)) € X(R™) for all
j=1,..., M, and is endowed with the norm

M
lellxia = [ XM)|| =D ||s6. sl XR™) . (2.36)

j=1

As a byproduct of Definition 2.15 and the Calderon—Vaillancourt Propo-
sition 2.5 we have the following.



Interface Crack Problems for Metallic-Piezoelectric Composite Structures 35
Theorem 2.17. Let 1 < p < 0o and s,m € R. Let a(x,D) be a $DO
on a manifold M with a symbol a € S™(M,R™). Then the operator
a(x,D) : Hy(M)— H;~™(M)
18 continuous.

The next assertion states a boundedness result for a DO with non-
classical symbol. The proof can be found in [65].

Proposition 2.18. Let 1 <p<oo,r € R, s >n/2 and

ST sup (9Tl (L8| Hy(R™)

n
lal<[2]+1 |8l<m *€F

< 400 for p#2,

sup

s (€)7o (- &) H3 (")
[BI<m

< +oo for p=2, (2.37)

where
alf) (w,€) = 0¢00a(x,€) for a, NG,
Then the operator
a(z,D) : Hg*T(R") — HE(R")
is bounded for arbitrary —m <o < m.

Now we formulate the well known Sobolev's compact embedding lemma
(see, e.g., [67, § 7.6], [22, Theorem 4.3], for p = 2 and [72,73] for 1 < p < o0).

Proposition 2.19. Let 1 < p < o0, s,0 € R, 0 < 5, and M be a
compact manifold. Then the embedding H;(M) C HJ (M) is compact.

As a byproduct of Theorem 2.17 and Proposition 2.19 we have the fol-
lowing.

Lemma 2.20. Let 1 < p < oo, s,m € R, € >0, and M be a compact
manifold.

Then the operator a(x,D) : Hy(M) — Hy~™(M) with a symbol a €
SmT¢(M,R™) is compact.

Next proposition shows that the set of YDOs is an algebra, i.e., a com-
position of ¥DOs is again a ¥DO.

Proposition 2.21. Let 1 <p < oo and s,mi,me,0 € R.
Then the composition a(x, D)b(x, D) =: c(x, D) of W DOs with symbols
a €S (MxR") and b e S (M x R") is a WDO with the symbol
C(X7 5) = a(X7 f)b(?{, X) + cm1+m2*1(‘/¥7 5) ’
Cmi+ma—1 € §m1+m2—1(M X Rn)
If, in particular, M is compact, the operator

Cmy+ma—1(x, D) := c(x, D) —a(x, D)b(x, D)
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is compact between the spaces
Cm1+m2*1(){7 D) : H;(M) - H;7m17m2 (M) : (238)

For the proof we refer to monograph on ¥DOs, e.g. to [67, § 7].

The next Theorem 2.22 is actually a consequence of the foregoing Propo-
sition 2.21, but concerning only the sufficiency of ellipticity of the symbol
for the Fredholm property of a ¥DO. Necessity of the condition is proved
with the help of a local principle, exposed below in Subsection 2.4. We drop
the proof and refer the reader for details to [12,17,21,64].

Theorem 2.22. Let1 < p < oo, s,m € R, and M be a compact mani-
fold. The operator

a(x,D) « [Hy(M)Y — [Hy=™ (M)]Y (2.39)

with a N x N matriz symbol a € AS’”(M x R™) is Fredholm if and only if
the symbol is elliptic
det
fm i LA O Loy e (2.40)
Rocolel>R ()™

Ifa(x, D) is Fredholm, it has a regularizer (a parametrix) P(x, D), such that
P(x,D)a(x,D) =1+ Ty(x,D), -
a(x,D)P(x,D) =1+ Ty(x,D), (241)

where T1(x, D) and T2(x, D) are infinitely smoothing compact operators
Ti(x,D), To(x,D) : [HI (M) — [C(M))]Y Vs eR. (2.42)

Let s € R, m € Ny and 1 < p < co. By H;™(R’) we denote the Banach
space of functions (of distributions for s < 0) endowed with the norm

ot )| = 3 kol @) .43
k=0
Obviously, H5°(R}) = H3(R?).
The spaces H;™(€2) are defined similarly, by replacing x¥ in (2.43) with
dist(x, 092).
The spaces
H©(Q) == () Hy™(Q), (2.44)
meNy
endowed with an appropriate topology, are Freshet spaces.
The Besov weighted spaces B,7" are defined similarly.

Theorem 2.23. Let1 < p < oo, s,r € R, meNy, ac ST(é, R™). Then
the operators

rea(z, D) « HY™(Q) — H3™(Q),
D BST(Q) — BSLM(Q), (2.45)

p,q
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are continuous. Moreover, if the symbol of the WDO a(x, D) is a rational
function in & and s > —1/p, then the operators
roa(z, D)lo : H;™(Q) — Hy~ "™ (),
C By (Q) = B (), (2.46)

are bounded as well.
If a € S"(Q2 x R™), then the operators

roa(z, D) : H>™_(Q) — HT"™(Q),

p,com p,loc
B eom () = By loc (), (2.47)

are bounded.
Moreover, if the symbol of the WDO a(x, D) is a rational function in &
and s > —1/p, then the operators

roa(z, D)lq : HI™ (Q) — H,"™(Q),

p,com p,loc
t By geom () = B, ioe (), (2.48)

are bounded as well.

Proof. Let us prove the continuity properties (2.45), (2.46). The continuity
properties (2.47), (2.48) are proved similarly.

The continuity (2.45) is a local property and it suffices to prove the
theorem for 2 = R . To this end, let us apply the equality

Pk
xﬁa(x,D)u(m)zzy(klill)'(Béna)(@D)mﬁ_lu(xL ueCge(R™), (2.49)
! !

which is easy to verify directly. Applying (2.49) we proceed as follows

|a(z, DyulHE ™™ (RY)|| = > ||zka(z, D)ul H T (RY)|| <

k=0
m k
<Y gy 0k ) Dyl | <
k=01=0 ’
m k
<M 0 [l ulHH R[] < M fulH™ (R
k=0 1=0

since 3éna € gr’l(d x R™).
The continuity property (2.46) is a similar consequence of Corolla-
ry 2.6. [

Very important role in the operator theory and applications belong to
the interpolation of operators.
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Definition 2.24. Let Banach spaces & := {B,}aca be embedded in
one Banach space B, C B for all a € A.

An Interpolation functor F of type 6, 0 < 6 < 1, assigns to all pairs
By, Ba, € & a new space F(B,,, Bqy,) = Ba, ie, F 1 & x B — B, s0
that:

i Bo, NBo, CBa C Bay + Bays
ii. an operator, bounded in arbitrary two pairs of spaces
A By — Bay, Bo, €6, By, €6,
A Bg, — Bg,, Bg, €6, B €6,
after being restricted to the interpolated space B, := F({B4,, B3, }
maps this space to the interpolated space B := F({Bqa,, Bp, } and
A B, — Bg

is bounded.
iii. there is a constant C' > 0 such that the inequality

| AIL(Ba, Bo)| < ClAIL(Bay, Ba)||' " 1AIL(Ba, Ba)| (250)
holds, where £(Bg,B1) denotes the set of all bounded linear oper-

ators from B, into B;.

In the next proposition we expose interpolation properties of the spaces
defined in the present section. For the proof and further details we refer
to [73, § 2.4.2, § 2.4.7].

Proposition 2.25. Let

S0, S1 €R7 O<9<17 1<p07pluy7q07q17<00u
1 1-6 0 1 1-6 0
+_7 _ = _|__7 5:(1—9)80—|—951.
p Po h1 q do Uil
For the real (-, -)g,p, the complez (-,-)g and the modified complez [-, ]9 inter-
polation functors the following holds:
i. (Hp (R™),Hy (R"))g, = Hy(R™) provided 1 < po,p1 < 00;
ii. (Hp2(R™), HpH(R™))g = [H0(R"), Hyt(R™)]g = Hj(R™) provided
1 <po,p1 < 00;
iii. (Ho(R™), H*(R"))g,, = By, (R") provided sg # s1, 1 <1 < 00;
iv. (Bpo ,,(R™), B>t  (R™))e =B7  (R™).

Po,q0 p1,91

Remark 2.26. The interpolation between loc-spaces H,,..(R"),

10c(R™) and By 1. (R™) holds as well: it suffices to apply the above
interpolations to operators xA with cut-off functions x € C§°(R").

The interpolation between Bessel potential and Sobolev—Slobodetskii spa-
ces on a domain Hy(2), W7 (Q) and ﬁ;(ﬂ), W;(Q) and on a manifold
Hy(M), W5 (M) holds as well (see [73, § 2.4.2, § 2.4.7]).

The interpolation holds also between weighted spaces on the Euclidean
half space Hy™(R% ), W™ (R" ) and on a domain Hj™(£2), W5 ™(€2) and
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ﬁ;vm(ﬂ), Wfom(ﬂ) To justify such interpolation, just note, that we can
interpolate the operator p*A, k = 1,...,m, instead of the operator A,
where p = z,, for R} and p(z) = dist(x, 912) for a domain €.

2.3. Fredholm properties of Y'DOs on manifolds with boundary.
Let us commence the present subsection with the definition of a manifold
with boundary.

Definition 2.27. A topological space M is called an open manifold with
boundary OM if there exist two types of coordinate charts {Uj, »; }:

i. The inner patches U;, when domains in the Euclidean space V; C R"
are transformed by s¢; into Uj;

ii. The boundary patches U;, when domains in the Euclidean half space
V; C R} are transformed by s; into Uj.

Let M be a compact, n-dimensional, smooth, nonselfintersecting man-
ifold with the smooth boundary OM # @& and let A(z, D) be a strongly
elliptic N x N matrix YDO of order v € R on M. Denote by A(z,&) the
principal homogeneous symbol matrix of the operator A(x, D) in some local
coordinate system (z € M, & € R™\ {0}).

Let A1(x),...,An(x) be the eigenvalues of the matrix

[A(,0,...,0,+1)] ' [A(2,0,...,0,-1)], @ €M, (2.51)
and introduce the notation
§j(x) =Re[(2mi) "InX;(x)], j=1,...,N. (2.52)

Here In{ denotes the branch of the logarithmic function analytic in the
complex plane cut along (—oo, 0]. Note that the numbers d;(z) do not
depend on the choice of the local coordinate system and the strong inequality
—1/2 < §;j(x) < 1/2 holds for all z € M, j = 1,N, due to the strong
ellipticity of A. In a particular case, when A(z,&) is a positive definite
matrix for every z € M and ¢ € R™\ {0}, we have 0;(x) = --- = dn(z) =0
since the eigenvalues A (),..., Ay (z) are positive for all z € M.

The Fredholm properties of strongly elliptic pseudo-differential operators
on manifolds with boundary are characterized by the following theorem
(see [22,64]).

Theorem 2.28. Let s e R, 1 < p < 00, 1 < ¢ < o0, and let A(x, D)
be a WDO of order v € R with the strongly elliptic symbol A(x,§), that is,
there is a positive constant co such that

Re A(z,€)n - n > conf* (2.53)
forx € M, £ € R™ with |£] =1, and n € CV.

Then the operators

I7s N s—v N
A [H3 (M) — [HY(M)]

- (2.54)
L [By (M) = (BN



40 T. Buchukuri, O. Chkadua, R. Duduchava, and D. Natroshvili

are Fredholm and have the trivial index Ind A = 0 if
1 1
5—1—1— sup 5j(x)<s—z<—+

in 0i(x). 2.55
2EOM,1GEN 2 T p  zedM, 1N i(2) ( )

Moreover, the null-spaces and indices of the operators (2.54) coincide for
all values of the parameter q € [1,+00| provided p and s satisfy inequality
(2.55).

Let 287 and B, be Banach spaces and B := B; x By be their direct
product, consisting of pairs U = (u/,u”)T € B, where v’ € B, and u” € Bs.
Further, let B7 be the adjoint spaces to B;, j = 1,2, and B* := B] X B3,
The notation (F, u) with I € B and u € B; (or FF € B* and u € B ) is
used for the duality pairing between the adjoint spaces.

It is obvious that the bounded operator A : B — B* has the form

A Ap
A = 2.56
{Am AzJ ' (2:56)

where the operators
Ay 0 B =B, A By — B,
; ) (2.57)
A21 . %1 —>%2, A22 . %2 —>%2

are all bounded.

Lemma 2.29. Let the operator A in (2.56) be strongly coercive, i.e.,
there is a constant C' > 0 such that

Re (AU,U) > C||U||3 YU €B. (2.58)
Then the operators Aq1 and Asg are both strongly coercive
Re (A11u, u) = Cllull3, Vu € By,

(2.59)
Re (Aspv, v) = C|jv[|5, Vv € Bo

and, thus, invertible. Moreover, the operators
B:=A; — ApAL Ay 0 By — B, (2.60)
D:=Agp — Ay A A 0 By — B, (2.61)

are strongly coercive

Re (Bu, u) > Clull%,  Vu€ By, (2.62)
Re (Do, v) > C|jv[|5, Vo € By (2.63)

with the same constant C' > 0 as in (2.58) and (2.59) and, thus, invertible.

Proof. The strong coercivity (2.59) follows by taking in (2.58) consecutively
U= (u,0)" and U = (0,v)". The strong coercivity implies the invertibility.
To prove (2.62) we proceed as follows. For U = (u’,u”)" we have

ClU|% < Re(AU,U) =
= Re [<A11’U,I, ’U/> + <A12U/I, ’U/> + <A21u/, u"> + <A22’UJH, u"> . (264)
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Since
1u/[1%, < Il + 15, = 1015,
by introducing u” = —A5) Agju and v’ = u into the inequality (2.64) we
get
Cllully, < CIUI% < Re [(Anu,u) = (ArnAy Asiu,u)-
— <A21’U,, A;21A21U> + <A21’u, A521A21u>} = Re <B’LL7 u)

and (2.62) is proven. Similarly, by introducing u’ = —A ' Ajou and u” = u
into the inequality (2.64), we get (2.63). O

Remark 2.30. We will actually apply the foregoing Lemma 2.29 not
only to Banach spaces, but also to a finite dimensional case when %8, = C"
and Bo = C™ are finite dimensional spaces and

A (2,8)  Aga(x,§)
Ag (2,8) A22(£1075)]7

Az, 8) = [A}(@,9)] A (w,8) = [Al5(x,9)]
A (2,8) = [A(2,9)],.., An(,8 =[A9)]

are the matrix-symbols of ¥DOs (cf. Theorem 2.31 and Theorem 6.3).

In particular, it follows that if the matrix A is strongly elliptic, then the
matrices A11, A22, A11 — A12A;21A21 and A22 — A21A;11A12 are Stl"OHgly
elliptic as well.

nxn’ nxm’

mxm’

Further, we treat an important example to demonstrate the local princi-
ple and Lemma 2.29 for the investigation of a nonclassical system of YDOs
on overlapping manifolds which is essentially employed in our analysis in
Section 6.

Let S be a closed smooth manifold of dimension n and M, Cy be a couple
of embedded open submanifolds Co C M C S with the smooth disjoint
boundaries 9Cy and OM, dCy N OIM = &. Then the complemented surface
C := M\ Cy has the boundary 9C = OMUICy. Clearly, M and C is another
couple of embedded open submanifolds C C M C S.

Let us consider a ¥DO

re[Aw (@, D) mxn

(2.65)
rm[Aw(x, D)]Lx N

N(z, D) := [

NxN
with N=M+L, k=1,N,l=1,...,M,and t = M +1,..., N, where

A(x,D) == [Au(z,D) ] v, n (2.66)

is a N x N matrix pseudodifferential operator of order v on S with an elliptic
principal homogeneous symbol A(z, &) := [Ai(z,&)]|nxn. Let us treat the
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UDO N(z, D) in the following settings
N(z, D) : ﬁ; — HZ™,

~ (2.67)
By, — B, 1<pg<oo, s,veER,
where
Hy = [H(0)]" x [H; (M),
B = (O] [ ()] 2.68)
B, = [B;q©)" x [B;,(M)]",

s—v s—v s—v L
B, "= [Bp,q (Cﬂ X [Bp,q (M)} :
Now, let us represent the operator A(z, D) given by (2.66) and its symbol
A(z,€) in the following block wise form

Az, D) = An(@ D) An(z,D) (2.69)
’ Agl(llf D) A22 IZ?, ) .
All(:CvD) = [Ajlllc(z’D)]MxM’ A12 :17 D) [A{ }MXL’
AQl(:CvD): [A%If(sz)]LxM’ A22 ‘T D) [A% }LXL’
Az, €) = [A“( Al )] (2:70)
Az (z,§) A22 3,
A11(CC,§) = [Ajllf(xvg)]MxM’ A12 [ }MXL’

./421(55,5) = [A%?(ac,{)}LxM, Agg(l’,f) = [ 22(x’§)]LXL'

If A(z, D) is a strongly coercive ¥DO, then the symbol A(z, &) is strongly
elliptic (cf. e.g. [21]) which, in view of Remark 2.30 and Lemma 2.29, implies
that the symbol

D(z,§) = An(z,§) — Ara(z, §)[Agz (2, &) A1 (,€) (2.71)
1(

as well as the symbols A1 (z
Denote by M\'(z), ..., A\ (=
matrices

,€) and Asa(z, €) are strongly elliptic.
) and AP (z),..., AD;(z) the eigenvalues of the

[A(z,0,...,0,+1)] " [A(=,0,...,0,-1)], = €M, (2.72a)

[D(z,0,...,0,+1)] ' [D(x,0,...,0,—1)], = € aCy, (2.72b)
respectively, and define

534(:5) =Re[(2ri) ' In )\;4(:10) |, zeoM, (2.72¢)

57 (z) =Re[(2mi) ' In AL (z)], =z € dCo, (2.72d)

j=1,...,N, k=1,...,M.

Theorem 2.31. Let a nonclassical ¥ DO N(x, D) in (2.65) be compiled
of a classical WDO A(x, D) in (2.66) with a strongly elliptic symbol A(x,§).
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The operator N(z, D) in (2.67) is Fredholm and has the trivial index
Ind N(z, D) = 0 provided the following constraints hold

1 v 1 v
——1l+-49"<s<=+=+7, (2.73)

p 2 p 2

with v = max{y’},vp} and v = min{y'y,vp}, where

o= inf A (z), = su oA (x), 2.74a
i B s e e )
= in 6P(z), A= su 6P (z). 2.74b
D 2€8Co 1<k M K (T),  p meaco,lzkgM k() ( )

Moreover, the null-spaces and indices of the operators (2.67) coincide for all
values of the parameter q € [1,+00] and all p, s which satisfy the inequality
(2.73).

In particular, if the operator (see (2.67) and (2.68))

N(z,D) : Hf —H, *

is strongly coercive, i.e., for all W = (U, V)T € HQ% there is a constant
Coy > 0, such that

Re (N(z, D)W, W) > Co|[W||_x , (2.75)
2
W2, = ||U||% V2 .
IWIZs =1V 5 opne + VI8 e

then it is invertible in the space setting (2.67) under the constraints (2.73).

Proof. Since C is a proper part of M we can not apply Theorem 2.28 directly
to characterize the Fredholm properties of the operator (2.65). It is a proper
place to address the local principle for para-algebras. To this end, let either
Zy =Wy (Zy := H3) or Z, =B, , (Z; := B, ;). Consider the quotient
para-algebra

V(Zy, Zy7") = [\I!(ZZ,Z;*”)/(’Z(Z;,ZZ*”)}

2X2

of all bounded ¥DOs \I!(ifo, Zy7V) in the indicated space pairs factored by
the ideal of all compact operators Q(Z;, Zfo_”). Further, for arbitrary point
y € M we define the following localizing class

A, = {[gyIN], gy €C™(M), supp g, CWy, gy(z)=1 V:ceﬁ//y}, (2.76)

where Wy C W, C M is arbitrary pair of small embedded neighbor-
hoods of y. The symbol [A] stands for the quotient class containing the
operator A. It is obvious that the system {A,} z7 is covering and all
its elements [g,In] commute with the class [B(x, D)] for arbitrary ¥DO
B(z,D) € \II(ZZS,, Z57") (to verify the commutativity recall that a commu-
tant B(z, D)gln — gB(z, D) is compact for an arbitrary smooth function g).

WDOs are operators of local type: if g; and g are functions with disjoint
supports supp g1 Nsupp g2 = &, then the operator g1 B(z, D)gaI is compact
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in the spaces where B(z, D) is a bounded ¥YDO. Applying the local property
of YDOs we can check the following local equivalence

A, —
[N(z,D)] ~ [Ny(z,D)] Yy e M, (2.77)
where the local representatives N (x, D) in (2.77) are defined as follows:

Ny(z,D) := A(z,D) : [H;(S)]N — [H;_”(S)]N for y e C, (2.78a)

Ny (z, D) := Agy(x, D) : [HS(S)]* — [Hy " (S)]* (2.78b)
for y € Co = M\ C,
N, (z, D) := rpA(w, D)« [HI(M)N — [HE (MY (2.78¢)
for ye€ oM,
N, (r, D) = [[Tcgéjlf(ﬂfaD)]MxM [Tcgéjg(IaD)]MxL _
[A%7 (2, D) Lxm [A% (@, D)l | yun

2V = VT (2.78d)
[Agl(l', D) AQQ(CL‘, D)
for y € 0Cy,

_ |f”ch11(CC,D) TCSAIQ(va)] ~
NXxN

where C§ is the complement surface C§ := S\ Co with the boundary 9C§ =
8607
Vo= [Xsco)]™ x [x5(5)]%,
Vo= (X5 (es)] M x [XH(S)]
and either X = HJ or X = B, .

Due to Theorem 2.45, formulated below, the operator N(z, D) in (2.67)
is Fredholm if and only if the operators Ny (x, D) in (2.78a)—(2.78d) are
Fredholm for all y € M.

Since the YDO N(z, D) is strongly elliptic by the assumption, it has
strongly elliptic symbol ¥DOs N (z,£) (see e.g., [21]) and the symbols
Ai1(2,6), Asa(x,€) in (2.70) are strongly elliptic due to Remark 2.30.

The ¥DOs Ny(x,D) in (2.78a) for y € C and in (2.78b) for y € Cp on
the closed manifold S have strongly elliptic symbols and are Fredholm for
all y € CUCy.

The DO Ny(z,D) in (2.78c) has strongly elliptic symbol as well, but
restricted to the surface with the smooth boundary M needs the following
additional constraints to be Fredholm

. (2.79)

v
2

with 4" and +" defined in Theorem 2.31.
To investigate the elliptic ¥DO N, (z, D) in (2.78d), first we remind that,
as noted above, the YDO

AQQ(CE, D) = [Aég (,T, D)]

1 I 1 v ,
5—1—&- + v <s<§+—+7, (2.80)

2

LxL
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has strongly elliptic homogeneous principal symbol due to Lemma 2.29

and Remark 2.30. Since Aaga(x, D) is defined on the closed manifold S,

it is Fredholm with index 0 and there exists a compact operator T such

that Agg(z, D) + T is invertible. For the quotient classes the equalities

[AQQ(I, D)+T] = [AQQ(CE, D)] and [A22 (I, D)+T]_1 = [A22 (I, D)]_l hold.
Note that the quotient classes

[F+(z, D)] :=

[Inxm] [[0]arx L]
+[Agz(x, D) A2 (2, D) [Irx1] ]NxN
are invertible

[F—(z, D)| [F+(z, D)] = [Fy(z, D)] [F_(z,D)] = [Inxn]

and composing the quotient class [N, (z, D)] with this invertible quotient
class we get

[Ny (2, D)] := [Ny (2, D)] [F— (2, D)] :=
_ l[D(:c,D)] [Tcs[A12(CC,D)]M><LT| 7 (2.81)
[[0] L x ] [Aga(x, D)] NxN

where
D,(z, D) = rcS{Au(a:, D) — Ays(z, D)[Ass(z, D)~ Asi (z, D)} (2.82)

is a strongly elliptic YDO of order v due to Lemma 2.29. It is sufficient to
prove that the composition [N, (z, D)] is an invertible class.

Note that [ﬁy(x,D)] is upper block-triangular and the diagonal entry
[Aga(z, D)] is an invertible class. Moreover, the entries [D(x, D)] and
[A22(z, D)] on the diagonal, being ¥DOs, commute (actually, these ma-
trix entries might have different dimension M x M and L x L, but we can
extend the entire matrix [Ny (z, D)] by identities on the diagonal and zeros
on the off-diagonal entries in the corresponding rows and columns, which
does not change the invertibility properties of the matrix and which will
equate the dimensions of the diagonal entries). Therefore [N, (z, D)] is in-
vertible if and only if the quotient class [D, (D, z)] is invertible. This is

interpreted as follows: the operator
Ny(x,D) : Z; —Zy "
is Fredholm if and only if the operator
D, (D) : [X;COIM — [X; (o (2.83)

is Fredholm. Since the principal homogeneous symbol of D, (x, D) is D(x, &)
defined in (2.71), the operators D, (D, z) in (2.73) is Fredholm provided the
following constraints are fulfilled
1 v v
Z 14z Z
p + 2 2

where v}, and v/ are defined in (2.74b) (see Theorem 2.31).

1
+’y%<s<§+ +p, (2.84)
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Summarizing the above we conclude that the ¥DO N(z, D) in (2.67) is
Fredholm provided the system of inequalities (2.80), (2.84) hold, which can
be rewritten in the form (2.73).

Next we have to prove that the YDO N(z, D) in (2.67) has zero index,
Ind N(z, D) = 0. It suffices to prove this for a particular case s = v/2 and
p=2 (cf, e.g., [7,19]). To this end, we consider the homotopy

Ni(z,D) := AR(z,D) + (1 = A)N(z, D) : HQ% — H;%,
(5.v)
A2 (x, D)y [O]amrxr
R(z,D):= | © (2 INxN,
(0] L x ar Ay (z, D),

where 0 < A < 1,

v ~

A (2, D) = A% (v, D)AE (z, D)

and

A& (x,D) : H (C) — HI(C) = HY(C),
A& (2,D) = HY(C)— Hy *(C)

are the Bessel potential operators, arranging isomorphism of the spaces.
The principal homogeneous symbol of the operator Aé%’u) (z, D) is positive
definite and the operator Aé%’y) (z,D): flf C€) — H;% (C) is invertible (cf.,
e.g., [21], [22, § 4]). )

The definition and the properties of the isomorphism Aga’u) (z, D) are
similar. . 5

Thus, R(z, D) : Hf — H, ? has a positive definite symbol and is invert-
ible.

The continuous homotopy Ny (z, D) connects the initial operator
No(z, D) = N(z, D) with the invertible one

Ny (z,D) = R(z,D) : HZ - H, 2.

Moreover, the operator N (x, D) is strongly elliptic for all 0 < A < 1 since
it represents the sum of the operators with positive definite and strongly
elliptic symbols (see Remark 2.30). Then the operator N (x, D) is Fredholm
for all 0 < A < 1. Therefore,

Ind N(z, D) = Ind Ng(z, D) = Ind Ny (2, D) = Ind R(z, D) = 0.

From the results obtained above it follows that the ¥DO N(z, D) in (2.67)
is Fredholm with index zero.

Now, if N(z, D) is strongly coercive (see (2.75)), it has a trivial kernel in
the space H% and the operator

N(z,D) : H? — H"

[N/
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is invertible. Then, the operator N(z, D) has the trivial null space in the
space setting (2.67) and is invertible for all p and s if the conditions (2.73)
are fulfilled. The proof is complete. g

Remark 2.32. To achieve the invertibility of the operator N(z, D) in
the space setting (2.67) under the conditions (2.73) we need less than the
strong coercivity property (2.75). It suffices to know that the operator is
Fredholm and its null space Ker N(x, D) is trivial only in one space, say
in f[:HQ% = [flf )M x [flf (M)]E. Due to the concluding part of Theorem
2.28 this implies that Ker N(z, D) is trivial and the operator N(x, D) is
invertible in the space settings (2.67) provided the constraints (2.73) hold
(see, e.g., Lemma 6.1).

Further, if the operator (see (2.67) and (2.68))

N(z, D) : HQ% —>H2_%

is coercive, i.e., for all W = (U, V)T S ﬁ§ there are constants Cy > 0 and
C4 > 0, such that

Re (N(z, D)W, W) = Co [W]25 — C1 [WI[E, (2.85)
2

for k < v/2, then N(z, D) is Fredholm in the space setting (2.67) and has
the trivial index Ind N(z, D) = 0, provided the conditions (2.73) hold.

2.4. YDOs on hypersurfaces in R™. We remind that S C R" is a
C*—smooth, compact hypersurface in R” and v(t) is the outward unit nor-
mal vector field.

Let a surface S C R™, which is a particular case of a manifold (see
Definition 2.14) be given by the coordinate diffeomorphisms (cf. (2.14))

) V;—S;,  V,cR"' S;cS, j=1,...,N,

where S = Ujvzl S; is a covering of S. Let g%]. be the square root of Gram's
determinant

Go, (y) = \/det Ka@’{j’am%j”(n—l)x(n—n , (2.86)

which is responsible for the integration on S (see [62, § TV.10.38], [66, § 4.6]
and (2.89) below).
Now we prove the following assertion.

Theorem 2.33. Let m < —1 and a € CLS™(R") be a classical N x N
matriz-symbol (see Definition 2.8; for m =1 ¢f. Remark 2.35 below),

a(z,{) = szg[k(I,Z)] ~ am(:c,f) + a’mfl(xvg) +eee
-k (T, NE) = /\mfkam,k(:zr,g), EeR”, A>0.
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Then the trace on the surface*
ag(x, D)p(x) :=ysa(z, D)(pRds)(x) =

= /k(x,x —»)e(¥)dS, x €S, (2.87)
s
is a pseudodifferential operator

ag(x,D) : H3(S) — Hy ™ 1(8)

with the classical symbol:
2,8~ agmirk(%,€), asmi1 s €STTITH(TS), R (2.88)

Proof. Let us check that the operator ag(t, D) in (2.87) is pseudodifferential.
First note that,

/ )ds = Z / Y)Goe, ()9 (355 () dy, V) = 3¢5.05,  (2.89)
S Jj= 1Rn 1
(cf. [62, §IV.10.38], [66, §4.6]). Therefore

a9 (z, D)p(x) = s .bjas(x, D)y Lo(x) =
=) (x) / Vi (9)Goe; (V) (525 (), 3¢5 () — 525(y))p(y) dy ~
R’Vl*l

~ > () / O Y)Goey (W) km—1 (555 (), 25 () — 2 (y))p(y) dy ,
m=0 Rr—1

where 99 () := (s (x)) are pull back of cut-off functions and
Footkm—1(2,8) = am—1(2,€),  km_i(z,\2) = A"k, (2, 2)
for all A > 0 and all x € R"~1. By the Taylor formula at y € R"~!
(1) — 7i(y) = %}(CC)(JT —y)+

+ Z (0°3¢)) () (@ —y)° + 3¢ k11 (2, 2—Y) (2.90)
2<|8|<N ot

1
N +1)z°
saena—y)= 3 EEDE [0 %oy +tla—y)ar,
|5|=K+1 ' 0

where s;(z) is the Jacobi matrix of s¢;(z). By inserting (2.90) into the
kernels kp,—i(s¢j(x), »¢;(z) — 5;(y)) and by applying the Taylor formula,
now at »;(z)(z —y) € R"™', we get

*For the definition of the surface delta-function see (3.75).
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K-l 1
b1 (), 361(2) = () = D k(5 (), (@) (@ — )
|| =0
K-l 1 o
<[ 5@ )@@= 9| + kg e —y) =
|85)]=2 "
K-l
= ba @)y (25 (). 32 (@) (@ = ) (& — 9)°
lor|=0]8|=2]c]

+ kfnfz,KH(iEa x—vy), kfg‘ll(x, 2) = 00km—i(x,2), (2.91)

where a, 3, and ¢ are multi-indices, by 3 = 1 and the other coefficients
b, 5(2), || > 0, are defined from the equality

1 K—1 5 o (K=1)|a|
E[Z S0 } 3 basla (2.92)
|§]=2 |B]=2]c

Obviously,
|a’yazk"m lKJrl( )l < CN|Z|K+17“L‘ V77M6N8_17 q= 1,2. (293)
Applying the Taylor formula to the product @ZJO (¥)G>, (y) we write

VW) Goe, () = Gor, (2)+
K=k
+ ) 00, () (1 = )+ Wy s (2,0 — y) (2.94)

[v[=1

with the remainder \I/%j)K_H(I, x — y) which has the form similar to that
2 k41 in (2.90), with an estimate similar to (2.93). Then the remainder
k3 k(25 2) = 25 1 (v, —y) + W, kqa (2, 2) has the estimate (2.93).

Note that the cut off function Jjo(y) does not appears in the right-hand
side of (2.94) since {/)Vg)(:c) = 1 and all derivatives vanish in a neighborhood
of .

With (2.90)—(2.94) at hand we get the asymptotic decomposition (2.88)
with the following entries:

k . -
as m+1—k %J Z Z ba;ﬁ(‘r)(_am) g%j( )X

|
=0 20<3 v
[Bl+]v|— \al k—m

X Fagr [2PHK (52 (), 5 (2)2)] =
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k .
(_Z)Ia+6+7‘ba,ﬁ (I)(_aﬂa)vg%j (x)
- Z Z 2ndet 57 (z,0)7! .

1=0 2a<p
|Bl+1v|-lal=k—m
X / a7 G (@), [ (2,017 (€, N) dX - (2.95)
where 7
E’E‘i)—l-‘,—|a‘(‘r7§) =R ami(z,€), (2.96)

[%;—(1‘, O)T]_1§ = ((al}fjvg)ﬂ RE) (al}fjvg)ﬂ (’45)) , &= (517 )‘) eR"

Indeed, we proceed as follows:

Famer [PHRD ) (3(w), 24

¢ Bty
_ / z / i (I)z”am_l(%j(iv),n)d’?:
R’n
1 &'z —7,% x Z
B Gr) / ¢ Bﬂ/ 1 OCOG,, a5 (@), 1) dy dz =
1 ; —1(0,2) 2 (x ~
‘W%V/eWﬁ“/e@>»®%_Hmwwwmw—
Rn—1 R
. _
B (27:) %" / / Y1410 (3% (2), [ (,0) ] ') dn dz =
Rn—1 R
~y
Loy [ G111 (65 (2), [ (,0)T] 7, \)) dA| =
~y _ _
:ﬁagﬂ / Qn—i+]a] (52 (), [+ (2,0) T]7H(E, A))dX
where
_N\la+B+7]
G

det > (z,0)

For the remainder term in the asymptotic (2.88) with the kernel ad-
mitting the estimate (2.93), we easily derive that it belongs to the class
Sm=N(T*8S). O

Remark 2.34. As a byproduct of the proof we can identify the symbol
as,m+1—k as a homogeneous in the variable ¢ function of order m +1 — &
and
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k )Ty 2)0)G,.. (x
s (=0) b 5 (2)02 G, (@)

aS,m-i-l—k(%j(ZC);g/) 271 det %/»(,T 0)’}/'
AN ’

ag
x /aﬁfflﬁla‘(:c, [ (2,0) 7171 €, ) dA, € e R, (2.97)

where the coefficients b, g(x) for |a| > 0 are defined in (2.92), the symbol
aﬁlela‘(a:,g) in (2.96) and the Gram determinant G, () in (2.86).
In particular, the homogeneous principal symbol reads

g%j ()

as.pr (3 (2),€) = 27 det 5, (x, 0)

[ el .07 € 0) d =
= agms1(3(7), &), z€Y;, € eR" . (2.98)
Remark 2.35. If m = —1 we can not write (2.87), although formulae
(2.88)—(2.98) hold with some modification. The difference emerges because

ag(x, D)p(x) = ysa(D)(p @ ds)(x) =

— colx)p(x) + / Fo(x, ¥ — ¥)p(»)dS  (2.99)
S

is a pseudodifferential operator of order zero as(x, D) : Hj(S) — Hy(S),
i.e., it is a singular integral operator, the integral in (2.87) is understood in
the Cauchy principal value sense and

r(*z)

co(x) = —= / aspr(x,¥)dS. (2.100)
|YI=1

The kernel ko(¢,7) satisfies the cancelation condition (cf. [45, Ch. IX, § 1],
[22, formula (4.26)]):

ko(x,) = Felylaspr(x,6) —co(x)], x,v€5. (2.101)

The further proof is verbatim to the case m < —1.

2.5. The local principle. “Freezing coefficients” is a common method
of investigation in the theory of integro-differential and pseudodifferential
equations. It is convenient to formalize the method as a local principle.
There exists many different versions of a local principle (Allan’s, Simo-
nenko’s, Gohberg—Krupnik’s etc.). Most convenient for us is the local prin-
ciple for Banach para-algebras from [15] which is based on the Gohberg—
Krupnik’s local principle (also see [17] for an earlier version).

Definition 2.36. Let 2 be a Banach algebra. A set A C 2 is called a
localizing class if:

(i) 0 ¢ A;
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(ii) for a pair of elements a1,a2 € A an element a € A exists such that
Am@ = GGy = a, m =1, 2.

It is clear that any subset of 2 containing 0, has the property (ii), but
the property (i) in the definition excludes such a trivial localizing class.

Definition 2.37. Let A € 2 be a localizing class in a Banach algebra 2.
Two elements a,b € 2 are called A-equivalent from the left (A-equivalent

from the right) and we write a LAy (a A b, respectively), provided

ulng [[(a —b)ullet =0 (ulng lu(a —b)|le = 0, respect1vely> .

If @ and b are both the left and the right equivalent, we say that these

. . A
elements are A-equivalent and write a ~ b.

Lemma 2.38. The relations of local equivalences (left, right, two-sided)
are all linear, continuous and multiplicative:

(i) Let A C A be a bounded set, ay,by € 2, ay RZA b, (a LA bi),
k=1,2. Then

R-A L—A
arar +aeas ~ anbr+aghy (arar+asas T~ arbr +asbs) Yai, as € C;

(ii) let A C A be a bounded set, apy,, by, € A, am, RZA b, (am LA bm),
meN, lim an =a and lim by, =b. Thena "~ b (a LA b);

m—00 m—00

(iii) if a,b,ce A and a LA (a RA b), then ca LA eb (ac RA be).

Definition 2.39. Let A be a localizing class in 2. An element a € 2
is called A-invertible from the left (A-invertible from the right) if there exist
d € A and v € A such that dau = u (uad = u, respectively). If a € A
is A-invertible from the left and is A-invertible from the right, we call it
A-invertible.

Lemma 2.40. Let A C 2 be a localizing class, a,b € A, a L2 (a RA

b). If a is A-invertible from the left (is A-invertible from the right) then b
is A-invertible from the left (is A-invertible from the right).

Definition 2.41. A system {A,},cq of localizing classes in 2 is said
to be covering if from arbitrary collection {uy}ycq of elements u, € A,

N
there can be selected a finite collection {u,, }é\le so that the sum ) u,, is
j=1
invertible in 2.

Lemma 2.42. Let {A,}yeq be a covering system of localizing classes

Ay CA a €U and let ua = au for allu e |J A,.
yeN
Then a is invertible from the left (is invertible from the right) if and only
if a is Ay-invertible from the left (is Ay-invertible from the right) for all

y € Q.
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The next theorem is an immediate consequence of the two foregoing
lemmata.

Theorem 2.43 (Local principle). Let {Ay}yeq be a covering systems of
localizing classes in A. Let elements a € A and a, € A be Ay-equivalent
from the left (be Ay -equivalent from the right) for all y € ).

Let au = ua for all u € Ay, y € Q. Then a is invertible from the left
(a is invertible from the right) if and only if the element a, is Ay -invertible
from the left (is Ay-invertible from the right) for all y € 2.

The formulated local principle can not be applied to an operator A €
L(B1,B5) which maps different Banach spaces 81 # B5. To involve such
cases the method needs certain modification. An option is to consider para-
algebras.

Definition 2.44. A quadruple 2 = [2,;]2x2 of Banach spaces is called
a Banach para-algebra if there exists a binary mapping (a multiplication)

Q[jk X Q[kr — Q[jr
for each choice of j, k,r = 1,2, which is continuous, associative and bilinear.

The definition implies that the spaces 2011 and %s5 from a Banach para-
algebra 2 = [2;x]2x2 are Banach algebras.
For a pair of Banach spaces %7 and B the quadruple

Ao(B1,B2) := [L(B;, Br)]2x2
represents a Banach para-algebra. Moreover, the quotient algebras factored
by the space of all compact operators €(B;, By),

Ao(B1, Ba) = [Ajylaxe = [L(B;, Bi)/C(B;, Bi)]

2X2

represents a Banach para-algebra as well. For simplicity we dwell on these
particular para-algebras.

Let A = [2(,x]2x2 be a Banach para-algebra of operators 2, = L£(B;, Bx)
or quotient algebras A, = L(B;,By)/C(B;, By). Let {Ay}yecn be a com-
mon covering system of localizing classes in £(%81) and in £(B2):

{Ay}yea C L(B1) NL(B2). (2.102)

The local equivalence and the local invertibility are defined for para-algebras
as in the case B; = By (see Definition 2.39 and Definition 2.37). The
following theorem is proved by a minor modification of Theorem 2.43.

Theorem 2.45. Let 2 = [Ujx]ax2 be a Banach para-algebra of operators
Wi = L(B;,By) or quotient algebras W = L(B;,By)/C(B;, By). Let
{Ay}yea be a common covering system of localizing classes in L(B1) and
in L(B2) (see (2.102)).

Let A € Aji, and Ay € L(Bjr) be Ay-equivalent from the left (be Ay-
equivalent from the right) for all y € Q.
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If AA, = AyA for all Ay € Ay, y € Q, then A is invertible from the left
(is invertible from the right) if and only if Ay is Ay-invertible from the left
(is Ay-invertible from the right) for all y € Q.

3. LAYER POTENTIALS

In the present section we expose some well known results about properties
of layer potentials for a second order partial differential operators, enriched
with some simplified results from [18] and adapted to the present purposes.

Throughout the section we assume that QT C R" is a bounded do-
main with the boundary 9Q% = S, which is C*—smooth, compact sur-

face in R™ and Q= := R™\Q+ is the exterior unbounded domain; v(x) =
(v1(x),...,vn(x)) is the outward unit normal vector to the surface S at the
point x € S.

By Q we denote either of the domains Q= and Q7 in cases if there is no
need to distinguish them.

3.1. Green’s formulae for a general second order PDO. Let A(z, D)
be a second order partial differential operator with smooth N x N matrix
coeflicients

A@, D)= Y au(@)d”, aq € C™(9). (3.1)
ol <2
The operator
A*(2,D):= Y (-1)°0°[aa(@)] In, (3.2)
jol<2

is the formally adjoint to A(z, D)
(AU, V), = (U,A*V), VU,V € C*(Q), (3.3)
U= Ui,....UN)", V=(W,...,VN)T, suppV C Q,
with respect to the sesquilinear form

(UV)ai= [(U). V) dy. (3.

N
(U(2), V(2)) = U(2) - V(2) = Y Uj(x)V;(x)
j=1
Definition 3.1. The operator A(z, D) in (3.1) is called normal on S if
)i(réfs |det Ap:(x,v(x))| #0 (3.5)

and is called elliptic on the domain 2 if

meﬂl,n\fs\:l |det Ap: (2, €)| # 0, (3.6)
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where A, (z,€) is the principal homogeneous symbol of A(x, D)
Ape(2,8) 1= Y aa(x)(=i&), (z,€) € A x R". (3.7)

|| =2

Lemma 3.2. A partial differential operator A(x, D) given by (3.1) is
a normal operator if and only if the formally adjoint operator A*(x, D) in
(3.2) is normal.

If A(z, D) is elliptic on the surface S then it is normal.

For the operator A(z, D) with constant coefficients the inverse is valid:
if A(z, D) is normal, it is elliptic.

Proof. The first assertion follows since the homogeneous principal symbol
of the formally adjoint operator reads as follows (cf. (3.7)):

A (@8 = > [aa(@)]" € = [An(,0)]

| =2

T (0,6 eTQxRY.  (3.8)

The second assertion is also trivial since the ellipticity condition on S

mesl,n\fs\:l |det Ay, (z,8)| # 0 (3.9)

implies the condition (3.5).

To prove the third and the last claim of the lemma note that if ¢ ranges
over the smooth surface S without boundary then the corresponding unit
normal vector v(t) ranges through the entire unit sphere. This, obviously,
implies that normal operator with constant coefficients is elliptic. ([

Let us consider a boundary value problem

{A(z,D)u(x) = f(z), z€Q,

vsBou(x) = G(t), xes, (8.10)

where A (z, D) is the basic operator written in (3.1),
Bo(z,D) = Y ba(x)0*, b € C*(UF)
o<1

is a boundary operator of order 0 or 1 with N x N matrix coefficients and
Uét stand for one-sided neighbourhoods of S.
Along with (3.10) we consider a BVP for the formally adjoint operator

{A*(am Djv(z) =d(z), z€Q, (3.11)

vsCov(x) = H(x),  x €S,
(see (3.2)), where Co(z, D) is a boundary differential operator
Co(z,D) = Z ca(2)0%, ca € C®(UZ),
ool <pj

of order 0 or 1 such that ord Cy(z, D) + ord Bo(x, D) = 1.
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A pair of boundary differential operators {Bgo(z, D), B1(z, D)} is called
a Dirichlet system if both operators are normal and have different orders
ord Bg(z, D) =0, ord By (z, D) = 1.

A simplest example of a Dirichlet system of boundary operators is

Bo=Iy, Bi=0d,Iy=) v;0;In. (3.12)

j=1

Definition 3.3. The BVP (3.11) is called formally adjoint to the BVP
(3.10) if there exist operators Bj(z, D) and Ci(z, D) such that Green’s
formula

/ [(Au,v) — (u, A*v(y))] dy = Z /(Bju, C,v)ydS (3.13)

1
o+ =07

holds for all pairs u, v € C2(Q+) of smooth functions with compact supports
if the domain is unbounded.

For some classes of operators and under additional constraints on be-
haviour of functions, Green’s formula (3.13) can be written for unbounded
domains.

Theorem 3.4. For a pair of normal boundary operators Bo(z, D) and
Co(x, D), with the property ord Cy + ord By = 1 there exist another pair
of operators By (z, D) and Cy(z, D) such that Green’s formula (3.13) holds
and

ordBg # ord By, ordCy # ordC;, ordC;+ordB; = 1. (3.14)

The boundary operator C1(x, D) is unique if the boundary operator B (z, D)
is chosen already and both of them are normal operators if the basic operator
A(z, D) is normal.

We will prove Theorem 3.4 later in this section, to expose prior some
auxiliary lemmata. Moreover, as a byproduct of the proof we write explicit
formulae for Cy(z, D) whenever By (x, D) is given (see Corollary 3.12).

Most elliptic systems which appear in applications (e.g., in elasticity,
thermo-elasticity, electro elasticity, micropolar elasticity, hydrodynamics
etc.) have second order and some of them are self-adjoint. Therefore we
consider some simplification of Green’s formula for self-adjoint systems.

Assume that the operator in (3.1) is represented in the form

A, D)= Y (=1)*0%0 5(2)0", aqep € C®(@F), (3.15)
lal, 1811

and consider the associated sesquilinear form

A(u,v) =Y {aa,s(y)0u(y), 9v(y)) dy, u,v e CHOQT). (3.16)
lal,1BI<T o+
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Theorem 3.5. For arbitrary basic differential operator (3.15) of order
2 with matrix N x N coefficients there exists a boundary operator B(zx, D)
of order ord B =1 such that

Alu,v) = /(Au,v) dy + /(Bu,u> ds, u,ve C*(QF). (3.17)
Q+ s

If A is formally self-adjoint, A = A*, then Green’s second formula
(3.13)acquires the following form

/[(Au,v> (u, Av)] / [(Bu, v) — (u, Bv)] dS, (3.18)

Q+ S
ie., BOZ—ClzlandBlz—COZB.

The proof will be exposed later in this section.

We remind that 0, is the normal derivative, defined on the boundary
surface S of the domain ) (see (3.12)). We can extend the normal vector
filed v(t), t € S in a neighbourhood Ug C Q of the surface S with the
same smoothness and denote the extended filed by v(x), z € Ug. Then the
derivative with respect to the extended field 0, can be applied to functions
in the neighborhood Ug.

Definition 3.6. A first order partial differential operator with scalar
coefficients on the surface S

a(x,D)u(x) := iaj(x)aju(x), a; € C(S), x €85, (3.19)

is called tangential if the vector field compiled of the coefficients a =
(a1,...,ay) is orthogonal to the normal vector field on the boundary:

(a( Zaj )=0 on S. (3.20)

A tangential differential operator can be applied to a function ¢(x) which
is defined only on the surface S. The simplest definition is to take such
derivative in direction of the tangential vector a(x):

Dutp(x) = alx, D)p(x) i= lim plx+ h“(;:)) —el¥) (3.21)

More precise definition involves the orbit of the vector field v(x) and can
be found, for example, in [68].
The simplest tangential derivatives are Gunter’s derivatives

Dj = 6j — 1/]61,, ] = 1, ey Ny (322)

which can be applied to a function ¢ defined only on the surface S. Also
the differential operator of high order, compiled of Gunter’s derivatives

A(x,D):= Y an(x)D%, D* =D .- D", (3.23)
lal<2
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can be applied to a function ¢ defined only on the surface S.

Lemma 3.7. For a first order differential operator
G(z Zg] )Oju(z), g; € C(QF), xe€Qf, (3.24)
the following mtegmtwn by parts formulae is valid

[ @Dy dy = [(Gwo)uw). o) ds

Qt S
- [ @ D) dy. wve '@, (329
Qt

where G*(y, D) is the formally adjoint operator to G(y, D) and

G(x,v(x)) = gi(x)y;(r), x€S. (3.26)
j=1
In particular,
[ @ty dy= [ o) ds ~ [wl).0uwhdy.  (321)
Qt S Qt
where

= Oklvr(@)u(@)] = —dpu(x) = Y _[Ohvk(@)u(z), (3.28)

k=1

for u,v € CY(QF) and if G(x, D) is a scalar tangential on the boundary S
operator (see Definition 3.6), then the integral on the boundary S in (3.25)
disappears and the formula acquires the form

[ G D). vtw)dy =~ [w). & D@y (320)
Qt+ Qt+

Proof. Formula (3.25) is a direct consequence of the celebrated Gauf for-
mula

/[aku@)]@dy: /ukmu(wwds— / (v) Tov(g) dy, k=1,.
Q-+ S o+

Formulae (3.27) follow from (3.25) since in such a case G(x, D) = (v, grad)
and, therefore, G(x,v(x)) = (v(x),v(x)) = 1.

Formula (3.29) follows from (3.25) as well: if G(x, D) = (G(z), grad) is
a tangential operator, G(x,v(x)) = (G(x),v(x)) =0Vax € S. O

Successive application of integration by parts (3.25) to the basic operator
A(z,D) in (3.1) (not necessarily normal one) provides a Green formula
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(3.13) with some boundary operators {B;}j_, and {C;}j_,. It is easy to
trace down that these operators have proper orders

ordBj +ordC; =3, j=0,1, (3.30)

but it is difficult to control their principal symbols, because we need to
replace these “random” boundary operators by those prescribed in BVPs
(3.10) and (3.11). To this end we should derive the special Green formula
in Theorem 3.8.

The operator A(x, D) in (3.1) can be rewritten in the form

A(:Cv D) = Apr(xv V(I))GZIN + Al(xa D)al/IN + A2(Ia D) ) (331)
Az, D)= Y a} (2)D*, z€Q, k=12,

la <k

where 0, is the directional derivative, defined in (3.12), and A;(z, D) and
As(z, D) are tangential partial differential operators in the plane orthogonal
to the vector field v of order 1 and 2, respectively (see (3.23)); Apc(z, €) is
the principal homogeneous symbol of A (z, D) (see (3.7)).

The representation (3.31) follows easily if we substitute partial derivatives
0; by (see (3.22))

8j:Dj+Vj8y, jzl,...7n. (332)

For arbitrary operator A(x, D) of order m we arrange a mathematical in-
duction. Substituting each derivative from clusters 9%, |«| = m, by the sum
in (3.32), we certainly deduce the formula (3.31) modulo operators of order
m — 1, which are written in the form (3.31) by the assumption.

Theorem 3.8. Let A(z,D) be defined in (3.1) and Ag(z,D) :=
Ao (z,v(z)), Ai(x,D), and As(z, D) be tangential operators from the rep-
resentation (3.31). Then Green’s formula (3.13) holds with the following
boundary operators:

By(z,D) :=In, Bi(z,D) := Ap(z,v(x))0In, Ci(z, D) := Iy,
Co(z, D) := O AL (, v(z)) + Aj(z, D),
where A(xz, D) and 9}, are the formally adjoint operators to Ai(x,D) and
0, respectively.
The operators Co(z, D) and B1(z, D) are normal.

(3.33)

Proof. By taking u,v € C?(QF) and applying (3.27) successively 2 times
we get the following:

/ (A, v) dy = / (4] + AT )0l dS + / (Du]™, v dS

Qt S S

+/<u,A*U> dy.
O+
The Green formula (3.13) for BVPs (3.10), (3.11) with operators (3.33) is
proved.
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Note that for the symbol 9%(x, &) of the formally adjoint operator to the
normal derivative J,, (see (3.28)) and the symbols A5, (¥), A5 (x,§), j = 1,2,
have the properties:

(5 )pr(x, v () 1= = Do wi()y(x) = 1, AS (%) = [Au(@v(2)]

(A;jpr(x,u(x)) =0 for j=1,2.
Then
(B1)pr (0, (%)) = (Co)pr (2, (1)) = [Apr(x,0(x)] T

are normal since

det Ap.(x,v(x)) #0. O

Let us introduce some shortened notation. Consider boundary operator

systems arranged as vectors of length 2:
B® (2, D) := {Bo(x, D), Bi(x, D)}, 530
C®(z, D) := {C(z, D), Co(x, D)} . '

Note, that in (3.34) we have arranged the vector-operators in ascending
orders:

ordBy(z, D) = ord Cy(x,D) =0, ordB(z, D) = ord Cy(z, D) = 1.
Applied to a N-vector-function they produce vector-functions of length 2.V:
B® (z, D)u := (Bo(x,D)wBl(x,D)u)T.

Without restriction of generality we suppose that orders are arranged as
follows

ordBg=0rdC; =0, ordB; =ordCy=1. (3.35)
Under the notation (3.34) Green’s formula (3.13) is written in the form
/ [Au-v—u-A%]dy = /B(Q)u .CPyds. (3.36)
o+ 5

Moreover, the system of boundary operators B(?) (1, D) is written as
follows

B® (2, D) = b®? (2, D)0 (x, D), (3.37)
where
I 0
o2 = |V , (3.38)
0 Iy

b(®*2)(z, D) is a 2N x 2N lower block-triangular matrix-operator

Bo.pr(z,v(2)) 0 ]

b (z, D) =
B11(2,D)  Bipi(z,v(2))

(3.39)
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The entry By 1(z, D) is a first order tangential differential operator from
the representation of the boundary operator

Bl(Ia D) = Bl,pr('rv V(CC))@,,IN + Bl,l('er)a (340)
Bi1(2,D) = Y bo(2)DIy, x€Q
lal<1

and B pr(x, ) stands for the homogeneous principal symbol of B4 (x, D).

A similar representation is available for the system C®)(r, D):

C?(z,D) = c*?(z,0)0? (z, D), (3.41)
where ¢(2*2) (2, D) is a 2N x 2N lower block-triangular matrix-operator,
similar to b(*?)(z, D) in (3.39).

Invertible block matrix-operators of type (3.38) will be referred to as
admissible operators. The set of admissible matrix-operators is a multiplica-
tive ring: finite compositions and inverses of admissible matrix-operators
are admissible again. The listed properties are trivial, except the last one.
To check this note that for a Dirichlet system B (7, D) the corresponding
operator matrix b(2*?)(z, D) in (3.38) is admissible in a neighborhood of S.
Indeed, the boundary operators Bo(7, D), B1(7, D) are normal and, there-
fore, the entries of the principal diagonal in (3.38) are non-degenerate in a
small neighborhood of the boundary

detB; i (z,v(x)) 0, 2 €Ug, j=0,1.
This allows to invert the matrix and the inverse reads:

_ Byo(x,v) 0
b)) = | 0 B B . (3.42)
=By y(z,v)B1a(z, D)Byo(x,v) Byg(z,v)
Now we are in a position to prove the following.

Lemma 3.9. Two Dirichlet systems of partial differential operators
B®) (z,D) and C? (x, D) (see (3.34)) are related as follows

B®(z, D) = (bc™ )2 (2, D)C? (2, D), (3.43)
where the matriz
(b1 (3, D) := b**?) (2, D) [ > (2, D) ] (3.44)
is admissible lower triangular (cf. (3.39)).

Proof. The proof follows immediately from the representations (3.37), (3.41)
and the invertibility of the corresponding admissible matrices. O

Corollary 3.10. If {B(z,D)};_, and {C;(x, D)}j_, are Dirichlet sys-
tems of partial differential operators and the traces

(Cju)*(x) =GE(x), j=0,1, x €8, (3.45)
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for some function u € H;H(Q), s> 141/p, are known. Then the boundary
values {7§Bju(x)}}:0 are well defined. In particular, the normal derivative
Opu(x) is well defined.
Proof. Indeed, let us apply (3.43) and write

(B®(x, D)u) ™ (x) = (be 1)) (2, D) (CP) (x, D)u) " (x).  (3.46)

We get a well defined operation: the tangential operator (bc=1)(2*2)(x, D)
applied to a vector-function (C®)(x, D)u)* (x) which is defined on the sur-
face (see (3.21)—(3.23)). O

As a corollary we can derive the order reduction for a boundary operator
B;(z, D) with high order ord B;(x, D) > 2.

Corollary 3.11. Let the basic operator A(x, D) of order 2 in (3.1) be
normal. If the order of a boundary operator B;(z, D) in (3.10) is bigger
than 1, rj == ord B;(z, D) > 2 = ord A(z, D), than

B;(z,D)u(x) = B?—(:z:, D)u(z) + C(z, D)A(z,D)u(z), x€Q, (3.47)

where ord C(z, D) = r; — 2 and r) = ord BY(z, D) < 1, i.e.,

1
BY(x,D) = b;(z,D) Iy (3.48)
3=0
and bo(z, D), by(x, D) are tangential operators.
In particular, if u is a solution of the equation A(x, D)u(z) = f(x) in Q
and {B]Q(&D)u}i (x) = Gji (x) are given, from (3.47) we get

{B;(x,D)u}™ (x) = G (x) + {C(x, D) f}*(x), x€S. (3.49)
Proof. Since ,
B;(z,D) = i:Bjk(a:, D)OX Iy (3.50)
=0

it suffices to have the representation (3.47) only for the Dirichlet data
B,(z,D) =0}y for j =2,3,....

The operator A(z, D) in (3.1) is normal and due to (3.31) we get the
representation for j = 2:

1
02In = [Ap(z, v ()]~ [A(x,p) > Ay (@, D)OIN] . (351
k=0
Further we proceed by mathematical induction: if the representation is
known for j =2+ k
O *In = Goyg(2, D) + Coyi(z, D)A(2, D), 2€9Q,

1
_ (3.52)
Goyr(z, D) =Y Goyr (2, D)0 I,

J=0



Interface Crack Problems for Metallic-Piezoelectric Composite Structures 63

we write
az+k+1IN = G2+k+1($, D) + C2+k+1 (1’, D)A((E, D) , TE Q ’
Cotiti1(x, D) = 0,Cori(z, D),
Gotit1(2, D) i= 0y Gayi(z, D) =

= G2+k1 ol D)8 o IN +ZG2+k+1J(CL‘ D)X Iy .
7=0

By inserting in the latter 921y from (3.51), we get a representation for
2R+ [y similar to (3.52). O

Proof of Theorem 3.4. Let B®)(x, D) = (Bo(x, D), By (z, D)) be a Dirichlet
system and ord B; = j, j = 0,1 (cf. (3.35)).

Our starting point is the green formula from Theorem 3.8, which we
rewrite in the form:

/[<Au,v>—<u,A*v>} dy:/<(3§2>u)+,(G<2>v)+>ds (3.53)
Qt S

(cf. (3.36)), where P u = (u, Oyu) " (see (3.38)) and

G?(z, D) := = {Go(z, D)v,G1(z D)v}—r
= (0)* (AP (2, D))" (v,v)" (3.54)
(see (3.33)). The matrix operator
A2X2) (g D) = Ape (@ /(z)) ! (3.55)
Aq(z,D) Ape(z,v(2))

is composed of tangential differential operators of the representation (3.31).
A®*2) (g, D) is admissible if and only if A(z, D) is a normal operator.
Due to (3.37),

0PIy = b (x,D)] 'B@(x,D), x€5. (3.56)

Inserting (3.56) into (3.53), taking into account that the admissible matrix
operator b(2X2)(gc7 D) is tangential and, thus, possesses the surface dual, we
get

/ [(Au,v) — (u, A*v] dy =
O+

:/<(b(2X2)) 'B@y, GPv)ds = /<B<2>u,c<2>v> s, (3.57)
S S

where C(2)(x, D) is uniquely defined by the relation
C®(z, D) = [(6)*(z,D)] ' [(0?)"] (A®?D)*(2,D)S,.  (3.58)
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The matrix operators (b(2*2)*(z, D) and (A(?*?)*(z, D) are formally ad-
joint (see (3.2), (3.3)) to the corresponding admissible matrix operators
b*2)(z, D) in (3.39) and AZ*?)(z, D) in (3.55).

The claimed relation (3.14) between orders follows from (3.58) and we
leave details to the reader. 0

Remark 3.12. Let the Dirichlet system B()(x, D) be fixed, the ba-
sic operator be normal and the convention (3.35) holds. Then the system
C®(zx,D) in Green’s formula (3.13) (see (3.36)) is found by the formula
(3.58).

Proof of Theorem 3.5. If we apply (3.25) to (3.16) we get the formula (3.17)

but with systems {B; }f;(l) and {éj}g;(l), which we can not control. There-

fore we commence by the representations

OvIn =v*(2)0pIn + a4(x, D), a €Ny, |af <1,

v¥(z) =vit(z)...vo" ()

(cf. (3.31)); by inserting them into (3.16) and applying (3.27) we get

Alu,v) == Z <85u, o3[V O IN + aa(y,D)}v> dy =

lal,1BI< 10+
= Z [<1/O‘aa)565u, D) + <aZ(y,’D)aa7585u,v>} dy =
lal 8IS s
= /(A(y7D)u7v> dy+/<C(T, Dyu,v)dS, (3.59)
Q+ s
C(z, D)= Y v*(2)aap(x)0"Ly,
lel,|B<1

Thus, we get Green’s formula (3.17).

If A is formally self-adjoint, A = A*, then A(u,v) = A(v,u) and from
(3.17) written for pairs u, v and v, u we get the simplified Green formula
(3.18). O

3.2. On traces of functions. Besides the classical Sobolev W (R} ), Bes-
sel potential H; (R’ ) and Besov B, ,(R’) spaces on the half-space R’} and
on a domain 2 with the boundary, we will treat weighted spaces introduced
in Subsection 2.1, which are well-adapted to consideration of potential op-
erators.

Let us define the Trace operator:

Ryu = vg0PF)y .= Qu, v, ..., vEu T,
KU =50y {5, 7s v5u} (3.60)

Ve =5, vk =501, ue CF(Q),



Interface Crack Problems for Metallic-Piezoelectric Composite Structures 65

Theorem 3.13. Let 1 < p,q < o0, mk € Ng, k < s — % ¢ Ng. The
trace operator

k
5—*—J
Ri B @) = @ B
J=

k
s,m 57_73
Rk Bp q, loc - ® BP#Z

(3.61)

is a retraction, i.e., it is continuous and has a continuous right inverse,
called a coretraction:

(Ri)™" : QR Byy” () = HL (),
=0
k L
— S—p—J s,m
(Rk) ! : ®BP1‘1 (S) HBp,q,loc(Q)7 (362)
j=0

k .
Ri(Ri) '@ =0, V& e @R)B,," " (S),
3=0
Pmof The proof represents a slight modification of the proof for the case
= 0. We will carry out the proof for the space H>)" (2). For the space
IB%S oo 1oc(§2) the proof is similar.

Since the assertion has local character, we can dwell on the case of the
half-spaces Q = R} and k£ = 0 (cf. [72, Theorem 2.7.2, Steps 6-7] and [72,
Theorem 3.3.3] for details when k # 0 and {2 is arbitrary).

Let us recall an alternative definition of (equivalent) norms in the spaces
B, (R") and HS(R") = F5,(R):

D, loc(

185 R = {297 P} 2 | LR
ol (R | = [[{27F i Fe} 2 Lo (R, ) (3.63)

(see [72, §§ 2.3.1,2.5.6]), where
X;j € C5°(R™), supp xo C {z € R": |z| <2},

suppx; C {z € R": 2971 < |z < 27F1} ij(gc) =
n [72, § 2.3.1, Step 5] the coretraction R, ' is defined as follows
Rq ol an) Zz T i O F L s V) Fy o [ew)] - (3.64)

where
supp ¢o € (0,1), supp ¢ € (1,2), F'4po(0) = F1p(0) =1
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Then F~'4);(0) = 27 which yields (Ry'¢)(2/,0) = ¥(2/,0). We proceed as
in [72, § 2.7.2-(30)]

oz Ry olBos" 7 <

C, H {2 SEEIET (=i, )5 (An)] X

* Lo @F—n W]} 6Ly =

= & |[{2 L O L @ F - W]} ()| <
< Cof {F 0GP} 2ol (Lo) | = [lel B3,
where (™) (t) := 9/™1)(t). Similarly we find
2 R o H P <
< Gy||[{27F i Fe} | Lo(R” 63)|| < Gl |
and the proof is complete. |
Corollary 3.14. Let 1 < p,q < o0, % +k<s< % +k+1. Then
rH3™(Q) = {u € H3™(Q) : Ryu=0}, (3.65)

rB3™(Q) = {u € BS™(Q) : Ryu=0}.

Lemma 3.15. Let A(z,D) in (3.1) be a normal operator, 1 < p <
00,1 <qg<oo, s8> 1/p and m = 0,1,...; let further B® (z, D) :=
{Bo(z,D),Bi(z,D)}" be a Dirichlet system and

¢ = (1007@1 ®BS+1 J a ¢07¢1 ®B;7Zl J

be given vector-functions. Then, for arbitrary integer m € Ny there exists a
continuous linear operator

1
s+144

Pa : QBh(S) = H,y . 7 (Q)
70 (3.66)
s s+1+%,m
®B . J IB317417100 (Q)
such that
vsB;Pa® = (pju vsB;iPAY =1v;, j=0,1, (3.67)
,m ~s—1+41 ,m
APAD € Hp loc (Q), APAVY € Bp . oe (£2). (3.68)
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Proof. There exists an integer k € Ny such that % <s—k< % + 1. Due to
(3.65), the condition (3.68) can be reformulated as follows (cf. (3.60)):

RiLAP® = {73APD, 74 APD} = 0. (3.69)
The operators
Boij(2,D) =0} A(z,D), ordBai;=2+j, j=0,1,...,k

are normal
Baj0(x,v(x)) = (—ZZV ) Ao, v(x)) = (—i) Ao (2, (%)),

deth+j70(X,u( ))#O, XGS, ij,l,...,k

and adding them to the Dirichlet system B(™ (z, D) we get the extended
Dirichlet system BG**) (2, D) := {Bo(z, D),...,B11x(z, D)}". On defin-

ing

24k
g := (g0, 01, 0,...,0 )e X B:t17(9), 3.70
0 (o0, 1 ) g p,p (S) ( )

(k+1)—times
we can match conditions (3.67) and (3.69) (which replaces (3.68)) and refor-
mulate the problem as follows: let us look for a continuous linear operator

Py s+3+E kK —

®B5+1 WS —H, . 7 (Q) (3.71)
such that

YEBEHI P9y = @, (3.72)

for @ given in (3.70).
Since BG+#) (2, D) is a Dirichlet system, there exists an admissible matrix
operator b{(3+R)xB+K)) (2 D) such that

B(3+k) (ZZT,D) _ b((3+k)x(3+k))($,D)8£3+k) (:Z?,D) (373)
(see (3.38), (3.42)). Let us define the coretraction
0 —1
7)( ). . 3-&1@ [b((3+k)x(3+k))(:c7p)] (374)

based on the coretraction in (3.62). The inverse [b(G+F)xG+R) (3 D)= is
an admissible and tangential differential operator, and can be applied to

the function ®¢ defined on the boundary only. Thus, the operator Pg)) in
(3.74) is well defined and continuous in the setting (3.71).
Applying (3.73) and (3.74) we find that

7251_3,(%1@)7;1(&0)(1,0 — p((B+k)x(3+k)) (, D),ySa(S-i-k) (z, D)R3+k %
X [b((3+l€)><(3+k))(x’ D)} @0 — @0

because
vgb(BHRXGHR) (3 DY = p(B+RXB+R) (3 D)y
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and 759 ™) (z, D)R; !, ¥ = T

due to (3.62). Equation (3.72) is thus solved. O

For regular case, the counterpart of Lemma 3.15 is proved in [49, Ch. 2,
§ 16], where the operator Pa is efficiently constructed by means of the
special potential type operators.

Let us consider the following surface d-function

(g ®dg,v)gn 1= /g(T)'ygv(T)dS, g€ C™(S), ve CFEMR™)  (3.75)
S

and its normal derivatives 5(Sk) = 0kdg:

(9 ® 8%, v)zn ::/g(T)ﬁ((a;)%)(T)ds, k=1,2... (376
S

(see (3.12) for the normal derivatives and (3.28) for the adjoint). Obviously,

supp (g ® 5gk)) = supp g C S for arbitrary k € Nj.
Definitions (3.75)—(3.76) can be extended to Bessel potential and Besov
spaces.

Lemma 3.16. Let 1 < p,q < o0, s <0, g € By (S) and h € B, ,(S).
Then
g® 52@ c Hs—k;ll/p/ (Rn) n Bs—k—l/p/ (Rn)7

p,co p,p,com

g® 52@ c ﬁs—k;ll/p/,m(g) n ﬁs—k—l/p',m(g) 7

p,co p,p,com

h®s®) e By ko1 (R,

p,g,com

hosy) e By ko Lr @),

where Q = QF, p' =p/(p—1) and k,m € Ny are arbitrary.

Proof. The distribution g ® 6% in (3.75) and (3.76) is a properly defined
functional on the space X *+¥(R™), where, for conciseness, X4 (R™) denotes
either H}!(R™) or BY (R") (see Theorem 3.13). Moreover, due to the same
Theorem 3.13 we get the inequalities

k s —st+k ! n
(g ® 857, v)a| < Cilg)llgl B3, (S) x|, P (R

recording the continuity property of the corresponding functionals; here
X € C§°(R™) is a cut-off function, which equals 1 in a neighborhood of S.

s—k— L
Therefore, by duality, g ® 5§9k) € Xp,com” (R™).
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To prove the result for the weighted spaces let us note that, for arbitrary
m, k € Ny,

m!
o™ () = T )

where p = p(z) = dist(z, S), z € Q and hg, ..., hy, € C(Q). Indeed, if
t; € S is a point for which the distance p(z) := dist(z, S) = dist(z, ;) from
x € ) to the boundary S is attained then

pla + hv(ts)) - p(z)

Ou(t,)p(x) = lim 5 =1,

because p(z + hv(t;)) — p(x) = h. For arbitrary m, k € Ny the first formula
in (3.77) follows by a standard approach and is used to prove the second
one.

Now we apply definition (3.76):

s
= / 915 [(—dive(e) = 0u)* (o) (v)] dS =
s
k m C\k - -

=22 % / e (¥)g(9)75 [050°0) 0] (v) dS =

m=0 j=0 : : 5

k  min{m, ¢} Y ‘ ‘

=Y Y s [z o ) ds =

m=0 j5=0 5

koo (Zq)k
- > Tn(l(kli)_ég')l / hn(V)g(0)7E 00 W] (v)dS if £ <k,
S

m=/
0, if £>k
k
(=D (m—0) :
L g @600 Ve if £ < K,
- 7; mile =g img © 05 Ve (3.78)
0, if {>k.

According to the proved part of the lemma from (3.78) we get the inclu-

sion pf(g ® 5591@)) € X;}ﬁﬁ_l/p/’m(ﬁ); this yields the inclusion g ® 5591@) €
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XZ;E,}U PM(Q) for arbitrary m € N due to the definition of the weighted
space.

For the function h ® éék) the proof is verbatim. |

3.3. Integral representation formulae and layer potentials. Through-
out the present section we assume that the differential operator A(z, D) in
(3.1) is extendible onto entire R™ and the extension has a fundamental so-
lution Ka (z,y) € C(R™, S'(R™))

A(z, D)Ka(z,y) :=0(x —y)In. (3.79)

Moreover, we assume that the formally adjoint operator possesses the fun-
damental solution Ka~ and Kax(z,y) = Ka(y,z)T.

If the operator A(xz,D) = A(D) has constant coefficients, the funda-
mental solution Ka(z,y) = Ka(z — y) exists, depends on the difference
of variables and Ka+(z —y) = Ka(y —z)7 (see, e.g., [28, § 10, Theorem
10.2.1]). Moreover, the fundamental solution is smooth outside the diagonal
set: Ka € C°(R"xR™\ Agn), where Agn := {(z,z) € R"xR" : Vz € R"}
(see [67, § 2.5, Proposition 2.4] and [28, vol. 3, Theorem 18.1.16]).

If A(x, D) is elliptic of order 2, ord A = 2 and has C°*°-smooth uniformly
bounded coefficients, then the symbols A(x, ) belongs to the class S?(R™ x

R™) and the inverse symbol A~ (x,£) belongs to the class S~2(R™ x R™)
(cf. Definition 2.12 and (2.25)).

As a first application of Green’s formula (3.13) we can derive the repre-
sentation of a solution to the BVP (3.10). Since the boundary operators
Bo(z, D) and Cy(z, D) in Green’s formula (3.13) have order 0 (i.e., repre-
sent multiplications by functions), we will suppose, for simplicity, that

BQ(CL‘,D) = Cl(:v,D) = IN, Bl(:v,D) = B(l‘,D),

Co(z,D) = C(z,D), ordB(z,D)=ordC(z,D) =1. (3.80)

Then the following Green's third integral representation formula is valid
Xo+ ()u(z) = No+ f(z) + (Wrdu)(z) + (Vy§Bu)(z), (3.81)

where xq+ is the indicator function of the domain Q C R™ and

V() := / [ICA* (y,:c)]T<p(y) dsS = /ICA(:c,y)g)(y) ds, (3.82)
S S

Weolz) i= [ [CO. a0 2)] oly) dS =
S

= / Oy Ka(@,¥)ej,(¥)p(v) dS (3.83)
lal<1g
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(cf. (3.11)) are the single and the double layer potentials, respectively. The
operator

—_— T
Nosols) = [ Barwo] ey = [ Kaleolol)ds (350
Q+ Q+
is called Newton's potential and represents a DO of order -2, restricted to
the domain €.
The following operators

No+ « Hy(Q") — HI2(R"),

p,loc

p,q(m) — B2 (R™) (3.85)

p,q,loc

are bounded for all s e R, 1 < p < 00, and 1 € ¢ < oo (see Corollary 2.13).
The following assertions hold true.

Proposition 3.17. The single and double layer potentials with ¢ €
H;(S), seR, 1< p<oo, are solutions to the homogeneous equation
A(z,D)Vp(z) = A(z, D)Wp(z) =0, € QT UQ™. (3.86)
Proposition 3.18. Let m € Ny, 1 < p < oo and 1 < ¢ < oo. Then
Newton’s potential operator has following continuous mapping properties:
Nov : Hy™(@F) — Hy o (R"),
D Bom(QY) - BYPATURT) for s €R, (3.87)
No+ = rg+ Nenlor @ HE™(QF) — HII2™(QF)
)

p,q,loc
p,loc

: BE™(QT

p,q

— B2 ™QF) for s> —%. (3.88)

p,q,loc

Applying the definition (3.75) we can represent the layer potentials (3.82)
and (3.83) in the form of volume potentials:

Vo(z) = / Ka(,9)(9 © 65) () dy = Nan (9 @ 38)(@),  (3.89)
Wo(z) = / [C(y,D)Ka- (y,w)]T(soébés)(y) dy. (3.90)
]Rn

On the other hand, due to Lemma 3.16,

~s—1+1 m
P ®0s € Hpcom” () for e B (9),
! p (3.91)

~ 1
YR s € B;;li,%m(ﬂ) for e B, (9),
for arbitrary s < 0. Therefore continuity properties of layer potentials can
be derived from the foregoing Proposition 3.18. But this approach has a
clear shortcoming: we can not conclude the continuity for s > 0 because
YR0s & X;loc(ﬁ) for s > =1+ 1/p even for ¢ € C(95) (i.e., Lemma 3.16
is optimal and can not be improved). Indeed, locally S can be interpreted
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as R"™! and Q as R7. Then 1® 0gn-1 = 0(zy,) & X;JOC(@) ifs>-1+1/p
(see [22] for p =2 and [72,73] for 1 < p < o0).

In the next theorem we choose yet another approach to the continuity of
generalized layer potentials, which enables to prove the continuity property
for positive s > 0.

Theorem 3.19. Let s e R, 1 <p < oo, 1< q< o0, andm € Ng. Let
A(z, D) be an elliptic second order partial differential operator as in (3.1).

The single and double layer potentials map continuously the following
spaces:

s s+1+%,m .
vV o WR(S) - H,,,, (Q) provided s>0
and s#2,3,..., if 1<p<2
s s+1+%,m 3
Hy(S) — H, joe (Q) provided s>0, p>=2, (3.92)
s s+1+l,m
Bp,p(s) - Hp,loc g (Q)7
s s+1+21 m
BP;q(S) - Bp,q,locp (Q)a
S 1 m
W o Wi(S) — Hpjopc’ (Q) provided s>0
and s#2,3,..., if 1<p<2,
s+1m i
Hy(S) — Hpjjc (Q) provided s>0, p=2, (3.93)
s+%,m

B[S),p(S) - HpJoc (Q)7

s s+%,m
BP;q(S) - B;D,q,loc (Q)
Proof. Due to Theorem 3.4 we can suppose that Green’s formula (3.13) is

valid and let
{Bo(x, D), Bl(:v, D)} s {Co(x, D), Cl(l', D)} 5 Bo(x, D) :C;l(:v, D) :IN,

be the Dirichlet systems from formula (3.13), where ord Co = ordB; =1
(see (3.14)).

The continuity results (3.92) and (3.93) for s < 0 in the case of the
spaces B, , and B, , follow from Lemma 3.16 and Proposition 3.18 (see

representations (3.89) and (3.90)).
Next we take s > 0, s € N and define the operators

,PJ-QD = PA\I/jv \IIO = (<pa 0)7 \Ill = (07<P),

Pa is from Lemma 3.15. From the same Lemma 3.15 we derive the following
continuity properties

Py ByhA(S) - xR Q) (3.94)
AP,  BIEYI(S) — XA (q) (3.95)
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for arbitrary m = 0, 1,.. ., where either X» ,_ (Q2) = H}, () or X7, () =
By 10(2), and sumlarly for Xp 10c(£2). Moreover,
YEBLP; = 0y for j,k=0,1, (3.96)

where the signs + stand for the traces from Q = Q.

Let us consider ve »(y) := xe(x—y)Ka (y, x), where ICa (z, y) is the funda-
mental solution of A(z, D) and x. € C*°(R"™) is a cut off function: x.(z) =1
for |z| > e and x.(z) = 0 for |z| < ¢/2. By inserting

v(Yy) =veo(y), u="Pip, @€BIHH(S)

into Green’s formula (3.13) and sending € — 0, similarly to (3.81) we find
the following

TWop () = xo+ (2)Prp(z) — Nor AP1p(z) +
+ / )0 Ka) ()t s (y) Pre(y)dy, (3.97)

a+8<2 O+

where ¢l 5, ¢2 ;5 € C®(R").
Applying Lemma 3.15 and Proposition 3.18 from (3.97) we derive the
following continuity results:
W . B —H 0
. p,p ( )_> p,p,loc ( )7 (398)

B (S) — B (@)
P,q p,q,loc ’

provided s > 0, s # 1,2,..., 1 < p < co. The continuity
s s+1+%,m
AV Bpm(S) — Hp,loc (Q),
s+H1+1 m

BS (S) - ]Bpﬁqﬁlocpﬁ (Q)

p.q

(3.99)

fors>1,s#1,2,... and 1 < p < 00, is proved similarly.

The gaps 0 < s < 1 and s = 1,2,... for the spaces B, , and B, , are

filled by the interpolation: the complex 1nterpolat10n method gives
(B;?p(s)vB;S),lq(S))G :B;,q(s)a 1 <p <00, 1<Q<007

(IB%S" (Q), IB%S1 (D)o =B) ,10c(Q), s0# 51, s= (1—6)sg+ 051

p,q,loc Pp,q,loc

for arbitrary so,s1 € R (see Proposition 2.25 and Remark 2.26).
The boundedness results for the Bessel spaces H,, s > 0 in (3.92) and
(3.93) follow trivially, since

||><V<p|HS+1+

") < Mlle|B; (9]l < Mollo|H(S)I|
for arbitrary smooth cut off function x € C§°(Q) and some constants M > 0,

My > 0, due to the continuous embedding H, C B, ,, which is true for
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p=>2. The gap s =1,2,... for the spaces Hy is filled by the interpolation:
the complex interpolation method gives

(Hp°(S), Hp' (S))e = Hy(S5),

(HZ?IOC (Q)7 H;,lloc (Q))9 = ;,IOC(Q)’ S0 7& S1, S§= (1 - 9)80 +0s1

(see Proposition 2.25 and Remark 2.26).

The boundedness results for the Sobolev-Slobodetskii spaces W, in (3.92)
and (3.93) follow trivially, since By, =W; foralls >0,s#1,2,... and
Hﬁ:Wﬁfora112<p<oo,€:1,2,.... O

Remark 3.20. The continuity properties in the Bessel potential spaces

s s+1+l,m
A2 Hp(s) - Hp,loc ! (Q) ’

s SJF%’m
W o Hp(S)—H, 5 ()

(see (3.92) and (3.93)) for 1 < p < 2 are false.

Indeed, let us take s > 0 and 1 < p < 2. Then B, (S) is a proper
subset of H:(S) and we can choose p € H;(S) \ By p(S). If (3.100) holds,

S 1 m
Wy e Hpjopc’ (Q). The trace
p=(Wp)" — (W)~

(see Plemelji’s formulae (3.126) below) should then belong to B, ,(S) (see
Theorem 3.13), which is false by the assumption. For the operator V we
should face a similar contradiction if the boundary operator B1(xz, D) and
formulae (3.126) below are applied:

¢ = (Bi(z, D)Vy)" — (Ba(z,D)Vy)~.

Moreover, the continuity result for the Sobolev-Slobodetskii spaces W,
in (3.92) and (3.93) for s = 1,2,..., 1 < p < 2, does not hold, because
Wy = Hj for integer s = 1,2,... and, after interpolation, we end up with
the false boundedness results (3.100).

(3.100)

3.4. Traces of generalized potentials. Let A(z, D) in (3.1) be an elliptic
differential operator of second order ord A(z,D) = 2 and Ka(z,y) be its
fundamental solution. Let us consider a Potential-type operator

Vs.c:=B(z,D)VC, z€Q, (3.101)
where V is the single layer potential (see (3.82)) and
B(2,D) = Y ba(2)02, ba € C(Q), z€Q,
ol <k

C=C(,D) = Z ca(¥)DY, cq € C®(S), v€ES,

lal<p

(3.102)

are some differential operators on the domain §2 and on the boundary surface
S, respectively. C(»,D) is a tangential differential operator and it can be
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applied to functions defined on the boundary surface S only (see (3.22)
and (3.23)).

Theorem 3.21. Lets€e R, 1 <p < oo, k,u €Ny and 1 < ¢ < oo. Then
the potential-type operators

s+1—k—p+%, m

Ve.c(z, D) : B, ,(S) — H,,,. (Q), (3.103)
s s+17k7u+%,m
: Bp,q(s) - Bp,q,loc (Q)
are bounded for allm =0,1,..., 0.

Moreover, the traces 'y?VB)C(:E,D) exist and are classical pseudodiffer-
ential operators with symbols

N
Vi e(r,€) =Y Veer(r€) + Vsen(r,€), (3.104)

k=0
¥ —20+1 —N-1
VBc,n41 € STHHITmAR (S),

where N € Ny is arbitrary and Vi ¢ 1(T,€) are homogeneous functions in &
of order =20 +14+m+u—|8|—k (r€8,(€R"\ {0}, k=0,1,...,N).

Proof. The continuity properties (3.103) follow from Theorem 3.19 and the
boundedness of the differential operators (see the second part of Theorem
2.23)

C(x,D) : H3(S)— Hy *(S), B(z,D) : H) . (Q) — H L™(Q),

p,loc p,loc
C(x,D) : B;,(S) = By,k(S), B(z,D) : B, () — B 17" (Q).

We shall concentrate on the existence of the traces ’yf;EVBp(:v, D).

Without loss of generality we can suppose C(x, D) = Iy because a com-
position of classical ¥DOs is classical. Decomposing the operator

k
B(z,D) =Y B¥ (2, D0)3Iy, BO(z,D) = B(z,v(z))
j=0

(cf. (3.31)), where B(")(z, D) is a tangential differential operator of order
r, we find

k
Ve - Y B0 (0D,

Jj=0

V=V, =0 V(z,D). (3.105)

The generalized potentials \Nfo =V coincide with the single layer poten-
tial, while for k£ = 1 they behave like the double layer potential, where the
boundary operator is B(z, D) = 9,Iy. These are ¥DOs due to Theorem
2.33, Remark 2.35, and the traces vgtvk(x,DL k = 0,1, are well defined
classical ¥DOs on S.
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Therefore, in the representation (3.105) both the continuity results (3.103)
and the existence of the traces Pyngyc(:c, D) are guaranteed.
Now let ord B > 2 and consider the representation (3.31):

A(z,D) = Ay (z,v(2)02In + A1 (2, D)Iy In + Az(x, D),
Ay(z,D) = Z aho(@)D* Iy, z€Q, k=12, (3.106)

loe| <
where Ap,(x,€) is the principal symbol of A(z, D) (cf. (3.7)) and the op-
erators Aq, A,, restricted to the surface ysAp(x,D), x € S, k = 1,2,
are tangential differential operators. Since Ka (x,y) is the fundamental so-
lution, A(x,D))Ka(z,y) = d(x — y)In. On the other hand, by invoking
(3.106), we find

Az, D)Ka(z,y) = Ap(2,v(2))02 KA (2, y)+
+ A1(2, D)0, Ka(z,y) + As(z, D)KA(x,y) =0(z —y)In. (3.107)
Now we recall that A(z, D) is elliptic, which implies det Ay, (z,v(z)) #

0 in a neighborhood of the boundary S (see Lemma 3.2). This ensures
solvability of equation (3.107) and we find:

KA (z,y) = 6(z — y) A (z,v(x)+

pr

2
+ Y AL (@ (@) A (2. D)0 KA, y) - (3.108)
j=1

Applying the mathematical induction and invoking (3.108) we obtain the
representation

Oy Ka(z,y) = 6(z — y) A (2, v(2)+

pr
+ Z A;rl (Ia V(I)Aj (CC, D)@Z*J’CA(I’ y)
j=1

1
=d0(x —y)B(x) + Y _ Bi(z, D)0 Ka(z,y) (3.109)
§=0
for arbitrary operator A(x, D) of order r = 2,3,... .

The representation (3.109), inserted into (3.105), diminishes the order
of the operator (i.e., the order with respect to the normal derivative) to
k < 1. As we have already noted, this guarantees both, the continuity
results (3.103) and the existence of traces. O

3.5. Calderdn’s projections. Throughout this section it is assumed that
the hypotheses of Theorem 3.4 hold and Green’s formula (3.13) is valid also
for unbounded domain 2~

/ [(Au,v) — (u, A*v(y))] dy = iZ/(Bju, C,v)dS (3.110)

QO =073
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under certain constraints on functions u,v € C?(Q%) at infinity (e.g, for
u(z),v(z) = o({x)~7), v > n/2, as |z| — o0).
Let
s s+t
Hp7i(AaBja S) = {FY;“‘:BJ%) TpE HP P (Qi)a A(IvD)(p = O}a (3 111)

s st+i++
Byi(AB;,8) = {1¢Bip: ¢ e By 7 (QF), A D)p =0},

for j=0,1,s>0,1 <p<o0,1<q< oo, where fysiu denote traces.

Theorem 3.22. Let 7 = 0,1, s > 0,1 <p <00, 1< q< o0 The
functional spaces are decomposed in the following direct sums

Hy(S)=Hy (A,By,S) ® Hy " (A, By, S),
By (S) =By (A, B;,8) ©ByF(A,S),

. .t (3.112)
Hp1 (A7 ij S) N Hp1 (Aa ij S) = {O} )
By (A,Bj,S)N Byt (A, By, S) = {0}
and the corresponding Calderdn projections
P,/:i,j : H;(s) - H;)i(Aija S)v (3 113)
. s s, t :
: By (S) — By (A, B;j, S)
are defined as follows
+ _ + + +
Ppro=+75BoW, Pj,=+74B1V. (3.114)

Proof. Let X3(S) stand either for H,(S) or for By (S). We will prove
(3.112) and (3.113) for the Sobolev—Slobodetskii spaces. For the Bessel
potential spaces we have to prove only the continuity property (3.113) while
the others (including (3.114)) follow from the embedding B;, ,(S) C H;(S)
for 1 <r<p<oo,seR (see [72,73]).

The continuity (3.113) follow from Theorem 3.21 since Pij are YDOs
of order 0 (see Theorem 2.33 and Remark 2.35) and

ordPi0 =ordBg+ordW =0, ordPi1 =ordBy+0ordV=1-1=0.
By inserting u = Pjp, f = Au = AP;p into (3.81), where Bg = I,
B; = B (see (3.80)) and involving (3.96), we get
Xa+Pop(z) = Nor APyp(x) £ WBoPop(z) £ VB1Pop(z)+
= N+ APyp(z) £ Wo(z),
xo+Pip(z) = No+ AP1p(x) £ WBoP1p(z) £ VB1Prp(z)+
=Nq: AP1p(z) £ Vip(z), z€QF.

(3.115)

Since the first summand in (3.115) and its derivatives are continuous across
the surface S,

(7595 No- AP;p)(x) = (75 0; No+ AP;jp)(x), x €S, (3.116)
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for arbitrary multi-index o € Nj. Taking the sum and invoking (3.96) we
obtain the following

(7§ BiV9)(x) — (15 BiV;9)(¥) = BiPjp(x) = djp(x),  (3.117)

where j,k =0,1, Vo =W, V; =V and Bg = I, B; = B are chosen as in
(3.80). Formula (3.117) yields

PLio+Pap=73B;Vip —15B;iVip=0, peX5(5)  (3.118)

and with (3.113) they imply (3.112).
To prove (3.112) let us apply formula (3.115), written for the homoge-
neous equation Au = AP;p = 0:

Xa+Pop(z) = EWep(z), xaPip(@) =+Ve(x), € Q UQT. (3.119)
Now assume, that ¢ = PXﬁjgp = P;J«p, which means that the function ¢ is
in the intersection ¢ € X5~ (A, Bj, S) N X" (A, B;S). Then from (3.119),
by applying the operator B; and invoking (3.96), (3.95) we find that

Pt (%) = {BoPop} (x) = £{BoWp} ™ (x) = P} ge(),

P (x) = {(BiPrg}(x) = £{B1Vp}F(x) = Py 19(x), ¥ €8,
and since ¢ = PXJQO =P, 5, we get [p](x) := ¢T(x) — ¢~ (x) = 0. On
the other hand, by taking the sum of traces, we derive from (3.119) that

Pop(z) = Wip|(z) =0, Pip(z) = Vigl(z) =0, 2€Q UQ™, (3.120)
which implies ¢(x) = 0. Thus

Pa; PaiTe=0 Vi€ X5(S). (3.121)
From (3.118) and (3.121) we get that P:j are projections:
(Pi,j)2 = Pi,j (Pi,j + Pi,j) = Pi,j : i

3.6. Plemelji’s formulae for layer potentials. Let

B;(z, D)Vip() =/Bj(ivaD)[Ck(%D)’Cl(yw)fw(y) ds, v eQ,
S

V;i(x,D)p(x) == % [(B;Vigp(x)T 4+ (B;Vip(x))™], xS (3.122)

According to Theorems 3.19, 3.21 and 3.13, V;; is a pseudodifferential
operator, ord B;(x, D) = j, ord C(x, D) =1 — k, and maps the spaces

Vjk @ Hy(S) — Hy ™ 77(9),

_ (3.123)
. s s+k— - _
: By ,(S) — Bpf; 7(S), 4,k=0,1,

continuously, provided that s e R, 1 < p < o0, 1 < p < o0.

We have already explained in Corollary 3.11 in what sense the operator
V. should be understood when its order is strictly positive, i.e. ord Vg1 =
1. Since ordV;; = 0 (see (3.14)), V, ; represents a Calderén-Zygmund
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singular integral operator and the integral in (3.122) is understood in the
Cauchy principal value sense:

Vji(x, D)p(x) =

= lim / Bj(x,D)[Cj(y,D)/cX(y,x)fw(y)ds. (3.124)

S\S(X,e)

Here S(x,¢) is the part of the surface S inside the sphere S"~!(x,¢) with
radius € centered at x € S. Then V; ; is continuous in the spaces H,(S)
and B; ,(S) (see (3.123)).

Theorem 3.23. Let the BVP (3.11) be formally adjoint to (3.10) and
suppose that Green’s formula (3.110) holds. Then, for the traces ’ygtBjV;g
the following Plemelji’s formulae are valid:

(75 Bj(x, D)Viep)(x) = (7§ B;(x, D)Vip)(x) for k#j,  (3.125)
(E B, (x, D)Vy)(2) = % 5 0lx) + Vi (x, Djp(), (3126)
xeS, kj=0,1, o€ H)().

We remind, that V1 =V is the single layer and Vo = W s the double
layer potential.

Proof. (3.125) follows directly from (3.117).
Let x € S be the projection of x € Q, i.e. © = x £ c,v(x) (recall that
v(x) is the unit exterior normal vector to S). The potential-type operator

Vigele) i= [ K;ale)e)ds, (3.121)
S

K;a(z,) = B;(» D)[C,;(» D)KA(z)] ', €0,
restricted to S, has order 0 and has the following Calderén—Zygmund kernel

Kja€C®R"@R"\ Agn), (3.128)
|Kja(z,v)| < Moly[™™, yeR™, »#0. (3.129)

Then the truncated operator

V?J-’sgo(:v) = / Kialz,y)p()dS, ¢>0 (3.130)
S\S(X,e)

(see (3.124)) has C*°-smooth kernel (see (3.128)) and

lim (v V5 c0)(x) = lim (7§ V35 .0) (%) - (3.131)
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Due to the definition (3.124) and the continuity property (3.131),
(75 B; (2, D)V9)(¥) = (V;(x, D)) (%) + lim (75 V5.0 (x)

Vjep(x) = / Kialz,y)p()dS, x€, e C>®(S). (3.132)
S(X,e)
Since € > 0 is sufficiently small there exists a diffeomorphism
% 1 So(x,e) = S(x,e), x(x')=(2',g9(z")) € S(x,e)CS,
2’ = (v1,...,20-1) € So(x,6) CRY T, (3.133)
glx)=x€8, (Owg)(x)=0, k=1,....,.n—1
and Sp(x,¢) is the projection of the part S(x,e) into the tangential plane

R?~! to S at x € S. By the variable transformastion x = »(y’), v’ €
So(x,€) in the integral (3.6) we get the following

Vigeo@)i= [ Ko =y ety Nl
]Rnfl
|I_y/|<2‘€a x#ylv
where . is the indicator function of the part So(x,e) C R"~! and
G(y') = V009 +1=1+0ly — x| (3.134)
is the Gram determinant (see (2.86) in § 6.3).
Next we note that
Vicole) = [ Kjale s D)ol dy o) (3.135)
]Rnfl

as € — 0 uniformly for z € R™.
Indeed, the remainder kernel

K5 e y') = Kjalz, =y )G (y) — Kjale,y')
is weakly singular
|K)a(z,y)| < Mylz— /P, o,y €R", z#y (3.136)
(cf. (3.128); see (3.131)) and, almost obviously,

lim 75 / K a(@,9")Go (v )x= (v ) (3(y)) dS = 0

e—0
So(X,e)
for arbitrary ¢ € C°°(S). By the same reason
V;o(z —y)dS +o(1) as e >0, (3.137)
o(X,e)
because [0((y")) — @(X)I < Maly' — x|,

The difference between the kernel K; a (x,y’) in (3.127) defined by the dif-
ferential operators Bj(z,D), C,(z,D) and A(zx,D) and the kernel
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K9 o(x,y") defined by the principal parts Bjo(x, D), Cjo(x, D) is weakly
singular and admits an estimate similar to (3.136). Therefore, as in (3.137),

V,p(x) == p(x) / Kjoa(z,y)dy +o(1) as € = 0. (3.138)
So(X,E)

We can further simplify the integral in (3.138):
(1) Replace the domain of integration Sp(x,€) by the ball

B(x,e):={ly'—x|<e: y eR" '}

Observe that mes B(x,e) — mes So(x,e) = O(e), while the corre-
sponding integrals differ by o(1) as e — 0.

(2) Freeze coefficients at xog € S ase — 0, to consider a pure convolution
kernel K; x, a(xz—y’), which is translation invariant; the remainder
has a weak singularity and contributes the summand o(1) in (3.138).

(3) Due to the described simplifications, the domain of integration in
(3.138), |y’ — x| < € can be translated (shifted) to the origin and
stretched to the unit ball |y’'| < 1; the integral is invariant with
respect to translations and dilations (stretching).

Finally, taking the traces, we get the following
(VEV,c0)(x) := £co p(x) +0(1) as e — 0, (3.139)

where v denote the traces on different faces of the surface; the integral

co = / Kjwoaly')dy

ly/|<1

is independent of € > 0 and x( € S. By invoking (3.120) we find ¢y = 1/2.
Now (3.6) and (3.139) yield (3.126). O

4. REPRESENTATION FORMULAE IN THERMOELASTICITY AND
P1EZO-THERMOELASTICITY

In this section we apply the general results established in the previous
two sections to the differential equations of the theory of thermoelasticity
and piezo-thermoelasticity. In particular, we derive general representation
formulas of solutions to some special BVS which are very important in our
analysis. Moreover, we calculate explicitly the principal homogeneous sym-
bol matrices of the boundary integral (pseudodifferential) operators gen-
erated by the corresponding single and double layer potentials and study
their properties which are essentially applied in the subsequent sections in
the qualitative analysis of solutions of the mixed boundary-transmission
problems.
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4.1. Fundamental solutions in thermoelasticity and piezo-thermo-
elasticity. Recall that F,_¢ and F, ;11 stand for the generalized direct

and inverse Fourier transforms. Denote by ¥ (™) (. 1) = [\Il(m)(- T) Jaxa

and ¥(-,7) = [Pk(-,7)]5x5 the fundamental matrices of the operators
A9, 1) and A(9,T),

Am) (Og, T)W (m) (x —y,7) =0(x —y) Iy,
A(asz)\I/(x - Y, T) = 5(I - y) 15;

where 0(+) denotes Dirac’s delta function. We have then the following rep-
resentation formulas

(e, r) = FL (A (i ) ) =

B (2;)3 Jim [ AU (g, )Tt e T dg, (40
\5\<R
Yz, 7) = f&—»m([ (—i&, 7)) =
= lim (—i€, 7))~ e~ de. (4.2)
HOO\EKR

Recall that A (™9 (9) and A (®)(9) are the principal homogeneous parts of
the differential operators A (™) (9, 7) and A(9,7), respectively (see (1.13)
and (1.28)). The principal singular parts of the matrices ¥ ™) (-, 1) and
U(-,7) can be represented as (see [7])

1 - - —1 xs3
w00 = (o [ (A0 i) e )
VES

27
1 m —1
:_8772—|a:|/[A( O (An)] " as, (4.3)
0

\I/(O)( ) = fg,iw,<%/[14(0)(_i§)]161'5313 d§3>

VES

__ / [A© (A )] " o, (4.4)

872 ||

where = (21,22,23), § = (£1,62,8&3), ¢/ = (x1,22), & = (&,&2), the
sign “—” corresponds to the case xs3 > 0, and the sign “4” to the case
x3 < 0; £ (respectively ¢7) is a closed simple contour in the complex
half-plane Im &5 > 0 (respectively Im &5 < 0) orientated counterclockwise
(respectively clockwise) and enveloping all the roots of the corresponding
polynomials det A (™0 (—i¢) and det A9 (—i&) with respect to & with
positive (respectively negative) imaginary parts; here A = [Ag;]3x3 is an
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orthogonal matrix associated with x and possessing the property ATz =
(0,0,|z)T, and n = (cos@,sin6,0) .
Note that
-

OO (g r) =m0 (g, 7) = [Wm O (z,7)]
TO (g, 7) =T O (—z,7) £ [T O(z,7)]

These matrices have the singularity of type O(Jz|~!) in a neighbourhood

of the origin and at infinity decay as O(|z|~!). Moreover, there are positive

constants co(m) > 0 and ¢p > 0 (depending on 7 and on the material param-

eters) such that in a neighbourhood of the origin (say |x| < 1/2) there hold
the estimates

‘\Il(m)(zr mO) ‘<cm) log |z| 71,
for la| = 1,2, and k,j =1,4,

| Wpg(z,7) — ‘1’;52) () }
| 0% [Wpg,7) = U ()] |
for |a] =1,2, and p,q=1,5,
where o = (a1, ag, a3) is a multi-index and |a| = ay + a2 + ag. Moreover,
U@ = v @) =0, v (@) = v @) =0,
k=1,2,3, j=1,2,3,5,

and the kernels %J(l ™) vi(y) 81\114&”’ 0)(96 —y) and s n;(y) 61\114&)) (x —y),

associated with the co- normal derivatives corresponding to the thermo-
conductive operators %l )8 0y and ¢ 0; 0;, have weak singularity on
90 (™) and 90 respectively.

For the Newton type volume potentials
NE@) ) = [ W=y e ) dy,

Q(m)

No(@)(@)i= [ Wla~ y.1) () do,
Q
the following theorem holds.

Theorem 4.1. Let QU and Q be Lipschitz domains and 0 < 3 < 1.
Then the operators

NI Ly — [WR(Q)] (4.5)
L [COF @) - (e @) njet @),
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Ny @ [La(Q)F — [WZ(Q), (4.6)
L [COF@)P = (e @P net @)
are bounded. Moreover,
A (@, ) N[ (D ™) (z) = &™) (z), ze QM) (4.7)
A0, 7) N (®)(z) = ®(x), =€, (4.8)
for almost all x € QU™ and for almost all x € Q respectively. In addition,

if @™ e [COF Q)] and ® € [COF (Q)]5, then the relations (1.44) and
(1.45) hold for all x € Q™) and for all x € Q, respectively.

4.2. Layer potentials of thermoelasticity and piezo-thermoelasti-
city. Let W™ (-, 7) = [w(,7)], , and U(-,7) = [Wx;(-,7)],, . be
the fundamental matrix-functions of the differential operators A (™) (9,.,7)

and A(0;,7) constructed above and introduce the single and double layer
potentials:

V@) = [ e -y b ) dys (1.9)
o6 (m)
W () () =
- / [ﬁm)(ay,u(y)f)[qf(m)(x_y,T)}T}ThW)(y)dys, (4.10)
aQlm)
V(@) = [ W= 0. o)y, (.11
[519) R .
W) = [ [T@n).7) - 0] ] b, (112)
o2

where h ™ = (B\™ h{™ h{™ hS™)T and b = (hy, hy, hs, ha, hs) T are
densities of the potentials.

For the boundary integral (pseudodifferential) operators generated by the
layer potentials we will employ the following notation:

HO (M) () = / WO (2 — g, ) hO () dy S,

o0 (m)
K ) = [ [T @)™ = .0 | 04,5,
oQ(m)
~ ~ 9T
R (™)) = [ [T 00w 7) ¥ ™ a=p7)] | 0™ w5
oQ(m)
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)@ 1= [ [T@rn(@)¥(z - 5.7)] ho)d,5,

o0
T

£r)@)i= [ [T@yn). 7w - 3.0)" ] b dys
oN

£ (n ™) (z) = {T“")(ax, v(@))W ™ (b ™) () }i, zednm.
L (h) (@) = { T (00, n(x)) Wy (h)(z) V", z € 0.

The boundary operators Hqgm), ‘H, and Lf(m), L, are pseudodifferential
operators of order —1 and 1, respectively, while the operators ICT(m), ICgm) "

K, and Izi are singular integral operators (pseudodifferential operators of
order 0) (for details see [4-7,9,29,30,53]).

4.3. Properties of layer potentials of thermoelasticity and piezo-
thermoelasticity. Recall that n and v stand for the unite outward normal
vectors to 99 and 9Q (™) respectively, and that 99,90 e C>. We
describe here mapping properties of the layer potentials and the boundary
integral operators generated by them which actually have been proved in the
previous two sections. However, we note that for the potentials VT(m) and
W™ with regular densities the proofs can be found in [33], in the isotropic
case, and in [29, 30, 54], in the anisotropic case, while for the potentials
V; and W, the proofs can be found in [4,6,7,9]. Note that the main
ideas for generalization to the scale of Bessel potential and Besov spaces
are based on the duality and interpolation technique and is described in the
references [10,17-19,27,63], using the theory of pseudodifferential operators
on smooth manifolds without boundary.

For similar properties in the case of general Lipschitz domains see [25,
44,50].

Theorem 4.2. Let 1 <p < oo, 1<t <00, and s € R. The operators

v s B 000m)] - [ ) ]!
(B3 (090)] =[BT F @)
W [ By, 000)] — (5@
 [Bs (090 = (B 7 (@),
Ve o [By,09)] — (5@
(B2 0] — (B TT@),
W : [B,00] — [ @),
(B0 ~ [ By @]
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are continuous.
Theorem 4.3. Let 1 <p < oo, 1 <t < oo,
B(m) ¢ [Bpff(a(z(m))}“, m) ¢ [B, Loyt
he [B,7 O] ge B, " (o9)]".
Then
{V(m (h B (M) )}* — {V m) (m))}_ :HT(m)h(m) on Q™)
{T™ @,V (RN =[F 27 L+ K™ R on 90,
(W, (gINF = [ £ 27, + K] g™ on 90 ™),
(h)
)

|+

(Va()} " ={v:(0)}” =H,h on 0,
(T@,n)Ve (W)Y =[F 2 ' s+ K. h on 09,
{W-(g } ==+ 2_1I5+Ei]g on 09,
where Iy, stands for the k x k unit matriz. Moreover,
{T(m)(& ,,)WT(m)(g (m))}+ - {T(m)(& ,,)WT(m)(g (m))}_ on 69 (™)
and
{T@nW-(9)}" = {T@,m)W,(9)} on Q.
Theorem 4.4. Let 1 <p < oo, 1 <t < oo, se€R. The operators

H™)

T

] [Herl(aQ m))}
< )" = (Bt @a )],
02 M)]* — [H: (69 m>)} :

)

p,t

folm, Kem= . [H(
By (092™)]* — [B; (02 ™)]",

;

[H;
- [B;
Al
Al
cim s [ )] - [Hs(aﬂ e,
L [BiE 09 ™)]* = [Bs (00"
He s [H00)) — [H;(09)]
: [B;,09)]° — B3} (09)]”,
Kr, K2 oc [H3(0Q)])" — [HE(09)],
: [B3,(00)]° — [B;,(09)]",
L, : [HY(09)]” — [H:(09)],
L [Byi 00)]° — [B;.(09)]°

are continuous.
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Moreover, the following operator equalities hold in appropriate function
spaces:

R mfm) = gefm, - £m gim= = e tm £,
LIMHM = 47 4+ [ 1 L = —a7 4 [RIT
KiH, =Ho Kr, Lo K:= K. Ly,

LoHe =475+ (K] My L= —47' 5+ [K2]°

Theorem 4.5. Let 1 <p<oo,1<t<oo,seRandT=0+1w. The
operators

m S m 4
L [H (000" — [HT (00 ™)),
[ BQ (m) ] [Bs-l-l (BQ (m) )} 4,
[ 00)]° - (237 (00)],
- By, 00)]" — [By7 (09)]
are invertible if o >0 or T = 0.
The operators

i%lﬁicgm) H (09" — [Hy @09 ™)]",

Dyt

B: amm)}“ — [Bg,(09™)]*,
4

j:% I+ K= o [Hy (0920 — [Hy090)],

[
A
[,
[B;,020)]" — [B; ,020™)]"

are invertible if o > 0.
The operators

1
515+ Ko o [H(00)] — [H3(09)],
185,00 = [B;,09)]]
are Fredholm with the indexr equal to zero for any T € C.

4.4. Explicit expressions for symbol matrices. Here we present the
explicit expressions for the principal homogeneous symbol matrices of the
pseudodifferential operators introduced in Subsection 4.2, and establish
their properties. Recall that the principal homogeneous symbol matrix
of the pseudodifferential operator A on a manifold S is denoted by
Ga(x,&,8), z € S, (&,&) € R?\ {0}. With the help of the relations
(1.13), (1.16), (1.28), (1.34), (1.35), (4.3) and (4.4) we can derive the follow-
ing formulas for the principal homogeneous symbol matrices of the operators
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H™, 27+ K™ H, and —27 15 + Ky
M ™ (2,8, 6) = S, om (2,61,82) = [Mk(;n)(ffa§1,§2)]4x4 =

[Mk(;n)(‘ragl7§2)]3><3 [O]3><l -
[0]1x3 MV (.6.8)],
- 2];1' [A(m 0)(B 5)]_1 d§3’ 52(51752753)7 (413)
e

NI(2,6,6) =6 o eom (2,61, 62) = [J\ka(fi(ffvflvﬁ)hm =
_ [[N;j :I:(x 51752)]3><3 [0]3><1

[0]1x3 271,
¢ (m,0) (m,0) -1
= o [TUOBEn A (BO] e (1)
o+
M(2,61,&) = Gy, (2,61,&) = [ Myj(2,61,8) ],
[Myj(z,81,62)]3x3 [0]3x1 [Mps(z, €1, €2)]3x1
= [0]1x3 M44(=’17 €1,&2) 0 =
[Ms(x, &1, €2)]1x3 Mss(2,61,8) |-
:——/ [AO(B, )] des, (4.15)
Ni(z,61,8) 1= Gro-ip ik, (,61,&) = [ Nij 2(2,61,6) 5,5 =
[Nij, £(,61,82)]3x3  [0]3x1 [Nis, +(7,&1,82)]3x1
= [0]1x3 +271 0 =
[Ns;, i($,§1,§2 1x3 0 Nos, +(,61,82) | 5.5
/T O(B, &n)[AO(B,¢)] " dés, (4.16)

nol onm Pl om
B,=|ly Iy w| for 2cdQ™, B,=|l) 1§ nyo| for zedQ,
lé lg V3 lé lg ns
where B, (x) and B, (x) are orthogonal matrices with det B,(x) = 1 and
det B,,(z) = 1, v(z) for z € 92 ™ and n(z) for x € I are the exterior unit
normal vectors, respectively, and I'(x) and I (z) are orthogonal unit vectors
in the tangent plane associated with some local chart; £* (respectively £7)
is a closed simple contour in the complex half-plane Im &5 > 0 (respectively
Im¢s < 0) , orientated counterclockwise (clockwise) and circumventing all
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the roots with positive (respectively negative) imaginary parts of the equa-
tions det A™ (B, &) = 0 and det A®)(B, £) = 0, respectively, with
respect to &3, while (&1,&) € R?\ {0} play the role of parameters.

In equations (4.14) and (4.16) we employed that the operators [ICT(m)]44
and [K;]s4 are weakly singular integral operators due to the remark at the
end of Subsection 4.1. .

The matrix —M (™) (x, &, &) is positive definite, while —M (z, €1, &) is
strongly elliptic (for details see [6,29,30]), that is there are positive constants
¢ and ¢ depending on the material parameters such that

—M ™ (2,61, &) - n = M |g] 7L p|? (4.17)
for all = € 9N, (£1,&) e R2\ {0}, n e C,
Re {~M(z, &, &)n -0} > cle| ™ n)? (4.18)

for all x € 99, (&1,&) € R?\ {0}, n e C5.

In particular, —M4(;n) (z,61,&) > 0 for z € 9Q ™) (&,&) € R?\ {0}, and
—M44(I,§1,§2) > 0 for z € 09, (,é’éé) € R? \ {0} .

The entries of the matrices M (™) (x,&;,&) and M(z,&1,&) are even
functions in (&1, &2).

The matrices (4.14) and (4.16) are nondegenerate, that is
det N ™) (z,61,6) # 0 for all z€ Q™ (£,&) e R?\ {0}

and N
det Ni(x,&1,6) # 0 for all z € 0Q, (&1,&) € R*\ {0}.

It is evident that the principal homogeneous symbol matrix of the operator
P-, given by (4.41), reads as

67’7— (Iv§17§2):672*1[5+/@- (-T,fl,gQ):N— (I,§1,§2)21N(£E,§1,€2) (419)

and is nondegenerate.
Further, for the principal homogeneous symbol matrix of the operator
A, = H, [P.]~! we have
-1

6A7($a§17§2) = GHT('I7§1,€2> [6777—(:6751552)} -
~ ~ ~1
= M(‘r7§1552) [N(IE,§1,§2)]
Clearly, this matrix is nondegenerate as well.
Let us introduce the matrices obtained from (4.15) and (4.19) by deleting
the fourth column and fourth row (see (4.16))

(4.20)

M(z,61,65) = [[ng (z,81,62)]3x3 [Mk5(x,§1,§2)]3><1‘| |
[Msj(2,61,&2)1xa Mss(2,61,82) |,

Nz, 61, 6) = [[Nkj($,§17§2)]3><3 [Nk5($v§1=§2)]3x1] |
[Nsj(x,&1,82)]1x3 Nss(z,&1,6) i
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Note that these non-degenerate matrices represent the principal homoge-
neous symbol matrices of the corresponding operators of piezoelastostatics
and it is shown in [6] that the symbol

D(x,&1,&) = [Dyj(2,&1,&2)axa = M (2,61, &) [N(2,6,6)] 70 (4.21)

is a strongly elliptic matrix, that is

Re {D(z,&,&)n-n} = cle| ™ nf®
for all = € 99, (&,&) € R?\ {0}, neC*

As an easy consequence we conclude that the symbol

él(‘raé-lag?) = GAT (xaé-lag?) = M(x7§17§2) [N(x7§17§2)]_1 =

[Drj(,81,82)|3x3 [0]3x1 [Dra(z, &1, 82)]3%1
= [0]1x3 —2 Mua(z,61,&2) 0 (4.22)
[Daj(@,&1,82)]; 5 0 Dya(x,€1,82) |5, 5

is strongly elliptic, since —2Myq4(x, &1, &2) >0. Moreover, since Myy(x, &1, £2)
is an even function with respect to (£1,&2) we derive

[S1(2,0,+1)] ' &1(2,0,-1) =
[Drj(z)]3x3  [Olsx1  [Pra(z)]3x1
= | [0Olixs 1 0 . (4.23)

[Du4j(@)) 1z O Du(x) |, .,

where
D(z) := [Dyj(x)]axa = [D(z, 0, +1)]71 D(z,0,-1), = € 0. (4.24)

Denote by )\;1) (z), 7 = 1,4, the eigenvalues of the matrix (4.24), that is the
roots of the equation
det [D(z) = AI,] =0 (4.25)

with respect to A\. Then )\51)(:1:), j = 1,4, and )\gl) = 1 are eigenvalues
of the matrix (4.23). From the strong ellipticity property of the symbol
matrix (4.21) it follows that )\5—1)(1')7 j = 1,4, are complex numbers, in
general, and —7 < arg A§1)(I) < m, that is /\gl)(:c) ¢ (—00,0]. Remark, that
the numbers Agl) (7), j = 1,4, coincide with the eigenvalues corresponding to

piezoelastostatics without taking into consideration thermal effects (see [6]).
Quite analogously for the homogeneous principal symbol matrix of the

operator A, + BI™ at a point z € T ™) we get (see (5.18))

Sa(2,61,6) =6 4y (2,61, 6) =6 a, (2, &1,)+6 5w (2,61, 62) =
= &1(2,61,6) + 6™ (2,6,6), (61,6) € R\ {0}, (4.26)
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where él(x,fl,ﬁg) is given by (4.22) and
& (@,61,6) =G yom (1,61, 5) =

[Dk(;n) (z,€1,62)]3x3 [0]3x1 [0]3x1
= [0]13 —o M (2,6,6) 0 . (4.27)
[0]1 x5 0 (U
DM (@,61,6) = [D (2,61, &)lsxs =
=M™ (2,&1,8) [N ™ (2,6, 8)] 7 (4.28)

with

M (m) (II?, 517 52) = [M]g(]m) (CC, 515 52)] 3% 37

N (@,61,6) = (V)i (@,60.62)] 5
Here Mk(;-n) (x,&1,&2) and (me))kj (x,&1,&) are the entries of the matrices
(4.13) and (4.14). The matrices M (™ (x, &, &) and N ™) (z, £, &) corre-
spond to the operators of the classical elastostatics, while (4.28) represents
the homogeneous symbol matrix of the so called Steklov—Poincaré opera-
tor and is positive definite (see [54]). Therefore, it is clear that (4.27) is
a nonnegative definite matrix due to the inequality —2 M 42” ) (2,£1,&) >0
and consequently (4.26) is strongly elliptic symbol matrix due to the strong
elhptlclty of 61 (IZ?, 51, 52)

Thus we have

(4.29)

Ga(,€1,6) =
[Dij(w,81,82)]3x3 [0]ax1 [Dra(z,&1,€2)]3x1
= [0]1x3 —2 Mya(,&1,62) 0 +
(D (@, &1,82)], 5 0 Dya(x,61,82) |55
[Dk(;n)(x,§1,§2)]3x3 [0]3x1 [0]31
+ [0l 2 MV (@,6.&) 0 =
(015 0 0 Joss
[Dy;(,€1,62)]3x3 [0]3x1 [Dra(z,&1,€2)]3x1
= [0]1x3 —2Djy(w, &1, &) 0 , (4.30)
[Daj(w,&1,€2)] 5 0 Dua(x,61,82) |55

where
Djj(w,€1,6) = Dij(z,6,6) + DY (2,6, &), k.j.=1,2,3,
Diy(,61,62) = Mua(,61,62) + MG (2,61, 62).



92 T. Buchukuri, O. Chkadua, R. Duduchava, and D. Natroshvili

Denote
T(r.60.6) = [Dyj(:&1,62)|3x3  [Dra(w,&1,82)]3x1 7
[Daj(@,&1,82)] 13 Daa(®,81,&2) |, ,
D™ (z) = [D(2)],,, = [T(x,0,+1)] 7 T(x,0,-1).  (4.31)

One can easily check that

' él(m)(‘rv 07 _1) =

DI @)sxs [0ax1 PG (@)]sx1
- [0]1x3 1 0 . (4.32)

(m) (m)
[D4j ('r)]lxg 0 Dy (x) BxE

(61 (,0,+1)]

Denote by /\;2) (z), j = 1,4, the eigenvalues of the matrix (4.31), that is the
roots of the equation

det [D™(2) = AL, ] =0 (4.33)

with respect to A. Then )\52) (x), 5 = 1,4, and )\?) = 1 are eigenvalues
of the matrix (4.32). From the strong ellipticity of the symbol matrix
(4.30) it follows that A§-2) (z), j = 1,4, are complex numbers, in general,

and —7m < arg )\52) (x) < m, that is )\5»2) (x) & (—o00,0]. Remark, that again

the numbers A§2) (r), j = 1,4, coincide with the eigenvalues correspond-
ing to the piezoelastostatics case without taking into consideration thermal
effects (see [6]).

4.5. Auxiliary problems and representation formulas of solutions.
Here we assume that Re™ = ¢ > 0 and consider two auxiliary boundary
value problems needed for our further purposes.

Auxiliary problem I: Find a vector function U ™ : Q™ — C* which
belongs to the space [ W4 (™) ]* and satisfies the following conditions:

A™ (@, 7y U™ =0 in Q™) (4.34)
(T =) on 9o m), (4.35)

_1

where x (™) = (Xgm), X;m), xgm), Xim))T € [Hy 2 (020™)]%. With the help
of Green’s formula it can easily be shown that the homogeneous version of
this auxiliary BVP possesses only the trivial solution. Moreover, we have

the following result concerning the representation of solutions of equation
(4.34).

Lemma 4.6. Let Ret =0 >0 and 1 < p < co. An arbitrary solution
vector U (M) ¢ (W, (© (m)Y]4 to the homogeneous equation (4.34) can be
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uniquely represented by the single layer potential
U™ (z) = V(W ([P] T ™)) (2), ze ™), (4.36)
where

Pl = 27 4+ K™)

T

1 A (4.37)
X(m) — {T(m)U(m) }+ c [Bp,ﬁ (5Q(m)” )

Proof. Clearly, if
_1
™ = (™, .. Xim))T —{Tmym }* € [By2 (8(2(’”))}4

then the vector function (4.36) solves the auxiliary BVP and belongs to the
space [W, (Q (m)y]4 by Theorems 4.2, 4.3 and 4.5. The uniqueness follows
from the following general integral representation formula for an arbitrary
solution vector U (™) € [W}(€2(™))]* of the homogeneous equation (4.34)

U (@) = W0 ({U ) (@) = VI ({T 0 ) @), @ e 0,
and invertibility of the operator
27 I+ K By, (09 — [Bs (09 0™)]"
(see Theorem 4.5). O

Auxiliary problem IlI: Find a vector function U : @ — C® which belongs
to the space [ W3 (2)]® and satisfies the following conditions:

AB,7)U =0 in Q, (4.38)
(TU}" +8{U}* =x on 89, (4.39)

1
where x == (X1, X2, X3, X4, X5) | € [Hy 2 (09)]%, B is a smooth real valued
scalar function which does not vanish identically and

p =0, supp 5 C Sp. (4.40)

By the same arguments as in the proof of Theorem 1.1 we can easily show
that the homogeneous version of this boundary value problem possesses only
the trivial solution in the space [ W3 (2)]°.

We look for a solution to the auxiliary BVP (4.38)-(4.39) as a single layer

1
potential, U(x) = V,(f)(z), where f = (f1, fa, f3, fa, f5)| € [Hy 2 (09)]°
is an unknown density. The boundary condition (4.39) leads then to the
system of equations:

(—2_1I5+/C7)f+57'[7f=x on 09Q.

Denote the matrix operator generated by the left hand side expression of
this equation by P, and rewrite the system as

P f=x on 09,

where

Pri=—2""I+ K-+ BH,. (4.41)
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Lemma 4.7. Let ReT =0 > 0. The operators
P, : [Hy09)]" — [H(02)], (4.42)
S S 5
(B2 00)) — [B;,00)]’, (4.43)
are invertible for all 1 <p < oo, 1 <t < oo, and s € R.
Proof. From the uniqueness result for the auxiliary BVP (4.38)—(4.39) it
follows that the operator (4.42) is injective for p = 2 and s = —1/2. The
_1 _1
operator H, : [Hy 2 (0)]° — [Hy 2 (9Q)]° is compact. By Theorem
4.5 we then conclude that the index of the Fredholm operator (4.42) equals
to zero. Since P, is an injective singular integral operator of normal type
with zero index it follows that it is surjective. Thus the operator (4.42) is
invertible for p =2 and s = —1/2.
The invertibility of the operators (4.42) and (4.43) for all 1 < p < o0,

1 <t < oo, and s € R then follows by standard duality and interpolation
arguments for the C°°—regular surface 9% (see, e.g., [1,63]). O

As a consequence we have the following representation formula.

Lemma 4.8. Let Rer =0 > 0 and 1 < p < co. An arbitrary solu-
tion U € [W,(Q)]° to the homogeneous equation (4.38) can be uniquely

represented by the single layer potential U(z) = V., (P;lx)(x)7 where
1
x ={TU}* + p{U}* € [Byp (0Q)]".

Remark 4.9. By standard arguments it can be shown that Lemmata 4.6,
4.7 and 4.8 with p = 2 remain true for Lipschitz domains Q™) and (cf.
[44]).

5. EXISTENCE AND REGULARITY RESULTS FOR PROBLEM (ICP-A)

5.1. Reduction to boundary equations. Let us return to the interface
crack problem (1.46)—(1.55) and derive the equivalent boundary integral
formulation of this problem. Keeping in mind (1.57), let

g [Q o Sy ey [Q on S, (5.1)
B Q on F(m) o @(m) on I‘ém), '
Ge [ByP(SyuTd™))°, at™ e [Blrsyurs™)]?,
and
Go = (Gor,--.,Gos)T € [ By (09)]°,
m m m —% m)\14
GO = (G5, GO € [Byg (000))]

be some fixed extensions of the vector-function G and G(™ respectively onto
00 and 90 (™ preserving the space. It is evident that arbitrary extensions
of the same vector functions can be represented then as

G*=Go+v+h, GmM*=g{m™ 4nm, (5.2)
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where
b= ()T € [Bf (Sp)]',
hi=(h1,....hs)" € [E;E(F}m)ﬁ (5.3)
RO = (b BT € [Byf ()]’

are arbitrary vector-functions.

We develop here the so-called indirect boundary integral equations me-
thod. In accordance with Lemmas 4.6 and 4.8 we look for a solution pair
(U (™) U) of the interface crack problem (1.46)—(1.55) in the form of single
layer potentials,

U m — (ul(m), . ,uim))—r =
— V([P [GE™ +hM]) in Q0 (5.4)

U= (u1,...,us)" =V (P [Go+9¥+h]) in Q, (5.5)

where P{™ and P, are given by (4.37) and (4.41), and h (™ h and 1) are
unknown vector-functions satisfying the inclusions (5.3).

By Lemmas 4.6, 4.8 and the property (4.40), we see that the homogeneous
differential equations (1.46)—(1.47), boundary conditions (1.48)—(1.49) and
crack conditions (1.54)—(1.55) are satisfied automatically.

The remaining boundary and transmission conditions (1.50)—(1.5) lead
to the equations

[(H: P (Go+ ¢ +h)], =fx on Sp, k=15, (5.6)
[H: P7H (Go+ 9+ h)], =™ on Ty, (5.7)

TSD

r
F}m)

[H, P=1(Go + 9 + 1) (R P~ (G™ 4 hm)) . =

PR ) j

=f™ on T, j=T1, (5.8)
i [G0+¢+h]j+rrw Gy +h™] =F™ on T, j=T1. (5.9)

T
(m)
T

J

After some evident simplification we arrive at the system of pseudodifferen-

tial equations with the unknown vector-functions ), h and h (™)
re, [He PN (W +h)], = fr on Sp, k=15, (5.10)

(1, P+ )], = fi™ on T, (5.11)

Sp
r
F,I(]n)

T (M P W +R)], — T (R [PIMIH R ] =
=7 on T, j=T14, (5.12)

P B by = F on T, =T, (5.13)
T T
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where
~ 1—1 -
fri=fx =75, [H- P71 Goly € Bpy” (Sp), k=15, (5.14)
7 (m m — 17% m
f5( )= fs ) ) [H, P; 1(;0}5 € Bpyp (F:(F ))7 (5.15)
T

ﬁm:ﬁm+QMHWWMmPGMW—

J

o [H-P- GO} EBPP o™y, =14, (5.16)
T

. ~_1 —
F™=F™ —p  Goj—r .Gy er  B,p(TEY), j=T,1. (5.17)

J j r g™ r ) )

The last inclusions are the compatibility conditions for Problem (ICP-A).

Therefore, in what follows we assume that F [ m) are extended from F(m)

onto the whole of 9Q (™) U dQ by zero, i.e., Fj( ™ ¢ Bp,p (r (m)) j=1,3.
Let us introduce the Steklov—Poincaré type 5x 5 matrix pseudodlfferentlal
operators
HA™ [P 0
A =H,P7Y, B = (P - [0lasa Isxs,  (5.18)
[0]1x4 [0]1x1

and rewrite equations (5.10)—(5.13) as

A-(+h)=f on Sp, (5.19)
T oy Ar (0 +h)+1 Bﬁm)h =g on F}m), (5.20)
Tr FT
P By T ™ = B on DM =T, (5.21)
T T
where
~ ~ ~ 1—1 5

= 1, f5)" € [Bpp”(SD)]", (5.22)

~(m m m 1*% m 5
9( ) (91( )7---795( ))T € [Bp,p (F:(F ))] ) (5.23)
N(m - f(m +T (m) [H(m)[P m)] ﬁ(m)}J7 j = 174-7 (524)

gm = Jm B (B FYT e (B i) (5.25)

We note here that since the unknown vector function A is supported on
I‘(Tm), the operator BT(m)h is defined correctly provided h is extended by
Zero on Sj(vm) U I‘(Cm) (see Figure 1). For this extended vector function we
will keep the same notation h. So, actually, in what follows we can assume
that h is a vector function defined on 9QUON™ and is supported on I‘(Tm).
It is easy to see that the simultaneous equations (5.6)—(5.9) and (5.19)—
(5.21), where the right hand sides are related by the equalities (5.14)—
(5.17) and (5.22)—(5.24), are equivalent in the following sense: if the triplet
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1 1
(0 1) € By f (Sp)I°  [Buf (D)) x (B (D)) solves the sys-
tem (5.19)—(5.21), then the pair (Go+¢ +h, Gom) +h (™) solves the system
(5.6)—(5.9), and vice versa.

5.2. Existence theorems and regularity of solutions. Here we show
that the system of pseudodifferential equations (5.19)—(5.21) is uniquely
solvable in appropriate function spaces. To this end, let us put

rs, Ar Ty, Ar Ts, [0]5x4
N =1 T Ar Tr<m>[AT+BT(m)] Tr<m>[0]5X4 (5.26)
T T T T ’
_TF}"” [0]axs TF%’”) Laxs TF%"” la 14x14
[1 0 0 0 0O
01 0 0 0
Is=10 g 1 0 o (5.27)
000 10
Further, let

O:= (v, hy, RN, v = (f, g™, FNHT,

F
X3 = [Bs,(Sp)]” x [ B, (™) ] x [ B, (0],
;= B3 Sp)] x [BrR ™) ] x[B;,p@(’"))],
X5, = [B4(Sp)]” x [ B} (™))" x [ By, (0f™)]",
Vi (B3 (50))" x (B35 )] x[Bs )

Due to Theorems 4.4 and 4.5, the operator ngA) has the following mapping
properties
A s s s s
NI Xs Yy (X, - Y] (5.28)
foralls e R, 1<p<ocandalll<qg< 0.
Clearly, we can rewrite the system (5.19)-(5.21) as

NA® =, (5.29)

where ® € X7 is the unknown vector introduced above and Y € Y is a
given vector.

As it will become clear later the operator (5.28) is not invertible for
all s € R. The interval a < s < b of invertibility depends on p and on
some parameters v’ and " which are determined by the eigenvalues of
special matrices constructed by means of the principal homogeneous symbol
matrices of the operators A, and A, + B{™ (see (5.18) and (5.39)). Note
that the numbers v’ and v” define also Holder smoothness exponents for
the solutions to the original interface crack problem in a neighbourhood of
the exceptional curves 0Sp, (’91"((;”) and OT (™). We start with the following
theorem.
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Theorem 5.1. Let the conditions

1 1 1
l<p<oo, 1<qg< o0, 5—1+7”<s+§<5+~y’ (5.30)
be satisfied with v' and v" given by (5.36), (5.37), and (5.39). Then the
operators in (5.28) are invertible.

Proof. We prove the theorem in several steps. First we show that the oper-
ators (5.28) are Fredholm with zero index and afterwards we establish that
the corresponding null-spaces are trivial.
Step 1. First of all let us note that the operators
s m s 5
oA (B (i) = (B (Sn)],

TFTm)AT : [B;,q(SD)}SH [Bifél(F:(pm))]5,

' (5.31)

are compact since Sp and I‘:(Fm) are disjoint, Sp N I‘:(Fm) = @. Further, we
establish that the operators

rep A+ [y H(80)]" = (113 (p)]°,
P [ A+ BV s (IO = [HF )] (582)

are strongly elliptic Fredholm pseudodifferential operators of order —1 with
index zero. We note that the principal homogeneous symbol matrices of
these operators are strongly elliptic.

Using Green’s formula (1.40) and the Korn’s inequality (see, e.g., [23]), for
an arbitrary solution vector U € [H3(Q)]® = [W3(2)]° to the homogeneous
equation A(9, 7)U = 0 in £ by standard arguments we derive

Re<[U]+= [TU]*)@Q zallU ||[2H21(Q)]5 —e2||U ||[2Hg(ﬂ)]5 : (5.33)

Substitute here U = V,(P-1¢) with ¢ € [H;%(BQ)]E’. Due to the equal-
ity ¢ = P,H;*{U}" and boundedness of the operators involved, we have

IC? . <H{UM? . with some positive constant ¢*. There-
2 (60))° H2 (69)]°
fore, by the trace theorem from (5.33) we easily obtain

Re (H;P7Y¢, o = 1 €17
(1, £ (00

+ || BHP| — || V2 (P (5.34)

1 2
5 % (o0 Ol [H3 ()

~_1
In particular, in view of Theorem 4.2, for arbitrary ¢ € [H, 2(Sp)]® we have

U 2 ** 2
10 By << ICIE

and, consequently,

Re (r, H P7YC, 2N —c 2 . (5.35
(rap, . P71C Q) =l lIC] - sy 2||<|| S (5.35)
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From (5.35) it follows that

Fop A =7, P [y (S0) ] — [H (Sp)]]

Sp
is a strongly elliptic pseudodifferential Fredholm operator with index zero.

Then the same is true for the operator (5.32) since the principal homo-
geneous symbol matrix of the operator qum) is nonnegative (see formula
(4.27)).

Therefore, due to the compactness of the operators (5.31), the operator
(5.28) is Fredholm with index zero for s = —1/2, p =2 and ¢ = 2.

Step 2. With the help of the uniqueness Theorem 1.1 via representation
formulas (5.4) and (5.5) with Gém) = 0 and Gy = 0 we can easily show that
the operator (5.28) is injective for s = —1/2, p = 2 and ¢ = 2. Since its
index is zero, we conclude that it is surjective. Thus the operator (5.28) is
invertible for s = —1/2, p =2 and ¢ = 2.

Step 3. To complete the proof for the general case we proceed as follows.
The following lower triangular operator

re, Ar 75, [0]5xs5 Tsp [0]5xa
(m)
N7§A70) — rF}m) [0]5x5 Trém) [Ar + B-™] Trém [0]5xa
TF,I(,m) [0]4><5 Tr‘,l(,m) I4><5 Tl"q(wm) I4 14x14

is a compact perturbation of the operator NT(A). Therefore it suffices to
establish the properties of the diagonal entries

o A o[BS, (Sp)]P — [B;j;(sD)f’,
[A-+ 8]« 1By, (02 — [Br5 (™)

r

Trq(jn)
To this end, we apply the results presented in Section 3. Let
61(1’,51,52) = 6(./47—)(1'751752)

be the principal homogeneous symbol matrix of the operator A, and )\j(l) (x)
(j = 1,5) be the eigenvalues of the matrix

Di(z) = [61(x,0,+1)] "

for x € OSp (see (4.20) and (4.23)).
Similarly, let

61(55, 07 _1)

Ga(a,&1,&) = 6(A, + BI™)(2,61,6)

be the principal homogeneous symbol matrix of the operator A, —|—Bf(m) and
)\;2) (z) (j =1,5) be the eigenvalues of the corresponding matrix

Do(z) = [S2(,0,+1)] " Sa(,0,-1)
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for x € 6F:(Fm) (see (4.20) and (4.23)). Note that the curve (“)F:(Fm) is the
union of the curves where the interface intersects the exterior boundary,
AT (™) and the crack edge, 8I‘ém).

Further, we set

. 1 1)
r_ L (
N= 1665'11;,1§ng5 or M8 A @),
| (5.36)
W= s = agAD(@),
©€8Sp,1<j<5 2T
1
vy = inf — arg )\;2) (z),
2€dl ™ 1<5<5 27
(5.37)

vy = sup L arg )\;2) (z).
zedl ™ 1<5<5
As is shown in Subsection 4.4, one of the eigenvalues equals to one, namely,
)\5(1) = 1. Therefore
v <0, Y =0. (5.38)
Note that 7} and 7] (j = 1,2) depend on the material parameters, in
general, and belong to the interval (=%, 1). We put

202
7 =min{y, 3}, 7" = max{y, %} (5.39)
In view of (5.38) we have
1 / 1 1
—5 <7 <0< <3 (5.40)

From Theorem 2.28 we conclude that if the parameters r1,m70 € R, 1 < p <
00, 1 < ¢ < oo, satisfy the conditions

l—1+7{’<7’1+1<1+"y{, l—1+7§’<r2+1<1+7§,
p 2 p P 2 p
then the operators
~T 5 T 5
TSDAT : [HPI(SD)} — [Hp1+l(SD)] ,

: [ETl (SD)]5—> [[BTIJFI(SD)P,

p,q p,q

[AT+BT(’”)} . [ﬁ£2(ril("m)”5—> [H;2+1(F§m))]5,

r
F}m)

L[ By, = [ Byt

are Fredholm operators with index zero.

Therefore, if the conditions (5.30) are satisfied, then the above opera-
tors are Fredholm with zero index. Consequently, the operators (5.28) are
Fredholm with zero index and are invertible due to the results obtained in
Step 2. (I
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Now we formulate the basic existence and uniqueness results for the in-
terface crack problem under consideration.

Theorem 5.2. Let the inclusions (1.56) and compatibility conditions
(5.17) hold and let

327 <p< 1T 57 (5.41)

with ' and v defined in (5.39). Then the interface crack problem (1.46)—
(1.55) has a unique solution

(U™, 0) e [Wy@™)] < (W@,
which can be represented by formulas
U =y m ([P G +h]) in ), (5.42)
U=V, (P, ' [Go+¢+h]) in 9Q, (5.43)
where the densities 1, h, and h™ are to be determined from the system

(5.10)-(5.13) (or from the system (5.19)—(5.21)).

Moreover, the vector functions Go + ¥ + h and Go(m) + h™ are de-
fined uniquely by the above systems and are independent of the extension
operators.

Proof. From Theorems 4.2, 4.3 and 5.1 with p satisfying (5.41) and s =
—1/p it follows immediately that the pair (U™ U) € [Wp(Q™)* x
(W, (Q)]° given by (5.42)(5.43) represents a solution to the interface crack
problem (1.46)—(1.55). Next we show the uniqueness of solutions.

Due to the inequalities (5.40)

—26( 4 4 )
P=2= 30y 102y )

Therefore the unique solvability for p = 2 is a consequence of Theorem 1.1.
To show the uniqueness result for all other values of p from the interval
(5.41) we proceed as follows. Let a pair

U™, U) e [WHQM)]* < [Whe)]° (5.44)

with p satisfying (5.41) be a solution to the homogeneous boundary-trans-
mission problem. Then, it is evident that

{um*F e[ an>] {v}* e[ o aﬂ)]
{7y my* e[ (amm ], {TU}" e[Bp,;(aQ)],

(5.45)

and the vectors U (™ and U in Q™ and § respectively are representable
in the form

Um = v ([pem] T Rm Y i 0 ptm) — fTmpm AT (5.46)
U=V, (P;'x) in @ x={7U0} +p{U}", (5.47)
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due to Lemmas 4.6 and 4.8. Moreover, due to the homogeneous boundary
and transmission conditions we have
~_1
N*% 5 N*% m 5 '
¢ € [Bpp(Sp)]", hE[prp(F:(r ))} :
By the same arguments as above we arrive at the homogeneous system

_1
N & =0 with & := (¢, h, R € X, 7.

Due to Theorem 5.1, ® = 0 and we conclude that U ™ = 0 in Q™) and
U=0in Q.

The last assertion of the theorem is trivial and is an easy consequence of
the fact that if the single layer potentials (5.42) and (5.43) vanish identically
in Q™ and Q, then the corresponding densities vanish as well. O

Remark 5.3. Theorems 5.1 and 5.2 remain valid with p = 2 and s =
—1/2 for Lipschitz domains (™) and Q. Indeed, one can easily verify that
the arguments, applied in the first two steps of the proof of Theorem 5.1
and in the proof of Theorem 5.2, hold true in the case of Lipschitz domains.

Finally, we can prove the following regularity result for the solution of
Problem (ICP).

Theorem 5.4. Let the inclusions (1.56) and compatibility conditions
(5.17) hold and let 1 < r < 00, 1 < g < 00,
1 1 1 1
3_727” 1_72,7/, ;—§+7//<S<;+§+7/, (549)
with ' and v defined in (5.39).
Further, let U (™) ¢ W, (2 (mH4 and U € (W, ()]° be a unique solution
pair to the interface crack problem (1.46)—(1.55). Then the following hold:

i) if

<p<

Qu € B (Sv). Q™ € BLNSY). fu € BL,(Sp),
f(m) eBs (F(m)), F(m) Bs I(I\(m)) @(m) Bs I(F(m)),
Qi € B;Turgm, k=175, j=1,4,
and the compatibility conditions

Fi™=F™ —r Goj—r GG er BN, j=T4

m m T
r () r ™) r i)

are satisfied, then U (™ € [HTS+%(Q(’”))]4 and U € [Hf+%(ﬂ)]5;
i) if
Qr € B, (Sn), Q™ € By (SN™), i € By y(Sp),
Q € B, 1(F<’”>), k=15, j=1/4

) )
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and the compatibility conditions

Fm™ = F™ = Go—r GG er BT, =T,

T e T e §

are satisfied, then
U m e [B;;%(mm))]
iii) if a > 0 is not integer and
Qu € BLL(Sv). @™ € BLL(SY™). fi € C*(3p),
i e o), B e i), Qe BAE). (55
Qr € BELITSY), k=15, j=T174,
and the compatibility conditions

Fj(m) =F™ Goj — Gé;n) er

J rm r (™

LuelBlT@) (5.50)

are satisfied, then
vme () [er'@m)), ve () [e'@)],
a’'<k a’'<k
where k = min{e, v’ + 3} > 0.
Proof. The proofs of items i) and ii) follow easily from Theorems 5.1, 5.2,

and 4.2.
To prove (iii) we use the following embedding (see, e.g., [72])

C*(M) = BS, (M) C BT (M) C
C BLE(M) C B2, 5(M) C 0577 (M),  (5.52)

where ¢ is an arbitrary small positive number, M C R3 is a compact k-
dimensional (k = 2, 3) smooth manifold with smooth boundary, 1 < ¢ < oo,
l<r<oo,a—e—k/r>0,and o and o — £ — k/r are not integers.
From (5.51) and the embedding (5.52) the condition (5.50) follows with
any s < o — €.
Bearing in mind (5.49) and taking r sufficiently large and e sufficiently
small, we can put

1 1 1 1
s=a—cif ——-+9"'<a-e<=-+=-+47, (5.53)
ro 2 r o 2
and
1 1 1 1 1 1
se(-—sHr ko +9) i — 4o 4y <a--c (5.54)
ro 2 ro 2 ro 2

By (5.50) for the solution vectors we have U (™) ¢ [ij;%(ﬂ (m)y]4 and
1
U € [Bii7(Q)]° with
1 1
s+—-—=a—¢ec+—
r r
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if (5.53) holds, and with

1 /2 1,2 1
s+oe(S-s+7 2 +5+7)
r r o 2 ro 2
if (5.54) holds. In the last case we can take
1 1,
S+—-—=—-+-+7 —¢
T 2

Therefore, we have either
U e B @)Y e Bl @)

or

U e [BETT QO] ve BT @)

in accordance with the inequalities (5.53) and (5.54). The last embedding
in (5.52) (with k = 3) yields then that either
Ut e [coe i@t velcr @]’

or
vt e [ere @]t ve o @)

These relations lead to the inclusions
U e [cremr@m)]t ve i @], (5.55)
where £ = min{a, 7'+ 3} and & > 0 due to the inequality (5.40). Since r is

sufficiently large and ¢ is sufficiently small, the inclusions (5.55) accomplish
the proof. O

Regularity results for us = ¢ and uflm) = 9™ can be refined. Namely,
we can assert the following

Proposition 5.5. Let conditions of Theorem 5.4 hold. Then,
ug € C2E(Q), u(™ e Cre(Qim), (5.56)
where € is an arbitrarily small positive number.

Indeed, uy = ¥ and uim) = 9™ solve the following transmission problem

#;0;05us = Q* in €,
%E?)aiajuflm) =QUm* in Qim)
TF’(Fm){u4}+ - TF¥n>{u51m)}+ = fim) on I‘Sfm),
ron {70, U} +

+reee { [T (@,)U )i} = F{™ on T,
Foyort {T@:m)U]a} " = Q4 on Sy UTEY,
rgiure (T O, UM™L} T = Q™ on s§ uTEY,

TSD{U4}+ :f4 on SD7

(5.57)
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Due to Theorem 5.4.(i) we deduce
Ue [HT@), ume BTy
whence
[T(0, n)U}4 = s n; OY, [T<m>(a, v)Um ]4 = %glm) v; 9™
Q" = 7 Tovie O — 7 Ty gidyp + 7 € HIT7H(Q),
QU* = 7 T 4™ g™ 4 7 om) 9m) ¢ gt (m),

€

e Be (@™, FI™M e BT, fa € BEL(Sp),

Que BN (SyUTE™). @i e By sy UTE"),

1 1 ” 1 1 ,

——-F+Y <s<-+-+7, 1<r<oc

r 2 ro 2
Since the symbols of the differential operators —s¢;;0;0; and —%g;”)aiaj are
positive, the above problem can be reduced to the strongly elliptic system
of pseudodifferential equations. Moreover, the corresponding pseudodiffer-
ential operator is positive definite. Therefore (see [54])

uy € HTH%(QL u{™ € Hf+%((2(m)), % — % <s< % + %, 1<7r<oc.
Due to the embedding theorem (see [72]), for sufficiently small § > 0, suffi-
ciently large r and s > 1/2+1/r — § we have
BT (Q) C i E@),  HITT(QO) € 030 (i),
Whence (5.56) follows with € = 1/r + 4.

5.3. Asymptotic formulas for solutions of Problem (ICP-A). Here
we study general asymptotic properties of solutions to the problem (ICP-A)
near the exceptional curves. Namely, we investigate in detail the asymp-
totic expansion of solutions at the interface crack edge 8F(Cm) and at the
curve OI'(™) where the interface intersects the exterior boundary. Note that
arim yarm = ari™ = ¢,,,.

For simplicity of description of the method, we assume that the boundary
data of the problem are infinitely smooth. Namely,

Qi€ C*(By), Q™ € C=(SY), fi € C*(Sp),

fM e ey, B e o ri), @ e e,

ﬁj(m) = Fj(m) —Tpgm Go; — 1 m Gé;n) € C{;"(F}m)),

Q™ ec=ri), j=T4, k=15,

where CgO(ngm) denotes a space of infinitely differentiable functions van-

ishing on 8F§Fm) along with all tangential derivatives.
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We have already shown that the interface crack problem (ICP-A) is
uniquely solvable and the pair of solution vectors (U (™), U) are represented
by (5.42)-(5.43) with the densities defined by the system of pseudodifferen-
tial equations (5.10)—(5.13) (or (5.19)—(5.21)).

Let ® := (¢, h,h(™)T € X; be a solution of the system (5.19)-(5.21)

which is written in matrix form as
NAS =,

(see Subsections 5.1 and 5.2) where
oo ([ Q 5 [e'e] m 5 (e%e] m 4
Y € [C=(Sp)]” x [C@Y)]” x [y

To establish asymptotic properties of the solution vectors U (™) and U near

)

the exceptional curve 8F(Tm , we rewrite the representations (5.42)—(5.43) in

the form
U m — VT(m)([pT(m)]*lh(m)) +RM in Q)
U=V,(P7')+ V;(P7'h)+ R in Q,
where h (™) = —(hy,--- ,hg)" + (ﬁl(m), .. .,ﬁl(m))-r on I‘}m),
m m m)]— m 00 4
R = v,(m(pm]-1gim) e [c> @)Y,
R:=V,(P;'Gy) € [C=(@)]".
The vectors h = (hy,...,hs)" and ¥ = (¢1,...,%s5)" solve the following
strongly elliptic system of pseudodifferential equations:
T, Artp = ™ on Sp,

(Ar + B b =@ on T,

rrém)
where

oM =@M, .. oi"T e [C=(Sp)]°,

o) = fi — 7y, [A-Gol — 7y [Arhlk, k=T5,

o0 m 5
(I)(z) = (CI)§2)7 7@?))7 € [C (FTZ(’ ))} )

(I)§2) _ fj(m) + T [H‘Sm) (pr(m))—lGém) L =T [A:Gol;+
T T

7 [P TIEM] =AY, G =T,

Fq(]") J
2 m
q)é ) — f5( ) _ TF;M [A-Gols — Trgm [Ar]s .

Applying a partition of unity, natural local co-ordinate systems and stan-
dard rectifying technique based on canonical diffeomorphisms, we can as-

sume that 8F:(Fm) is rectified. Then we identify a one-sided neighbourhood
on I‘:(Fm) of an arbitrary point T € 8F:(Fm) as a part of the half-plane x5 > 0.
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Thus we assume that (z1,0) =7 € GF:(Fm) =Ly, and (z1,x2,4) € I‘:(Fm) for
0 < &9 4 < € with some positive €.

Consider the 5 x 5 matrix Da(z1) related to the principal homogeneous
symbol Ga(z,£) of the operator A, + B (see Subsection 5.2) for =
(1‘1, 0) €l

DQ(xl) = [62(:617 07 07 +1)}71 62(:1715 07 07 _1)

We introduce the short notation A; (1) for the eigenvalues A§2) (1), 7 =1,5,
of the matrix Dy (z1) and denote by m; the algebraic multiplicities of A;(x1).
Let p1(x1), ..., m(z1), 1 <1< 5, be the distinct eigenvalues. Evidently, m;
and [ depend on z1, in general, and my + - -- + m; = 5.

It is well known that the matrix Ds(z1) admits the following decompo-
sition (see, e.g., [24])

Ds(21) = D(1) Ip, (21) D~ (1), (21,0) € AT4™,

where D is 5 x 5 nondegenerate matrix with infinitely differentiable entries
and Jp, is block diagonal

TIp, (1) = diag{ul(xl)B(ml)(l) _ ul(arl)B("”)(l)}.

Here BW)(t), v € {my,...,m;}, are upper triangular matrices:
th=i
V) (4 — ||p®) My — -
BE) = b Ol 030 = 11, j=k,
0, Jj>k,
ie.,
t2 tu—2 tu—l
1 t = ...
2! rv-2)! (v-1)
tU_B tu—2
Wy | 0 1 t ...
B(t) = -3 (-2
0o 0 o0 1 t
0o 0 0 0 1 xn
Denote

Bo(t) := diag {B"(¢t), ..., B™)(1)}.
Applying the results from the reference [12], we derive the following asymp-
totic expansion

BN 1 _
h(I1,$27+) = D(zl) :clfj (@1) Bo( T om 10g£2,+) D 1(551) bO(xl)

M
Z —14A(x

+ D(Il)IZiJr ( 1)+k Bk (a:l,logx27+) —+ hM+1($1,$27+), (559)
k=1
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where by € [C*(6,0)]°, harsr € [C® (65 ) 1P, 6 . = b x [0,€], and

t k(2m071)
Bi(z1,1) = Bo( - %) Zl t) dyj (1).
=
Here mo = max {mi,...,m;}, the coefficients di; € [C*({;,)]° and A :=

(Ar,...,A5) T,

1 1 1
Aj(z1) = %log)\j(xl) = —argAj(z1) + o log |\ (z1)],

27
—m <arg\j(z1) <m, (x1,0) €Ly, j=1,5.

Furthermore, let

Ta, &

—3+A(z1) *dlag{ 2+A1(m1), 2+

—34+As5(z1) }

Now, having in hand the above asymptotic expansion for the density vector
function h, we can apply the results of the reference [13] and write the
spatial asymptotic expansions of the solution vectors U and U (")

lo ns—1 .
= Y AS Y adfaonmsh > o) eyt +
0

p==x1 % s=1 j=
M+2 M42-1 ‘ A i
+ Z Z $l2 w3 dsijp (w1, 1) 252,: (et Bgpjp(21,log Zs,u)}—i_
k,l=0 j+p=0
1
+Up1(x), o3>0, ¢:= ~5m log z5 ., (5.60)
U™(z) =

lo(m) ns(m) —1

- Y AY T A a2 B )] )+

p==£1 * s=1 ;=0

MA+2 M+2—1
1 m m
+ 303 abadd( (@ p) (z;f?)ﬁ*A“”*P*’“B(k><z1,1ogz< >>}+
k,l=0 j+p=0
rm 0, ¢(m .— log 2 (™ 5.61
+M+1(x)7 x3 >0, ¢\ ~5 ogzy . (5.61)

The coefficients dg; (-, f1), ds(;-n)(- 1)y dsijp (-, 1) and ds(lﬂz( , i) are matrices

with entries from the space C*°(¢,,), Bskjp(z1,t) and Bs(;r;;(zl, t) are poly-

nomials in ¢ with vector coefficients which depend on the variable z; and
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have the order vy, = k(2mo—1)+mo—1+p+j with mg = max{ma,...,m},

oo o 1° m RICONE
¢j € [C ()], Unsr € [CMHI@)]°, UG, € [cMH )],
k+A(x1) . 3 r+A1(x rk+As(x
Zg 4t @) .= dlag{z&# =) Zg 4t s 1)},
m)\s+A(z1) . 3¢ m)\k+A1(z m)\k+As(z
()86 o= ding { (22D, L () erasten
k€ER, p==1, (x1,0) €y,
Zs, 41 = —T2 — XT3Ts,4+1, Rs,—1 — L2 — T3Ts,—1,
ZS(T)l = —T2 — 1737'5(,7}37 Zs(,T)1 = T2 — 5637'5(1727
(m) (5.62)
T <argzs 41 <7W, —T<argzg g <,

Ts,+1 € Coo(ém), 7'5(:;% S Coo(ém)
(m)
lSO:1) are the different roots of multipli-

city ng, s=1,...,lo, (respectively nd™ s=1,..., lém)) of the polynomial in
¢, det A ([J](21,0,0)] 'n+) (respectively det A"-0) (), (21,0,0)] " ns))

with ny = (0,41,()7, satisfying the condition Re7s +; < 0 (respectively

Here {7, 41}, (respectively {Ts(lq

Re Tsfﬂ < 0). The matrix J,, (respectively J,. ) stands for the Jacobi
matrix corresponding to the canonical diffeomorphism s¢ (respectively s, )
related to the local co-ordinate system. Under this diffeomorphism the
curve £, is locally rectified and we assume that (z1,0,0) € £,,, o =
dist(x(Tm),ém), T3 = dist(x,F}m)), where z(Tm) is the projection of the ref-
erence point z € Q (respectively € Q™)) on the plane corresponding to
the image of F}m) under the diffeomorphism s (respectively ).

Note that the coefficients d;( -, ) and dg?l)( -, 1) can be calculated ex-
plicitly, whereas the coefficients c; can be expressed by means of the first
coefficient by in the asymptotic expansion of (5.59) (see [13])

1
dsj(IEl, —|—1) = % G%(:cl,()) P$($1)D($1),

1 - (5 —A(x
duj(21, 1) = 5= Ga(21,0) P (1) D(ar) € (z-A@)

8217l0, j:07n5_17

(m) _ 1 Hm) o N
dyj (21, +1) = 5~ Ga,, (21, 0) P (21) Dan),

A1, =1) = 5 Gy (01,0) P a1) Dlay) 7260,
s=1,1", j=0,n —1,
where D = | Diejl| axcs,
PE(a1) =V (21,0,0, £1)S7} o (21,0,0,£1),
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P (1) o= VS (21,0,0, £1)6 ) b o (21,0,0,£1),
I+ dnrl J

vV (21,0,0,41) 1= — :
*173('@1’ s Uy ) ]'(ns_l_j)' drns—1-j

X (A<0>((J,I(x1, 0))~1)- (0,£1, C)T)

(€= Tok1)™ X

’
‘C_Ts,il

j+1 n{™ —1—j
VAL (21,0,0,%1) 1= —— §J+ d — _
gl (ns™ —1— ) drns™ —1-d

x (A<m (] (21,0)1)- (0, il,C)T)l‘

(m) ™)

(C - Ts,il

)
= Ts( ,71)1

G,.(21,0) and G,,,, (x1,0) are the square roots of the Gram’s determinant

of 5 and s, respectively, and

1 _
¢j(@1) = a;(21) By (= 5+ Alan)) D @ bo(ar),  (5.63)
j=0,...,ns—1, (G=0,...,n{™ —1),
where
_ 1
BO (—§+A(1‘1)) =
, A |
:dlag{B1(—§+A1(ﬁc1)),...,Bl(—§+Al(x1)>},
B™(t) = Hb,jf(t)”qumq, g=1,...,1,
1 \p—Fk (=1)p=F gr=k im(et)
. — - T(t+1 , for k<
bpa(t) = (m) G- aprlt e orESP
for k> p,

0,
and I'(t 4+ 1) is the Euler function,

a;(z) = diag {a”“ (agj)), coa™ (al(j))},

Q(J)(Il>:___A ($1)+j7 q:Ll, j:O,Tls—l (.]_On( ) 1)

a™(a?) = [lag (@) cm,

i )P k 27Tz)l Pbkl (1q) =0, k<p
— (O)_|_1)p I+1 y J ) x M
1P~
k>

apt(al)) = -
S (- ( D), j=Tm—1 (G=1,n"~1), k<p,
0,
1
,uq:—E—Aq(:zrl), —1 <Repq <0.

Analogous investigation for basic mixed and interior crack problems for
homogeneous piezoelectric bodies has been carried out in the reference [§],
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where the asymptotic properties of solutions have been established near the
crack edges and the curves where the different boundary conditions collide.
In [8] it is shown that the stress singularity exponents at the interior crack
edges are independent of the material parameters and equal to —0.5, while
they essentially depend on the material parameters at the curves where
different boundary conditions collide.

As it is evident from the above exposed results the stress singularity ex-
ponents at the interface crack edges and at the curves where the interface
intersects the exterior boundary essentially depend on the material param-
eters. More precise results for particular cases are presented in the next
subsection, where these exponents are calculated explicitly for some partic-
ular values of the material parameters.

5.4. Analysis of singularities of solutions to Problem (ICP-A). As
in the previous subsection, let ¢,, = GF(Tm). For 2’ € ¢,, by H(x) we denote
the plane passing trough the point #’ and orthogonal to the curve £,,. We

introduce the polar coordinates (r,a), r > 0, —7 < a < 7, in the plane
H(m,) with pole at the point z’. Denote by F(m)i the two different faces of
the surface FSI ) Tt is evident that (r,£7) € I‘Sfm)i.

The intersection of the plane H(m) and €2 is identified with the half-plane

> 0 and —7 < a < 0, while the intersection of the plane H( and Q™)
is 1dent1fied with the half-plane r > 0 and 0 < o < 7.
The roots given by (5.62) are represented as follows

Zs 41 = —r[cosa + 7o +1(2") sina], Zs,—1 = r[cosa — 75 —1(2') sin oz},
s=1,...,lg, 2’ €lp,

25(7:)1 = —r[cosa+ Ts(fi)l (z')sinal, zs(nf)l =r[cosa — Ts(ﬁ)l (2')sinal,
s = 1,...,1((;“), v €l

From the asymptotic expansions (5.60) and (5.61) we get

lp ns—1
= DD cgulals )T By Egula’, @)+, (5.64)
p==+1s=1 j=0
l("") (771) 1

U(m) Z Z Z CL‘ a ,r'y-H(SB (C)N(S;Z)(x/, a)_’_.“’ (5.65)

p==£1s=1 5=0

where
_ . ) 1
P djag{r'““él, R T'Y‘r’ﬂgs}, (=—5= logr,
27
1 . TF
V=g5tg arg (@), 6= ——log|\(@)], @'€lm, j=T,5, (5.6)

and )j, j = 1,5, are eigenvalues of the matrix

Do(a') = [S2(a',0,4+1)] ' Sa(a/,0,-1), @' € by, (5.67)
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Note that the subsequent terms in the expansion (5.64) and (5.65) have
higher regularity, i.e., the real parts of the corresponding exponents are

greater than ;.
(m)

B

The coefficients cgj,., Csipu, €, and "c{;;) in asymptotic expansions (5.64)

and (5.65) read as

)

i +id—j
CSju(xlv a) = sin’ o d; (‘Tlv /1’) [ws)u(x/, O‘)]V o

~ 1
Coula’, @) = Bo( = 5 log (@, ) (),

j:Ouns_17 M::t]w S:17107

(!, ) = sida d (@, ) [0 (!, )]0
m 1 m
Egju) (Ila Oé) = BO( - % 1ngg,,u)('r/7 Oé)) Cj(xl)a

j=0ms =1, p==+1, s=1,1{",

where
Vs (@', @) = —pcosa — 75 (2" ) sine, s = 1,1,
wgfz) (', a) = —pcosa — TS(jZ) (x')sina, s=1, l(()m),
k m m)kp)
ain@ @) = [P @ Allsr )@y @) = el @ @ s

Remark 5.6. If By is the identity matrix, then the coeflicients ¢;,, and
(m)

Cyj,, take simpler form
ESju(xlv a) = Cj(‘rl)v J=0,ns -1,
ey @, a) = @), j=0,n{" 1,
where _
cj(x') =i T(j — v — i0)L(y +i8)D " (z)bo (). (5.68)

In what follows for particular piezoelectric elastic materials we will ana-
lyze the exponents 7; + ¢d;, which determine the behaviour of U and Um)
near the line ¢,,. Non-zero parameters ¢; lead to the so called oscillating
singularities for the first order derivatives of U and U, in general. In
turn, this yields oscillating stress singularities, which sometimes lead to me-
chanical contradictions, for example, to an overlapping of materials. So,
from the practical point of view, it is important to single out classes of
solids for which the oscillating effects do not occur.

To this end, let us consider the case when the domain €2 is occupied by a
special class of solids belonging to the 422 (Tetragonal) or 622 (Hexagonal)
class of crystals for which the corresponding system of differential equations
reads as follows (see, e.g., [16])

(Cll 812 + Cg6 822 + Caq 8§)U1 + (612 + Cg6 ) 0102u9 + (013 + C44 ) 818311,3—
—Y1 019 — €14 D203 — 0 7% uy =0,
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(12 + co6 ) O201u1 + (Co6 07 + c11 03 + caa 03 ) uz + (13 + Cas ) DaO3uz—
—710209 + €1401030 — 07> Uy = 0,
(c13 + caa) O301u1 + (€13 + caa ) O302un + (a4 07 + €44 05 + €33 03 ) uz—
—F3 039 — 012 u3 = 0,
—7To (1 Orur + F1 Oous + 3 O3z ) + (3011 0F + 511 03 + 523305 ) U+
+7Tog3030 — T =0,
€140203u1 — €140103up — g3 030 + (€11 07 + €11 05 + 23305 ) 0 = 0,

where ¢11, ¢12, €13, €33, Ca4, and cgs = (c11 — c12)/2 are the elastic constants,
e14 is the piezoelectric constant, €11 and e33 are the dielectric constants,
71 and 73 are the thermal strain constants, sc;; and 33 are the thermal
conductivity constants, gs is the pyroelectric constant.

It turned out that some important polymers and bio-materials (for ex-
ample, the collagen-hydrozyapatite and TeOs) are modelled by the above
partial differential equations. These materials are widely used in biology
and medicine (see [69]). In this model the thermoelectromechanical stress
operator is defined as 7(9,n) = ||Z;x(0,n)||5x5 with

T11(9,n) = c11m1 01 + co6 M2 02 + caq 13 O3,
T12(0,n) = c12n1 02 +co6n2 01, T13(0,n) = c13ny O3 + caqg n3 01,
T14(0,n) = —y1n1, Ti5(0,n) = —e14n3 0o,
721(9,n) = ce6n1 02 + c12 12 01,
T22(0,n) = co6n1 01 + c11 12 02 + caq 13 O3,
T23(0,n) = c13m2 03 + caan3 O2,
T24(0,n) = =1 m2, T25(0,n) = e1anz 01,
731(0,n) = caany 03 + c13n3 01, T32(0,n) = caqno 03 + c13n3 Oz,
T33(0,n) = caan1 O1 + caam2 Oz + c3313 03,
T34(0,n) = —73n3, T35(9,n) =0,
74(0,n) =0 for j=1,2,3,5,
T44(0,n) = »11 (n1 01 + 12 02 ) + 33313 03,
751(3, n) = e14m2 03, 752(3, n) = —e14n1 03,
T53(0,n) = e14 (n2 01 —n1 02), T54(0,n) = —g3nas,
T55(0,n) = €11 (n1 01 + 1202 ) + £33 03 O3.

The material constants satisfy the following inequalities

2
c11 > |eiz|, caa >0, ce6 >0, c33(ci1 + c12) > 2¢i3,

€33 2
€11 >0, €33 >0, 311 >0, 333 >0, T > g3,
0



114 T. Buchukuri, O. Chkadua, R. Duduchava, and D. Natroshuvili

which follow from the positive definiteness of the internal energy form (see
Subsection 1.3).

Further, we assume that the domain Q™ is occupied by an isotropic
material modeled by the Lamé equations

pAu™ 4 (A0 4 M) grad divu™ — 40 grad 90 — p(m)724,(m) = ¢,
AY™) — ro(mgm) _ TTém)u(m) =0,
p™ >0, 3A 4 2,0m >0, 4™ >0, o™ >0,

Furthermore, we assume that the interface crack edge (“)I‘(Cm) is parallel to
the plane of isotropy (i.e., to the plane 3 = 0). In this case the symbol
matrix Gq(a’, 0, £1) is calculated explicitly and has the form G2 (2’,0, +1) =
[Dkij]5><5, where

+ _pnpt _pEt _nEt _pEt _npEt _ pEt _ pEt _
D12_D21_D13_D31_D14_D41_D24_D42_

+ + + +
:D25:D52:D34:D43:D?%5:DE%?,:DE:DL%:O’

2(111 1 + i4011A15 + 2(122
11 b oy 15 o TR +a,
idags A idaszs A
DE = £ 150208y yp(m) p o g IR0 ()
b2 b2
2
D, = 22 +a™, Dy = —2au+1,
2
n 14assAs1 + 2as5
D51 == b* ) D55 = b’
1 1
with

e14 ce6 (b1 — bz) A _ E1a€ss (b1 —b2)
2b1b2V/B

[ A |A+ VB
2044 633 2c44€33 ’

4l = (b1 — b2)(e11 + €33b1b2) o=
2b1b2v/ B ’ %11%33

- (b1 — b2)(ce6 + C44b1b2 Xe |C+ VD ++vD
2b1bov/B 2cyyca3 2cysc33

A5 =

)
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(dv — d2) (caa + c33d1d2)

for D >0,
2d; da/D
ag2 = /53 ( + ) f D § O
————=—"(C44 T 1/C11/C33 or s
v—=D,/c11
(dv —d2) (c11 + caa di d2) for D> 0,
55 — 2dy dov/D
————(C4q + /11 /¢ for D <0,
\/j( 44 111/¢33)
Cq4 (d2 - dl) (C11 — C13 d1d2) for D > 0,
Ay — 2dy dov/D
¥ acya(y/C11C33 — C13)
for D <0,
V=D
_ caq (d2 — di) (es3di d2 — ca13) for D >0,
A — 2dy do/'D
27 aca(y/Ciicas — c13) /e
_ for D <0,
v—=D,/c11
Jomy 2 4 2p )y ()2
Am) 4y (m) ’ A(m) 4 3, (m)
1 |—C +2cqay/
a:—\/ + 2cu 011033>0, A:6%4+C44€11+066833>07
2 €44C33

B=A%— 4 cyq cg €11 €33 > 0, bI = —4A15451 — 1 <0,
b; = —4A3A53 — 1 < 0, D= 02 — 4054 C33C11,

C — C11 C33 — 0%3 -2 C13 C44.
It is easy to see that

azzAzy = —agaAaz, a11Ais = assAsi, A > VB,
A5 As1 >0, Aoz Azp < 0.

The characteristic polynomial of the matrix Ds(a’) for 2’ € 3F(Cm) can be
represented in the following form

fk1d11 0 0 0 Ko d15]
0 K1 dos Ko dag 0 0
det 0 —kodos K1ds3 0 0 , (5.69)
0 0 0 K1 dyaq 0
Lk2 d15 0 0 0 Kidssd




116 T. Buchukuri, O. Chkadua, R. Duduchava, and D. Natroshuvili

where

111:1—>\, I{QZ—I—A,

2(111 1 i4a11A15 2(122
d11:—*+—,d15:7*,d22:—*+a(m)7
by plm b1 b
i dage A 2
d23:la2#_i_ib(m)7 d33:@+a(m),
b2 b2
2(155

dyg = —2a44 + 1, ds5 = ——.
b1

It can easily be verified that we have the following expressions for the eigen-

values of the matrix Da(x’) (i.e., the roots of the polynomial (5.69) with

respect to \):

1—ip 1 1—gq 1
A1 = , do=—, 3= ——, M=—, As=1,
YT atip PN P Iyqg TN ?
where
d d
p=7| 15| > 0, q:7| 23| >0.

Vi1 dss V22 ds3
Note that |A1]| = |[A2| =1, A3 > 0 and Ay > 0.
Applying the above results we can write the exponents of the first domi-
nant terms of the asymptotic expansions of solutions explicitly (see (5.64)—
(5.66))

1 1 1 1 1
71=—+—ﬂ_ arg)\1=§+% [arg(1—ip)—arg(1+ip)] =5 arctanp,

1 1 1
01 =0, 72 =+ — arctanp, 02 =0; 3= =,
2 2
1 1—g¢q

b3 =0, =0=—1

05 = 0.
27 nl—l—q’ o

1
7525

Clearly, 0 < 71 < 1/2 and 1/2 < 72 < 1 and we can draw the following
conclusions:

(1) In view of Proposition 5.5, solutions of the problems under con-
sideration have the following asymptotic behaviour near the curve

aram
(u, )" =cor 4+ 1 pa+id 4 Co rE=id 4 C3TE A gt A
G =Dor? +by 1 -, (5.70)
w™m = C((Jm) P4 cgm) Fh¥is + Cgm) r%_ig—i—
+cém)r% —i—cflm)?”? 4+,
9m) = —bém) rz 4 bgm) e (5.71)

where 71, 72 and 5 are defined above.
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(2)

As we can see, the exponent 7;, characterizing the behaviour of
U and U™ near the line ar(cm>, belongs to the interval (0, 1/2).
It depends only on the elastic constants c44, cg6, u(m), dielectric
constants €11, €33, and piezoelectric constant e14, and does not
depend on the thermal constants.

In the above asymptotic expansions, the first five terms of u, ¢,
and w(™ and the first two terms of ¥ and 9™ do not contain
logarithmic factors due to the equality By(t) = I.

Since 71 < 1/2, there do not appear oscillating singularities for

physical fields in some vicinity of the curve 8F ™) Recall that in
the classical elasticity theory (for both 1sotrop1c and anisotropic
solids) for interface crack problems the dominant exponents are 1/2
and 1/2+1i 3 with 8 # 0 and, consequently, the corresponding stress
tensor possesses oscillating singularities, in general.
In the considered case,

Bo(t)=1, 1™ =1, n{™ =4

7'1(72):—1', lo=5, ng=1, s=1,5,

Tiu = —’ibl, 2,0 = —ibg, T3,u — —idl,

T4y = —idg, Ts,u = —’i\/ I€11/I€33, on = +1.

Note, that if D > 0, then the roots 73, and 74, are pure imagi-
nary. For D < 0 the roots are complex numbers with opposite real
parts and equal imaginary parts (see [8]). Therefore, in view of Re-
mark 5.6 the coefficients of the dominant terms in the asymptotic
expansions (5.70) and (5.71) read as

co = co(2, ) Z Zcol) SO# T, ), (5.72)

uilsl

bo=bo(z',0) = > Zc 2 )elp) (2!, @), (5.73)

,u:l:lsl

c(om) = Co Z Zc 2 CUT) 1)(:10 a), (5.74)

,u:l:l_]O

b( ™) = b(m Z Zc (%) CUT) 45)(96 a), (5.75)

p==1 j=0

1)

505, 1s composed of the first three and fifth entries

of the first column of the matrix cso,, while the vector ng(?),l) is

composed of the first three entries of the first column of the matrix

ng) The coefficients c§1) and 055) are the first and the fifth compo-

nents, respectively, of the vector ¢;, j =0, 3. In our case they read

where the vector ¢



118 T. Buchukuri, O. Chkadua, R. Duduchava, and D. Natroshuvili

as
(@) = 1T = 3) T(n) b (@),
(@) = Vil T - 1/2) " (@),

where ’50(1) and Zé5) are the first and the fifth components of the

vector D~ 1by respectively.

As we will see below, there exists a class of piezoelectric media for which
the dominant stress singularity exponent near the line 3I‘(Cm) does not de-

pend on the material constants and equals to —1/2.
Let us consider the class of piezoelectric media with cubic anisotropy.
The corresponding system of differential equations are:
(c11 312 + Caq 322 + Ca4 8§)u1 + (c12 + caa ) O102u2+
+(c12 + cas) 0103u3z — Y1 019 + 2e14 02030 — 07 Uy = FY,
(c12 + caa) 0201u1 + (Caa 312 + c11 322 + Ca4 3§ ) ug+
+(c12 + cas) 0203u3 — Y1020 + 2€140103¢p — 0T ug = F,
(c12 + caq ) 0301u1 + (c12 + caq ) O302uz+
+( Ca4 OF +caa 03 +c11 03 ) us — 73 039421201 00p— 0 77 uz = F,
=7 1o (71 O1ur + 71 Gauz + Y3 Ozuz )+
(511 0F + 5011 03 + 23303 ) 9 — T + 7T g3 O30 = Fy,
—2e140203u1 — 2€140103ug — 2€140102u3 — g3 O30+
+(e110? 41103 +€1103 ) = Fs,

(5.76)

where the elastic, piezoelectric and thermal constants involved in the gov-
erning equations satisfy the conditions:

1 ¢
c11 >0, cq4 >0, ——<£<17
2 C11
11
€11 >0, }—1 > gg, »x11 >0, 333 > 0. (5.77)
0

In this case, the matrix Ga(a’, 0, £1) is self-adjoint

Sa(2',0,41) =
[—2a11 + ™) 0 0 0 0 |
0 Q1 +iQo 0 0
= 0 FiQ2 0 0 1,
0 0 0 —2au+1 0
I 0 0 0 0 —2ass |




Interface Crack Problems for Metallic-Piezoelectric Composite Structures 119

where
2 dage A

Q1= 2‘32 _l’_a,(m)7 Qs = 042b2>~< 23 + b(m)7 b* :4A§3 —1,

(dv — d2) (c11 + caa) for D >0,

2vD
Q22 = 0 (et + ca) o
_2\HL T *44) r :
v—D
a :M a _ Lo a :(bl—b2)C44

11 \/E 9 44 2 %11 3 55 7@ 5

caa (do — di)(c11 — c12)
2vD
faadion —Gz) (e — 1) for D <0

2v/-D

[A— /
by =\ 7———, b2a=
2c44811 2c44811
C—-vD C++vVD
dy =\| =——, da2 = ;
2cq4C11 2c44c11

—C + 2cqar/c11

1
D=0C?>—-4c ¢ a=—4/———— >0
1 2 €44C11 ’

for D >0,

Sl s

A++vVB

2 2 2 2 2 2
A =2cy4e11 + 4e3,, B=A"—4ciery, C=ci) —ciy—2c19C44.
The eigenvalues of the matrix

Do(a') = [Sa(',0,+1)] ' Sa(a’,0,-1), o’ € I,

read as
1—gq 1 1
Ni=1, 7=1,2,5; \g=—>0, q=—>0, v,==, j=1,5,
j J 3 T+g 4 s i B J
~ 1 1—g¢q
6, =0, =1,2,5, 03=—-04=0=— In——
7 s J 3 &y, 3 4 0 n1+q7

_ 2a99 Asz + pm)
n 2099 + a(m) p*

The matrix D- is self-adjoint and, consequently, is similar to a diagonal
matrix, i.e., there is a unitary matrix D such that D D, D! is diagonal. In
turn, this implies that By(t) = I and the leading terms of the asymptotic

expansion near the curve 8F(Cm) do not contain logarithmic factors. As a
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result we obtain the asymptotic expansion
(u,0)" =cor? +cr2tid peprzTio 4

’]_9:b0’["%+...7 (578)
ul™ = ™ o3 +c§m>r%+i5+cém>r%_is+m :
90 = (™ s 4

where the first coefficients have the same structure as in (5.72)—(5.75). Con-
sequently, the solution is C'/2-smooth in a one sided closed neighbourhood
of the curve 3F(Cm).

5.5. Numerical results for stress singularity exponents. The above
analysis based on the asymptotic expansions of solutions (see [12,13])
shows that for sufficiently smooth boundary data (e.g., C*°-smooth data
say) the principal dominant singular terms of the solution vectors U m
and U near the exceptional curves 0Sp and Zﬂ“}m) can be represented as
a product of a smooth vector-function and a singular factor of the form
[In o(z) ™[ o(z)]*+1%. Note that the crack edge (’ﬂ"ém) is a proper
part of the curve 8F:(Fm). Here o(x) is the distance from a reference point
x to the exceptional curves. Therefore, near these curves the dominant sin-
gular terms of the corresponding generalized stress vectors 7 (™ U (™) and
TU are represented as a product of a smooth vector-function and the factor
[In o(z) ™[ o(z)] 1T+ +i%  The numbers d; are different from zero, in
general, and display the oscillating character of the stress singularities.
The exponents v+ d. and the corresponding eigenvalues of the matrices
(4.23) are related by the equalities
1 arg )\

In |)\k|
= — 6 = -
M=ty Ok o

Here either )\ € {/\j(l)(a:) 5. for z € 0Sp or \x € {/\ng)(x) 5, for

T € 61"}7”). In the above expressions the parameter mj denotes the al-
gebraic multiplicity of the eigenvalue Ag. It is evident that at the excep-
tional curves the components of the generalized stress vector behave like
O([In o(x)]™ [o(x)]"2+7"), where mg denotes the maximal multiplicity of
the eigenvalues. This is a global singularity effect for the first order deriva-
tives of the vectors U ™ and U. Note that 7, 0 and +/ depend on the
material parameters (see (5.36)-(5.39)). Moreover, v’ is non-positive and
0r # 0, in general. This is related to the fact that the eigenvalues A\ are
complex and |Ag| # 1, in general.

For numerical calculations, we have considered particular cases when the
domain (") is occupied by the isotropic metallic material silver-palladium
alloy whereas the domain €2 is occupied by one of the following piezoelectric
materials: BaTiOs (with the crystal symmetry of the class 4mm), PZT-4
and PZT-5A (with the crystal symmetry of the class 6mm). Calculations
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have shown that the parameters ;, and ;' depend on the material param-
eters. In particular, y;, = —v;/ and we have the following values for them

BaTiO3 | PZT-4 | PZT-5A

v | =012 | —0.12 | —0.13 (5.79)
v, | —0.06 | —0.08 | —0.09

Therefore, for 7' := min {71, 75} we have (see (5.36)-(5.39))

BaTiO3 | PZT-4 | PZT-5A

v -0.12 -0.12 -0.13

Consequently, if the boundary data of the transmission problem under con-
sideration are sufficiently smooth (e.g., satisfy the conditions of Theorem
5.4. iii with a > 0.5), then for the Holder smoothness exponent &, involved
in Theorem 5.4.iii, we derive

BaTi03

PZT-4 ‘ PZT-5A

K

0.38 ‘ 0.38 ‘ 0.37

Thus, in the closed domains the solution vectors have C*~°-smoothness ,
where § > 0 is an arbitrarily small number. This shows that the Holder
smoothness exponents depend on the material parameters. Moreover, for
these particular cases, from the table (5.79) it follows that v < +%, which
yields that the stress singularities at the curve 0Sp are higher than the
singularities near the curve (?I‘}m).

The graphs presented below show the significant influence of the piezo-
electric constants on the stress singularity exponents and on the oscillating
stress singularity effects. We have calculated the deviation v9) of the stress
singularity exponents 7} from the value —0,5 (the value for the materials
without piezoelectric properties): ) = | — 0,5 — 7|, 5 = 1,2, and param-
eters 01) = max  sup |0 and §? = max sup |d|, which determine

1<k<5 2€8Sp SESS | corim
T
stress oscillating singularity effects at the exceptional curves dSp and 8F§Fm)
respectively. We carried out calculations for PZT-4 with the constants tey;
instead of ey;, where 1 < ¢t < 2. The corresponding graphs are presented in
Figures 2 and 3.

We see that the stress singularity exponents essentially depend on the
piezoelectric constants. In particular, when the piezoelectric constants are
sufficiently small, the stress singularity exponents are equal to —0.5, similar
to the materials without piezoelectric properties. Starting from some thresh-
old value of ¢ (which is different for 9Sp and 61"§Fm)) the stress singularities
differ from —0.5 and simultaneously we have no oscillating singularities any
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more (see Figures 4 and 5). Note that the threshold value of the parame-

ter t corresponding to the curve 3F(Tm) is smaller than the threshold value

corresponding to the curve 9Sp. However, when ¢ grows, the stress sin-

gularity exponent near the curve dSp increases more rapidly and starting

from some value of the parameter ¢ it exceeds the stress singularity exponent
; (m)

corresponding to the curve o'}, .

Mﬁr/ 0.67

0.5¢ 0.5“(5//_’

04f v 04f v

0.3f 03¢

0.2 0.2

0f 5(1) 0f 6(2)
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The graphs presented below in Figures 6-9 show the dependence of the
stress singularity exponents and the oscillation parameters §(!) and §(2) on
the angle Bm between the symmetry axis of the piezoelectric material and
the normal of surface at the reference point x € 9Sp U Bfgpm). As we see,
the stress singularity exponents essentially depend on the angle 87 € [0, 27]
as well.

0.70F
0.651
0.601

0.55F

FIGURE 6 FIGURE 7



Interface Crack Problems for Metallic-Piezoelectric Composite Structures 123

06

0.6 0.51 2
0,5\AT)/_\—A/ 0.4 rY( )
o4t v 03f
03l
02f
0.2F
0.1 5(1) 01r 5(2)
0.5 1.0 15 2.0 05 1.0 15 2.0
T X0 T X 3
FIGURE 8 FIGURE 9

6. EXISTENCE AND REGULARITY RESULTS FOR PROBLEM (ICP-B)

Here we will consider the interface crack problem (ICP-B), see (1.60)-
(1.71). As we will see this problem is reduced to a more complicated, non-
classical system of boundary pseudodifferential equations which needs a
special analysis.

6.1. Reduction to boundary integral equations. For the data of the
problem (ICP-B) we assume that

(m) ¢ By r(sUM), j=T1
QJ 6 ;D,p( N )a .] P
_1 1, _
Qk € B;D,; (SN)7 fk: € B;Dp,p(SD)J k= 1a5a
£ e BYP (DA™, 1=1,2,3,

F‘[(m) € BPJ? (Ff(l’m))’ l - 172737
F{™ € B,z (1),
~ 1
Ql € BPJ? (FC(,'m))a l= 17273a
_1
Q™ e Bz (i™), 1=1,2,3,

Further, let

Gm =% 1=1,2,3, 6.2
l {le) on Pém) ( )

)

Gt = Qt on SN, t:4,57
G QU™ on 507,
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Denote by
_1 - _1 _
Gor € By (99), k=T1.5, and G € B,z (00™), j =114,

some fixed extensions of the functions G and Gg-m) respectively onto 02
and 99 (™) preserving the space,

GO = (G017 Ceey G'O5)—r S [Bp (6 3)
G{™ = (G, .,a5)T € [B,y,

It is clear that arbitrary extensions G and G;m)* of the same functions can
be represented then as

Gi=Cou+ v +he, k=15 G =G +h™, j=T4, (6.4)
where
Ui € Bpi(Sp). k=T05, heBj(0s™), 1=T3,  (65)
he € Byg (M), ¢ = 4,5, ™ eégf(r;m), 1=1,2,3,  (6.6)
h™ € Byp (00m),

are arbitrary functions. We set

Y=, s ts)T € [Byg(5p)]°,
hi=(h, ... hs)" € [Byg (CS™)]) x [ By (D)%, (6.7)

1

1
R = (™, RS € [B 5 (TP x By g (T 0™),
As in the previous subsection, we develop here the indirect boundary inte-
gral equations method, and in accordance with Lemmata 4.6 and 4.8, we

look for a solution pair (U ™), U) of the interface crack problem (1.60)-
(1.71) in the form of single layer potentials,

Um = (u(m),...,uim))T =

V™ ([P TG +hM]) in Q0 (6.8)
U= (ui,...,us) =V (P [Go+v¢+h]) in Q, (6.9)

where P{™ and P, are given by (4.37) and (4.41), Gy and Gém) are the
above introduced known vector-functions, and h ™), h and 1 are unknown
vector-functions satisfying the inclusions (6.7).

By Lemmata 4.6, 4.8 and the property (4.40) we see that the homoge-
neous differential equations (1.60)-(1.61), the boundary conditions (1.62)—
(1.63) and the crack conditions (1.70)—(1.71) are satisfied automatically.
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The remaining boundary and transmission conditions (1.64)—(1.69) lead
to the equations

[H.P; (Go+v+h)], =fx on Sp, k=15, (6.10)

"o [HeP7HGo + 0+ h) ], = f2™ on T (6.11)

P [He P (Go 0], = 1y [HED [P H(GE™ +ROM)| =
T T

’I“SD

l

=™ on 0l 1=T173, (6.12)
rg Go+ v+ hlitr o, [Go™ +h], =
=F™ on 1{M™, 1=T3, (6.13)
T [ HePr H(Go+p+h) ] =7 ) [Hgm [p§m>]fl(ggm>+h<m>)h:
=™ on T, (6.14)
T oo [Got o +h] +r o [GE + R ], =F™ on T™_ (6.15)

We can rewrite these system as the following simultaneous pseudodifferential
equations with respect to the unknown vector-functions v, h and h (™):

ro, [HeP7 (W +h)], = fr on Sp, k=15, (6.16)

T [P @R ] = [HIm [P =R ()] =
T T
=" on TYY, 1=T73, (6.17)
oo [HEPE W+ )], = 1) [V POV
= fi™ on T, (6.18)
P [P @ 4 0] = F™ on T O™, (6.19)
m 7= (m) m)
TF}m) hl( )4 Tr;’m hy = Fl( on I‘:(F , 1=1,3, (6.20)
"o o ha=F on T, (6.21)
where
7 1-1 -

fo=fu 1o, [H-P7'Go ], € By (Sp), k=175, (6.22)

fl(m) = fl(m) + . [H‘Sm)['p‘r(m) ]71Gém)}l_

T
_ -1 .

T [H.P;'Gol, € Bpyp” @iy, 1=T1,3, (6.23)

ﬁ(m) — f4(m) +7 o [H‘Sm)[fp‘r(m) ]71Gém) ]4_

_ -1
T [H"'PT 1G0]4 € Bpp” (F( ))7 (6.24)
7 (m m _ 17% m

= £ e [HePTG), € By (D), (6.25)



126 T. Buchukuri, O. Chkadua, R. Duduchava, and D. Natroshuvili

1 —
™ =F"™r  Gu-r . G5 er . Bpp (@), 1=1,3, (6.26)
FT FT T

~ ~_1
EMm=pl™ _r  Gu—r G er By [Tm). (6.27)

T (m) T (m) T (m)

The inclusions (6.26) and (6.27) are the compatibility conditions for Problem
(ICP-B) due to the relations (6.7). Therefore, in what follows we assume

that ﬁ'l(m) and ﬁl(m) are extended from F(m) and T (™) respectively, onto

9™ by zero, Le., F™ e Bz (0I), 1 = T3, and F™ e B, 7 (T ™).
We employ the notation (5.18) to rewrite equations (6 16)— (6 21) s (see
the remark after formula (5.25))

ro, [A], +ro, [Ash], = fi on Sp, k=175, (6.28)
rr(m)[ATw]err(m)[(A +BUR], =™ on TYY, 1=1,2,3, (6.29)

P LA+ [(Ar +BIR], = g™ on T (M), (6.30)
T (A5 4700 [Arh ] = =g on T(™), (6.31)
o ™ 7 e = E on TWM 1=1,2,3, (6.32)
T h4(m) T ha = ﬁl(m) on I‘(m)7 (6.33)
with
B = 0y [HEPEE ] €8y (0, 1T,
= L [P E ) e B e), (634)

_ 1_1
55(7”) :f5( s Bp,pp(F(m))-

It is easy to see that the simultaneous equations (6.10)—(6.15) and (6.28)—
(6.33), where the right hand sides are related by the equalities (6.22)—(6.27)
and (6.34), are equivalent in the following sense: if the triplet

(. h ™) € [Byk (50)]° x [Byg (00™)]°

x [ By

2N [,

1
()] x Bpg (D)

solves the system (6.28)—(6.33), then the pair (Go+y+h, Gém)—i—h (m)) solves
the system (6.10)—(6.15), and vice versa.
Note that the above simultaneous equations are not classical systems

of pseudodifferential equations since the sub-manifolds I';. (m) and I‘(m) are
proper parts of I'("). We will discuss this problem in detall in the next
subsection.

6.2. Existence theorems for problem (ICP-B). Here we show that the
system of pseudodifferential equations (6.28)-(6.33) is uniquely solvable. To
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this end, let us denote by J\/T(B) the operator generated by the left hand side
expressions of the equations (6.28)—(6.33),

NP =
r s, Ar re Ar s, [0]5xa ]

D

7o (Ao 7 [(Ar+BI™)klxs 7 [0
(A-)

- F(M)[ T tk]2><5 Tr(m) [(AT+B7§m))tvk]2X5 Tr(m)[o]2><4 ? (635)
rq(,m>[0]3><5 Trq(,’")IBXS T'F}m)13><4
L F(M)[O]1X5 Tr(m)11><5 Tr(m)Il><4 - 14x14

where the operators A, and B{™ are defined in (5.18), the subindexes
involved in the block matrices take the following values k = 1,5, 1 = 1,2, 3,
and ¢t = 4,5; the symbol [0]xxas stands for the zero matrix of dimension
N x M, while

1 0 0 0 O 1 0 0 O
Isx5:=10 1 0 0 Of, Isx4:=1(0 1 0 Of,
001 0O 00 10
Lixs = (Oa 0,0, 1, 0)7 Iixy = (07 0, 0, 1)
Further, let
s ns s m 53 m 2
ba 1= [Bra(8p)] % [By, (™))" x [ B (0 ™)

x [ By (T4™)])* x By (T™),

V5, = [ By (Sp)]” x [Byt (™))" x [ Byt (D ™)]*x

x [BS (TA™)]? x Bs (0™,

X3 == [H:(Sp)]” x [HS(P(m))] x [H3(@ ™) ] x

x [Hy(0f™)] x Hy(r ™),

Y8 o= [H3P (Sp)]° x [H O™ ] x [HE (T ™) ]*x
x [Hy(rm)]? < Hy (™)

Note that X3 , = X3 and Y3 , = Y3.

Employing the notation (6.2), we rewrite then the system (6.28)—(6.33) as
follows

NP & =, (6.36)

_1
where the vector ® = (¢, h, h(™)T € X, I is unknown, while ¥ :=
~ _ ,; s
(f, g™, FU"T € Y, 7 is a given vector with f = (f1, ..., f5)T, g™ :=
(gl(m)7 L] g(m)) and F(m) = (}7'1(’”7')7 RN F4(m))T
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In accordance with Theorems 4.2, 4.3, and Lemma 4.7 we have the fol-
lowing mapping properties

NP XYy [X5 —Y5 ], s€R, 1<p<oo, 1<g<oo.  (6.37)

Our goal is to establish Fredholm properties and invertibility of the operator
(6.37). To this end, first we prove the following lemma.

Lemma 6.1. The operator
N L XF Ly, (6.38)
is invertible.

Proof. We prove the theorem in several steps. First we show that the op-
erator (6.38) is Fredholm with zero index and afterwards we establish that
the corresponding null-space is trivial.

Step 1. First of all let us remark that the operators

I [IN{Qé(F(m))]5_’[H2%(SD)}5,

Sp

1 1 6.39
"o Ar o [Hy ?(Sp)]” — [Hz (0™)]7, (639)

are compact since Sp and I' ™) are disjoint, Sp NT (M) = &. Therefore the
operator

NEO
[ 7sp Ar Tsp [0]5x5 Tsp [0]5xa ]
P 0085 7 (A + B iklas 1 [0]30s
T T .
= T'F (m) [O]2><5 TF (m) [(A‘r + Bﬁm))t,k]2><5 T'F (m) [0]2><4 (640)
TF}m) [O]3><5 TFI(,m> I3><5 'rr"l(qm> 13><4
L7 m) [0]1xs T m) PE T m) Tixa | v

is a compact perturbation of the operator N*?). As above, here k = 1,5,
1=1,2,3, and t = 4,5. More precisely, the operator

NB) _ NBO L x5 vy (6.41)
is compact. Clearly the operator NT(B’O) has the following mapping property
NBO L xE Ly (6.42)

Further, as we have shown in the proof of Theorem 5.1, the operator
rep s ¢ [Hy *(80)]" = [H3 (Sp)]° (6.43)

is invertible. Therefore, in view of (6.40), it remains to investigate the
operator

_1 1
NP H,? - HE, (6.44)
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where
T3 — (m)y13 m) 2
e (B )P e,
Hj = [Hp (08)]" x [Hy <r<m>>] ,

and

B
N@ o | (- + B usdoes (6.46)
Tr(m> [(A +B ) ]2><5
with k =1,5,1=1,2,3, and t = 4, 5.
In what follows, on the basis of the Lax—Milgram theorem, we show that

the operator (6.44) is invertible. This is equivalent to the unique solvability
of the simultaneous equations:

5X5

NT(2) h = f*, (6.47)
or componentwise

r (m)[(AT+B7Em))h:|l :fl* on I"l("m)v l= 1u273a
T (6.48)
(A +B™) ], =f;f on T(™ t =45,

T (m)

where

1 ~_1
h=(h,... hs) €My ? = [Hy *(C8)] x [Hy ?(00)]
is unknown and
¥ _ (g x 3 R NGONE z(pm)y 12
fr=04 f5) e 3 = [H (02™)]" < [HF (0 ™) ] (6.50)
is an arbitrary right hand side.
Step 2. Here first we show that the operator (6.44) is injective. Indeed, let

> (6.49)

~ 1
h € H, * be a solution to the homogeneous equation ./\/7@) h = 0. Construct
the vectors

U = _ym)( [PT(m)}—l R in Q) (6.51)
U=V.(P;'h) in Q, (6.52)

(m) M)y ¢ (- omys o b
where h (™) = (h," ... hy™) € [Hy 2 (T™)]? x Hy 2 (I'™)) and, more-
over,

™ =1 hy (6.53)

T (m)

h(m) r h; and 7r

r
rm r{m

T (m)

By Lemmas 4.6 and 4.8, then we have
_p(m) — {7‘(771)[](“1)?L on 90 m)

(6.54)
h={TU}* + B{U}" on 0Q.

It can easily be verified that the pair (U m) U ) solves the homogeneous in-
terface crack problem with homogeneous boundary, transmission and inter-
face crack conditions just as in Problem (ICP-B), but with the homogeneous
Robin type condition

s, [{’Z’U}jL + ﬁ{U}+] =0 on Sp,
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for the Dirichlet homogeneous condition (1.64) on Sp. Therefore by Green’s
formulae, as in the proof of Theorem 1.1, we derive that U (™ = 0 in Q (™)
and U = 0 in 2, which implies that h = 0, i.e. the null space of the operator
(6.44) is trivial.

Step 3. Further we show that the operator (6.44) is Fredholm with zero
index. First we derive an auxiliary coercivity inequality. By summing of

Green’s formulae (1.37) and (1.40) with V (™) = U (™) and V' = U we obtain

/{T UM (U dS + / (T M g Y+ my+ gg —
o9 )
= / [E(mﬂ) + 072 |ul® + v (7 To Oju; Tz — ug Ojuy )+
Q
+ 25 8jU4 Ous + 7 |U4|2 + €45 (aIU5 8iuj — &-uj 8111,5)—

— g1 (7 Ty Orus Tz + ug Qus) + €1 Ojus (9111,5] dr+

" / B (™), um) + o 72 [0 2 4 50 0,0 {™ ouf™ +

Q(nl)

+ra™ [u{™M)? 4 %(_;n) (TTOm)ajul(m)uflm) —u{™ @u/’”)] dr. (6.55)

With the help of relations (6.51), (6.52), (6.53), (6.54) and (6.49) we can
show that the left hand side expression can be rewritten as

/{T UM (U dS + / (T M g my+ L U my+ g —
o0 a0 (m)
= {TUY + LU, {U}") o — (BLUY, {U}T) g +

+ <{T(m) Uy {U(m)}+>asz m

= <h= {U}+>BQ - <6{U}+7 {U}+>agz - <h(m)7 {U(m)}+>aﬂ (m) —
= (b He[Pr] " By = (BLUYT AU ) +

+ (RO, PR =

= (b, Ar h)pom = (BLUYT {UY ) g+ (b B h) ) =
= (hy [Ar + B b)) — (BLUY {UY g, =

— (b N b — [ BI(UYHP as.
Sp
On the other hand, with the help of Korn’s inequality and evident standard

manipulations, the real part of the right hand side in (6.55) can be estimated
from below by the expression
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& {10 g + 10 Wy}~
— Oy {I\Ullfﬂgms + ||U(m)”fﬂg<mm)>14}’

where C; and Cs are some positive constants depending on the material
parameters and the complex parameter 7. Actually, we can choose C1
independent of 7 and Cy = O(|7|?) for sufficiently large |7|. Therefore we
finally derive the following inequality

- CUIARIP

3o (6.56)
[H, ? (02

1
2

Re (M@ h, hyp o = C'|[]1?
[H, 2 (0Q)]"

where C" and C” are some positive constants depending on the material
1 1
parameters and the complex parameter 7, and A : H,?> — HJ is a
~ 1 1
compact operator. Note that H, * and H3 are mutually adjoint spaces.
Now from (6.56) we conclude that the operator (6.44) is Fredholm with
zero index (see, e.g, [44, Ch. 2]), and consequently, it is invertible, since its
null space is trivial.
Step 4. From the results obtained above it follows that the operator

NEO L xF Ly (6.57)

is invertible. Therefore the operator (6.38) is Fredholm with index zero due
to the compactness of the operator (6.41). It remains to prove that ker NB)
is trivial. We proceed as follows. Let a triplet ® = (w,h,h(m)) solve the

homogeneous equation NT(B) ® = 0 and construct the vectors U (™) and U
by formulae

Um — VT(m)( ['pT(m)}fl h(m)) in Q) (6.58)
U=V.(P/'[+h]) in Q. (6.59)

These vectors solve the homogeneous interface crack problem (ICP-B) and
U =0in Q0 and U = 0 in Q by the uniqueness Theorem 1.1. These
equations imply ® = 0, which shows that ker NT(B) is trivial. Consequently,
the operator (6.38) is invertible. The proof is complete. O

Remark 6.2. One can easily verify that all arguments applied in the
proof of Lemma 6.1 remain valid for Lipschitz domains Q ™ and Q.

Now we prove the following basic theorem (see Theorem 2.31 for a gen-
eralized version).

Theorem 6.3. The operator N2 in (6.2) and (6.37) is invertible pro-
vided the following constraints hold
1

3 11
> 32 +max{y},v5,7,} <r < >3 + min{y1, 75, Y4} (6.60)
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where v1, vy are the same as in Theorem 5.1 and are defined in (5.36),

) 1 2)
5= f — AL ,
3 zear<71n1>l,1<j<5 27 A8 4 (z)
) (6.61)
vy = sup — arg )\j(2) (),
zeal(m) 1< 4T
1
b= inf — i(z),
T zedl (M) 1<j<5 2T arg 41 ()
(6.62)

1
"o,
vy = sup Py arg w;(z),
z€dl (m) 155 2T

w;(x) are the eigenvalues of the matriz in (6.79) and )\;2) (x) are the same
as in (5.37).

Proof. First of all let us remark that the the operator NT(B’O), defined by
(6.40), has the same mapping property as NB)

B,0) . s s
NEO X8 s,

< < (6.63)
P X = Yo
forall s e R, 1 < p < o0, and 1 < ¢ < 0o. Moreover, the operators
. s (m)y1° s+1 5
TSDAT : [Bp,q(F )] - [Bp,q (SD” ) (6.64)

. s 5 s+1 m 5
T Ar [B;.4(Sp)]" = [ By, (L )”
are compact for 1 < p < 400, s € Rand 1 < ¢ < 400 since the domains are

disjoint SpNL ™ = @. Therefore N2 represents a compact perturbation
of the operator /\/T(B), i.e., the operators

N NBD L xe Ly,

? : (6.65)
P X Yo
are compact.
The operator A% in (6.40) is of block-lower triangular form
s, A 0 0
NEOD = 0 MY o , (6.66)

0 lixs Iy 14x14

where NV is defined in (6.46) and I,x5 is as in (5.26). Further, as we have
shown in the proof of Theorem 5.1, the operators

ro, Ar [HL(Sp)]” — [HL'(Sp)]
: [Bpy(Sp)]” = [Bpy'(Sp)]

5

; (6.67)

are invertible if

1 1 1
Sl <r s < =+, 6.68
P M1 2 ) 71 ( )
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where 1 and ~{ are determined in (5.36).

To prove the invertibility of NT(B’O) in (6.42) it remains to investigate the
operators

2 ,N’I" r+1
NP H - H

~ (6.69)
P By — B;i}l
in the following space settings
HY = [HT(P(m))] [H7 (™))%,
H’r‘Jrl . H’r‘Jrl 3 HT+1 F(m) ,
[ 1 [ ” (6.70)
"= B F(m )] x [ By (0],
BT+1 . [Br-i-l I\(m ] [B;:Zl (1—\ (m))] i

Since I‘:(Fm) is a proper part of I' ™) we can not apply Theorem 2.28 to
characterize the Fredholm properties of the operators (6.69). Instead we will
apply the local principle for para-algebras, exposed in Section 2. To this
end, let either Z := H} (iT = ]HIT) or Zy, =By , (ZT = IB%T 4)- Consider
the quotient para—algebra

(Zr ZrJrl) [\IJ(ZT ZT+1)/Q:(Z;7Z;+1):|

2x2’7

of all ¥DOs \II(Z;,Z;“) acting between the indicated spaces factored by
the space of all compact operators (’:(i;, Z;‘H). Further, for arbitrary point
y € T(m) we define the following localizing class

Ay = {[gylg,], gye(Coo(l"(m)), supp g, CWy, g,(z)=1 Vmewy}, (6.71)

where Wu C W, C T'(™) are arbitrarily small embedded neighborhoods of y.
The symbol [A] stands for the quotient class containing the operator A. It
is obvious that the system {Au}y e is covering and all its elements [g, I5]

commute with the class [A] for arbitrary ¥DO A € \IJ(Z;, Zyth) (to justify
the commutativity recall that a commutant Agl — gA, with the identity
operator I, is compact for an arbitrary smooth function g).

The DO A, = H, P! “lives” on the surface 9 (see (5.18) and Section
2). Let us consider a similar operator A(Tm) = H&’”) g(Pﬁm))fl which “lives”
on the surface 8Q(m), where the YDOs Hgm) and ’Pﬁm) are the direct values
of potential operators, defined in Section 2. The closed surfaces 02 and
Q™) where the operators A, and AS-m) are defined, have in common the
open surface T = 9Q N 0™, On the other hand, an arbitrary ¥DO
A(z, D) and, in particular the operators 4, and AS’”), are of local type:
if g1 and g, are functions with disjoint supports supp g1 N supp g2 = &,
then the operator g1 A(z, D)goI is compact in the spaces where A(x, D) is
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bounded. Applying the mentioned property, it is easy to check the following
local equivalences

[A,] Ry [(Ar], [A™) 2 [.AQZ)] for all y e (™).
Consequently,
Ay
(M)~ (M), (6.72)

where

N = A 4+BI™ - [H (090 —[ HH(09™) ] for ye T, (6.73a)

N2 = [(Ar+BI )]yt [HL@QM)2 = [HIF (000M)]® (6.73D)
for y € F(Cm),

NE = [ (Ac+BI)], o [Hy(C0)]?— [HH(T™) ] (6.73¢)
for y € ar(™),

2) .
N =
c T Bﬁm) c T B‘lgm) fad
free, WASB Dunlse e [(Art Br™ gl oV (6.73d)
(At B, k] s (At B, oo

5x5
for y € OTUM ) 1k=1,2,3, t,q=4,5.
Here Q™) is a closed surface and
Dé = 0N\ TEY =T U S,
v T NT C 3 T m 2
V= [ Xp(6,0)]7 x [Xp020m)]7, (6.74)
r+1 . r+1 c 3 r+1 m 2
VPJF T [XPJF ( (m))] x [Xer (BQ( ))}
with either X = H} or X = B} .
Due to Theorem 2.45 the operator V%) in (6.69) is Fredholm if and only
if the operators N2 in (6.73a)-(6.73d) are Fredholm for all y € T'(m).
The strongly elliptic YDOs ./\/T(Qy) in (6.73a) and in (6.73b) on the closed
surface 9Q("™) are Fredholm with index 0 for all y € F(Cm) U F(Tm).

The same strongly elliptic ¥DO NT(%J) in (6.73c) but on the surface T'(™)
with the smooth boundary dI'™ # @ is Fredholm if the following con-
straints hold

13, 11
-2 - 6.75
» 2+”Y3<7’<p 2""73 ( )

with 74 and 4 defined in (6.61) (see Section2, Theorem 2.28).

To investigate the elliptic YDO 7(210,) in (6.73d) for y € 8F(Cm), first note
that G, := [(A; + BT(m))m]gxg is defined on the closed surface 9Q(™) has
a strongly elliptic symbol due to Remark 2.30 and, therefore, is Fredholm.
Then the quotient class [G,] is invertible and since Ind G, = 0 (see Theorem
2.28), there exists a compact operator T, such that G, + T, is invertible for
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all y € 6F(Cm). For the quotient classes the equalities [G, + T,] = [G,] and
G, +T,]~" = [G,]~" hold.
Note that the quotient classes

[I33] [[0]3x2]]
5x5

Fi] =
7 £[G, ] [N )ewlexs]  [Taxel

are invertible
[F-1[F4) = [F4] [F-] = Lsxs]

and composing the quotient class [pr) ] with this invertible quotient class

we get

) = gl e = [ ]
[0]2x3 Gy 5%5
where
D,y =
=ee ([(NT(,:Qy))l,k]gxg — [(NTSz))l,k]3X2[gy + Ty]fl[(./\/f(z))t,k]wg) (6.77)

is the strongly elliptic ¥DO of order —1 due to Lemma 2.29. It is sufficient
to prove that the composition [./\77(21,) ] is an invertible class.

[J\N/'T(Zy) ] in upper block-triangular and the entry [G,] on the diagonal is
an invertible class. Moreover, the entries on the diagonal D,, and G,
are YDOs and the corresponding quotient classes commute (actually, these
entries are matrices of different dimension 3 x 3 and 2 x 2, but we can
extend the entire matrix [J\N/}(%J)] by identity on the diagonal and by zeros on
the off-diagonal entries in the last row and the last column, without change
the invertibility properties of the entire matrix and the diagonal entries.
Then [G,] extends to the matrix of the same dimension 3 x 3 as [D, (D, z)]).
Therefore [Ny (x, D)) is invertible if and only if the quotient class [D, (D, z)]
is invertible. This is interpreted as follows: the operator

NG . Ly, — er)+1

Y

is Fredholm if and only if the operator
NT‘ C 3 K c 3

is Fredholm.
Let &p, ,(x,&1,&) be the principal homogeneous symbol matrix of the
operator D, and p;(z) (j = 1,2,3) be the eigenvalues of the matrix

Dry(x) = [6p, ,(z,0,+1)] " &p, ,(2,0,-1) (6.79)

for z € aFém).
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The operators D, , in (6.78) and, therefore, the operator NT(2) in (6.69)
are Fredholm if the following constraints are fulfilled

13, 11,
. - 6.80
» 2+’Y4<7’<p 2+"Y4a ( )

where v and 7} are defined in (6.62) (cf. Section 2, Theorem 2.31).

The system of inequalities (6.68), (6.75) and (6.80) are equivalent to
(6.60).

Therefore the operator N”) is Fredholm if the conditions (6.60) hold.

Next we note that the operator A2 in (6.38) is invertible due to Lem-
ma 6.1.

Therefore, the operator ./\/T(B) is invertible for all p and r if the conditions
(6.60) are fulfilled (cf. Theorem 2.31). O

Theorem 6.3 yields the following existence result.

Theorem 6.4. Let the inclusions (6.1) and the compatibility conditions
(6.26) and (6.27) hold and

4 4
32y PSS T 0y

(6.81)

with
/

v i=min{y, v5, 75}, Y =max{~], ¥4, ¥4} (6.82)
Then the interface crack problem (1.60)—(1.71) has a unique solution

U™, U) e [WHQM) ]! x [WH)]’,

p

which can be represented by formulae

U =y m ([P G +h™]) in ), (6.83)

U=V:(P'[Go+¢+h]) in Q, (6.84)

where the densities 1, h, and h™ are to be determined from the system
(6.16)-(6.21).

Moreover, the vector functions Go + ¥ + h and Go(m) +h(™) are defined

uniquely by the above systems.

Proof. Tt is word for word of the proof of Theorem 5.2. O

Remark 6.5. Theorem 6.4 with p = 2 remains valid for Lipschitz do-
mains Q™ and Q. This immediately follows from Remark 6.2 and Theo-
rem 1.1.

One can easily formulate the regularity results, similar to Theorem 5.4,
for solutions of the interface crack problem (ICP-B) (see (1.60)—(1.71)).



Interface Crack Problems for Metallic-Piezoelectric Composite Structures 137

6.3. Asymptotic formulas for solutions of problem (ICP-B). In this
section we study asymptotic properties of solutions to the problem (ICP-B)
near the exceptional curve Zﬂ“gpm). We assume, that the boundary data of
the problem are infinitely smooth, namely,

fr€ C=(Sp), k=15 f" ec>Tm),

Fm R e oo™y, 1=1,2,3, £ FM™ e coo@m),

Q™ Qe =@y, 1=1,2.3,
E™ = F™ =1y Go = oo Go € C(TFY), 1= 1,23,

F™ = F™ — pri Gos — rpom GUIY € C3°(T0m)).

Let ® = (¢, h, R™)T ¢ X3, be a solution of the system (6.28)—(6.33) which
can be written in the following form

NBG =y,
where
Ye[C=Ep)] x [c=ri)])’x
x (0@ ) [ ™) )7 x Ce )

To establish asymptotic properties of the solution vectors U("™) and U near
the exceptional curve 8F(Tm) we rewrite the representations (6.83)—(6.84) in
the following form

U = v ([prm] ™ Ry £ ROM in Q™) (6.85)
U=V, (P;'h) + V- (P7') + R in Q, (6.86)
where
hm = (hS™ ™Y b= (ha,. . hs) T,
W™ = b+ F™, 1=1,2,3, on T\,
™ = —hy+ F™ on T(™)
and

R:=V,(P7Go) € [C*@)]",
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the vectors h = (hy, ha, hs, ha, hs) " and ¥ = (Y1, 19,3,14,%5) " solve the
following strongly elliptic system of pseudodifferential equations

rep, Arp = o) on Sp,
TF(Tm) [<AT+B‘§'m))lvk}3><5h:(I)(2) on F’(Tm)7 l:1u273; k:ﬁv t:475

TT(m) [ (AT+BS-m))t7k]2X5h:(I)(3) on F(m),

where
B0 = (@0,...,00) € [0*(5),
= fr —rsp [ ArGolk — rsp [ATth’ k=1,5,

0@ = (0,0 @) " e [c=(rf™) ],

‘1)1(2) = fz(m) + g [Agm)Ggm) L ~ g [ATGO]1+
T Tpgm [Am ] — Trgm [Ay], 1=T3,

50 — (39, o) < [C=(F) ],

) = fim) + Tr(m) [A,(,.m)G((Jm)]4 — T'(m) [A-,—G()Ll‘f'

+ rpem [ A F 1, —rrem [Ar0 ],

‘1’53) = fém) + Tpem) [ATG0]5 — I'p(m) [Ariﬂg)-

If y € O™ then h = (h1,...,hs)" solves the pseudodifferential equation
on surface I'™) with boundary oI'(™)

pr)h = rpom (Ar + Bq(.m))h =F on '™,

The solution of this equation has the same asymptotics as (5.59) and, con-
sequently, the solution of the problem (ICP-B) in the neighborhood of the
boundary of OT("™) has the same asymptotics as the solution of the problem
(ICP-A) (see (5.64)—(5.65), (5.70)—(5.71), (5.78)).

Now consider the case, when y € O'%. Then h = (h’,h”)T, where h/ =
(h1,h2,h3) " and b = (hy, hs) " satisfy the following system of equations

rpfm)f\/gxgh’jurp(cm)f\/gxgh” = F on I, (6.87)
Nassh! + Noxoh' = F» on 0Q,, (6.88)
where
e[o=(,)]" Bel[C>02.)]"
Naxz = [(A +BI) e Noxz = [(Ar+BI), L
Noys = [(AT —I—B(m ) k]2x3, Noxo = [(AT +B$m))t7q}2x2,
I,k=1,2,3, t,q=4,5.
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The operator Nays is a Fredholm operator with zero index, therefore it has
a regularizer Roxo such, that

Rax2 0 Naxo = Ioxo + Toxo, (6.89)

where 759 is a compact operator of order —oo.
Now, using equality (6.89), the second equation of the system
(6.87)—(6.88) can be written as

(Raxz2 0 Nax3) h' + (Iaxa + Taxa) B = RaxaFo,
whence we get

h" = — (Raxa 0 Naxs) B — Taxah” 4+ RaxaFa.
Inserting the obtained expression of h” into the (6.87) we get

rre, Dryh' =F on LT (6.90)

where
Dry = Nixs — Nixa 0 Raxa 0 Naxs,
F =P+ (Nsx2 0 Tax2) D' — (Nax2 0 Rax2) 2 € [C(T(,)) ]3'

(m
The principal homogeneous symbol of the operator 57174 reads as

S(Dry)(€) = & (N3xs) (4, &)~
_6(N3><2)(y7§/)671( 2X2)(ya§/)6(N2X3)(y7§/)a 5/ = (51752)'

Let pj, 7 =1,2,3, be the eigenvalues of the matrix
_ 1 _ (m)
[GDW(Q +1)] G5, (0,-1), yeorg”,
and denote by m; the algebraic multiplicities of p;, mi +--- +m; = 3;
then the asymptotic expansion of solutions of the strongly elliptic equation
(6.90) reads as [12]

. 1
B = (hi,ha,h3) | = D(y)r_%ﬂﬂéBo( - 1OgT)D_1(y)bo(y)+
211
M .
+ Z D(y)r_%+’y+16+kBk (y7 IOg 7") + hl]\4+1(x)7 (691)
=1

where

3

P 3 HHS — diag {f%ﬂﬁwl 3 r2+ids T*§+73+i53}
) )

1 1 . m
%= g argu(y), 8 = —5-loglui(y)l, j =123, ye arg,
t k(2m0—l)
Bi(y.1) = Bo( — 5 > Vdiy(y)) mo = max{ma,...,m},

3

bo € [C=(ATIN, Wypyr € [C=(15)]°, Bhe =0T8M x [0, €],
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while the 3 x 3-dimensional matrices D and By are defined likewise to the
respective 5 X 5-dimensional matrices in Section 5.
Denote by C' the matrix

_ o I3x3 _ _
C = [Ciklsxs = [_RM oNzngXg’ =15 k=173,

and by C’ the matrix composed from the first four rows of matrix C

C' = [Ciplaxs, t=T74, k=T3.
Then we can rewrite formulae (6.85) and (6.86) as follows
m m m -1 m .
utm = vim[(pim) Cl}4x3hl+R§ i Q,
U=V [P/'C], 0 +Ri in

where R{™ € [C®(Q)]*, Ry € [C®@Q))°.

Now we can apply the asymptotic expansion (6.91) and the asymptotic
expansion of the potential-type functions (see [13]) and obtain the following
asymptotic expansion of solutions of the problem (ICP-B) near the crack

edge 8F(Cm)

U™ (y, a,r) =
1™ plm —1
=33 3 My )BT (g, @)+, (6.92)
p==%1s=1 ;=0
Uy, a,r) =

lo nsfl

=3 3N ey, ) 1By (C) Sy, @)+ (6.93)

p==+1s=1 j=0

where ( = —ﬁ logr, and ng, ngm), lp and lém) are defined in the Section 5.
Coefficients csju, Csjus CS;L) and E{S?L) in asymptotic expansions (6.92) and

(6.93) read as

. g L+ +id—j
Csju(y, @) = sin? ady;(y, 1) [Vsu(y, 0) 7777

~ 1
Cogulys @) = Bo( = 5~ logsu(y.0) ) es(v),

1=0ns—1, p==41, s=1,...,l,

)

(g, ) = sin’ adl (y. ) [0 (3, )

~(m) _ 1 (m) ‘
Coin(y, a) = Bo( — 57 108 (Y, a))cg (y)

j=0,n -1, p==+1, s=1,...,1",

3

:| 3+ +ic—j
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with ¥ 4, @[ng) defined in the Section 5, and

(L,k) 1 (m),(Lk)
Csju = [ sju }5><35 SJH = [Csju ]4><37
3 1) 2 ) _ (m) (m)@) )G T
Codpe = ( SJ'L“ Sﬂ“ SJ“) 53# - (csj# ’ SJ# ’Csj# ) ;
1 - im(:—~y—i
dsj(y’ _1) = % G%(yaO)Psg(y)D(y)e (2 v 6),

1 R
dsy(y,+1): %G%( O)P+( )D(y)a SzlaZOa J :07”’5_15

A7 (y, ~1) = —G%m@, 0)P; "™ (y)D(y)e'™ (37D,
d<’"><y,+1>——a,4m<y, 0)P ™ (y)D(y), s=1,1{", j=0,n"~1,
where

Lk m m)(l,k
doj = A )5z, (Y = [aTVOM],

PE =V (4.0, £1)6p-1.0(y,0, 1),
pEm) _ Vj’fg“) (4,0, £1)S (pimy) 1.0 (y, 0, £1),

5]

and G, G, , V. Sl)], V(T}(S), are defined in Section 5, whereas the coeffi-

cients ¢; = (c (1), ;2), ;3))T
cients from (5 63).
Consider the media possessed tetragonal or hexagonal symmetry. In this

case

are defined similarly to the comparable coefli-

DY, - Di(Dsz)"'D; 0 0
S5, (0,£1)= 0 D¥, D%,
0 Di, D3
where Dﬁc, 7.k =1,2,3,5 are defined in Section 5. To find the eigenvalues
of the matrix

(65 (o,+1)r16[~,T (0,-1), yeari™, (6.94)

take into account that Dkk =Dy, k=1,2,3,5, D15 = Dgtl and D;% =
—D3,. Then the characteristic equation of the matrix (6.94) reads

_ N
(1—=p)Dyy — Di; (D55) Dy, 0 0
det 0 (1 =m)Doy (14 p)Dos| =0
0 (1+m)Dzy (1= p)Dyy
From where we get that the eigenvalues of the matrix (6.94) are
1- 1
:u‘1:17 u2:—q>07 /1’3:_>07

I+g¢ H2
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where
_ IDgP?
Dy, Dy’

and

: 1 l—q
=0 =1,2,3, 6,=0, 6y=—03=06=— .
Vg s J ) Ly Iy 1 ) 2 = 3 o g1+q

The matrix (6.94) is self-adjoint and therefore is similar to a diagonal matrix.
Then By(t) = Isx3 and we obtain the asymptotic expansion

U= cor% —i—clr%“g—i—c r%_ig—i— S
U(m) ( )’I”2 +C(m)’l”2+16—|—c(m) —7154_ .

Consequently, the solution is C' 3-smooth in a one sided closed neighborhood

of the curve 3F(Cm). The first coefficients have the same structure as in

(5.72)—(5.75), in particular

Co = Co y; Z ZCOU sOu y’ )’

p==%1s=1
(1 1
=) = T Yl .0,
p==+1j=1
where the vector cgé)ﬂ is composed of the first column of the matrix cs, =
[Cgldﬁ)]5><3, while the vector cg( ")) is composed of the first column of the
matrix cij, = [cgﬁ)(l k)]4X3. The coefficients cél) and cg-l) are the first coef-

ficients of the vector ¢y and c;, respectively. In our case they read as
() = 28 (). () = VEIT(G - 1/2)8 )

where E(()l) is the first component of the vector D~ 1bg.

Remark, that we have the same asymptotic expansion of the solution
in the case, when the piezoelectric medium belongs to the class of cubic
anisotropy.

For numerical calculations consider the same example as in the previous
section: the domain (™ is occupied by the isotropic metallic material
silver-palladium alloy whereas the domain € is occupied by the piezoelectric
material possessing the crystal symmetry either of the class 4mm or the
class 6mm (e.g. BaTiO3, PZT-4 or PZT-5A).

The graphs presented below show that the stress singularity exponents
as well as the stress oscillation parameters depend on the piezoelectric con-
stants. We have calculated the deviations v(¥) and v(®) of the stress singu-
larity exponents v and « from the value —0, 5:

YD =] -0,5-7}, j=12, +®=]-0,5-7]
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and oscillation parameters

6M = max  sup |dxl,
1Sk<S5 2€0Sp

6@ = max  sup |6,
1Sk meaF;.m)
63 =5 = max sup |6,
1<hss zear™
which determine stress oscillating singularity effects at the exceptional curves
dSp and 8F§Fm) respectively.
We carried out calculations for PZT-4 with the constants tey; instead of
er;, where 1 <t < 2. The corresponding graphs are presented in Figures 10
and 11.

054 [ (3)

FIGURE 10 FIGURE 11

We see that the deviation of the stress singularity exponents from —0.5
(the value for the materials without piezoelectric properties) near the crack

edge JI'¢ is significantly less then near 9Sp or 8I‘(Tm) and differs from zero
only in a small range of ¢ whereas the corresponding oscillation parameter
6 is nonzero in full range of ¢.

The graphs in Figures 12-13 reveal that the stress singularity exponent
~®) and the oscillation parameter §®) depend on the angle 8 between the
symmetry axis of the piezoelectric material and the normal of surface at the
reference point x € Ol'¢ as well.

0510

0508
0.04 1

0.506 (5(3)
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A JUL A

0.0 05 1.5 27T >< /(J““ 05 1.0 1.5 271_ X /3
FIGURE 12 FIGURE 13

002




144 T. Buchukuri, O. Chkadua, R. Duduchava, and D. Natroshuvili

ACKNOWLEDGEMENTS

This research was supported by the Georgian National Science Foun-
dation (GNSF) grant No. GNSF/ST07/3-170 and, in addition, in the case
of the fourth author, by the Georgian Technical University Grant
No. GTU/2011/4.

REFERENCES

1. M. S. AGrANOVICH, Elliptic operators on closed manifolds. Partial differential equa-
tions. VI. Elliptic operators on closed manifolds. Encycl. Math. Sci. 63 (1994), 1—
130 (1994); translation from Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat., Fundam.
Napravleniya 63 (1990), 5-129.

2. L. BOUTET DE MONVEL, Boundary problems for pseudo-differential operators. Acta
Math. 126 (1971), No. 1-2, 11-51.

3. A. V. BRENNER AND E. M. SHARGORODSKY, Boundary value problems for elliptic
pseudodifferential operators. Translated from the Russian by Brenner. Encyclopaedia
Math. Sci., 79, Partial differential equations, IX, 145-215, Springer, Berlin, 1997.

4. T. BUCHUKURI AND O. CHKADUA, Boundary problems of thermopiezoelectricity in
domains with cuspidal edges. Georgian Math. J. 7 (2000), No. 3, 441-460.

5. T. BUuCHUKURI, O. CHKADUA, AND R. DUDUCHAVA, Crack-type boundary value prob-
lems of electro-elasticity. Operator theoretical methods and applications to mathemat-
ical physics, 189-212, Oper. Theory Adv. Appl., 147, Birkhauser, Basel, 2004.

6. T. BUCHUKURI, O. CHKADUA, D. NATROSHVILI, AND A.-M. SANDIG, Solvability and
regularity results to boundary-transmission problems for metallic and piezoelectric
elastic materials. Math. Nachr. 282 (2009), No. 8, 1079-1110.

7. T. BucHUKURI, O. CHKADUA, D. NATROSHVILI, AND A.-M. SANDIG, Interaction prob-
lems of metallic and piezoelectric materials with regard to thermal stresses. Mem.
Differential Equations Math. Phys. 45 (2008), 7-74.

8. T. BUCHUKURI, O. CHKADUA, AND D. NATROSHVILI, Mixed boundary value problems
of thermopiezoelectricity for solids with interior cracks. Integral Equations Operator
Theory 64 (2009), No. 4, 495-537.

9. T. BUCHUKURI AND T. GEGELIA, Some dynamic problems of the theory of electroe-
lasticity. Mem. Differential Equations Math. Phys. 10 (1997), 1-53.

10. J. CHAZARAIN AND A. PIRIOU, Introduction to the theory of linear partial differential
equations. Translated from the French. Studies in Mathematics and its Applications,
14. North-Holland Publishing Co., Amsterdam-New York, 1982.

11. O. CHKADUA, Solvability and asymptotics of solutions of some boundary and
boundary-contact problems of elasticity theory. Doctor (Habilitation) Thesis, Thilisi
A. Razmadze Mathematical Institute of the Georgian Academy of Sciences, 1999.

12. O. CHKADUA AND R. DUDUCHAVA, Pseudodifferential equations on manifolds with
boundary: Fredholm property and asymptotic. Math. Nachr. 222 (2001), 79-139.

13. O. CukADUA AND R. DuDUCHAVA, Asymptotics of functions represented by poten-
tials. Russ. J. Math. Phys. 7 (2000), No. 1, 15-47.

14. M. CosTABEL AND W. L. WENDLAND, Strong ellipticity of boundary integral opera-
tors. J. Reine Angew. Math. 372 (1986), 34-63.

15. V. D. DIDENKO AND B. SILBERMANN, Approximation of additive convolution-like
operators. Real C*-algebra approach. Frontiers in Mathematics. Birkhauser Verlag,
Basel, 2008.

16. E. DIEULESAINT AND D. ROYER, Ondes élastiques dans les solides - Application au
traitement du signal. Masson & C*¢, 1974.

17. R. DubpUCHAVA, On multidimensional singular integral operators. II. The case of
compact manifolds. J. Operator Theory 11 (1984), No. 2, 199-214.



Interface Crack Problems for Metallic-Piezoelectric Composite Structures 145

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

R. DubucCHAVA, The Green formula and layer potentials. Integral Equations Operator
Theory 41 (2001), No. 2, 127-178.

R. DubpucHAVA, D. NATROSHVILI, AND E. SHARGORODSKY, Basic boundary value
problems of thermoelasticity for anisotropic bodies with cuts. I, II. Georgian Math.
J. 2 (1995), No. 2, 123-140, No. 3, 259-276.

R. DubpucHAVA, D. NATROSHVILI, AND E. SHARGORODSKY, Pseudodifferential equa-
tions on manifolds with boundary. Monograph in preparation.

R. DubucHAvA AND F.-O. SPECK, Pseudodifferential operators on compact manifolds
with Lipschitz boundary. Math. Nachr. 160 (1993), 149-191.

G. ESkIN, Boundary value problems for elliptic pseudodifferential equations. Trans-
lated from the Russian by S. Smith. Translations of Mathematical Monographs, 52.
American Mathematical Society, Providence, R.I., 1981.

G. FICHERA, Existence Theorems in Elasticity. Handb. der Physik, Bd. 6/2, Springer-
Verlag, Heidelberg, 1973.

F. R. GANTMAKHER, The Theory of matrices. (Russian) Nauka, Moscow, 1967; Eng-
lish transl.: Chelsea, New York, 1959.

W. J. Gao, Layer potentials and boundary value problems for elliptic systems in
Lipschitz domains. J. Funct. Anal. 95 (1991), No. 2, 377-399.

G. GRUBB, Pseudo-differential boundary problems in Ly, spaces. Comm. Partial Dif-
ferential Equations 15 (1990), No. 3, 289-340.

G. C. Hsiao AND W. L. WENDLAND, Boundary integral equations. Applied Mathe-
matical Sciences, 164. Springer-Verlag, Berlin, 2008.

L. HORMANDER, The analysis of linear partial differential operators. III. Pseudodif-
ferential operators. Grundlehren der Mathematischen Wissenschaften [Fundamental
Principles of Mathematical Sciences|, 274. Springer-Verlag, Berlin, 1985.

L. JENTSCH AND D. NATROSHVILI, Three-dimensional mathematical problems of ther-
moelasticity of anisotropic bodies. I. Mem. Differential Equations Math. Phys. 17
(1999), 7-126.

L. JENTSCH AND D. NATROSHVILI, Three-dimensional mathematical problems of ther-
moelasticity of anisotropic bodies. II. Mem. Differential Equations Math. Phys. 18
(1999), 1-50.

M. KaMLAH, Ferroelectric and ferroelastic piezoceramics — modeling of electrome-
chanical hysteresis phenomena. Contin. Mech. Thermodyn. 13 (2001), No. 4, 219-
268.

L. KNOPOFF, The interaction between elastic wave motions and a magnetic field in
electric conductors. J. Geophys. Res. 60 (1955), No. 4, 441-456.

V. D. KurPraADZE, T. G. GEGELIA, M. O. BASHELEISHVILI, AND T. V. BURCHULADZE,
Three-dimensional problems of the mathematical theory of elasticity and thermoe-
lasticity. Translated from the second Russian edition. Edited by V. D. Kupradze.
North-Holland Series in Applied Mathematics and Mechanics, 25. North-Holland
Publishing Co., Amsterdam-New York, 1979.

S. LANG, Guide to the Literature of Piezoelectricity and Pyroelectricity. 20. Ferro-
electrics 297 (2003), 107-253.

S. LANG, Guide to the Literature of Piezoelectricity and Pyroelectricity. 22. Ferro-
electrics 308 (2004), 193-304.

S. LANG, Guide to the Literature of Piezoelectricity and Pyroelectricity. 23. Ferro-
electrics 321 (2005), 91-204.

S. LANG, Guide to the Literature of Piezoelectricity and Pyroelectricity. 24. Ferro-
electrics 322 (2005), 115-210.

S. LANG, Guide to the Literature of Piezoelectricity and Pyroelectricity. 25. Ferro-
electrics 330 (2006), 103-182.

S. LANG, Guide to the Literature of Piezoelectricity and Pyroelectricity. 26. Ferro-
electrics, 332 (2006), 227-321.



146

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.
62.

T. Buchukuri, O. Chkadua, R. Duduchava, and D. Natroshuvili

LANG, S., Guide to the Literature of Piezoelectricity and Pyroelectricity. 27. Ferro-
electrics 350 (2007), 130-216.

S. LANG, Guide to the Literature of Piezoelectricity and Pyroelectricity. 28. Ferro-
electrics 361 (2007), 124-239.

S. LANG, Guide to the Literature of Piezoelectricity and Pyroelectricity. 29. Ferro-
electrics 366 (2008), 122-237.

J.-L. LioNs AND E. MAGENES, Problémes aux limites non homogeénes et applications.
Vol. 1. Travaux et Recherches Mathématiques, No. 17, Dunod, Paris, 1968

W. McLEAN, Strongly elliptic systems and boundary integral equations. Cambridge
University Press, Cambridge, 2000.

S. G. MIKHLIN AND S. PROSSDORF, Singular integral operators. Translated from the
German by Albrecht Béttcher and Reinhard Lehmann. Springer- Verlag, Berlin, 1986.
R. D. MINDLIN, On the equations of motion of piezoelectric crystals. 1961 Problems
of continuum mechanics (Muskhelishvili anniversary volume) pp. 282-290 SIAM,
Philadelphia, Pa.

R. D. MINDLIN, Polarization gradient in elastic dielectrics. Int. J. Solids Struct. 4
(1968), 637-642.

R. D. MINDLIN, Elasticity, piezoelasticity and crystal lattice dynamics. J. Elasticity
2 (1972), No. 4, 217-282.

C. MIRANDA, Partial differential equations of elliptic type. Second revised edition.
Translated from the Italian by Zane C. Motteler. Ergebnisse der Mathematik und
ihrer Grenzgebiete, Band 2. Springer-Verlag, New York—Berlin, 1970.

D. Mitrea and M. Mitrea, Uniqueness for inverse conductivity and transmission prob-
lems in the class of Lipschitz domains. Comm. Partial Differential Equations 23
(1998), No. 7-8, 1419-1448.

D. NATROSHVILI, Boundary integral equation method in the steady state oscillation
problems for anisotropic bodies. Math. Methods Appl. Sci. 20 (1997), No. 2, 95-119.
D. NATROSHVILI, Mathematical problems of thermo-electro-magneto-elasticity. Lec-
ture Notes of TICMI, 12, Tbilisi University Press, Tbilisi, 2011.

D. NATROSHVILI, T. BUCHUKURI, AND O. CHKADUA, Mathematical modelling and
analysis of interaction problems for piezoelastic composites. Rend. Accad. Naz. Sci.
XL Mem. Mat. Appl. (5) 30 (2006), 159-190.

D. G. NaTrosuviul, O. O. CHKADUA, E. M. SHARGORODSKII, Mixed problems for
homogeneous anisotropic elastic media. (Russian) Tbiliss. Gos. Univ. Inst. Prikl.
Mat. Trudy 39 (1990), 133-181.

J. NECAS, Les méthodes directes en théorie des équations elliptiques. Masson et Cie,
E’diteurs, Paris; Academia, Editeurs, Prague, 1967.

W. Nowackl, Elektromagnitnye effekty v tverdykh telakh. (Russian) [Electromag-
netic effects in solids] Translated from the Polish and with a preface by V. A.
Shachnev. Mekhanika: Novoe v Zarubezhnoi Nauke [Mechanics: Recent Publications
in Foreign Science], 37. “Mir”, Moscow, 1986.

W. Nowacki, Mathematical models of phenomenological piezoelectricity. Mathemat-
ical models and methods in mechanics, Banach Cent. Publ. 15 (1985), 593-607.

W. NOWACKI, Some general theorems of thermopiezoelectricity. J. Thermal Stresses
1 (1962), 171-182.

H. PArkuUS, Magneto-thermoelasticity. Course held at the Department of Mechan-
ics of Solids, June-July 1972, Udine. International Centre for Mechanical Sciences.
Courses and Lectures. No.118. Springer-Verlag, Wien—-New York, 1972.

V. RABINOVICH, An introductory course on pseudodifferential operators. Tezxtos de
Matemdtica, Centro de Matemdtica Applicada, Instituto Superior Técnico, Lisboa,
1998.

Q. H. QIN, Fracture mechanics of piezoelastic materials. WIT Press, 2001.

L. SCHWARTZ, Analyse Mathématique. I, II, Hermann, Paris, 1967; Russian edition:
Mir, Moscow, 1972.



Interface Crack Problems for Metallic-Piezoelectric Composite Structures 147

63. R. T. SEELEY, Singular integrals and boundary value problems. Amer. J. Math. 88
(1966), 781-809.

64. E. SHARGORODSKY, An Ly-analogue of the Vishik-Eskin theory. Mem. Differential
Equations Math. Phys. 2 (1994), 41-146.

65. E. SHARGORODSKY, Some remarks on the boundedness of pseudodifferential opera-
tors. Math. Nachr. 183 (1997), 229-273.

66. G. SHILOV, Mathematical analysis. Functions of several real variables. I, II. (Russian)
Nauka, Moscow, 1972.

67. M. A. Shubin, Pseudodifferential operators and spectral theory. Translated from
the Russian by Stig I. Andersson. Springer Series in Soviet Mathematics. Springer-
Verlag, Berlin, 1987; Russian edition: Nauka, Moscow, 1978.

68. M. E. TAYLOR, Pseudodifferential operators. Princeton Mathematical Series, 34.
Princeton University Press, Princeton, N.J., 1981.

69. C. C. Siva, D. THOMAZINI, A. G. PINHEIRO, N. ARANHA, S. D. FIGUEIRG, J. C.
GOES, AND A. S. B. SOMBRA, Collagen-hydroxyapatite films: Piezoelectric properties.
Materials Science and Engineering B 86 (2001), No. 3, 210-218.

70. R. A. TouprIN, The elastic dielectrics. J. Rational Mech. Anal. 5 (1956), 849-915.

71. R. A. TouPIN, A dynamical theory of elastic dielectrics. Internat. J. Engrg. Sci. 1
(1963), 101-126.

72. H. TRIEBEL, Interpolation theory, function spaces, differential operators. North-
Holland Mathematical Library, 18. North-Holland Publishing Co., Amsterdam-New
York, 1978.

73. H. TRIEBEL, Theory of function spaces. Monographs in Mathematics, 78. Birkhduser
Verlag, Basel, 1983.

74. W. VoicT, Lehrbuch der Kristallphysik. B. G. Teubner, Leipzig,, 1911.

(Received 06.02.2012)

Authors’ addresses:

T. Buchukuri, R. Duduchava
A. Razmadze Mathematical Institute of I. Javakhishvili Thilisi State Uni-
versity, 2 University St., Thilisi 0186, Georgia.
E-mail: t_buchukuri@yahoo.com
dudu@rmi.ge; RolDud@gmail.com

O. Chkadua

1. A. Razmadze Mathematical Institute of I. Javakhishvili Thilisi State
University, 2 University St., Thilisi 0186, Georgia.

2. Sokhumi State University, 9 Jikia St., Thilisi 0186, Georgia.

E-mail: chkadua®@rmi.ge

D. Natroshvili

Department of Mathematics, Georgian Technical University, 77 Kostava
St., Thilisi 0175, Georgia.

FE-mail: natrosh@hotmail.com






Interface Crack Problems for Metallic-Piezoelectric Composite Structures

Introduction

CONTENTS

1. Formulation of the Basic Problems and

Uniqueness Results

1.1.
1.2.
1.3.
1.4.
1.5.
1.6.

2. Pseudodifferential Equations and Local Principle

2.1.
2.2.
2.3.
2.4.
2.5.

3. Layer Potentials

3.1.
3.2.
3.3.
3.4.
3.5.
3.6.

Geometrical description of the composite configuration ......
Thermoelastic field equations ............... ... ... .........
Thermopiezoelastic field equations ...........................
Green’s formulae .......... .. ..
Formulation of the interface crack problems .................

Uniqueness results ....... ...

WUDOs: definition and basic properties .......................
WDOs: on manifolds ........ ... ... o
Fredholm properties of ¥DOs on manifolds with boundary . ...
WUDOs on hypersurfaces in R™ ........... ...,
The local principle ...

Green’s formulae for a general second order PDO ............
On traces of functions ......... ... ... . i,
Integral representation formulae and layer potentials .........
Traces of generalized potentials ..............................
Calderdn’s projections ............ccoovuiiiiiiiiiiniinn...

Plemelji’s formulae for layer potentials ......................

4. Representation Formulae in Thermoelasticity and

Piezo-Thermoelasticity

4.1.

4.2.

4.3.

4.4.
4.5.

Fundamental solutions in thermoelasticity and

piezo-thermoelasticity ......... ...

Layer potentials of thermoelasticity and

piezo-thermoelasticity ......... ..o

Properties of layer potentials of thermoelasticity and

piezo-thermoelasticity ......... ...
Explicit expressions for symbol matrices .....................

Auxiliary problems and representation formulas of solutions ...

149

26

26
33
39
47
ol

54

54
64
70
74
76
78

81

82

84

85
87



150 T. Buchukuri, O. Chkadua, R. Duduchava, and D. Natroshuvili

5. Existence and Regularity Results for Problem
(DO P-A) o
5.1. Reduction to boundary equations .............................
5.2. Existence theorems and regularity of solutions ................
5.3. Asymptotic formulas for solutions of Problem (ICP-A) .......
5.4. Analysis of singularities of solutions to Problem (ICP-A) ....
5.5. Numerical results for stress singularity exponents ............

6. Existence and Regularity Results for Problem
(TCP-B) .ttt

6.1. Reduction to boundary equations ............................
6.2. Existence theorems for problem (ICP-B) .....................
6.3. Asymptotic formulas for solutions of problem (ICP-B) .......

Acknowledgements ................ i

References .......... ..



