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Abstract. In the monograph we investigate three–dimensional interface
crack problems for metallic-piezoelectric composite bodies with regard to
thermal effects. We give a mathematical formulation of the physical prob-
lems when the metallic and piezoelectric bodies are bonded along some
proper parts of their boundaries where interface cracks occur. By the
potential method the interface crack problems are reduced to equivalent
strongly elliptic systems of pseudodifferential equations on manifolds with
boundary. We study the solvability of these systems in appropriate func-
tion spaces and prove uniqueness and existence theorems for the original
interface crack problems. We analyse the regularity properties of the cor-
responding thermo-mechanical and electric fields near the crack edges and
near the curves where the different boundary conditions collide. In particu-
lar, we characterize the stress singularity exponents and show that they can
be explicitly calculated with the help of the principal homogeneous sym-
bol matrices of the corresponding pseudodifferential operators. We expose
some numerical calculations which demonstrate that the stress singularity
exponents depend on the material parameters essentially.
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Introduction

The monograph is dedicated to investigation of a mathematical model
describing the interaction of the elastic, thermal, and electric fields in a
three-dimensional composite structure consisting of a piezoelectric (ceramic)
matrix and metallic inclusions (electrodes) bonded along some proper parts
of their boundaries where interface cracks occur.

In spite of the fact that the piezoelectric phenomena were discovered long
ago (see, e.g., [74]), the practical use of piezoelectric effects became possi-
ble only when piezoceramics and other materials (metamaterials) with pro-
nounced piezoelectric properties were constructed. Nowadays, sensors and
actuators made of such materials are widely used in medicine, aerospace,
various industrial and domestic appliances, measuring and controlling de-
vices. Therefore investigation of the mathematical models for such com-
posite materials and analysis of the corresponding thermo-mechanical and
electric fields became very actual and important for fundamental research
and practical applications (for details see [31,32,46–48,52,59,61,70,71] and
the references therein).

Due to great theoretical and practical importance, problems of ther-
mopiezoelectricity became very popular among mathematicians and engi-
neers. Due to the references [34–42], during recent years more then 1000 sci-
entific papers have been published annually! Most of them are engineering-
technical papers dealing with the two-dimensional case.

Here we consider a general three-dimensional interface crack problem
(ICP) for an anisotropic piezoelectric-metallic composite with regard to
thermal effects and perform a rigorous mathematical analysis by the po-
tential method. Similar problems for different type of metallic-piezoelastic
composites without cracks and with interior cracks have been considered
in [6–8].

In our analysis, we apply the Voigt’s linear model in the piezoelectric
part and the usual classical model of thermoelasticity in the metallic part
to write the corresponding coupled systems of governing partial differential
equations (see, e.g., [33, 56–58, 74]). As a result, in the piezoceramic part
the unknown field is represented by a 5-component vector (three compo-
nents of the displacement vector, the electric potential function and the
temperature), while in the metallic part the unknown field is described by a
4-component vector (three components of the displacement vector and the
temperature). Therefore, the mathematical modeling becomes complicated
since we have to find reasonable efficient boundary, transmission and crack
conditions for the physical fields possessing different dimensions in adjacent
domains.

Since the crystal structures with central symmetry, in particular isotropic
structures, do not reveal the piezoelectric properties in Voight’s model, we
have to consider anisotropic piezoelectric media. This also complicates the
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investigation. Thus, we have to take into account the composed anisotropic
structure and the diversity of the fields in the ceramic and metallic parts.

The essential motivation for the choice of the interface crack problems
treated in the monograph is that in a piezoceramic material, due to its
brittleness, cracks arise often, especially when a piezoelectric device works
at high temperature regime or under an intensive mechanical loading. The
influence of the electric field on the crack growth has a very complex char-
acter. Experiments revealed that the electric field can either promote or
retard the crack growth, depending on the direction of polarization and can
even close an open crack [59].

As it is well known from the classical mathematical physics and the classi-
cal elasticity theory, in general, solutions to crack type and mixed boundary
value problems have singularities near the crack edges and near the lines
where different boundary conditions collide, regardless of the smoothness of
given boundary data. The same effect can be observed in the case of our in-
terface crack problems; namely, singularities of electric, thermal and stress
fields appear near the crack edges and near the lines, where the boundary
conditions collide and where the interfaces intersect the exterior boundary.
Throughout the monograph we shall refer to such lines as exceptional curves.

In this monograph, we apply the potential method and reduce the ICPs to
the equivalent system of pseudodifferential equations (ΨDEs) on a proper
part of the boundary of the composed body. We analyse the solvability
of the resulting boundary-integral equations in Sobolev–Slobodetskii (W s

p ),
Bessel potential (Hs

p), and Besov (Bs
p,t) spaces and prove the correspond-

ing uniqueness and existence theorems for the original ICPs. Moreover,
our main goal is a detailed theoretical investigation of regularity properties
of thermo-mechanical and electric fields near the exceptional curves and
qualitative description of their singularities.

The monograph is organized as follows. In Section 1, we collect the field
equations of the linear theory of thermoelasticity and thermopiezoelastic-
ity, introduce the corresponding matrix partial differential operators and the
generalized matrix boundary stress operators generated by the field equa-
tions, and formulate the boundary-transmission problems for a composed
body consisting of metallic and piezoelectric parts with interface cracks. De-
pending on the physical properties of the metallic and piezoelectric materials
and on surrounding media, one can consider different boundary, transmis-
sion and crack conditions for the thermal and electric fields. In particular,
depending on the thermal insulation and dielectric properties of the crack
gap, we present and discuss four possible mathematical models in Subsec-
tion 1.5, which are formulated as the interface crack problems:

• (ICP-A) - the crack gap is thermally insulated dielectric,
• (ICP-B) - the crack gap is thermally and electrically conductive,
• (ICP-C) - the crack gap is thermally insulated and electrically con-

ductive, and
• (ICP-D) - the crack gap is heat-conducting dielectric.
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Using Green’s formulas, for these problems we prove the uniqueness theo-
rems in appropriate function spaces.

Section 2 is devoted to the theory of pseudodifferential equations on
manifolds with and without boundary which plays a crucial role in our
analysis.

In Sections 3 and 4, we investigate properties of potential operators and
prove some auxiliary assertions needed in our analysis. In particular, we
study mapping properties of layer potentials and the corresponding bound-
ary integral (pseudodifferential) operators in Sobolev–Slobodetskii, Bessel
potential and Besov function spaces and establish Plemelji’s type jump re-
lations. We derive special representation formulas of solutions in terms of
generalized layer potentials.

Sections 5 and 6 are the main parts of the present monograph. In Sec-
tion 5, the interface crack problem (ICP-A) is reduced equivalently to the
system of ΨDEs on manifolds with boundary and full analysis of solvability
of these equations is given. Properties of the principal homogeneous symbol
matrices are studied in detail and the existence, regularity and asymptotic
properties of the solution fields are established. In particular, the global
C α-regularity results are shown with some α ∈ (0, 1

2 ). The exponent α
is defined by the eigenvalues of a matrix which is explicitly constructed
by the homogeneous symbol matrix of the corresponding pseudodifferential
operator. In turn, these eigenvalues depend on the material parameters, in
general. The exponent α actually defines the singularity exponents for the
first order derivatives of solutions. In particular, they define stress singu-
larity exponents. These questions are discussed in detail in Subsections 5.3
and 5.4. We calculate these exponents for particular cases explicitly, demon-
strate their dependence on the material parameters and discuss problems
related to the oscillating stress singularities. In Subsection 5.5, we present
some numerical results and compare stress singularities at different type
exceptional curves. As computations have shown, the stress singularities
at the exceptional curves are different from −0.5 and essentially depend on
the material parameters. We recall that for interior cracks the stress singu-
larities do not depend on the material parameters and equal to −0.5 (see,
e.g., [5, 13, 19, 30, 61]).

In Section 6, we consider the interface crack problem (ICP-B) which is
reduced equivalently to a nonclassical system of boundary pseudodifferen-
tial equations which essentially differs from the system of pseudodifferential
equations which appears in the study of the problem (ICP-A). This system
is very involved, contains different dimensional matrix operators defined
on overlapping submanifolds. Here we apply a different approach to carry
out our analysis in order to prove the existence and regularity results for
solutions of the problem (ICP-B). We study the asymptotic properties of
solutions near the exceptional curves and characterize the corresponding
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stress singularity exponents. It is shown that these exponents again essen-
tially depend on material parameters. The same approach can be applied
to the problems (ICP-C) and (ICP-D).

1. Formulation of the Basic Problems and Uniqueness Results

1.1. Geometrical description of the composite configuration. Let
Ω (m) and Ω be bounded disjoint domains of the three-dimensional Euclidean
space R3 with boundaries ∂Ω(m) and ∂Ω, respectively. Moreover, let ∂Ω and

∂Ω(m) have a nonempty, simply connected intersection Γ (m) of a positive

measure, i.e., ∂Ω∩∂Ω(m) = Γ (m), mesΓ (m) > 0. From now on Γ (m) will be
referred to as an interface surface. Throughout the paper n and ν = n (m)

stand for the outward unit normal vectors to ∂Ω and to ∂Ω (m), respectively.
Clearly, n(x) = −ν(x) for x ∈ Γ (m).

Further, let Γ (m) = Γ
(m)
T ∪Γ

(m)
C , where Γ

(m)
C is an open, simply connected

proper part of Γ (m). Moreover, Γ
(m)
T ∩ Γ

(m)
C = ∅ and ∂Γ (m) ∩ Γ

(m)
C = ∅.

We set S
(m)
N := ∂Ω (m) \ Γ (m) and S∗ := ∂Ω \ Γ (m). Further, we denote

by SD some open, nonempty, proper sub-manifold of S∗ and put SN :=
S∗ \ SD. Thus, we have the following dissections of the boundary surfaces
(see Figure 1)

∂Ω = Γ
(m)
T ∪ Γ

(m)
C ∪ SN ∪ SD, ∂Ω(m) = Γ

(m)
T ∪ Γ

(m)
C ∪ S(m)

N .

Throughout the paper, for simplicity, we assume that ∂Ω (m), ∂Ω, ∂S
(m)
N ,

∂Γ
(m)
T , ∂Γ

(m)
C , ∂SD, ∂SN are C∞-smooth and ∂Ω(m) ∩ SD = ∅, if not

otherwise stated. Some results, obtained in the paper, also hold true when
these manifolds and their boundaries are Lipschitz and we formulate them
separately.

Let Ω be filled by an anisotropic homogeneous piezoelectric medium (ce-
ramic matrix) and Ω (m) be occupied by an isotropic or anisotropic homoge-
neous elastic medium (metallic inclusion). These two bodies interact along

the interface Γ (m), where the interface crack Γ
(m)
C occurs. Moreover, it is

assumed that the composed body is fixed along the sub-surface SD (the

Dirichlet part of the boundary), while the sub-manifolds S
(m)
N and SN are

the Neumann parts of the boundary (where the Neumann type boundary
conditions are prescribed). In the metallic domain Ω (m) we have a clas-
sical four-dimensional thermoelastic field represented by the displacement

vector u (m) = (u
(m)
1 , u

(m)
2 , u

(m)
3 )> and temperature distribution function

u
(m)
4 = ϑ (m), while in the piezoelectric domain Ω we have a five-dimensional

physical field described by the displacement vector u = (u1, u2, u3)
>, tem-

perature distribution function u4 = ϑ and the electric potential u5 = ϕ.

1.2. Thermoelastic field equations. Here we collect the field equations
of the linear theory of thermoelasticity and introduce the corresponding
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Figure 1. Metallic-piezoelectric composite

matrix partial differential operators (see [33,58]). We will treat the general
anisotropic case.

The basic governing equations of the classical thermoelasticity read as
follows:

Constitutive relations:

s
(m)
lk = 2−1(∂l u

(m)
k +∂k u

(m)
l ), (1.1)

σ
(m)
ij = σ

(m)
ji = c

(m)
ijlk s

(m)
lk − γ

(m)
ij ϑ (m) = c

(m)
ijlk ∂lu

(m)
k − γ

(m)
ij ϑ (m), (1.2)

S(m) = γ
(m)
ij s

(m)
ij + α(m) [T

(m)
0 ]−1 ϑ (m). (1.3)

Fourier Law:

q
(m)
j = −κ

(m)
jl ∂lT

(m). (1.4)

Equations of motion:

∂iσ
(m)
ij +X

(m)
j = % (m) ∂2

t u
(m)
j . (1.5)

Equation of the entropy balance:

T
(m)

0 ∂tS (m) = −∂jq
(m)
j +X

(m)
4 . (1.6)

Here u (m) = (u
(m)
1 , u

(m)
2 , u

(m)
3 )> is the displacement vector, ϑ (m) = T (m)−

T
(m)
0 is the relative temperature (temperature increment); σ

(m)
kj is the

stress tensor in the theory of thermoelasticity, s
(m)
kj is the strain tensor,

q (m) = (q
(m)
1 , q

(m)
2 , q

(m)
3 )> is the heat flux vector; S (m) is the entropy den-

sity, % (m) is the mass density, c
(m)
ijkl are the elastic constants, κ

(m)
kj are the
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thermal conductivity constants; T
(m)
0 > 0 is the initial temperature, that is

the temperature in the natural state in the absence of deformation and elec-

tromagnetic fields; γ
(m)
kj are the thermal strain constants; α (m) = % (m) c̃ (m)

are the thermal material constants; c̃ (m) is the specific heat per unit mass;

X (m) = (X
(m)
1 , X

(m)
2 , X

(m)
3 )> is a mass force density; X

(m)
4 is the heat

source density; we employ the notation

∂ = ∂x = (∂1, ∂2, ∂3), ∂j = ∂/∂xj , ∂t = ∂/∂t.

The superscript (·)> denotes transposition operation.
Throughout the paper the Einstein convention about the summation over

the repeated indices is meant from 1 to 3, unless stated otherwise.
Constants involved in the above equations satisfy the symmetry condi-

tions:

c
(m)
ijkl =c

(m)
jikl =c

(m)
klij , γ

(m)
ij =γ

(m)
ji , κ

(m)
ij =κ

(m)
ji , i, j, k, l=1, 2, 3. (1.7)

Note that for an isotropic medium the thermomechanical coefficients are

c
(m)
ijlk = λ(m) δij δlk + µ(m) (δil δjk + δik δjl),

γ
(m)
ij = γ(m) δij , κ

(m)
ij = κ

(m) δij ,

where λ (m) and µ (m) are the Lamé constants and δij is Kronecker’s delta.
We assume that there are positive constants c0 and c1 such that

c
(m)
ijkl ξij ξkl > c0 ξij ξij , κ

(m)
ij ξiξj > c1 ξi ξi

for all ξij = ξji ∈ R, ξj ∈ R.
(1.8)

In particular, the first inequality implies that the density of potential energy

E (m)
(
u (m), u (m)

)
= c

(m)
ijlk s

(m)
ij s

(m)
lk ,

corresponding to the displacement vector u (m), is positive definite with

respect to the symmetric components of the strain tensor s
(m)
lk = s

(m)
kl .

Substituting (1.2) into (1.5) leads to the system of equations:

c
(m)
ijlk ∂i ∂l u

(m)
k − γ

(m)
ij ∂iϑ

(m) +X
(m)
j = % (m) ∂2

t u
(m)
j , j = 1, 2, 3. (1.9)

Taking into account the Fourier law (1.4) and relation (1.3) from the equa-
tion of the entropy balance (1.6) we obtain the heat transfer equation

κ
(m)
il ∂i ∂lϑ

(m) − α (m) ∂tϑ
(m) − T

(m)
0 γ

(m)
il ∂t∂lu

(m)
i +X

(m)
4 = 0. (1.10)

The simultaneous equations (1.9) and (1.10) represent the basic system of
dynamics of the theory of thermoelasticity. If all the functions involved
in these equations are harmonic time dependent, that is they represent a
product of a function of the spatial variables (x1, x2, x3) and the multiplier
exp{τ t}, where τ = σ + iω is a complex parameter, we have the pseudo-
oscillation equations of the theory of thermoelasticity. Note that the pseudo-
oscillation equations can be obtained from the corresponding dynamical
equations by the Laplace transform. If τ = i ω is a pure imaginary number,
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with the so called frequency parameter ω ∈ R, we obtain the steady state
oscillation equations. Finally, if τ = 0, we get the equations of statics.

In this paper, we analyse the system of pseudo-oscillations

c
(m)
ijlk ∂i∂l u

(m)
k − % (m) τ2 u

(m)
j − γ

(m)
ij ∂iϑ

(m) +X
(m)
j = 0, j = 1, 3,

−τ T (m)
0 γ

(m)
il ∂lu

(m)
i + κ

(m)
il ∂i∂lϑ

(m) − τ α (m) ϑ (m) +X
(m)
4 = 0.

(1.11)

In matrix form these equations can be rewritten as

A (m)(∂, τ)U (m)(x) + X̃ (m)(x) = 0,

where U (m) = (u (m), ϑ (m))> is the unknown vector function, while X̃ (m) =

(X
(m)
1 , X

(m)
2 , X

(m)
3 , X

(m)
4 )> is a given vector, A (m)(∂, τ) is a formally non-

selfadjoint matrix differential operator generated by equations (1.11),

A (m)(∂, τ) =
[
A (m)

pq (∂, τ)
]
4×4

, (1.12)

A
(m)
jk (∂, τ) = c

(m)
ijlk ∂i ∂l − % (m) τ2 δjk,

A
(m)
j4 (∂, τ) = −γ (m)

ij ∂i, A
(m)
4k (∂, τ) = −τ T (m)

0 γ
(m)
kl ∂l,

A
(m)
44 (∂, τ) = κ

(m)
il ∂i ∂l − α(m)τ, j, k = 1, 2, 3.

By A (m)∗(∂, τ) we denote the 4× 4 matrix differential operator formally

adjoint to A (m)(∂, τ), that is A (m)∗(∂, τ) := [A (m)(−∂, τ)]>, where the
over-bar denotes the complex conjugation.

Denote by A (m, 0)(∂) the principal homogeneous part of the operator
(1.12),

A (m, 0)(∂) =


[c

(m)
ijlk ∂i ∂l]3×3 [0]3×1

[0]1×3 κ
(m)
il ∂i ∂l




4×4

. (1.13)

With the help of the symmetry conditions (1.7) and inequalities (1.8) it
can easily be shown that A (m, 0)(∂) is a selfadjoint elliptic operator with a
positive definite principal homogeneous symbol matrix, that is,

A (m, 0)(ξ) η · η > c (m) |ξ|2 |η|2 for all ξ ∈ R
3 and for all η ∈ C

4

with some positive constant c (m) > 0 depending on the material parameters.
Here and in what follows the central dot denotes the scalar product in

CN , i.e., for a = (a1, · · · , aN) ∈ CN and b = (b1, · · · , bN ) ∈ CN we set

a · b :=
N∑

k=1

ak bk.

Components of the mechanical thermostress vector acting on a surface
element with a normal ν = (ν1, ν2, ν3) read as follows

σ
(m)
ij νi = c

(m)
ijlk νi ∂lu

(m)
k − γ

(m)
ij νi ϑ

(m), j = 1, 2, 3,

while the normal component of the heat flux vector (with opposite sign) has
the form

−q (m)
i νi = κ

(m)
il νi ∂lϑ

(m).
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We introduce the following generalized thermostress operator

T (m)(∂, ν) =
[
T (m)

pq (∂, ν)
]
4×4

, (1.14)

T (m)
jk (∂, ν) = c

(m)
ijlk νi ∂l, T (m)

j4 (∂, ν) = −γ (m)
ij νi,

T (m)
4k (∂, ν) = 0, T (m)

44 (∂, ν) = κ
(m)
il νi ∂l, j, k = 1, 2, 3.

For a four–vector U (m) = (u (m), ϑ (m))> we have

T (m) U (m) = (σ
(m)
i1 νi, σ

(m)
i2 νi, σ

(m)
i3 νi, −q (m)

i νi )>. (1.15)

Clearly, the components of the vector T (m) U (m) given by (1.15) have the
following physical sense: the first three components correspond to the me-
chanical stress vector in the theory of thermoelasticity, while the forth one
is the normal component of the heat flux vector (with opposite sign).

We also introduce the boundary operator associated with the adjoint
operator A (m)∗(∂, τ) which appears in Green’s formulae,

T̃ (m)(∂, ν, τ) =
[
T̃ (m)

pq (∂, ν, τ)
]
4×4

,

T̃ (m)
jk (∂, ν, τ) = c

(m)
ijlk νi ∂l, T̃ (m)

j4 (∂, ν, τ) = τ T
(m)
0 γ

(m)
ij νi,

T̃ (m)
4k (∂, ν, τ) = 0, T̃ (m)

44 (∂, ν, τ) = κ
(m)
il νi ∂l, j, k = 1, 2, 3.

The principal parts of the operators T (m) and T̃ (m) read as

T (m, 0)(∂, ν) = T̃ (m, 0)(∂, ν) :=


[c

(m)
ijlk νi ∂l]3×3 [0]3×1

[0]1×3 κ
(m)
il νi ∂l




4×4

. (1.16)

1.3. Thermopiezoelastic field equations. In this subsection we collect
the field equations of the linear theory of thermopiezoelasticity for a general
anisotropic case and introduce the corresponding matrix partial differential
operators (cf. [56, 61]). In the thermopiezoelasticity we have the following
governing equations:

Constitutive relations:

sij = 2−1(∂i uj + ∂j ui), (1.17)

σij = σji = cijkl skl − elijEl − γij ϑ = cijkl ∂luk + elij ∂lϕ− γij ϑ, (1.18)

S = γkl skl + glEl + αT−1
0 ϑ, (1.19)

Dj = ejkl skl + εjl El + gj ϑ =

= ejkl ∂luk − εjl ∂lϕ+ gj ϑ, i, j = 1, 2, 3. (1.20)

Fourier Law:

qi = −κil ∂lT, i = 1, 2, 3. (1.21)

Equations of motion:

∂iσij +Xj = % ∂2
t uj , j = 1, 2, 3. (1.22)
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Equation of the entropy balance:

T0 ∂tS = −∂jqj +X4. (1.23)

Equation of static electric field:

∂iDi −X5 = 0. (1.24)

Here u = (u1, u2, u3)
> is the displacement vector, ϕ is the electric poten-

tial, ϑ is the temperature increment, σkj is the stress tensor in the theory
of thermoelectroelasticity, skj is the strain tensor, D is the electric dis-
placement vector, E = (E1, E2, E3) := −gradϕ is the electric field vec-
tor, q = (q1, q2, q3) is the heat flux vector, S is the entropy density, % is
the mass density, cijkl are the elastic constants, ekij are the piezoelectric
constants, εkj are the dielectric (permittivity) constants, γkj are thermal
strain constants, κkj are thermal conductivity constants, T0 is the initial
reference temperature, that is the temperature in the natural state in the
absence of deformation and electromagnetic fields, α := % c̃ with c̃ being
the specific heat per unit mass, gi are pyroelectric constants characteriz-
ing the relation between thermodynamic processes and piezoelectric effects,
X = (X1, X2, X3)

> is a mass force density, X4 is a heat source density, X5

is a charge density.
From the relations (1.18)–(1.24) we derive the linear system of the corre-

sponding pseudo-oscillation equations of the theory of thermopiezoelasticity:

cijlk∂i∂luk−% τ2uj−γij∂iϑ+elij ∂l∂iϕ+Xj =0, j = 1, 3,

−τ T0 γil ∂lui + κil ∂i ∂lϑ− τ α ϑ+ τ T0 gi ∂iϕ+X4 = 0,

−eikl ∂i∂luk − gi ∂iϑ+ εil ∂i∂lϕ+X5 = 0,

(1.25)

or in matrix form

A(∂, τ)U(x) + X̃(x) = 0 in Ω, (1.26)

where U = (u, ϑ, ϕ)>, X̃ = (X1, X2, X3, X4, X5)
>, A(∂, τ) is a formally

nonselfadjoint matrix differential operator generated by equations (1.25)

A(∂, τ) =
[
Apq(∂, τ)

]
5×5

, (1.27)

Ajk(∂, τ) = cijlk ∂i ∂l − % τ2 δjk , Aj4(∂, τ) = −γij ∂i,

Aj5(∂, τ) = elij∂l∂i, A4k(∂, τ) = −τ T0 γkl ∂l,

A44(∂, τ) = κil ∂i ∂l − α τ, A45(∂, τ) = τ T0 gi ∂i,

A5k(∂, τ) = −eikl ∂i∂l, A54(∂, τ) = −gi∂i,

A55(∂, τ) = εil ∂i∂l, j, k = 1, 3.

By A∗(∂, τ) := [A(−∂, τ)]> we denote the operator formally adjoint to
A(∂, τ). Clearly, from (1.25)–(1.27) we obtain the equations and the opera-
tors of statics if τ = 0. Denote by A (0)(∂) the principal homogeneous part
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of the operator (1.27),

A (0)(∂) =




[cijlk ∂i ∂l]3×3 [0]3×1 [elij∂l∂i]3×1

[0]1×3 κil ∂i ∂l 0

[−eikl ∂i∂l]1×3 0 εil ∂i∂l




5×5

. (1.28)

Evidently, the operator A (0)(∂) is formally nonselfadjoint.
The constants involved in the above equations satisfy the symmetry condi-
tions:

cijkl = cjikl = cklij , eijk = eikj , εij = εji,

γij = γji, κij = κji, i, j, k, l = 1, 2, 3.

Moreover, from physical considerations it follows that (see, e.g., [56]):

cijkl ξij ξkl > c0 ξij ξij for all ξij = ξji ∈ R, (1.29)

εij ηi ηj >c1 ηi ηi , κij ηi ηj >c2 ηi ηi for all η=(η1, η2, η3)∈R
3, (1.30)

where c0, c1, and c2 are positive constants. In addition, we require that
(see, e.g., [56])

εij ηi ηj +
α

T0
| ζ|2 − 2 Re

(
ζ gl ηl

)
>

> c3
(
| ζ|2 + | η|2

)
for all ζ ∈ C, η ∈ C

3 (1.31)

with a positive constant c3. A sufficient condition for the inequality (1.31)
to be satisfied reads as

α c1
3T0

− g2 > 0,

where g = max {|g1|, |g2|, |g3|} and c1 is the constant involved in (1.30).
With the help of the inequalities (1.29) and (1.30) it can easily be shown

that the principal part of the operator A(∂, τ) is strongly elliptic, that is,

ReA (0)(ξ) η · η > c |ξ|2 |η|2 for all ξ ∈ R
3 and for all η ∈ C

4

with some positive constant c > 0 depending on the material parameters.
In the theory of thermopiezoelasticity the components of the three-dimen-

sional mechanical stress vector acting on a surface element with a normal
n = (n1, n2, n3) have the form

σij ni = cijlk ni ∂luk + elij ni ∂lϕ− γij ni ϑ for j = 1, 2, 3,

while the normal components of the electric displacement vector and the
heat flux vector (with opposite sign) read as

−Di ni = −eikl ni ∂luk + εil ni ∂lϕ− gi ni ϑ, −qi ni = κil ni ∂lϑ.
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Let us introduce the following matrix differential operator

T (∂, n) =
[
Tpq(∂, n)

]
5×5

, (1.32)

Tjk(∂, n) = cijlk ni ∂l, Tj4(∂, n) = −γij ni,

Tj5(∂, n) = elij ni ∂l, T4k(∂, n) = 0,

T44(∂, n) = κil ni ∂l, T45(∂, n) = 0,

T5k(∂, n) = −eikl ni ∂l, T54(∂, n) = −gi ni,

T55(∂, n) = εil ni ∂l, j, k = 1, 2, 3.

For a five–vector U = (u, ϑ, ϕ)> we have

T (∂, n)U =
(
σi1 ni, σi2 ni, σi3 ni, −qi ni, −Di ni

)>
. (1.33)

Clearly, the components of the vector T U given by (1.33) have the following
physical sense: the first three components correspond to the mechanical
stress vector in the theory of thermoelectroelasticity, the forth and fifth
ones are the normal components of the heat flux vector and the electric
displacement vector (with opposite sign), respectively.

In Green’s formulae there appear also the following boundary operator
associated with the adjoint differential operator A∗(∂, τ),

T̃ (∂, n, τ) =
[
T̃pq(∂, n, τ)

]
5×5

,

T̃jk(∂, n, τ) = cijlk ni ∂l, T̃j4(∂, n, τ) = τ T0 γij ni,

T̃j5(∂, n, τ) = −elij ni ∂l, T̃4k(∂, n, τ) = 0,

T̃44(∂, n, τ) = κil ni ∂l, T̃45(∂, n, τ) = 0,

T̃5k(∂, n, τ) = eikl ni ∂l, T̃54(∂, n, τ) = − τ T0 gi ni,

T̃55(∂, n, τ) = εil ni ∂l.

The principal parts of the operators T and T̃ read as

T (0)(∂, n) :=




[cijlk ni ∂l]3×3 [0]3×1 [elij ni ∂l]3×1

[0]1×3 κil ni ∂l 0

[−eikl ni ∂l]1×3 0 εil ni ∂l




5×5

, (1.34)

T̃ (0)(∂, n) :=




[cijlk ni ∂l]3×3 [0]3×1 [−elij ni ∂l]3×1

[0]1×3 κil ni ∂l 0

[eikl ni ∂l]1×3 0 εil ni ∂l




5×5

. (1.35)

1.4. Green’s formulae. As it has been mentioned above, to avoid some
misunderstanding related to the directions of normal vectors on the contact
surface Γ (m), we denote by ν and n the unit outward normal vectors to
∂Ω (m) and ∂Ω respectively. Here we recall Green’s formulae for the differ-
ential operators A (m)(∂, τ) and A(∂, τ) in Ω (m) and Ω, respectively (see,
e.g., [4, 6, 7, 9, 29, 30, 53]).
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Let Ω (m) and Ω be domains with smooth boundaries and

U (m) =
(
u

(m)
1 , u

(m)
2 , u

(m)
3 , u

(m)
4

)> ∈ [C2(Ω (m)) ]4,

u (m) =
(
u

(m)
1 , u

(m)
2 , u

(m)
3

)>
,

V (m) =
(
v

(m)
1 , v

(m)
2 , v

(m)
3 , v

(m)
4

)> ∈ [C2(Ω (m)) ]4,

v (m) =
(
v

(m)
1 , v

(m)
2 , v

(m)
3

)>
.

Then the following Green’s formulae hold:
∫

Ω(m)

[
A(m)(∂, τ)U (m) · V (m) − U (m) · A(m)∗(∂, τ)V (m)

]
dx =

=

∫

∂Ω (m)

[
{T (m) U (m)}+ · {V (m)}+ − {U (m)}+ · {T̃ (m)V (m)}+

]
dS, (1.36)

∫

Ω(m)

A(m)(∂, τ)U (m) · V (m) dx =

∫

∂Ω(m)

{T (m)U (m)}+ · {V (m)}+ dS−

−
∫

Ω(m)

[
E(m)(u(m), v(m)) + %(m)τ2u(m) · v(m) + κ

(m)
jl ∂ju

(m)
4 ∂lv

(m)
4 +

+τα(m)u
(m)
4 v

(m)
4 + γ

(m)
jl

(
τT

(m)
0 ∂ju

(m)
l v

(m)
4 − u

(m)
4 ∂jv

(m)
l

)]
dx, (1.37)

∫

Ω(m)

[ 3∑

j=1

[
A(m)(∂, τ)U (m)

]
j
u

(m)
j +

τ

|τ |2T (m)
0

[
A(m)(∂, τ)U (m)

]
4
u

(m)
4

]
dx =

= −
∫

Ω (m)

[
E (m)(u (m), u (m)) + % (m) τ2 |u (m)|2 +

α (m)

T
(m)

0

|u (m)
4 |2+

+
τ

|τ |2 T (m)
0

κ
(m)
lj ∂lu

(m)
4 ∂ju

(m)
4

]
dx+

+

∫

∂Ω(m)

[ 3∑

j=1

{
T (m)U (m)

}+

j

{
u

(m)
j

}+
+

+
τ

|τ |2 T (m)
0

{
T (m)U (m)

}+

4

{
u

(m)
4

}+
]
dS. (1.38)

Here E (m)(u (m), v (m))= c
(m)
ijlk ∂iu

(m)
j ∂lv

(m)
k and the differential operators

A (m)(∂, τ), A (m)∗(∂, τ),T (m) = T (m)(∂, ν) and T̃ (m) = T̃ (m)(∂, ν, τ) are
defined in Subsection 1.2.

Similarly, for arbitrary vector–functions

U = (u1, u2, u3, u4, u5)
> ∈ [C2(Ω) ]5, u= (u1, u2, u3)

>,

V = (v1, v2, v3, v4, v5)
> ∈ [C2(Ω) ]5, v = (v1, v2, v3)

>,
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we have Green’s formulae involving the differential operators of the thermo-
electroelasticity theory:

∫

Ω

[
A(∂, τ)U · V − U · A∗(∂, τ)V

]
dx =

=

∫

∂Ω

[
{ T U }+ · {V }+ − {U }+ · { T̃ V }+

]
dS, (1.39)

∫

Ω

A(∂, τ)U · V dx =

∫

∂Ω

{ T U }+ · {V }+ dS−

−
∫

Ω

[
E(u, v) + % τ2 u · v + γjl ( τ T0 ∂jul v4 − u4 ∂jvl )+

+κjl ∂ju4 ∂lv4 + τ α u4 v4 + elij (∂lu5 ∂ivj − ∂iuj ∂lv5)−

−gl ( τ T0 ∂lu5 v4 + u4 ∂lv5) + εjl ∂ju5 ∂lv5

]
dx, (1.40)

∫

Ω

[ 3∑

j=1

[A(∂, τ)U ]j uj +
τ

|τ |2T0

[
A(∂, τ)U

]
4
u4 +

[
A(∂, τ)U

]
5
u5

]
dx =

= −
∫

Ω

[
E(u, u) + %τ2|u|2 +

α

T0
|u4|2 +

τ

|τ |2T0
κjl ∂lu4∂ju4−

−2Re {gl u4 ∂lu5} + εjl ∂lu5 ∂ju5

]
dx+

+

∫

∂Ω

[ 3∑

j=1

{
T U

}+

j

{
uj

}+
+

τ

|τ |2T0

{
T U

}+

4

{
u4

}+
+

{
T U

}+

5

{
u5

}+
]
dS. (1.41)

HereE(u, v) = cijlk ∂iuj ∂lvk and the differential operatorsA(∂, τ), A∗(∂, τ),

T = T (∂, n), and T̃ = T̃ (∂, n, τ) are defined in Subsection 1.3.
For τ = 0 Green’s formulae (1.36), (1.37), (1.40), and (1.39) remain valid

and, in addition, there hold the following identities

∫

Ω (m)

[ 3∑

j=1

[
A (m)(∂)U (m)

]
j
u

(m)
j + c1

[
A (m)(∂)U (m)

]
4
u

(m)
4

]
dx =

= −
∫

Ω(m)

[
E(m)(u(m), u(m))+c1 κ

(m)
lj ∂lu

(m)
4 ∂ju

(m)
4 −γ(m)

jl u
(m)
4 ∂ju

(m)
l

]
dx+

+

∫

∂Ω(m)

[ 3∑

j=1

{T (m)U (m)}+
j {u

(m)
j }++c1{T (m)U (m)}+

4 {u
(m)
4 }+

]
dS, (1.42)

∫

Ω

[ 3∑

j=1

[A(∂)U ]j uj + c [A(∂)U ]4 u4 + [A(∂)U ]5 u5

]
dx =
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= −
∫

Ω

[
E(u, u)+cκjl∂lu4∂ju4−γjlu4∂luj−glu4∂lu5+εjl∂lu5∂ju5

]
dx+

+

∫

∂Ω

[ 3∑

j=1

{T U}+
j {uj}+ + c {T U}+

4 {u4}+ + {T U}+
5 {u5}+

]
dS, (1.43)

where A (m)(∂) := A (m)(∂, 0) and A(∂) := A(∂, 0), and c1 and c are arbi-
trary constants.

Remark that by a standard limiting procedure the above Green’s formu-
lae (1.37), (1.38), (1.40), and (1.41) can be generalized to Lipschitz domains
and to vector–functions from the Sobolev spaces (see formulae (1.58), (1.59))

U (m) ∈
[
W 1

p (Ω (m))
]4

, V (m) ∈
[
W 1

p ′(Ω (m))
]4

,

U ∈
[
W 1

p (Ω)
]5
, V ∈

[
W 1

p ′(Ω)
]5

with

A (m)(∂, τ)U (m) ∈
[
Lp(Ω

(m))
]4

, A(∂, τ)U ∈ [Lp(Ω)]
5
,

1 < p <∞,
1

p
+

1

p ′
= 1.

In addition, if

A (m)∗(∂, τ)V (m) ∈ [Lp ′(Ω (m))]4, A∗(∂, τ)V ∈ [Lp ′(Ω)]5,

then formulae (1.36) and (1.39) hold true as well (see [25, 44, 50, 55]).

1.5. Formulation of the interface crack problems. Let us consider the
metallic-piezoelectric composite structure described in Subsection 1.1 (see
Figure 1). We assume that

(1) the composed body is fixed along the sub-surface SD, i.e, there are
given homogeneous Dirichlet data for the vector U = (u, ϑ, ϕ)>;

(2) the sub-surface S
(m)
N is either traction free or there is applied some

surface force, i.e., the components of the mechanical stress vector σ
(m)
ij νi,

j = 1, 2, 3, are given on S
(m)
N ;

(3) the sub-surface SN is either traction free or there is applied some
surface force, i.e., the components of the mechanical stress vector σij ni,
j = 1, 2, 3, are given on SN ;

(4) along the transmission interface submanifold Γ
(m)
T the piezoelectric

and metallic solids are bonded, i.e., the rigid contact conditions are ful-
filled which means that the displacement and mechanical stress vectors are

continuous across Γ
(m)
T ;

(5) the faces of the interface crack Γ
(m)
C are traction free, i.e., the compo-

nents of the mechanical stress vectors σ
(m)
ij νi and σij ni, j = 1, 2, 3, vanish

on Γ
(m)
C .
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Depending on the physical properties of the metallic and piezoelectric
materials and also surrounding media, one can consider different boundary,
transmission and crack conditions for the thermal and electric fields. For
example,

(6) if some part of the boundary of the composed body is covered by a
thermally insulated material then the normal components of the heat flux

vectors −q (m)
i νi and −qi ni should be zero on the corresponding submani-

fold; in particular, these conditions hold on the crack faces if the crack gap
is a thermal isolator;

(7) if some part of the boundary of the composed body is charge free, then
the normal component of the electric displacement vector −Di ni should be
zero on the corresponding submanifold;

(8) if some part of the boundary of the composed body is covered by
a metallic layer with applied charge, then the electric potential function ϕ
should be given on the corresponding submanifold;

(9) if the crack gap is thermally conductive, the temperature and normal
heat flux functions should satisfy continuity condition on the crack surface

Γ
(m)
C ;
(10) if the crack gap can be treated as a dielectric medium, the normal

component of the electric displacement vector −Di ni should be zero on

Γ
(m)
C ;

(11) due to the rigid contact conditions on Γ
(m)
T , for the electric potential

function ϕ the Dirichlet condition should be given on Γ
(m)
T .

From the above arguments it follows that the physical problem under
consideration is described by essentially mixed boundary, transmission and
crack type conditions. Solutions to this kind crack and mixed boundary
value problems and related mechanical, thermal and electrical character-
istics usually have singularities in a neighbourhood of exceptional curves,

∂Γ
(m)
C , ∂SD, ∂Γ (m).
Our goal is to formulate the above described problems mathematically,

study their solvability in appropriate function spaces and analyse regularity
properties of solutions. In particular, we describe dependence of the stress
singularity exponents on the material parameters. As we will see below this
dependence is quite nontrivial.

Let us introduce some notation.
Throughout the paper the symbol { · }+ denotes the interior one-sided

trace operator on ∂Ω from Ω (respectively on ∂Ω (m) from Ω (m)). Similarly,
{ · }− denotes the exterior one-sided trace operator on ∂Ω from the exterior
of Ω (respectively on ∂Ω (m) from the exterior of Ω (m)).

By Lp, W
r
p , Hs

p , and Bs
p,q with r > 0, s ∈ R, 1 < p <∞, 1 6 q 6 ∞, we

denote the well-known Lebesgue, Sobolev–Slobodetskii, Bessel potential,
and Besov function spaces, respectively (see, e.g., [43, 72]). Recall that
Hr

2 = W r
2 = Br

2,2 , Hs
2 = Bs

2,2 , W t
p = Bt

p,p , and Hk
p = W k

p , for any r > 0,
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for any s ∈ R, for any positive and non-integer t, and for any non-negative
integer k. By Ck

0 (Rn) we denote the set of functions with compact support

possessing continuous derivatives up to order k > 0, C∞
0 (Rn) =

∞∩
k=0

Ck
0 (Rn).

Let M0 be a smooth surface without boundary. For a smooth sub-

manifold M ⊂ M0 we denote by H̃s
p(M) and B̃s

p,q(M) the subspaces of
Hs

p(M0) and Bs
p,q(M0), respectively,

H̃s
p(M) =

{
g : g ∈ Hs

p(M0), supp g ⊂ M
}
,

B̃s
p,q(M) =

{
g : g ∈ Bs

p,q(M0), supp g ⊂ M
}
,

while Hs
p(M) and Bs

p,q(M) denote the spaces of restrictions on M of func-
tions from Hs

p(M0) and Bs
p,q(M0), respectively,

Hs
p(M) =

{
rMf : f ∈ Hs

p(M0)
}
,

Bs
p,q(M) =

{
rMf : f ∈ Bs

p,q(M0)
}
,

where rM is the restriction operator onto M.
From now on without loss of generality we assume that the mass force

density, heat source density and charge density vanish in the corresponding

regions, that is, X
(m)
k = 0 in Ω (m) for k = 1, 4, Xj = 0 in Ω for j =

1, 5. Otherwise, we can write particular solutions to the nonhomogeneous
differential equations (1.11) and (1.25) explicitly, in the form of volume
Newtonian potentials,

U
(m)
0 (x) = −N (m)

τ (X(m))(x) and U0(x) = −Nτ (X)(x),

where

N (m)
τ (X(m))(x) :=

∫

Ω(m)

Ψ(m)(x − y, τ)X(m)(y) dy, x ∈ Ω(m),

Nτ (X)(x) :=

∫

Ω

Ψ(x− y, τ)X(y) dy, x ∈ Ω,

with Ψ (m)(x−y, τ) and Ψ(x−y, τ) being the fundamental solution matrices
of the operators A (m)(∂, τ) and A(∂, τ) respectively (see Subsection 4.1).

Note that for X (m) ∈ [Lp(Ω
(m))]4 and X ∈ [Lp(Ω)]5, we have U

(m)
0 ∈

[W 2
p (Ω (m))]4 and U0 ∈ [W 2

p (Ω)]5, and

A (m)(∂, τ)N (m)
τ (X (m))(x) = X (m)(x), x ∈ Ω (m), (1.44)

A(∂, τ)Nτ (X)(x) = X(x), x ∈ Ω, (1.45)

for almost all x ∈ Ω (m) and for almost all x ∈ Ω respectively. In addition,

if X (m) ∈ [C 0,β′

(Ω (m))]4 and X ∈ [C 0,β′

(Ω)]5 with some β′ > 0, then
the relations (1.44) and (1.45) hold for all x ∈ Ω (m) and for all x ∈ Ω
respectively (see Section 4, Theorem 4.1).

Therefore, without loss of generality in what follows we will consider
the homogeneous versions of the differential equations (1.11) and (1.25).
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However, we have to take into consideration that the homogeneous boundary
and transmission conditions described in the items (1)-(11) become then
nonhomogeneous, in general.

Further, without loss of generality and for simplicity, throughout the

paper we assume that the initial reference temperatures T0 and T
(m)

0 in the

adjacent domains Ω and Ω (m) are the same: T0 = T
(m)
0 .

Now we are in a position to formulate mathematically the above described
physical mixed interface crack problems. For illustration we formulate four
typical problems: (ICP-A), (ICP-B), (ICP-C), and (ICP-D).

Problem (ICP-A) - the crack gap is thermally insulated dielectric:
Find vector-functions

U (m) = (u
(m)
1 , . . . , u

(m)
4 )> : Ω (m) → C

4,

U = (u1, . . . , u5)
> : Ω → C

5

belonging respectively to the spaces [W 1
p (Ω (m))]4 and [W 1

p (Ω)]5 with 1 <
p <∞ and satisfying

(i) the systems of partial differential equations :
[
A (m)(∂x, τ)U

(m)
]
j

= 0 in Ω (m), j = 1, 4, (1.46)

[A(∂x, τ)U ]k = 0 in Ω, k = 1, 5, (1.47)

(ii) the boundary conditions :

r
S

(m)
N

{[
T (m)(∂, ν)U (m)

]
j

}+
= Q

(m)
j on S

(m)
N , j = 1, 4, (1.48)

rSN

{[
T (∂, n)U

]
k

}+
= Qk on SN , k = 1, 5, (1.49)

rSD
{uk}+ = fk on SD, k = 1, 5, (1.50)

r
Γ

(m)
T

{u5}+ = f
(m)
5 on Γ

(m)
T , (1.51)

(iii) the transmission conditions on Γ
(m)
T for j = 1, 4 :

r
Γ

(m)
T

{uj}+ − r
Γ

(m)
T

{
u

(m)
j

}+
=f

(m)
j on Γ

(m)
T , (1.52)

r
Γ

(m)
T

{[
T (∂, n)U

]
j

}+
+

+r
Γ

(m)
T

{
[T (m)(∂, ν)U (m)]j

}+
= F

(m)
j on Γ

(m)
T , (1.53)

(iv) the interface crack conditions on Γ
(m)
C :

r
Γ

(m)
C

{
[ T (m)(∂, ν)U (m) ]j

}+
= Q̃

(m)
j on Γ

(m)
C , j = 1, 4, (1.54)

r
Γ

(m)
C

{[ T (∂, n)U ]k}+ = Q̃k on Γ
(m)
C , k = 1, 5, (1.55)
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where n = −ν on Γ (m),

Qk ∈ B−1/p
p,p (SN ), Q

(m)
j ∈ B−1/p

p,p (S
(m)
N ), fk ∈ B1/p ′

p,p (SD),

f
(m)

k ∈ B1/p ′

p,p (Γ
(m)
T ), F

(m)
j ∈ B−1/p

p,p (Γ
(m)
T ),

Q̃
(m)
j , Q̃k ∈ B−1/p

p,p (Γ
(m)
C ),

1

p ′
+

1

p
= 1, k = 1, 5, j = 1, 4.

(1.56)

Note that the functions F
(m)

j , Qj , Q̃j , Q̃
(m)
j and Q

(m)
j have to satisfy

some evident compatibility conditions (see Subsection 5.1, inclusion (5.17)).
We set

Q = (Q1, Q2, Q3, Q4, Q5)
> ∈

[
B

− 1
p

p,p (SN )
]5
,

Q̃ = (Q̃1, Q̃2, Q̃3, Q̃4, Q̃5)
> ∈

[
B

− 1
p

p,p (Γ
(m)
C )

]5
,

Q(m) =
(
Q

(m)
1 , Q

(m)
2 , Q

(m)
3 , Q

(m)
4

)> ∈
[
B

− 1
p

p,p (S
(m)
N )

]4
,

Q̃(m) =
(
Q̃

(m)
1 , Q̃

(m)
2 , Q̃

(m)
3 , Q̃

(m)
4

)> ∈
[
B

− 1
p

p,p (Γ
(m)
C )

]4
,

f = (f1, f2, f3, f4, f5)
> ∈

[
B

1
p ′

p,p(SD)
]5
,

f (m) =
(
f

(m)
1 , f

(m)
2 , f

(m)
3 , f

(m)
4 , f

(m)
5

)> ∈
[
B

1
p ′

p,p(Γ
(m)
T )

]5
,

F (m) =
(
F

(m)
1 , F

(m)
2 , F

(m)
3 , F

(m)
4

)> ∈
[
B

− 1
p

p,p (Γ
(m)
T )

]4
.

(1.57)

A pair (U (m), U) ∈ [W 1
p (Ω (m))]4 × [W 1

p (Ω)]5 will be called a solution to the
boundary-transmission problem (ICP-A) (1.46)–(1.55).

The differential equations (1.46) and (1.47) are understood in the dis-
tributional sense, in general. But note that if U (m) ∈ [W 1

p (Ω (m))]4 and

U ∈ [W 1
p (Ω)]5 solve the homogeneous differential equations, then actually

U (m) ∈ [C∞(Ω (m))]4 and U ∈ [C∞(Ω)]5 due to the ellipticity of the cor-
responding differential operators. In fact, U (m) and U are complex valued
analytic vectors of spatial real variables (x1, x2, x3) in Ω (m) and Ω, respec-
tively.

The Dirichlet-type conditions (1.50), (1.51), and (1.52) involving bound-
ary limiting values of the vectors U (m) and U are understood in the usual
trace sense, while the Neumann-type conditions (1.48), (1.49), (1.5), (1.54)
and (1.55) involving boundary limiting values of the vectors T (m) u (m) and
T U are understood in the functional sense defined by Green’s formulae
(1.37) and (1.40)

〈
{T (m)(∂, ν)U (m)}+, {V (m)}+

〉
∂Ω (m)

:=

=

∫

Ω (m)

A (m)(∂, τ)U (m) · V (m) dx+

∫

Ω (m)

[
E (m)(u (m), v (m))+

+% (m) τ2 u (m) · v (m) + κ
(m)
jl ∂ju

(m)
4 ∂lv

(m)
4 +
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+γ
(m)
jl

(
τ T

(m)
0 ∂ju

(m)
l v

(m)
4 − u

(m)
4 ∂jv

(m)
l

)
+ τ α(m) u

(m)
4 v

(m)
4

]
dx, (1.58)

〈
{T (∂, n)U}+ , {V }+

〉
∂Ω

:=

∫

Ω

A(∂, τ)U · V dx+

+

∫

Ω

[
E(u, v) + % τ2 u · v + γjl

(
τ T0 ∂jul v4 − u4 ∂jvl

)
+

+κjl ∂ju4 ∂lv4 + τ α u4 v4 + εjl ∂ju5 ∂lv5+

+elij (∂lu5 ∂ivj − ∂iuj ∂lv5) − gl

(
τ T0 ∂lu5 v4 + u4 ∂lv5

)]
dx, (1.59)

where V (m) = (v (m), v
(m)
4 )> ∈ [W 1

p ′(Ω(m))]4 and V = (v, v4, v5)
> ∈

[W 1
p ′(Ω)]5 are arbitrary vector-functions with v = (v1, v2, v3)

> and v (m) =

(v
(m)
1 , v

(m)
2 , v

(m)
3 )>, while

E (m)(u (m), v (m)) = c
(m)
ijlk ∂iu

(m)
j ∂lv

(m)
k , E(u, v) = cijlk ∂iuj ∂lvk.

Here 〈· , · 〉∂Ω (m) (respectively 〈· , · 〉∂Ω) denotes the duality between the fun-

ction spaces [B
− 1

p
p,p (∂Ω (m))]4 and [B

1
p

p ′,p ′(∂Ω (m))]4 (respectively [B
− 1

p
p,p (∂Ω)]5

and [B
1
p

p ′,p ′(∂Ω)]5) which extends the usual L2 inner product

〈 f , g 〉M =

∫

M

N∑

j=1

fj gj dM for f, g ∈ [L2(M)]N ,

where M ∈ {∂Ω (m), ∂Ω}.
By standard arguments it can easily be shown that the functionals, from

now on called “generalized traces”, {T (m)(∂, ν)U (m)}+ ∈ [B
− 1

p
p,p (∂Ω (m))]4

and {T (∂, n)U}+ ∈ [B
− 1

p
p,p (∂Ω)]5, are well defined by the above relations,

provided that A(∂, τ)U ∈
[
Lp(Ω)

]5
and A (m)(∂, τ)U (m) ∈

[
Lp(Ω

(m))
]4

.

Problem (ICP-B) - the crack gap is thermally and electrically conductive:
Find vector-functions

U (m) = (u
(m)
1 , . . . , u

(m)
4 )> : Ω (m) → C

4,

U = (u1, . . . , u5)
> : Ω → C

5

belonging respectively to the spaces [W 1
p (Ω (m))]4 and [W 1

p (Ω)]5 with 1 <
p <∞ and satisfying

(i) the systems of partial differential equations :
[
A (m)(∂x, τ)U

(m)
]
j

= 0 in Ω (m), j = 1, 4, (1.60)

[A(∂x, τ)U ]k = 0 in Ω, k = 1, 5, (1.61)
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(ii) the boundary conditions :

r
S

(m)
N

{[
T (m)(∂, ν)U (m)

]
j

}+
= Q

(m)
j on S

(m)
N , j = 1, 4, (1.62)

rSN

{[
T (∂, n)U

]
k

}+
= Qk on SN , k = 1, 5, (1.63)

rSD
{uk}+ = fk on SD, k = 1, 5, (1.64)

rΓ (m){u5}+ = f
(m)
5 on Γ (m), (1.65)

(iii) the transmission conditions for l = 1, 3 :

r
Γ

(m)
T

{ul}+ − r
Γ

(m)
T

{
u

(m)
l

}+
=f

(m)
l on Γ

(m)
T , (1.66)

r
Γ

(m)
T

{
[T (∂, n)U ]l

}+
+r

Γ
(m)
T

{
[T (m)(∂, ν)U (m) ]l

}+
=F

(m)
l on Γ

(m)
T , (1.67)

rΓ (m) {u4}+ − rΓ (m)

{
u

(m)
4

}+
=f

(m)
4 on Γ (m), (1.68)

rΓ(m)

{
[T (∂, n)U ]4

}+
+rΓ(m)

{
[T (m)(∂, ν)U (m)]4

}+
=F

(m)
4 on Γ(m), (1.69)

(iv) the interface crack conditions Γ
(m)
C for l = 1, 3 :

r
Γ

(m)
C

{[
T (m)(∂, ν)U (m)

]
l

}+
= Q̃

(m)
l on Γ

(m)
C , (1.70)

r
Γ

(m)
C

{[
T (∂, n)U

]
l

}+
= Q̃l on Γ

(m)
C . (1.71)

Problem (ICP-C) - the crack gap is thermally insulated and electrically
conductive:
Find vector-functions

U (m) = (u
(m)
1 , . . . , u

(m)
4 )> : Ω (m) → C

4,

U = (u1, . . . , u5)
> : Ω → C

5

belonging respectively to the spaces [W 1
p (Ω (m))]4 and [W 1

p (Ω)]5 with 1 <
p <∞ and satisfying

(i) the systems of partial differential equations :
[
A (m)(∂x, τ)U

(m)
]
j

= 0 in Ω (m), j = 1, 4, (1.72)
[
A(∂x, τ)U

]
k

= 0 in Ω, k = 1, 5, (1.73)

(ii) the boundary conditions :

r
S

(m)
N

{[
T (m)(∂, ν)U (m)

]
j

}+
= Q

(m)
j on S

(m)
N , j = 1, 4, (1.74)

rSN

{[
T (∂, n)U

]
k

}+
= Qk on SN , k = 1, 5, (1.75)

rSD
{uk}+ = fk on SD, k = 1, 5, (1.76)

rΓ (m){u5}+ = f
(m)
5 on Γ (m), (1.77)
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(iii) the transmission conditions on Γ
(m)
T for j = 1, 4 :

r
Γ

(m)
T

{uj}+ − r
Γ

(m)
T

{
u

(m)
j

}+
=f

(m)
j on Γ

(m)
T , (1.78)

r
Γ

(m)
T

{
[T (∂, n)U ]j

}+
+

+r
Γ

(m)
T

{
[T (m)(∂, ν)U (m)]j

}+
= F

(m)
j on Γ

(m)
T , (1.79)

(iv) the interface crack conditions on Γ
(m)
C :

r
Γ

(m)
C

{[
T (m)(∂, ν)U (m)

]
j

}+
= Q̃

(m)
j on Γ

(m)
C , j = 1, 4, (1.80)

r
Γ

(m)
C

{[ T (∂, n)U ]j}+ = Q̃j on Γ
(m)
C , j = 1, 4. (1.81)

Problem (ICP-D) - the crack gap is heat-conducting dielectric:
Find vector-functions

U (m) = (u
(m)
1 , . . . , u

(m)
4 )> : Ω (m) → C

4,

U = (u1, . . . , u5)
> : Ω → C

5

belonging respectively to the spaces [W 1
p (Ω (m))]4 and [W 1

p (Ω)]5 with 1 <
p <∞ and satisfying

(i) the systems of partial differential equations :
[
A (m)(∂x, τ)U

(m)
]
j

= 0 in Ω (m), j = 1, 4, (1.82)

[A(∂x, τ)U ]k = 0 in Ω, k = 1, 5, (1.83)

(ii) the boundary conditions :

r
S

(m)
N

{[
T (m)(∂, ν)U (m)

]
j

}+
= Q

(m)
j on S

(m)
N , j = 1, 4, (1.84)

rSN

{[
T (∂, n)U

]
k

}+
= Qk on SN , k = 1, 5, (1.85)

rSD
{uk}+ = fk on SD, k = 1, 5, (1.86)

r
Γ

(m)
T

{u5}+ = f
(m)
5 on Γ

(m)
T , (1.87)

(iii) the transmission conditions for l = 1, 3 :

r
Γ

(m)
T

{ul}+−r
Γ

(m)
T

{
u

(m)
l

}+
=f

(m)
l on Γ

(m)
T , (1.88)

r
Γ

(m)
T

{
[T (∂, n)U ]l

}+
+ r

Γ
(m)
T

{[
T (m)(∂, ν)U (m)

]
l

}+
=F

(m)
l on Γ

(m)
T , (1.89)

rΓ (m){u4}+ − rΓ (m)

{
u

(m)
4

}+
=f

(m)
4 on Γ (m), (1.90)

rΓ(m)

{[
T (∂, n)U

]
4

}+
+rΓ(m)

{
[T (m)(∂, ν)U (m) ]4

}+
=F

(m)
4 on Γ(m), (1.91)

(iv) the interface crack conditions on Γ
(m)
C :

r
Γ

(m)
C

{[
T (m)(∂, ν)U (m)

]
l

}+
= Q̃

(m)
l on Γ

(m)
C , l = 1, 2, 3, (1.92)
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r
Γ

(m)
C

{[
T (∂, n)U

]
l

}+
= Q̃l on Γ

(m)
C , l = 1, 2, 3, 5. (1.93)

The boundary data in all the above formulated problems satisfy the inclu-
sions (1.56).

1.6. Uniqueness results. Here we prove the following uniqueness theorem
for p = 2. The similar uniqueness theorem for p 6= 2 will be proved later.

Theorem 1.1. Let Ω(m) and Ω be Lipschitz and either τ = σ + iω with
σ > 0 or τ = 0. The above formulated interface crack problems (ICP-A)-
(ICP-D) have at most one solution in the space [W 1

2 (Ω (m))]4 × [W 1
2 (Ω)]5,

provided mesSD > 0.

Proof. It suffices to show that the corresponding homogeneous problems
have only the trivial solution. Let a pair (U (m), U) ∈ [W 1

2 (Ω (m))]4 ×
[W 1

2 (Ω)]5 be a solution to one of the above formulated homogeneous in-
terface crack problem.

Green’s formulae (1.37) and (1.40) with V (m) = U (m), V = U and T0 =

T
(m)
0 along with the homogeneous boundary and transmission conditions

then imply (see Subsection 1.4, formulae (1.38) and (1.41))

∫

Ω (m)

[
E (m)(u (m), u (m))+% (m) τ2 |u (m)|2+

τ

|τ |2 T0
κ

(m)
lj ∂lu

(m)
4 ∂ju

(m)
4 +

+
α (m)

T0
|u (m)

4 |2
]
dx+

∫

Ω

[
E(u, u) + % τ2 |u|2 +

α

T0
|u4|2 + εjl ∂lu5 ∂ju5+

+
τ

|τ |2 T0
κjl ∂lu4 ∂ju4 − 2Re {gl u4 ∂lu5}

]
dx = 0. (1.94)

Note that due to the relations (1.8), (1.29), and (1.30) we have

E (m)(u (m), u (m)) > 0, κ
(m)
lj ∂lu

(m)
4 ∂ju

(m)
4 > 0,

κjl E(u, u) > 0, ∂lu4 ∂ju4 > 0, εjl ∂lu5 ∂ju5 > 0
(1.95)

with the equality only for complex rigid displacement vectors, constant tem-
perature distributions and a constant electric potential field,

u (m) = a (m) × x+ b (m), u
(m)
4 = a

(m)
4 ,

u = a × x+ b, u4 = a4, u5 = a5,
(1.96)

where a (m), b (m), a, b ∈ C 3, a
(m)
4 , a4, a5 ∈ C, and × denotes the usual cross

product of two vectors.
Take into account the above inequalities and separate the real and imag-

inary parts of (1.94) to obtain
∫

Ω (m)

[
E (m)(u (m), u (m)) + % (m) (σ2 − ω2) |u (m)|2+
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+
α (m)

T0
|u (m)

4 |2 +
σ

|τ |2 T0
κ

(m)
lj ∂lu

(m)
4 ∂ju

(m)
4

]
dx+

+

∫

Ω

[
E(u, u) + % (σ2 − ω2) |u|2 +

α

T0
|u4|2+

+
σ

|τ |2 T0
κjl ∂lu4 ∂ju4−2Re{gl u4 ∂lu5}+εjl ∂lu5 ∂ju5

]
dx=0, (1.97)

∫

Ω (m)

[
2 % (m) σ ω |u (m)|2 +

ω

|τ |2 T0
κ

(m)
lj ∂lu

(m)
4 ∂ju

(m)
4

]
dx+

+

∫

Ω

[
2 % σ ω |u|2 +

ω

|τ |2 T0
κjl ∂lu4 ∂ju4

]
dx = 0. (1.98)

First, let us assume that σ > 0 and ω 6= 0. With the help of the homo-
geneous boundary and transmission conditions we easily derive from (1.98)

that u
(m)
j = 0 in Ω (m) and uj = 0 in Ω, j = 1, 4. From (1.97) we then con-

clude u5 = const in Ω, whence u5 = 0 in Ω follows due to the homogeneous
boundary condition on SD.

Thus U (m) = 0 in Ω (m) and U = 0 in Ω.
The proof for the case σ > 0 and ω = 0 is quite similar. The only

difference is that now, in addition to the above relations, we have to apply
the inequality in (1.31) as well.

For τ = 0, by adding the relations (1.42) and (1.43) with c/T0 for c1 and
c, we arrive at the equality

∫

Ω(m)

[
E(m)(u(m), u(m))+

c

T0
κ

(m)
lj ∂lu

(m)
4 ∂ju

(m)
4 −γ(m)

jl u
(m)
4 ∂ju

(m)
j

]
dx+

+

∫

Ω

[
E(u, u ) +

c

T0
κjl ∂lu4 ∂ju4 − γjl u4 ∂luj − gl u4 ∂lu5+

+ εjl ∂lu5 ∂ju5

]
dx = 0, (1.99)

where c is an arbitrary constant parameter.
Dividing the equality by c and sending c to infinity we conclude that

u
(m)
4 = 0 in Ω (m) and u4 = 0 in Ω due to the homogeneous boundary

and transmission conditions for the temperature distributions. In view of
(1.99), this easily yields that U (m) = 0 in Ω (m) and U = 0 in Ω due to the
homogeneous boundary conditions on SD. �

Note that for τ = i ω (i.e., for σ = 0 and ω 6= 0) the homogeneous problem
may possess a nontrivial solution, in general. These values of the frequency
parameter ω correspond to resonance regimes and the corresponding exte-
rior steady state oscillation problems need special consideration related to
generalized Sommerfeld radiation conditions (cf. [29, 30, 51]).
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Below we apply the potential method and the theory of pseudodifferen-
tial equations to study the existence of solutions to the pseudo-oscillation
problems in different function spaces and to establish their regularity prop-
erties.

2. Pseudodifferential Equations and Local Principle

In the present section, for the readers convenience we collect some results
from the theory of pseudodifferential equations which we need in the study
of the above formulated mixed transmission-boundary vale problems. Note
that some results exposed below are known and are dispersed in scientific
papers (for details and historical notes see e.g. [12, 20]), but some results,
in particular, Theorem 2.31 is new and plays a crucial role in our analysis.

2.1. ΨDOs: definition and basic properties. Let S(Rn) denote the
Schwartz space of rapidly decaying smooth functions endowed with the semi-
norms

S(Rn) =
{
f ∈ C∞(Rn) : pm(f) <∞, m = 0, 1, . . .

}
,

pm(f) := sup
x∈Rn

〈x〉m
∑

|α|6m

|∂αf(x)|, 〈x〉 := (1 + |x|2)1/2.
(2.1)

The dual space S′(Rn) to S(Rn), the Frechet space of functionals over
S(Rn), is known as the space of tempered distributions.

It is well known that the Frechet spaces S(Rn) and S
′(Rn) are both

invariant with respect to the Fourier direct and inverse transforms

F±1 : S(Rn) → S(Rn) and F±1 : S
′(Rn) → S

′(Rn), (2.2)

which are continuous operators there. For absolutely integrable functions
on Rn they are defined as follows

Fx→ξ[f ] =

∫

Rn

f(x) eixξ dx, F −1
ξ→x[g] =

1

(2π)n

∫

Rn

g(ξ) e−ixξ dξ.

A partial differential operator (PDO)

P(x,D) =
∑

|α|6m

aα(x)Dα =
∑

|α|6m

aα(x)(i∂)α (2.3)

with scalar or matrix coefficients aα(x), can also be written as follows

P(x,Dx) = F−1
ξ 7→xP (x, ξ)Fy 7→ξ , (2.4)

where D = i∂ = (i∂1, i∂2, i∂3),

P(x, ξ) :=
∑

|α|6m

aα(x)ξα (2.5)

is the characteristic polynomial or the symbol of the operator P(x,D).
In this section, sometimes we do not distinguish between scalar and vector

spaces of functions when it does not lead to misunderstanding and it is
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clear from the context which space is appropriate for the operators under
consideration.

Another class of similar operators are convolutions: With a given tem-
pered distribution a ∈ S′(Rn) we associate the convolution operator

a(D)ϕ = W 0
aϕ := F−1aFϕ for ϕ ∈ S(Rn), (2.6)

which is a bounded transform

W 0
a : S(Rn) → S

′(Rn). (2.7)

Indeed, a(D) = W 0
a represents a composition of three bounded operators

(see (2.2)):

F : S(Rn) → S(Rn),

aI : S(Rn) → S
′(Rn),

F−1 : S
′(Rn) → S

′(Rn).

The distribution a ∈ S′(Rn) is referred to as the symbol of W 0
a .

For the composition of convolution operators we have:

W 0
aW

0
b = W 0

b W
0
a = W 0

ab (2.8)

whenever a, b ∈ S′(Rn) and the product ab = ba is a well defined distribution
ab ∈ S′(Rn).

Indeed, FW 0
b ϕ = FF−1bFϕ = bFϕ for all ϕ ∈ S(Rn). The product

abFϕ is well defined since ab ∈ S′(Rn) and Fϕ ∈ S(Rn). Moreover, abFϕ ∈
S′(Rn) and the final result follows

W 0
aW

0
b ϕ = F−1[abFϕ] = W 0

abϕ ∈ S
′(Rn) for ϕ ∈ S(Rn).

Equalities (2.4) and (2.6) demonstrate a similarity of PDOs and convolution
operators and justifies the following preliminary definition of a pseudodif-
ferential operator

a(x,D)u(x) := F−1
ξ 7→x

{
a(x, ξ)Fy 7→ξ [u(y)]

}
= (2.9)

=

∫

Rn

e−ixξa(x, ξ)(Fu)(ξ)d−ξ , u ∈ S(Rn) ,

where

d−ξ :=
1

(2π)n
dξ,

To make the definition (2.9) rigorous, we formulate conditions on the
symbol a.

Definition 2.1. For m ∈ R the notation Sm(Rn ×Rn) = Sm
1,0(R

n ×Rn)
refers to the Hörmander class of functions a ∈ C∞(Rn × Rn) which admit
the following estimate

∣∣∂α
ξ ∂

β
xa(x, ξ)

∣∣ 6 Cα,β〈ξ〉m−|α|, (2.10)

for all x, ξ ∈ R
n and all α, β ∈ N

n
0 with N0 := {0, 1, 2, 3, · · · }.
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Definition 2.2. Let a ∈ Sm(Rn × Rn), m ∈ R. The operator a(x,D)
in (2.9) is a pseudodifferential operator (abbreviation-ΨDO) of order m and
a(x, ξ) is the symbol of a(x,D).

The notation OPSm refers to the set of all ΨDOs with symbols from the
class S

m(Rn × R
n).

In what follows, for the symbol of a pseudodifferential operator a(x,D) ∈
OPSm we will use also another notation Sa ∈ Sm(Rn × Rn) and we write

a = F−1
ξ 7→xSa(x, ξ)Fy 7→ξ .

A simplest boundedness result for a ΨDO is the following.

Proposition 2.3. Let m ∈ R, a ∈ Sm(Rn × Rn) and S(Rn) be the
Fréchet-Schwartz space of fast decaying test functions. The corresponding
ΨDO is a bounded operator in the space of fast decaying Fréchet-Schwartz
test functions

a(x,D) : S(Rn) → S(Rn)

and in the dual space of tempered distributions

a(x,D) : S
′(Rn) → S

′(Rn).

For the proof we refer to the monographs on ΨDOs, e.g. to [28, vol. 3,
Theorem 18.1.6, Theorem 18.1.7].

For a rigorous definition of a ΨDOs one can apply oscillatory integrals.
Let us consider a special cut off function χ( · , · ) ∈ C∞

0 (Rn
x × Rn

ξ ),

χ(x, ξ) = 1 in some neighborhood of the diagonal x = ξ. Let g ∈ Sm(Rn ×
Rn). If the limit

lim
ε→0

∫

Rn
ξ

∫

Rn
x

χ(εx, εξ)g(x, ξ)e±ixξdx d−ξ ,

exists, it is called the oscillatory integral and is denoted by Os(g(x, ξ)e±ixξ)
Note, that the oscillatory integral for g ∈ L1(R

n
x ×Rn

ξ ) coincides with the
usual one

Os(g(x, ξ)e±ixξ) =

∫

Rn
ξ

∫

Rn
x

g(x, ξ)e±ixξdx d−ξ .

Proposition 2.4. For arbitrary a ∈ Sm(Rn×Rn) the oscillatory integral
Os(a(x, ξ)e±ixξ) exists and is independent of the choice of a cut-off function
χ(x, ξ).

For the proof we refer, e.g., to the monograph [67, § 1].
Let a ∈ Sm(Rn × Rn). The corresponding ΨDO

a(x,D)u(x) :=

∫

Rn

e−ixξa(x, ξ)(Fu)(ξ)d−ξ =

=

∫

Rn
ξ

∫

Rn
y

eiξ(y−x)a(x, ξ)u(y)d−ξ dy =
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=

∫

Rn
ξ

∫

Rn
y

eiyξa(x, ξ)u(x + y)d−ξ dy , u ∈ S(Rn) . (2.11)

exists as a x-parameter dependent oscillatory integral:

a(x,D)u(x) = Os(e±iyξa(x, ξ)u(x + y)) , x ∈ R
n . (2.12)

The oscillatory integral in (2.11) extends to all smooth functions with poly-
nomial growth at infinity

u ∈ C
∞
POL(Rn) :=

:=
{
v ∈ C∞(Rn) : 〈x〉−Nv,α |∂α

x v(x)| 6 Mv,α <∞, Nv,α ∈ N0

}
.

Let the dotted Euclidean space
•

Rn denote the one point compactification
of Rn with neighborhoods of infinity, defined as the complementary domains
U c := Rn\U to compact domains U ⊂ Rn. The Hörmander class of symbols

Sm(
•

Rn × Rn) consists of those functions a(x, ξ) from Sm(Rn × Rn), which
have limits lim

|x|→∞
a(x, ξ) uniformly with respect to ξ ∈ Rn.

Proposition 2.5 (Calderon–Vaillancourt). Let 1 < p < ∞, 1 6 q 6 ∞,

m, s ∈ R and a ∈ Sm(
•

Rn × Rn). Then the ΨDOs

a(x,D) : Hs
p(Rn) → Hs−m

p (Rn),

: Bs
p,q(R

n) → Bs−m
p,q (Rn) (2.13)

are bounded.

For the proof we refer to [60] and, for the case p = 2, the monographs [28,
vol. 3, Theorem 18.1.13] and [67, § 7].

Let Ω ⊂ Rn be a bounded domain with the Lipschitz boundary S :=
∂Ω 6= ∅ and rΩ be the restriction operator to the domain Ω. Let `Ω be the
extension by 0 from Ω to Rn. Then, by definition,

H̃s
p(Ω) :=

{
ϕ ∈ Hs

p(Rn) : suppϕ ⊂ Ω
}
. (2.14)

H̃s
p(Ω) is a subspace of Hs

p(Rn) and inherits the norm from the ambient
space.

The space Hs
p(Ω) represents restrictions of functions from Hs

p(Rn), i.e.,
Hs

p(Ω) := rΩH
s
p(Rn). The space is endowed with the norm of the factor-

space Hs
p(Rn)/H̃s

p(Ωc), where Ωc := R
n \Ω is the complemented domain to

Ω. It means that the norm of ϕ ∈ Hs
p(Ω) is defined by the equality

‖ϕ‖Hs
p(Ω) ≡

∥∥ϕ|Hs
p(Ω)

∥∥ := inf
extΩϕ∈Hs

p(Rn)

∥∥extΩ ϕ|Hs
p(Rn)

∥∥, (2.15)

where extΩ is an extension operator from Ω to Rn preserving the space.

The spaces B̃s
p,q(Ω) and Bs

p,q(Ω) are defined Similarly.
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Let Sm(
•

Ω×Rn) denote the Hórmander class Sm(Ω×Rn) if Ω is compact
and consist of those functions a(x, ξ) from Sm(Ω × Rn), which have limits

lim
x∈Ω, |x|→∞

a(x, ξ) uniformly with respect to ξ ∈ Rn if Ω is unbounded.

Corollary 2.6. Let 1 < p < ∞, 1 6 q 6 ∞, m, s ∈ R and a ∈ Sm(
•

Ω×
Rn). Then the ΨDO

rΩa(x,D) : H̃s
p(Ω) → Hs−m

p (Ω),

: B̃s
p,q(Ω) → Bs−m

p,q (Ω), (2.16)

is bounded. Moreover, if the symbol of the ΨDO a(x,D) is a rational func-
tion in ξ and s > −1/p, then the operators

rΩa(x,D)`Ω : Hs
p(Ω) → Hs−m

p (Ω),

: Bs
p,q(Ω) → Bs−m

p,q (Ω), (2.17)

are bounded as well.

The boundedness result (2.16) is a direct consequence of Proposition 1.8
and the above definition of the spaces. The boundedness result (2.17) follows
as a particular case of the boundedness result for ΨDOs which possess the
transmission property, because the ΨDOs with rational symbols have the
transmission property (see [2, 3, 22, 26]).

Corollary 2.7. If a ∈ C∞(Rn×Rn) has a compact support in the second
variable, i.e., a(x, ξ) = 0 for |ξ| > M for some M > 0 and all x ∈ Rn, the
ΨDO a(x,D) is infinitely smoothing and maps the spaces

a(x,D) : Hs
p(Rn) → C∞(Rn),

: Bs
p,q(R

n) → C∞(Rn) (2.18)

for all 1 < p <∞, 1 6 q 6 ∞ and s ∈ R.

Definition 2.8. A symbol a ∈ Sm(Rn × Rn) will be referred to as a
classical of order m and the corresponding ΨDO-a classical ΨDO if there
exist homogeneous symbols

aj(x, λξ) = λm−jaj(x, ξ) ∀λ > 0, j = 0, 1, . . . ,

such that for arbitrary non-negative integer N ∈ N0, the remainder term

a0
N+1(x, ξ) := a(x, ξ) −

N∑

j=0

ψ(ξ)aj(x, ξ)

satisfies the inclusion a0
N+1 ∈ Sm−N−1(Rn × Rn), where ψ ∈ C∞(Rn) is a

smooth cut off function: ψ(ξ) = 1 for |ξ| > 1 and ψ(ξ) = 0 for |ξ| < 1
2 .

In such a case we write

a(x, ξ) ∼
∞∑

j=0

aj(x, ξ) (2.19)
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and call the leading homogeneous of order m term in the asymptotic expan-
sion apr(x, ξ) = a0(x, ξ) the principal symbol of a(x,D).

Denote the class of above introduced symbols by CLSm(Rn × Rn).

An important subclass of ΨDOs is the algebra of all partial differential
operators (PDOs) with C∞–smooth N×N matrix coefficients. If all deriva-
tives of coefficients of a PDO of order m are uniformly bounded, symbol of
such PDO belongs obviously to the class S

m(Rn × R
n).

An important subclass of ΨDOs are elliptic operators:

Definition 2.9. A ΨDO a(x,D) with a symbol a(x, ξ) in Sm(Rn × Rn)
is called elliptic if

lim
R→∞

inf
|ξ|>R

| det a(x, ξ)|
〈ξ〉m 6= 0 ∀x ∈ R

n. (2.20)

The most important property of elliptic operators is the existence of a
parametrix.

Definition 2.10. An operator R(x,D) is called a parametrix for a ΨDO
a(x,D) with a symbol a(x, ξ) in Sm(Rn × Rn) if

R(x,D) a(x,D) = I + T1(x,D), a(x,D)R(x,D) = I + T2(x,D), (2.21)

where T1(x,D),T2(x,D) are infinitely smoothing operators and map spaces
T1(x,D),T2(x,D) : Hs

p(Rn) → C∞(Rn) for arbitrary 1 < p < ∞ and
s ∈ R.

For a compact manifold M existence of a parametrix implies that a(x,D)
is a Fredholm operator (see Theorem 2.22), while in the case of Rn it helps,
for example, to prove local regularity of a solution.

Proposition 2.11. Let m ∈ R and a ∈ S
m(

•

R
n × R

n) be elliptic. Then
the ΨDO a(x,D) has a parametrix.

We drop the proof and refer the reader for details to [28, vol. 3, § 18.1],
[67, S 5.4] and [60].

Very important subclass of pseudodifferential operators are differential
operators with C∞-smooth uniformly bounded matrix coefficients

A(x,D) :=
∑

|α|6m

aα(x)∂α, aα ∈ C∞(Rn). (2.22)

Assume that the differential operator A(x,D) in (2.22) has a fundamental
solution KA(x, y)

A(x,D)KA(x, y) = δ(x− y) I, x, y ∈ R
n. (2.23)

Then this operator has the inverse, written with the help of the fundamental
solution

A−1(x,D)ϕ(x) :=

∫

Rn

KA(x, y)ϕ(y) dy, ϕ ∈ C∞
0 (Rn). (2.24)
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If the operator A(x,D) = A(D) has constant coefficients and is not
zero identically, the fundamental solution KA(x, y) = KA(x− y) exists and
depends on the difference of variables (see, e.g., [28, §10, Theorem 10.2.1]).
Moreover, inverse A−1(ξ) of the symbol

A(ξ) =
∑

|α|6m

aα(−i)|α|ξα, ξ ∈ R
n,

of elliptic PDO A(D) with constant coefficients and the Fourier transform
of the fundamental solution are equal A−1(ξ) = Fx→ξ[KA(x)]. Thus, the
inverse operator A−1(x,D) looks like a ΨDO, but does not belong to the
class of ΨDOs defined above, since the symbol A−1(x, ξ) in elliptic case
might be unbounded, but is bounded for |ξ| > MA if MA is sufficiently
large. Let us consider a C∞-smooth cut off function ψ(x) = 0 for |ξ| < MA

and ψ(x) = 1 for |ξ| > MA + 1. Then

A−1(x, ξ) := A−1
0 (x, ξ) + A−1

1 (x, ξ),

A−1
0 (x, ξ) := ψ(ξ)A−1(x, ξ), A−1

1 (x, ξ) = [1 − ψ(ξ)]A−1(x, ξ),
(2.25)

where A−1
0 ∈ Sm(Rn × Rn), while A−1

1 (x, ξ) has a compact support in ξ.
The corresponding ΨDO A1(x,D) is infinitely smoothing, like the operator
in (2.18) (cf. Corollary 2.7).

Definition 2.12. For m ∈ R by S̃m(Rn × Rn) denote the extension of
Hörmander’s class of symbols

a(x, ξ) = a0(x, ξ) + a1(x, ξ), a0 ∈ S
m(Rn × R

n), (2.26)

where the symbol a1(x, ξ) is such that the corresponding ΨDO a1(x,D),
defined by equality (2.11), is infinitely smoothing

a1(x,D) : Hs
p(Rn) → C∞(Rn),

: Bs
p,q(R

n) → C∞(Rn) (2.27)

for all 1 < p <∞, 1 6 q 6 ∞ and s ∈ R.

The Freshet space Hs
p,loc(Ω) on a non-compact domain Ω (including the

case Ω = Rn) is defined as the space of functions ϕ which belong to Hs
p(Ω)

locally: χϕ ∈ Hs
p(Ω) for all χ ∈ C∞

0 (Ω).
The Freshet spacesHs

p,com(Ω) on a non-compact domain Ω (including the
case Ω = R

n) is defined as the subspace of Hs
p(Ω) consisting of all functions

with compact supports.
If Ω is compact, then evidently Hs

p,com(Ω) = Hs
p,loc(Ω) = Hs

p(Ω).

The spaces Bs
p,q,loc(Ω), Bs

p,q,com(Ω), H̃s
p,com(Ω), B̃s

p,q,com(Ω) are defined
similarly.
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Corollary 2.13. Let 1 < p < ∞, 1 6 q 6 ∞, m, s ∈ R and a ∈
S̃m(Ω × Rn). Then the ΨDOs

rΩa(x,D) : H̃s
p,com(Ω) → Hs−m

p,loc (Ω),

: B̃s
p,q,com(Ω) → Bs−m

p,q,loc(Ω), (2.28)

are bounded. Moreover, if the symbol of the ΨDO a(x,D) is a rational
function in ξ and s > −1/p, then the operators

rΩa(x,D)`Ω : Hs
p,com(Ω) → Hs−m

p,loc (Ω),

: Bs
p,q,com(Ω) → Bs−m

p,q,loc(Ω), (2.29)

are bounded as well.

If a ∈ S̃m(
•

Ω× Rn), then the ΨDOs

rΩa(x,D) : H̃s
p(Ω) → Hs−m

p,loc (Ω),

: B̃s
p,q(Ω) → Bs−m

p,q,loc(Ω), (2.30)

are bounded. Moreover, if the symbol of the ΨDO a(x,D) is a rational
function in ξ and s > −1/p, then the operators

rΩa(x,D)`Ω : Hs
p(Ω) → Hs−m

p,loc (Ω),

: Bs
p,q(Ω) → Bs−m

p,q,loc(Ω). (2.31)

are bounded as well.

2.2. ΨDOs on manifolds. Let us proceed by the definition of a manifold.

Definition 2.14. A topological space M is called a closed manifold (or
a manifold without boundary ∂M = ∅) if it is covered by a finite number

of coordinate patches M =
⋃M

j=1 Uj which are homeomorphic to subsets
in Rm

κj : Vj → Uj , Vj ⊂ R
m, j = 1, . . . ,M. (2.32)

Here m is the dimension of M, κj are called coordinate homeomorphisms,

the pairs {Uj ,κj}-the coordinate charts and the collection
{
{Uj ,κj}

}M

j=1
-the

coordinate atlas.
If all domains V1, . . . , VM in (2.32) are compact (bounded), then M is a

compact manifold.
If X = κj(x) ∈ M, the Euclidean coordinates of x ∈ Rn are called the

Cartesian coordinates of X ∈ M.
If κ

−1
j ◦ κk ∈ Cµ(Vj ∩ Vk) for some 0 < µ < ∞ and for all pairs (j, k)

whenever Vj ∩ Vk 6= ∅, manifold M is µ-smooth. C∞-smooth manifold is
called smooth.

Two coordinate atlases {Uj ,κj} and {Ũj , κ̃j} on a manifold M are equiv-

alent if there exists a third atlas {Ûj , κ̂j} on M, which contains both atlases

(or, the merged set {Uj ,κj}
⋃{Ũj , κ̃j} is an atlas on M).
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A compact manifold without boundary will be referred to as Manifold.
For the definition of a function spaces on M, including the spaces of dis-

tributions, and for many other purposes it is convenient to have a partition
of unity {ψj}M

j=1 subordinated to a given covering {Uj}M
j=1:

M∑

j=1

ψj(X) ≡ 1 , supp ψj ⊂ Uj , j = 1, . . . ,M . (2.33)

By D′(M) we denote the the space of Schwartz distributions on a smooth
manifold M.

Definition 2.15. An operator

A : C∞(M) → D
′(M) (2.34)

is called pseudodifferential A = a(X , D) with a symbol a ∈ S̃m(M×Rn), if:

i. χ1Aχ2I : Hs(M) → C∞(M) are continuous for all s ∈ R and all
pairs of functions with disjoint supports supp χ1 ∩ supp χ2 = ∅; in
other words, χ1Aχ2I has order −∞;

ii. the pull back operator

κj,∗ψjAψjκ
−1
j,∗u = a(j)(x,D)u, u ∈ C∞

0 (Rn), (2.35)

are ΨDOs for all j = 1, . . . ,M with the “pull back” symbols

a(j)(κj(x), ξ) = ψj(κj(x))a
(
x, [κ ′

j(x)]
>ξ

)
, a(j) ∈ S̃

m(M× R
n),

X = κj(x) ∈ Vj ⊂ M , x ∈ Uj ⊂ R
n, ξ ∈ R

n

and κj,∗ψ(x) := ψ(κj(x)), κ
−1
j,∗ϕ(X) := ϕ(κ−1

j (X)), while κ ′
j(x)

denotes the corresponding Jacobian.

More precisely, the symbol a(x, ξ) of a ΨDO A = a(x,D) on a manifold
M is defined on the cotangent bundle T ∗M and is independent of the choice
of the coordinate diffeomorphisms and charts. For details of the definition
we refer to the monographs [28, vol. 3, Definition 18.1.20] and [67, § 4.3].

Definition 2.16. If X(Rn) is a function space on Rn (e.g., the Bessel
potential space Hs

p(Rn) or the Besov space Bs
p,q(R

n)), the corresponding
function space X(M) on a sufficiently smooth manifold M (e.g. the Bessel
potential space Hs

p(M) or the Besov space Bs
p,q(M)) consists of functions

ϕ ∈ X(M) for which κj,∗[ψϕ](x) := ψ(κj(x))ϕ(κj (x)) ∈ X(Rn) for all
j = 1, . . . ,M, and is endowed with the norm

‖ϕ‖X(M) ≡
∥∥ϕ|X(M)

∥∥ :=

M∑

j=1

∥∥κj,∗[ψjϕ]|X(Rn)
∥∥. (2.36)

As a byproduct of Definition 2.15 and the Calderon–Vaillancourt Propo-
sition 2.5 we have the following.
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Theorem 2.17. Let 1 < p < ∞ and s,m ∈ R. Let a(X , D) be a ΨDO

on a manifold M with a symbol a ∈ S̃
m(M,Rn). Then the operator

a(X , D) : Hs
p(M) → Hs−m

p (M)

is continuous.

The next assertion states a boundedness result for a ΨDO with non-
classical symbol. The proof can be found in [65].

Proposition 2.18. Let 1 < p <∞, r ∈ R, s > n/2 and
∑

|α|6[ n
2 ]+1

∑

|β|6m

sup
ξ∈Rn

∥∥∥〈ξ〉−rξαa
(α)
(β)( · , ξ)

∣∣Hs
p(Rn)

∥∥∥ < +∞ for p 6= 2,

∑

|β|6m

sup
ξ∈Rn

∥∥∥〈ξ〉−ra(β)( · , ξ)
∣∣Hs

2 (Rn)
∥∥∥ < +∞ for p = 2, (2.37)

where

a
(α)
(β)(x, ξ) := ∂α

ξ ∂
β
xa(x, ξ) for α, β ∈ N

n
0 .

Then the operator

a(x,D) : Hσ+r
p (Rn) → Hσ

p (Rn)

is bounded for arbitrary −m ≤ σ ≤ m.

Now we formulate the well known Sobolev’s compact embedding lemma
(see, e.g., [67, § 7.6], [22, Theorem 4.3], for p = 2 and [72,73] for 1 < p <∞).

Proposition 2.19. Let 1 < p < ∞, s, σ ∈ R, σ < s, and M be a
compact manifold. Then the embedding Hs

p(M) ⊂ Hσ
p (M) is compact.

As a byproduct of Theorem 2.17 and Proposition 2.19 we have the fol-
lowing.

Lemma 2.20. Let 1 < p < ∞, s,m ∈ R, ε > 0, and M be a compact
manifold.

Then the operator a(X , D) : Hs
p(M) → Hs−m

p (M) with a symbol a ∈
S̃

m−ε(M,Rn) is compact.

Next proposition shows that the set of ΨDOs is an algebra, i.e., a com-
position of ΨDOs is again a ΨDO.

Proposition 2.21. Let 1 < p <∞ and s,m1,m2, σ ∈ R.
Then the composition a(X , D)b(X , D) =: c(X , D) of ΨDOs with symbols

a ∈ S̃m1(M× Rn) and b ∈ S̃m2(M× Rn) is a ΨDO with the symbol

c(X , ξ) = a(X , ξ)b(X ,X) + cm1+m2−1(X , ξ) ,

cm1+m2−1 ∈ S̃
m1+m2−1(M× R

n).

If, in particular, M is compact, the operator

cm1+m2−1(X , D) := c(X , D) − a(X , D)b(X , D)
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is compact between the spaces

cm1+m2−1(X , D) : Hs
p(M) → Hs−m1−m2

p (M) . (2.38)

For the proof we refer to monograph on ΨDOs, e.g. to [67, § 7].
The next Theorem 2.22 is actually a consequence of the foregoing Propo-

sition 2.21, but concerning only the sufficiency of ellipticity of the symbol
for the Fredholm property of a ΨDO. Necessity of the condition is proved
with the help of a local principle, exposed below in Subsection 2.4. We drop
the proof and refer the reader for details to [12, 17, 21, 64].

Theorem 2.22. Let 1 < p < ∞, s,m ∈ R, and M be a compact mani-
fold. The operator

a(X , D) : [Hs
p(M)]N → [Hs−m

p (M)]N (2.39)

with a N × N matrix symbol a ∈ S̃m(M × Rn) is Fredholm if and only if
the symbol is elliptic

lim
R→∞

inf
|ξ|>R

| det a(X , ξ)|
〈ξ〉m 6= 0 ∀X ∈ M . (2.40)

If a(X , D) is Fredholm, it has a regularizer (a parametrix) P(X , D), such that

P(X , D)a(X , D) = I + T1(X , D) ,

a(X , D)P(X , D) = I + T2(X , D) ,
(2.41)

where T1(X , D) and T2(X , D) are infinitely smoothing compact operators

T1(X , D), T2(X , D) : [Hs
p(M)]N → [C∞(M))]N ∀ s ∈ R . (2.42)

Let s ∈ R, m ∈ N0 and 1 < p <∞. By Hs,m
p (Rn

+) we denote the Banach
space of functions (of distributions for s < 0) endowed with the norm

∥∥u|Hs,m
p (Rn

+)
∥∥ :=

m∑

k=0

∥∥xk
nu|Hs+k

p (Rn
+)

∥∥. (2.43)

Obviously, Hs,0
p (Rn

+) = Hs
p(Rn

+).

The spaces Hs,m
p (Ω) are defined similarly, by replacing xk

n in (2.43) with
dist(x, ∂Ω).

The spaces

H
s,∞
p (Ω) :=

⋂

m∈N0

H
s,m
p (Ω) , (2.44)

endowed with an appropriate topology, are Freshet spaces.
The Besov weighted spaces Bs,m

p,q are defined similarly.

Theorem 2.23. Let 1 < p <∞, s, r ∈ R, m ∈ N0, a ∈ Sr(
•

Ω,Rn). Then
the operators

rΩa(x,D) : H̃
s,m
p (Ω) → H

s−r,m
p (Ω) ,

: B̃
s,m
p,q (Ω) → B

s−r,m
p,q (Ω) , (2.45)
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are continuous. Moreover, if the symbol of the ΨDO a(x,D) is a rational
function in ξ and s > −1/p, then the operators

rΩa(x,D)`Ω : H
s,m
p (Ω) → H

s−r,m
p (Ω) ,

: B
s,m
p,q (Ω) → B

s−r,m
p,q (Ω) , (2.46)

are bounded as well.
If a ∈ S̃r(Ω × Rn), then the operators

rΩa(x,D) : H̃
s,m
p,com(Ω) → H

s−r,m
p,loc (Ω),

: B̃
s,m
p,q,com(Ω) → B

s−r,m
p,q,loc(Ω), (2.47)

are bounded.
Moreover, if the symbol of the ΨDO a(x,D) is a rational function in ξ

and s > −1/p, then the operators

rΩa(x,D)`Ω : H
s,m
p,com(Ω) → H

s−r,m
p,loc (Ω),

: B
s,m
p,q,com(Ω) → B

s−r,m
p,q,loc(Ω), (2.48)

are bounded as well.

Proof. Let us prove the continuity properties (2.45), (2.46). The continuity
properties (2.47), (2.48) are proved similarly.

The continuity (2.45) is a local property and it suffices to prove the
theorem for Ω = Rn

+. To this end, let us apply the equality

xk
na(x,D)u(x)=

k∑

l=0

ilk!

l!(k−l)! (∂
l
ξn

a)(x,D)xk−l
n u(x), u∈C∞

0 (Rn), (2.49)

which is easy to verify directly. Applying (2.49) we proceed as follows

∥∥a(x,D)u|Hs−r,m
p (Rn

+)
∥∥ =

m∑

k=0

∥∥xk
na(x,D)u|Hs−r+k

p (Rn
+)

∥∥ 6

6

m∑

k=0

k∑

l=0

k!

l!(k − l)!

∥∥∥(∂l
ξn

a)(x,D)xk−l
n u

∣∣Hs−r+k
p (Rn)

∥∥∥ 6

6 M ′
m

m∑

k=0

k∑

l=0

∥∥xk−l
n u|Hs+l

p (Rn)
∥∥ 6 Mm

∥∥u|Hs,m
p (Rn)

∥∥

since ∂l
ξn
a ∈ S̃r−l(

•

Ω× Rn).

The continuity property (2.46) is a similar consequence of Corolla-
ry 2.6. �

Very important role in the operator theory and applications belong to
the interpolation of operators.
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Definition 2.24. Let Banach spaces G := {Bα}α∈A be embedded in
one Banach space Bα ⊂ B for all α ∈ A.

An Interpolation functor F of type θ, 0 6 θ 6 1, assigns to all pairs
Bα0 ,Bα1 ∈ G a new space F(Bα0 ,Bα1) = Bα, i.e., F : G × G → G, so
that:

i. Bα0 ∩ Bα1 ⊂ Bα ⊂ Bα0 + Bα1 ;
ii. an operator, bounded in arbitrary two pairs of spaces

A : Bα0 → Bα1 , Bα0 ∈ G, Bα1 ∈ G,

A : Bβ0 → Bβ1 , Bβ0 ∈ G, Bβ1 ∈ G,

after being restricted to the interpolated space Bα := F({Bα0 ,Bβ0}
maps this space to the interpolated space Bβ := F({Bα1 ,Bβ1} and

A : Bα → Bβ

is bounded.
iii. there is a constant C > 0 such that the inequality
∥∥A|L(Bα,Bβ)

∥∥ 6 C
∥∥A|L(Bα0 ,Bα1)

∥∥1−θ ∥∥A|L(Bβ0 ,Bβ1)
∥∥θ

(2.50)

holds, where L(B0,B1) denotes the set of all bounded linear oper-
ators from B0 into B1.

In the next proposition we expose interpolation properties of the spaces
defined in the present section. For the proof and further details we refer
to [73, § 2.4.2, § 2.4.7].

Proposition 2.25. Let

s0, s1 ∈ R, 0 < θ < 1, 1 6 p0, p1, ν, q0, q1,6 ∞,

1

p
=

1 − θ

p0
+

θ

p1
,

1

q
=

1 − θ

q0
+

θ

q1
, s = (1 − θ)s0 + θs1 .

For the real (·, ·)θ,p, the complex (·, ·)θ and the modified complex [·, ·]θ inter-
polation functors the following holds:

i. (Hs
p0

(Rn), Hs
p1

(Rn))θ,p = Hs
p(Rn) provided 1 < p0, p1 <∞;

ii. (Hs0
p0

(Rn), Hs1
p1

(Rn))θ = [Hs0
p0

(Rn), Hs1
p1

(Rn)]θ = Hs
p(Rn) provided

1 < p0, p1 <∞;

iii. (Hs0
r (Rn), Hs1

r (Rn))θ,ν = Bs
r,ν(Rn) provided s0 6= s1, 1 < r <∞;

iv. (Bs0
p0 ,q0

(Rn),Bs1
p1,q1

(Rn))θ = Bs
p,q(R

n).

Remark 2.26. The interpolation between loc-spaces Hs
p,loc(R

n),

W s
p,loc(R

n) and Bs
p,q,loc(R

n) holds as well: it suffices to apply the above

interpolations to operators χA with cut-off functions χ ∈ C∞
0 (Rn).

The interpolation between Bessel potential and Sobolev–Slobodetskii spa-

ces on a domain Hs
p(Ω), W s

p (Ω) and H̃s
p(Ω), W̃ s

p (Ω) and on a manifold
Hs

p(M), W s
p (M) holds as well (see [73, § 2.4.2, § 2.4.7]).

The interpolation holds also between weighted spaces on the Euclidean
half space Hs,m

p (Rn
+), Ws,m

p (Rn
+) and on a domain Hs,m

p (Ω), Ws,m
p (Ω) and
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H̃s,m
p (Ω), W̃s,m

p (Ω). To justify such interpolation, just note, that we can

interpolate the operator ρkA, k = 1, . . . ,m, instead of the operator A,
where ρ = xn for Rn

+ and ρ(x) = dist(x, ∂Ω) for a domain Ω.

2.3. Fredholm properties of ΨDOs on manifolds with boundary.
Let us commence the present subsection with the definition of a manifold
with boundary.

Definition 2.27. A topological space M is called an open manifold with
boundary ∂M if there exist two types of coordinate charts {Uj ,κj}:

i. The inner patches Uj , when domains in the Euclidean space Vj ⊂ Rn

are transformed by κj into Uj ;
ii. The boundary patches Uj , when domains in the Euclidean half space

Vj ⊂ Rn
+ are transformed by κj into Uj .

Let M be a compact, n-dimensional, smooth, nonselfintersecting man-
ifold with the smooth boundary ∂M 6= ∅ and let A(x,D) be a strongly
elliptic N ×N matrix ΨDO of order ν ∈ R on M. Denote by A(x, ξ) the
principal homogeneous symbol matrix of the operator A(x,D) in some local
coordinate system (x ∈ M, ξ ∈ Rn \ {0}).

Let λ1(x), . . . , λN (x) be the eigenvalues of the matrix
[
A(x, 0, . . . , 0,+1)

]−1 [
A(x, 0, . . . , 0,−1)

]
, x ∈ ∂M, (2.51)

and introduce the notation

δj(x) = Re
[
(2π i)−1 lnλj(x)

]
, j = 1, . . . , N. (2.52)

Here ln ζ denotes the branch of the logarithmic function analytic in the
complex plane cut along (−∞, 0]. Note that the numbers δj(x) do not
depend on the choice of the local coordinate system and the strong inequality
−1/2 < δj(x) < 1/2 holds for all x ∈ M, j = 1, N, due to the strong
ellipticity of A. In a particular case, when A(x, ξ) is a positive definite
matrix for every x ∈ M and ξ ∈ Rn \ {0}, we have δ1(x) = · · · = δN (x) = 0
since the eigenvalues λ1(x), . . . , λN (x) are positive for all x ∈ M.

The Fredholm properties of strongly elliptic pseudo-differential operators
on manifolds with boundary are characterized by the following theorem
(see [22, 64]).

Theorem 2.28. Let s ∈ R, 1 < p < ∞, 1 ≤ q ≤ ∞, and let A(x,D)
be a ΨDO of order ν ∈ R with the strongly elliptic symbol A(x, ξ), that is,
there is a positive constant c 0 such that

ReA(x, ξ) η · η > c 0 |η|2 (2.53)

for x ∈ M, ξ ∈ Rn with |ξ| = 1, and η ∈ CN .
Then the operators

A :
[
H̃s

p(M)
]N →

[
Hs−ν

p (M)
]N

:
[
B̃s

p,q(M)
]N →

[
Bs−ν

p,q (M)
]N

(2.54)
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are Fredholm and have the trivial index Ind A = 0 if

1

p
− 1 + sup

x∈∂M, 16j6N
δj(x) < s− ν

2
<

1

p
+ inf

x∈∂M, 16j6N
δj(x). (2.55)

Moreover, the null-spaces and indices of the operators (2.54) coincide for
all values of the parameter q ∈ [1,+∞] provided p and s satisfy inequality
(2.55).

Let B1 and B2 be Banach spaces and B := B1 × B2 be their direct
product, consisting of pairs U = (u′, u′′)> ∈ B, where u′ ∈ B1 and u′′ ∈ B2.
Further, let B∗

j be the adjoint spaces to Bj , j = 1, 2, and B∗ := B∗
1 × B∗

2.
The notation 〈F, u〉 with F ∈ B∗

j and u ∈ Bj (or F ∈ B∗ and u ∈ B ) is
used for the duality pairing between the adjoint spaces.

It is obvious that the bounded operator A : B → B∗ has the form

A =

[
A11 A12

A21 A22

]
, (2.56)

where the operators

A11 : B1 → B
∗
1, A12 : B2 → B

∗
1,

A21 : B1 → B
∗
2, A22 : B2 → B

∗
2

(2.57)

are all bounded.

Lemma 2.29. Let the operator A in (2.56) be strongly coercive, i.e.,
there is a constant C > 0 such that

Re 〈AU,U〉 > C‖U‖2
B ∀U ∈ B . (2.58)

Then the operators A11 and A22 are both strongly coercive

Re 〈A11u, u〉 > C‖u‖2
B1

∀u ∈ B1,

Re 〈A22v, v〉 > C‖v‖2
B2

∀ v ∈ B2

(2.59)

and, thus, invertible. Moreover, the operators

B := A11 −A12A
−1
22 A21 : B1 → B

∗
1 , (2.60)

D := A22 −A21A
−1
11 A12 : B2 → B

∗
2 , (2.61)

are strongly coercive

Re 〈Bu, u〉 > C‖u‖2
B1

∀u ∈ B1, (2.62)

Re 〈Dv, v〉 > C‖v‖2
B2

∀ v ∈ B2 (2.63)

with the same constant C > 0 as in (2.58) and (2.59) and, thus, invertible.

Proof. The strong coercivity (2.59) follows by taking in (2.58) consecutively
U = (u, 0)> and U = (0, v)>. The strong coercivity implies the invertibility.

To prove (2.62) we proceed as follows. For U = (u′, u′′)> we have

C‖U‖2
B 6 Re 〈AU,U〉 =

= Re
[
〈A11u

′, u′〉 + 〈A12u
′′, u′〉 + 〈A21u

′, u′′〉 + 〈A22u
′′, u′′〉

]
. (2.64)
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Since

‖u′‖2
B1

6 ‖u′‖2
B1

+ ‖u′′‖2
B2

= ‖U‖2
B,

by introducing u′′ = −A−1
22 A21u and u′ = u into the inequality (2.64) we

get

C‖u‖2
B1

6 C‖U‖2
B 6 Re

[
〈A11u, u〉 − 〈A12A

−1
22 A21u, u〉−

− 〈A21u,A
−1
22 A21u〉 + 〈A21u,A

−1
22 A21u〉

]
= Re 〈Bu, u〉

and (2.62) is proven. Similarly, by introducing u′ = −A−1
11 A12u and u′′ = u

into the inequality (2.64), we get (2.63). �

Remark 2.30. We will actually apply the foregoing Lemma 2.29 not
only to Banach spaces, but also to a finite dimensional case when B1 = Cn

and B2 = Cm are finite dimensional spaces and

A(x, ξ) =

[
A11(x, ξ) A12(x, ξ)

A21(x, ξ) A22(x, ξ)

]
,

A11(x, ξ) =
[
Ajk

11(x, ξ)
]
n×n

, A12(x, ξ) =
[
Ajk

12(x, ξ)
]
n×m

,

A21(x, ξ) =
[
Ajk

21(x, ξ)
]
m×n

, A22(x, ξ) =
[
Ajk

22(x, ξ)
]
m×m

,

are the matrix-symbols of ΨDOs (cf. Theorem 2.31 and Theorem 6.3).
In particular, it follows that if the matrix A is strongly elliptic, then the

matrices A11, A22, A11 −A12A
−1
22 A21 and A22 −A21A

−1
11 A12 are strongly

elliptic as well.

Further, we treat an important example to demonstrate the local princi-
ple and Lemma 2.29 for the investigation of a nonclassical system of ΨDOs
on overlapping manifolds which is essentially employed in our analysis in
Section 6.

Let S be a closed smooth manifold of dimension n and M, C0 be a couple
of embedded open submanifolds C0 ⊂ M ⊂ S with the smooth disjoint
boundaries ∂C0 and ∂M, ∂C0 ∩ ∂M = ∅. Then the complemented surface
C := M\C0 has the boundary ∂C = ∂M∪∂C0. Clearly, M and C is another
couple of embedded open submanifolds C ⊂ M ⊂ S.

Let us consider a ΨDO

N(x,D) :=

[
rC [Alk(x,D)]M×N

rM[Atk(x,D)]L×N

]

N×N

(2.65)

with N = M + L, k = 1, N , l = 1, . . . ,M, and t = M + 1, . . . , N , where

A(x,D) :=
[
Alk(x,D)

]
N×N

(2.66)

is aN×N matrix pseudodifferential operator of order ν on S with an elliptic
principal homogeneous symbol A(x, ξ) := [Alk(x, ξ)]N×N . Let us treat the
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ΨDO N(x,D) in the following settings

N(x,D) : H̃
s
p → H

s−ν
p ,

: B̃
s
p,q → B

s−ν
p,q , 1 < p, q <∞, s, ν ∈ R,

(2.67)

where

H̃
s
p :=

[
H̃s

p(C)
]M ×

[
H̃s

p(M)
]L
,

H
s−ν
p :=

[
Hs−ν

p (C)
]M ×

[
Hs−ν

p (M)
]L
,

B̃
s
p,q :=

[
B̃s

p,q(C)
]M ×

[
B̃s

p,q(M)
]L
,

B
s−ν
p :=

[
Bs−ν

p,q (C)
]M ×

[
Bs−ν

p,q (M)
]L
.

(2.68)

Now, let us represent the operator A(x,D) given by (2.66) and its symbol
A(x, ξ) in the following block wise form

A(x,D) =

[
A11(x,D) A12(x,D)

A21(x,D) A22(x,D)

]
, (2.69)

A11(x,D) =
[
Ajk

11(x,D)
]
M×M

, A12(x,D) =
[
Ajk

12(x,D)
]
M×L

,

A21(x,D) =
[
Ajk

21(x,D)
]
L×M

, A22(x,D) =
[
Ajk

22(x,D)
]
L×L

,

A(x, ξ) =

[
A11(x, ξ) A12(x, ξ)

A21(x, ξ) A22(x, ξ)

]
, (2.70)

A11(x, ξ) =
[
Ajk

11(x, ξ)
]
M×M

, A12(x, ξ) =
[
Ajk

12(x, ξ)
]
M×L

,

A21(x, ξ) =
[
Ajk

21(x, ξ)
]
L×M

, A22(x, ξ) =
[
Ajk

22(x, ξ)
]
L×L

.

If A(x,D) is a strongly coercive ΨDO, then the symbol A(x, ξ) is strongly
elliptic (cf. e.g. [21]) which, in view of Remark 2.30 and Lemma 2.29, implies
that the symbol

D(x, ξ) := A11(x, ξ) −A12(x, ξ)[A22(x, ξ)]
−1A21(x, ξ) (2.71)

as well as the symbols A11(x, ξ) and A22(x, ξ) are strongly elliptic.
Denote by λA1 (x), . . . , λAN (x) and λD1 (x), . . . , λDM (x) the eigenvalues of the

matrices
[
A(x, 0, . . . , 0,+1)

]−1 [
A(x, 0, . . . , 0,−1)

]
, x ∈ ∂M , (2.72a)

[
D(x, 0, . . . , 0,+1)

]−1 [
D(x, 0, . . . , 0,−1)

]
, x ∈ ∂C0 , (2.72b)

respectively, and define

δAj (x) = Re
[
(2π i)−1 lnλAj (x)

]
, x ∈ ∂M, (2.72c)

δDk (x) = Re
[
(2π i)−1 lnλDk (x)

]
, x ∈ ∂C0, (2.72d)

j = 1, . . . , N, k = 1, . . . ,M.

Theorem 2.31. Let a nonclassical ΨDO N(x,D) in (2.65) be compiled
of a classical ΨDO A(x,D) in (2.66) with a strongly elliptic symbol A(x, ξ).
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The operator N(x,D) in (2.67) is Fredholm and has the trivial index
IndN(x,D) = 0 provided the following constraints hold

1

p
− 1 +

ν

2
+ γ′′ < s <

1

p
+
ν

2
+ γ′, (2.73)

with γ′′ = max{γ′′A, γ′′D} and γ′ = min{γ′A, γ′D}, where

γ′A := inf
x∈∂M, 16j6N

δAj (x), γ′′A := sup
x∈∂M, 16j6N

δAj (x), (2.74a)

γ′D := inf
x∈∂C0, 16k6M

δDk (x), γ′′D := sup
x∈∂C0, 16k6M

δDk (x). (2.74b)

Moreover, the null-spaces and indices of the operators (2.67) coincide for all
values of the parameter q ∈ [1,+∞] and all p, s which satisfy the inequality
(2.73).

In particular, if the operator (see (2.67) and (2.68))

N(x,D) : H̃
ν
2
2 → H

− ν
2

2

is strongly coercive, i.e., for all W = (U, V )> ∈ H̃
ν
2
2 there is a constant

C0 > 0, such that

Re
〈
N(x,D)W,W

〉
> C0‖W‖

H̃

ν
2
2

, (2.75)

‖W‖2

H̃

ν
2
2

= ‖U‖2

[H̃
ν
2
2 (C)]M

+ ‖V ‖2

[H̃
ν
2
2 (M)]L

,

then it is invertible in the space setting (2.67) under the constraints (2.73).

Proof. Since C is a proper part of M we can not apply Theorem 2.28 directly
to characterize the Fredholm properties of the operator (2.65). It is a proper
place to address the local principle for para-algebras. To this end, let either

Zs
p := Hs

p (Z̃s
p := H̃s

p) or Zs
p := Bs

p,q (Z̃s
p := B̃s

p,q). Consider the quotient
para-algebra

Ψ′(Z̃s
p,Z

s−ν
p ) =

[
Ψ(Z̃s

p,Z
s−ν
p )/C(Z̃s

p,Z
s−ν
p )

]
2×2

of all bounded ΨDOs Ψ(Z̃s
p,Z

s−ν
p ) in the indicated space pairs factored by

the ideal of all compact operators C(Z̃s
p,Z

s−ν
p ). Further, for arbitrary point

y ∈ M we define the following localizing class

∆y :=
{
[gyIN ], gy∈C∞(M), supp gy⊂Wy, gy(x)=1 ∀x∈W̃y

}
, (2.76)

where W̃y ⊂ Wy ⊂ M is arbitrary pair of small embedded neighbor-
hoods of y. The symbol [A] stands for the quotient class containing the
operator A. It is obvious that the system {∆y}y∈M is covering and all

its elements [gyIN ] commute with the class [B(x,D)] for arbitrary ΨDO

B(x,D) ∈ Ψ(Z̃s
p,Z

s−ν
p ) (to verify the commutativity recall that a commu-

tant B(x,D)gIN −gB(x,D) is compact for an arbitrary smooth function g).
ΨDOs are operators of local type: if g1 and g2 are functions with disjoint

supports supp g1∩supp g2 = ∅, then the operator g1B(x,D)g2I is compact
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in the spaces where B(x,D) is a bounded ΨDO. Applying the local property
of ΨDOs we can check the following local equivalence

[N(x,D)]
∆y∼ [Ny(x,D)] ∀ y ∈ M, (2.77)

where the local representatives Ny(x,D) in (2.77) are defined as follows:

Ny(x,D) := A(x,D) : [Hs
p(S)]N → [Hs−ν

p (S)]N for y ∈ C, (2.78a)

Ny(x,D) := A22(x,D) : [Hs
p(S)]L → [Hs−ν

p (S)]L (2.78b)

for y ∈ C0 = M\ C,
Ny(x,D) := rMA(x,D) : [H̃s

p(M)]N → [Hs−ν
p (M)]N (2.78c)

for y ∈ ∂M,

Ny(x,D) :=

[
[rCc

0
Ajk

11(x,D)]M×M [rCc
0
Ajk

12(x,D)]M×L

[Ajk
21(x,D)]L×M [Ajk

22(x,D)]L×L

]

N×N

=

=

[
rCc

0
A11(x,D) rCc

0
A12(x,D)

[A21(x,D) A22(x,D)

]

N×N

: Ṽ
s
p → V

s−ν
p , (2.78d)

for y ∈ ∂C0,

where Cc
0 is the complement surface Cc

0 := S \ C0 with the boundary ∂Cc
0 =

∂C0,

Ṽ
s
p :=

[
X̃s

p(Cc
0)

]M ×
[
Xs

p(S)
]L
,

V
s−ν
p :=

[
Xs−ν

p (Cc
0)

]M ×
[
Xs−ν

p (S)
]L

(2.79)

and either Xs
p = Hs

p or Xs
p = Bs

p,q .
Due to Theorem 2.45, formulated below, the operator N(x,D) in (2.67)

is Fredholm if and only if the operators Ny(x,D) in (2.78a)–(2.78d) are

Fredholm for all y ∈ M.
Since the ΨDO N(x,D) is strongly elliptic by the assumption, it has

strongly elliptic symbol ΨDOs N (x, ξ) (see e.g., [21]) and the symbols
A11(x, ξ), A22(x, ξ) in (2.70) are strongly elliptic due to Remark 2.30.

The ΨDOs Ny(x,D) in (2.78a) for y ∈ C and in (2.78b) for y ∈ C0 on
the closed manifold S have strongly elliptic symbols and are Fredholm for
all y ∈ C ∪ C0.

The ΨDO Ny(x,D) in (2.78c) has strongly elliptic symbol as well, but
restricted to the surface with the smooth boundary M needs the following
additional constraints to be Fredholm

1

p
− 1 +

ν

2
+ γ′′ < s <

1

p
+
ν

2
+ γ′, (2.80)

with γ′ and γ′′ defined in Theorem 2.31.
To investigate the elliptic ΨDO Ny(x,D) in (2.78d), first we remind that,

as noted above, the ΨDO

A22(x,D) =
[
Ajk

22(x,D)
]
L×L
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has strongly elliptic homogeneous principal symbol due to Lemma 2.29
and Remark 2.30. Since A22(x,D) is defined on the closed manifold S,
it is Fredholm with index 0 and there exists a compact operator T such
that A22(x,D) + T is invertible. For the quotient classes the equalities
[A22(x,D)+T] = [A22(x,D)] and [A22(x,D)+T]−1 = [A22(x,D)]−1 hold.

Note that the quotient classes

[F±(x,D)] :=

[
[IM×M ] [[0]M×L]

±[A22(x,D)]−1[A21(x,D)] [IL×L]

]

N×N

are invertible

[F−(x,D)] [F+(x,D)] = [F+(x,D)] [F−(x,D)] = [IN×N ]

and composing the quotient class [Ny(x,D)] with this invertible quotient
class we get

[Ñy(x,D)] := [Ny(x,D)] [F−(x,D)] :=

:=

[
[D(x,D)]

[
rCc

0
[A12(x,D)]M×L

]

[[0]L×M ] [A22(x,D)]

]

N×N

, (2.81)

where

Dy(x,D) = rCc
0

{
A11(x,D) −A12(x,D)[A22(x,D)]−1A21(x,D)

}
(2.82)

is a strongly elliptic ΨDO of order ν due to Lemma 2.29. It is sufficient to

prove that the composition [Ñy(x,D)] is an invertible class.

Note that [Ñy(x,D)] is upper block-triangular and the diagonal entry
[A22(x,D)] is an invertible class. Moreover, the entries [D(x,D)] and
[A22(x,D)] on the diagonal, being ΨDOs, commute (actually, these ma-
trix entries might have different dimension M ×M and L× L, but we can

extend the entire matrix [Ñy(x,D)] by identities on the diagonal and zeros
on the off-diagonal entries in the corresponding rows and columns, which
does not change the invertibility properties of the matrix and which will

equate the dimensions of the diagonal entries). Therefore [Ñy(x,D)] is in-
vertible if and only if the quotient class [Dy(D, x)] is invertible. This is
interpreted as follows: the operator

Ñy(x,D) : Z̃
s
p → Z

s−ν
p

is Fredholm if and only if the operator

Dy(D, x) : [X̃s
p(Cc

0)]
M → [Xs−ν

p (Cc
0)]

M (2.83)

is Fredholm. Since the principal homogeneous symbol of Dy(x,D) is D(x, ξ)
defined in (2.71), the operators Dy(D, x) in (2.73) is Fredholm provided the
following constraints are fulfilled

1

p
− 1 +

ν

2
+ γ′′D < s <

1

p
+
ν

2
+ γ′D, (2.84)

where γ′D and γ′′D are defined in (2.74b) (see Theorem 2.31).
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Summarizing the above we conclude that the ΨDO N(x,D) in (2.67) is
Fredholm provided the system of inequalities (2.80), (2.84) hold, which can
be rewritten in the form (2.73).

Next we have to prove that the ΨDO N(x,D) in (2.67) has zero index,
IndN(x,D) = 0. It suffices to prove this for a particular case s = ν/2 and
p = 2 (cf., e.g., [7, 19]). To this end, we consider the homotopy

Nλ(x,D) := λR(x,D) + (1 − λ)N(x,D) : H̃
ν
2
2 → H

− ν
2

2 ,

R(x,D) :=


Λ

( ν
2 ,ν)

C (x,D)IM [0]M×L

[0]L×M Λ
( ν
2 ,ν)

M (x,D)IL


]N×N ,

where 0 6 λ 6 1,

Λ
( ν
2 ,ν)

C (x,D) := Λ
ν
2

C (x,D)Λ̃
ν
2

C (x,D)

and

Λ̃
ν
2

C (x,D) : H̃
ν
2
2 (C) → H̃0

2 (C) = H0
2 (C),

Λ
ν
2

C (x,D) : H0
2 (C) → H

− ν
2

2 (C)

are the Bessel potential operators, arranging isomorphism of the spaces.

The principal homogeneous symbol of the operator Λ
( ν
2 ,ν)

C (x,D) is positive

definite and the operator Λ
( ν
2 ,ν)

C (x,D) : H̃
ν
2
2 (C) → H

− ν
2

2 (C) is invertible (cf.,
e.g., [21], [22, § 4]).

The definition and the properties of the isomorphism Λ
( ν
2 ,ν)

M (x,D) are
similar.

Thus, R(x,D) : H̃
ν
2
2 → H

− ν
2

2 has a positive definite symbol and is invert-
ible.

The continuous homotopy Nλ(x,D) connects the initial operator
N0(x,D) = N(x,D) with the invertible one

N1(x,D) = R(x,D) : H̃
ν
2
2 → H

− ν
2

2 .

Moreover, the operator Nλ(x,D) is strongly elliptic for all 0 6 λ 6 1 since
it represents the sum of the operators with positive definite and strongly
elliptic symbols (see Remark 2.30). Then the operator Nλ(x,D) is Fredholm
for all 0 6 λ 6 1. Therefore,

IndN(x,D) = Ind N0(x,D) = IndN1(x,D) = IndR(x,D) = 0.

From the results obtained above it follows that the ΨDO N(x,D) in (2.67)
is Fredholm with index zero.

Now, if N(x,D) is strongly coercive (see (2.75)), it has a trivial kernel in

the space H̃
ν
2 and the operator

N(x,D) : H̃
ν
2 → H

− ν
2
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is invertible. Then, the operator N(x,D) has the trivial null space in the
space setting (2.67) and is invertible for all p and s if the conditions (2.73)
are fulfilled. The proof is complete. �

Remark 2.32. To achieve the invertibility of the operator N(x,D) in
the space setting (2.67) under the conditions (2.73) we need less than the
strong coercivity property (2.75). It suffices to know that the operator is
Fredholm and its null space KerN(x,D) is trivial only in one space, say

in H̃
ν
2
2 = [H̃

ν
2
2 (C)]M × [H̃

ν
2
2 (M)]L. Due to the concluding part of Theorem

2.28 this implies that KerN(x,D) is trivial and the operator N(x,D) is
invertible in the space settings (2.67) provided the constraints (2.73) hold
(see, e.g., Lemma 6.1).

Further, if the operator (see (2.67) and (2.68))

N(x,D) : H̃
ν
2
2 → H

− ν
2

2

is coercive, i.e., for all W = (U, V )> ∈ H̃
ν
2
2 there are constants C0 > 0 and

C1 > 0, such that

Re 〈N(x,D)W,W 〉 > C0 ‖W‖2

H̃

ν
2
2

− C1 ‖W‖2
H̃κ

2

(2.85)

for κ < ν/2, then N(x,D) is Fredholm in the space setting (2.67) and has
the trivial index IndN(x,D) = 0, provided the conditions (2.73) hold.

2.4. ΨDOs on hypersurfaces in Rn. We remind that S ⊂ Rn is a
Ck−smooth, compact hypersurface in Rn and ν(t) is the outward unit nor-
mal vector field.

Let a surface S ⊂ Rn, which is a particular case of a manifold (see
Definition 2.14) be given by the coordinate diffeomorphisms (cf. (2.14))

κj : Vj → Sj , Vj ⊂ R
n−1, Sj ⊂ S, j = 1, . . . , N,

where S =
⋃N

j=1 Sj is a covering of S. Let Gκj
be the square root of Gram’s

determinant

Gκj
(y) :=

√
det

[
〈∂`κj , ∂mκj〉

]
(n−1)×(n−1)

, (2.86)

which is responsible for the integration on S (see [62, § IV.10.38], [66, § 4.6]
and (2.89) below).

Now we prove the following assertion.

Theorem 2.33. Let m < −1 and a ∈ CLSm(Rn) be a classical N ×N
matrix-symbol (see Definition 2.8; for m = 1 cf. Remark 2.35 below),

a(x, ξ) = Fz 7→ξ[k(x, z)] ∼ am(x, ξ) + am−1(x, ξ) + · · · ,
am−k(x, λξ) = λm−kam−k(x, ξ), ξ ∈ R

n, λ > 0.
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Then the trace on the surface∗

aS(X , D)ϕ(X) := γSa(x,D)(ϕ⊗δS)(X) =

=

∫

S

k(X ,X − Y)ϕ(Y)dS , X ∈ S, (2.87)

is a pseudodifferential operator

aS(X , D) : Hs
p(S) → Hs−m−1

p (S)

with the classical symbol:

aS(X , ξ′)∼
∞∑

k=0

aS,m+1−k(X , ξ′), aS,m+1−k∈S
m+1−k(T ∗S), ξ′∈R

n−1. (2.88)

Proof. Let us check that the operator aS(t,D) in (2.87) is pseudodifferential.
First note that,

∫

S

g(Y) dS =
M∑

j=1

∫

Rn−1

ψ0
j (y)Gκj

(y)g(κj(y)) dy, ψ0
j := κj,∗ψj , (2.89)

(cf. [62, §IV.10.38], [66, §4.6]). Therefore

a(j)(x,D)ϕ(x) = κj,∗ψjaS(X , D)ψjκ
−1
j,∗ϕ(x) =

= ψ0
j (x)

∫

Rn−1

ψj(y)Gκj
(y)k(κj(x),κj(x) − κj(y))ϕ(y) dy ∼

∼
∞∑

m=0

ψ0
j (x)

∫

Rn−1

ψ0
j (y)Gκj

(y)km−l(κj(x),κj (x) − κj(y))ϕ(y) dy ,

where ψ0
j (x) := ψj(κj(x)) are pull back of cut-off functions and

Fx→ξkm−l(z, ξ) = am−l(z, ξ) , km−l(z, λ x) = λn−m+lkm−l(z, x)

for all λ > 0 and all x ∈ Rn−1. By the Taylor formula at y ∈ Rn−1

κj(x) − κj(y) = κ
′
j(x)(x − y)+

+
∑

26|δ|6N

1

δ!
(∂δ

κj)(x)(x−y)δ +κj,K+1(x, x−y) , (2.90)

κj,K+1(x, x− y) :=
∑

|δ|=K+1

(N + 1)zδ

δ!

1∫

0

(1 − t)K∂δ
yκj(x, y + t(x− y)) dt ,

where κ ′
j(x) is the Jacobi matrix of κj(x). By inserting (2.90) into the

kernels km−l(κj(x),κj(x) − κj(y)) and by applying the Taylor formula,
now at κ ′

j(x)(x − y) ∈ Rn−1, we get

∗For the definition of the surface delta-function see (3.75).
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km−l(κj(x),κj(x) − κj(y)) =

K−l∑

|α|=0

1

α!
k

(α)
m−l(κj(x),κ

′
j(x)(x − y))×

×
[ K−l∑

|δ|=2

1

δ!
(∂δ

κj)(x)(x − y)δ
]α

+ k1
m−l,K+1(x, x − y) =

=

K−l∑

|α|=0

∑

|β|=2|α|

bα,β(x)k
(α)
m−l(κj(x),κ

′
j(x)(x − y))(x − y)β

+ k2
m−l,K+1(x, x − y) , k

(α)
m−l(x, z) := ∂α

z km−l(x, z), (2.91)

where α, β, and δ are multi-indices, b0,β = 1 and the other coefficients
bα,β(x), |α| > 0, are defined from the equality

1

α!

[ K−l∑

|δ|=2

zδ

δ!
∂δ

κj(x)
]α

=

(K−l)|α|∑

|β|=2|α|

bα,β(x)zβ . (2.92)

Obviously,

|∂γ
x∂

µ
z k

q
m−l,K+1(x, z)| 6 CN |z|K+1−|µ| ∀ γ, µ ∈ N

n−1
0 , q = 1, 2 . (2.93)

Applying the Taylor formula to the product ψ̃0
j (y)Gκj

(y) we write

ψ̃0
j (y)Gκj

(y) = Gκj
(x)+

+
K∑

|γ|=1

(−1)|γ|

γ!
∂γGκj

(x)(x − y)γ + Ψκj ,K+1(x, x − y) (2.94)

with the remainder Ψκj ,K+1(x, x − y) which has the form similar to that
κj,K+1 in (2.90), with an estimate similar to (2.93). Then the remainder
k3

m−l,K+1(x, z) := κj,K+1(x, x− y)+Ψκj ,K+1(x, z) has the estimate (2.93).

Note that the cut off function ψ̃0
j (y) does not appears in the right-hand

side of (2.94) since ψ̃0
j (x) = 1 and all derivatives vanish in a neighborhood

of x.
With (2.90)–(2.94) at hand we get the asymptotic decomposition (2.88)

with the following entries:

aS,m+1−k(κj(x), ξ
′) =

k∑

l=0

∑

2α6β
|β|+|γ|−|α|=k−m

bα,β(x)(−∂x)γGκj
(x)

γ!
×

×Fz 7→ξ′

[
zβ+γk

(α)
m−l(κj(x),κ

′
j(x)z)

]
=
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=

k∑

l=0

∑

2α6β
|β|+|γ|−|α|=k−m

(−i)|α+β+γ|bα,β(x)(−∂x)γGκj
(x)

2πdet κ′
j(x, 0)γ!

×

×
∞∫

−∞

ã
(β+γ)
m−l+|α|

(
κj(x), [κ

′
j(x, 0)]>(ξ′, λ)

)
dλ , (2.95)

where

ã
(δ)
m−l+|α|(x, ξ) := ξα∂δ

ξ′am−l(x, ξ) , (2.96)

[κ′
j(x, 0)>]−1ξ =

(
(∂1κj , ξ), . . . , (∂1κj , ξ), (ν, ξ)) , ξ = (ξ′, λ) ∈ R

n.

Indeed, we proceed as follows:

Fz 7→ξ′

[
zβ+γk

(α)
m−l

(
κj(x),κ

′
j(x)z

) ]
=

=

∫

Rn−1

eiξ′z z
β+γ

(2π)n

∫

Rn

(−iη)αe−iκ′
j(x)zηam−l(κj(x), η) dη =

=
1

(2π)n

∫

Rn−1

eiξ′zzβ+γ

∫

Rn

e−iκ′
j(x,0)(z,0)ηãm−l+|α|(κj(x), η) dη dz =

=
1

(2π)n

∫

Rn−1

eiξ′zzβ+γ

∫

Rn

e−i(0,z)κ′
j(x,0)>ηãm−l+|α|(κj(x), η) dη dz =

=
γ1

(2π)n
∂β+γ

ξ′

∫

Rn−1

eiξ′z

∫

Rn

e−izηãm−l+|α|(κj(x), [κ
′
j(x, 0)>]−1η) dη dz =

=
γ1

2π
∂β+γ

ξ′ Fz 7→ξ′F−1
η′ 7→z

[ ∞∫

−∞

ãm−l+|α|(κj(x), [κ
′
j (x, 0)>]−1(η′, λ)) dλ

]
=

=
γ1

2π
∂β+γ

ξ′

∞∫

−∞

ãm−l+|α|(κj(x), [κ
′
j(x, 0)>]−1(ξ′, λ))dλ ,

where

γ1 =
(−i)|α+β+γ|

det κ ′
j(x, 0)

.

For the remainder term in the asymptotic (2.88) with the kernel ad-
mitting the estimate (2.93), we easily derive that it belongs to the class
Sm−N(T ∗S). �

Remark 2.34. As a byproduct of the proof we can identify the symbol
aS,m+1−k as a homogeneous in the variable ξ function of order m + 1 − k
and
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aS,m+1−k(κj(x), ξ
′) =

k∑

l=0

∑

|β|+|γ|−|α|=k−l
2α6β

(−i)|α+β+γ|bα,β(x)∂γ
xGκj

(x)

2π det κ′
j(x, 0)γ!

×

×
∞∫

−∞

ã
(β+γ)
m−l+|α|

(
x, [κ′

j(x, 0)>]−1(ξ′, λ)
)
dλ , ξ′ ∈ R

n−1 , (2.97)

where the coefficients bα,β(x) for |α| > 0 are defined in (2.92), the symbol

ã
(δ)
m−l+|α|(x, ξ) in (2.96) and the Gram determinant Gκj

(x) in (2.86).

In particular, the homogeneous principal symbol reads

aS,pr(κj(x), ξ
′) =

Gκj
(x)

2π det κ′
j(x, 0)

∞∫

−∞

am

(
x, [κ′

j(x, 0)>]−1(ξ′, λ)
)
dλ =:

=: aS,m+1(κj(x), ξ
′), x ∈ Yj , ξ′ ∈ R

n−1 . (2.98)

Remark 2.35. If m = −1 we can not write (2.87), although formulae
(2.88)–(2.98) hold with some modification. The difference emerges because

aS(X , D)ϕ(X) = γSa(D)(ϕ ⊗ δS)(X) =

= c0(X)ϕ(X) +

∫

S

k0(X ,X − Y)ϕ(Y) dS (2.99)

is a pseudodifferential operator of order zero aS(X , D) : Hs
p(S) → Hs

p(S),
i.e., it is a singular integral operator, the integral in (2.87) is understood in
the Cauchy principal value sense and

c0(X) =
Γ(n−1

2 )

2π
n−1

2

∫

|Y|=1

aS,pr(X , Y) dS . (2.100)

The kernel k0(t, τ) satisfies the cancelation condition (cf. [45, Ch. IX, § 1],
[22, formula (4.26)]):

k0(X , Y) = F−1
ξ 7→Y

[
aS,pr(X , ξ) − c0(X)

]
, X , Y ∈ S . (2.101)

The further proof is verbatim to the case m < −1.

2.5. The local principle. “Freezing coefficients” is a common method
of investigation in the theory of integro-differential and pseudodifferential
equations. It is convenient to formalize the method as a local principle.
There exists many different versions of a local principle (Allan’s, Simo-
nenko’s, Gohberg–Krupnik’s etc.). Most convenient for us is the local prin-
ciple for Banach para-algebras from [15] which is based on the Gohberg–
Krupnik’s local principle (also see [17] for an earlier version).

Definition 2.36. Let A be a Banach algebra. A set ∆ ⊂ A is called a
localizing class if:

(i) 0 6∈ ∆;
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(ii) for a pair of elements a1, a2 ∈ ∆ an element a ∈ ∆ exists such that
ama = aam = a, m = 1, 2.

It is clear that any subset of A containing 0, has the property (ii), but
the property (i) in the definition excludes such a trivial localizing class.

Definition 2.37. Let ∆ ∈ A be a localizing class in a Banach algebra A.
Two elements a, b ∈ A are called ∆-equivalent from the left (∆-equivalent

from the right) and we write a
L−∆∼ b (a

R−∆∼ b, respectively), provided

inf
u∈∆

‖(a− b)u‖A = 0

(
inf
u∈∆

‖u(a− b)‖A = 0, respectively

)
.

If a and b are both the left and the right equivalent, we say that these

elements are ∆-equivalent and write a
∆∼ b.

Lemma 2.38. The relations of local equivalences (left, right, two-sided)
are all linear, continuous and multiplicative:

(i) Let ∆ ⊂ A be a bounded set, ak, bk ∈ A, ak
R−∆∼ bk, (ak

L−∆∼ bk),
k = 1, 2. Then

α1a1 +α2a2
R−∆∼ α1b1 +α2b2 (α1a1 +α2a2

L−∆∼ α1b1 +α2b2) ∀α1, α2 ∈ C;

(ii) let ∆ ⊂ A be a bounded set, am, bm ∈ A, am
R−∆∼ bm, (am

L−∆∼ bm),

m ∈ N, lim
m→∞

am = a and lim
m→∞

bm = b. Then a
R−∆∼ b (a

L−∆∼ b);

(iii) if a, b, c ∈ A and a
L−∆∼ b (a

R−∆∼ b), then ca
L−∆∼ cb (ac

R−∆∼ bc).

Definition 2.39. Let ∆ be a localizing class in A. An element a ∈ A

is called ∆-invertible from the left (∆-invertible from the right) if there exist
d ∈ A and u ∈ ∆ such that dau = u (uad = u, respectively). If a ∈ A

is ∆-invertible from the left and is ∆-invertible from the right, we call it
∆-invertible.

Lemma 2.40. Let ∆ ⊂ A be a localizing class, a, b ∈ A, a
L−∆∼ b (a

R−∆∼
b). If a is ∆-invertible from the left (is ∆-invertible from the right) then b
is ∆-invertible from the left (is ∆-invertible from the right).

Definition 2.41. A system {∆y}y∈Ω of localizing classes in A is said
to be covering if from arbitrary collection {uy}y∈Ω of elements uy ∈ ∆y

there can be selected a finite collection {uyj
}N

j=1 so that the sum
N∑

j=1

uyj
is

invertible in A.

Lemma 2.42. Let {∆y}y∈Ω be a covering system of localizing classes
∆y ⊂ A, a ∈ A and let ua = au for all u ∈ ⋃

y∈Ω

∆y.

Then a is invertible from the left (is invertible from the right) if and only
if a is ∆y-invertible from the left (is ∆y-invertible from the right) for all
y ∈ Ω.
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The next theorem is an immediate consequence of the two foregoing
lemmata.

Theorem 2.43 (Local principle). Let {∆y}y∈Ω be a covering systems of
localizing classes in A. Let elements a ∈ A and ay ∈ A be ∆y-equivalent
from the left (be ∆y-equivalent from the right) for all y ∈ Ω.

Let au = ua for all u ∈ ∆y, y ∈ Ω. Then a is invertible from the left
(a is invertible from the right) if and only if the element ay is ∆y-invertible
from the left (is ∆y-invertible from the right) for all y ∈ Ω.

The formulated local principle can not be applied to an operator A ∈
L(B1,B2) which maps different Banach spaces B1 6= B2. To involve such
cases the method needs certain modification. An option is to consider para-
algebras.

Definition 2.44. A quadruple A = [Ajk ]2×2 of Banach spaces is called
a Banach para-algebra if there exists a binary mapping (a multiplication)

Ajk × Akr → Ajr

for each choice of j, k, r = 1, 2, which is continuous, associative and bilinear.

The definition implies that the spaces A11 and A22 from a Banach para-
algebra A = [Ajk]2×2 are Banach algebras.

For a pair of Banach spaces B1 and B2 the quadruple

A0(B1,B2) := [L(Bj ,Bk)]2×2

represents a Banach para-algebra. Moreover, the quotient algebras factored
by the space of all compact operators C(Bj ,Bk),

A
′
0(B1,B2) = [A′

jk ]2×2 =
[
L(Bj ,Bk)/C(Bj ,Bk)

]
2×2

represents a Banach para-algebra as well. For simplicity we dwell on these
particular para-algebras.

Let A = [Ajk]2×2 be a Banach para-algebra of operators Ajk = L(Bj ,Bk)
or quotient algebras Ajk = L(Bj ,Bk)/C(Bj ,Bk). Let {∆y}y∈Ω be a com-
mon covering system of localizing classes in L(B1) and in L(B2):

{∆y}y∈Ω ⊂ L(B1) ∩ L(B2) . (2.102)

The local equivalence and the local invertibility are defined for para-algebras
as in the case B1 = B2 (see Definition 2.39 and Definition 2.37). The
following theorem is proved by a minor modification of Theorem 2.43.

Theorem 2.45. Let A = [Ajk]2×2 be a Banach para-algebra of operators
Ajk = L(Bj ,Bk) or quotient algebras Ajk = L(Bj ,Bk)/C(Bj ,Bk). Let
{∆y}y∈Ω be a common covering system of localizing classes in L(B1) and
in L(B2) (see (2.102)).

Let A ∈ Ajk and Ay ∈ L(Bjk) be ∆y-equivalent from the left (be ∆y-
equivalent from the right) for all y ∈ Ω.
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If AAy = AyA for all Ay ∈ ∆y, y ∈ Ω, then A is invertible from the left
(is invertible from the right) if and only if Ay is ∆y-invertible from the left
(is ∆y-invertible from the right) for all y ∈ Ω.

3. Layer Potentials

In the present section we expose some well known results about properties
of layer potentials for a second order partial differential operators, enriched
with some simplified results from [18] and adapted to the present purposes.

Throughout the section we assume that Ω+ ⊂ Rn is a bounded do-
main with the boundary ∂Ω+ = S, which is Ck−smooth, compact sur-
face in Rn and Ω− := Rn\Ω+ is the exterior unbounded domain; ν(X) =
(ν1(X), . . . , νn(X)) is the outward unit normal vector to the surface S at the
point X ∈ S.

By Ω we denote either of the domains Ω− and Ω+ in cases if there is no
need to distinguish them.

3.1. Green’s formulae for a general second order PDO. Let A(x,D)
be a second order partial differential operator with smooth N ×N matrix
coefficients

A(x,D) :=
∑

|α|62

aα(x)∂α, aα ∈ C∞(
•

Ω). (3.1)

The operator

A∗(x,D) :=
∑

|α|62

(−1)α∂α
[
aα(x)

]>
IN , (3.2)

is the formally adjoint to A(x,D)

(AU,V)Ω = (U,A∗V)Ω ∀U,V ∈ C2(Ω) , (3.3)

U = (U1, . . . , UN )>, V = (V1, . . . , VN )>, suppV ⊂ Ω,

with respect to the sesquilinear form

(U,V)Ω :=

∫

Ω

〈U(y),V(y)〉 dy , (3.4)

〈U(x),V(x)〉 ≡ U(x) · V(x) :=

N∑

j=1

Uj(x)Vj (x) .

Definition 3.1. The operator A(x,D) in (3.1) is called normal on S if

inf
X∈S

∣∣detApr(X ,ν(X))
∣∣ 6= 0 (3.5)

and is called elliptic on the domain Ω if

inf
x∈Ω, |ξ|=1

∣∣detApr(x, ξ)
∣∣ 6= 0, (3.6)
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where Apr(x, ξ) is the principal homogeneous symbol of A(x,D)

Apr(x, ξ) :=
∑

|α|=2

aα(x)(−iξ)α , (x, ξ) ∈ Ω × R
n . (3.7)

Lemma 3.2. A partial differential operator A(x,D) given by (3.1) is
a normal operator if and only if the formally adjoint operator A∗(x,D) in
(3.2) is normal.

If A(x,D) is elliptic on the surface S then it is normal.
For the operator A(x,D) with constant coefficients the inverse is valid:

if A(x,D) is normal, it is elliptic.

Proof. The first assertion follows since the homogeneous principal symbol
of the formally adjoint operator reads as follows (cf. (3.7)):

A∗
pr(x, ξ) =

∑

|α|=2

[ aα(x) ]> ξα =
[
Apr(x, ξ)

]>
, (x, ξ) ∈ Ω × R

n . (3.8)

The second assertion is also trivial since the ellipticity condition on S

inf
x∈S , |ξ|=1

| det Apr(x, ξ)| 6= 0 (3.9)

implies the condition (3.5).
To prove the third and the last claim of the lemma note that if t ranges

over the smooth surface S without boundary then the corresponding unit
normal vector ν(t) ranges through the entire unit sphere. This, obviously,
implies that normal operator with constant coefficients is elliptic. �

Let us consider a boundary value problem
{

A(x,D)u(x) = f(x), x ∈ Ω,

γSB0u(X) = G(t), X ∈ S,
(3.10)

where A(x,D) is the basic operator written in (3.1),

B0(x,D) =
∑

|α|61

bα(x)∂α , bα ∈ C∞(U±
S )

is a boundary operator of order 0 or 1 with N ×N matrix coefficients and
U±

S stand for one-sided neighbourhoods of S.
Along with (3.10) we consider a BVP for the formally adjoint operator

{
A∗(x,D)v(x) = d(x), x ∈ Ω,

γSC0v(X) = H(X), X ∈ S,
(3.11)

(see (3.2)), where C0(x,D) is a boundary differential operator

C0(x,D) =
∑

|α|6µj

cα(x)∂α , cα ∈ C∞(U±
S ),

of order 0 or 1 such that ordC0(x,D) + ordB0(x,D) = 1.
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A pair of boundary differential operators {B0(x,D),B1(x,D)} is called
a Dirichlet system if both operators are normal and have different orders
ordB0(x,D) = 0, ordB1(x,D) = 1.

A simplest example of a Dirichlet system of boundary operators is

B0 = IN , B1 = ∂ν IN =
n∑

j=1

νj∂j IN . (3.12)

Definition 3.3. The BVP (3.11) is called formally adjoint to the BVP
(3.10) if there exist operators B1(x,D) and C1(x,D) such that Green’s
formula

∫

Ω+

[
〈Au, v〉 − 〈u,A∗v(y)〉

]
dy =

1∑

j=0

∫

S

〈Bju,Cjv〉 dS (3.13)

holds for all pairs u, v ∈ C2(Ω+) of smooth functions with compact supports
if the domain is unbounded.

For some classes of operators and under additional constraints on be-
haviour of functions, Green’s formula (3.13) can be written for unbounded
domains.

Theorem 3.4. For a pair of normal boundary operators B0(x,D) and
C0(x,D), with the property ordC0 + ordB0 = 1 there exist another pair
of operators B1(x,D) and C1(x,D) such that Green’s formula (3.13) holds
and

ordB0 6= ordB1, ordC0 6= ordC1, ordC1 + ordB1 = 1. (3.14)

The boundary operator C1(x,D) is unique if the boundary operator B1(x,D)
is chosen already and both of them are normal operators if the basic operator
A(x,D) is normal.

We will prove Theorem 3.4 later in this section, to expose prior some
auxiliary lemmata. Moreover, as a byproduct of the proof we write explicit
formulae for C1(x,D) whenever B1(x,D) is given (see Corollary 3.12).

Most elliptic systems which appear in applications (e.g., in elasticity,
thermo-elasticity, electro elasticity, micropolar elasticity, hydrodynamics
etc.) have second order and some of them are self-adjoint. Therefore we
consider some simplification of Green’s formula for self-adjoint systems.

Assume that the operator in (3.1) is represented in the form

A(x,D) =
∑

|α|,|β|61

(−1)|α|∂αaα,β(x)∂β , aα,β ∈ C∞(Ω+), (3.15)

and consider the associated sesquilinear form

A(u, v) :=
∑

|α|,|β|61

∫

Ω+

〈
aα,β(y)∂β

y u(y), ∂
α
y v(y)

〉
dy, u, v ∈ C1(Ω+). (3.16)
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Theorem 3.5. For arbitrary basic differential operator (3.15) of order
2 with matrix N ×N coefficients there exists a boundary operator B(x,D)
of order ordB = 1 such that

A(u, v) =

∫

Ω+

〈Au, v〉 dy +

∫

S

〈Bu, v〉 dS , u, v ∈ C2(Ω+) . (3.17)

If A is formally self-adjoint, A = A∗, then Green’s second formula
(3.13)acquires the following form

∫

Ω+

[
〈Au, v〉 − 〈u,Av〉

]
dy =

∫

S

[
〈Bu, v〉 − 〈u,Bv〉

]
dS, (3.18)

i.e., B0 = −C1 = I and B1 = −C0 = B.

The proof will be exposed later in this section.
We remind that ∂ν is the normal derivative, defined on the boundary

surface S of the domain Ω (see (3.12)). We can extend the normal vector
filed ν(t), t ∈ S in a neighbourhood US ⊂ Ω of the surface S with the
same smoothness and denote the extended filed by ν(x), x ∈ US . Then the
derivative with respect to the extended field ∂ν can be applied to functions
in the neighborhood US .

Definition 3.6. A first order partial differential operator with scalar
coefficients on the surface S

a(X , D)u(X) :=

n∑

j=1

aj(X)∂ju(X) , aj ∈ C(S), X ∈ S, (3.19)

is called tangential if the vector field compiled of the coefficients a =
(a1, . . . , an) is orthogonal to the normal vector field on the boundary:

〈a(X),ν(X)〉 =

n∑

j=1

aj(X)νj(X) ≡ 0 on S. (3.20)

A tangential differential operator can be applied to a function ϕ(X) which
is defined only on the surface S. The simplest definition is to take such
derivative in direction of the tangential vector a(X):

∂aϕ(X) = a(X , D)ϕ(X) := lim
h→0

ϕ(X + h a(X)) − ϕ(X)

h
. (3.21)

More precise definition involves the orbit of the vector field ν(X) and can
be found, for example, in [68].

The simplest tangential derivatives are Gunter’s derivatives

Dj := ∂j − νj∂ν , j = 1, . . . , n, (3.22)

which can be applied to a function ϕ defined only on the surface S. Also
the differential operator of high order, compiled of Gunter’s derivatives

A(X ,D) :=
∑

|α|62

aα(X)Dα, Dα := Dα1
1 · · · Dαn

n , (3.23)
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can be applied to a function ϕ defined only on the surface S.

Lemma 3.7. For a first order differential operator

G(x,D)u(x) :=

n∑

j=1

gj(x) ∂ju(x) , gj ∈ C(Ω+), x ∈ Ω+, (3.24)

the following integration by parts formulae is valid
∫

Ω+

〈G(y,D)u(y), v(y)〉 dy =

∫

S

〈G(Y,ν(Y))u(Y), v(X)〉 dS

−
∫

Ω+

〈u(y),G∗(y,D)v(y)〉 dy, u, v ∈ C1(Ω+), (3.25)

where G∗(y,D) is the formally adjoint operator to G(y,D) and

G(X ,ν(X)) :=

n∑

j=1

gj(X)νj(τ) , X ∈ S. (3.26)

In particular,
∫

Ω+

〈∂νu(y), v(y)〉 dy =

∫

S

〈u(Y), v(Y)〉 dS −
∫

Ω+

〈u(y), ∂∗
ν
v(y)〉 dy, (3.27)

where

∂∗
ν
u(x) := −

n∑

k=1

∂k[νk(x)u(x)] = −∂νu(x) −
n∑

k=1

[∂kνk(x)]u(x) , (3.28)

for u, v ∈ C1(Ω+) and if G(x,D) is a scalar tangential on the boundary S
operator (see Definition 3.6), then the integral on the boundary S in (3.25)
disappears and the formula acquires the form

∫

Ω+

〈G(y,D)u(y), v(y)〉 dy = −
∫

Ω+

〈u(y),G∗(y,D)v(y)〉 dy . (3.29)

Proof. Formula (3.25) is a direct consequence of the celebrated Gauß for-
mula∫

Ω+

[∂ku(y)] v(y) dy =

∫

S

νk(Y)u(Y) v(Y) dS−
∫

Ω+

u(y) ∂kv(y) dy, k=1, . . . , n.

Formulae (3.27) follow from (3.25) since in such a case G(x,D)=〈ν , grad〉
and, therefore, G(X ,ν(X)) = 〈ν(X),ν(X)〉 ≡ 1.

Formula (3.29) follows from (3.25) as well: if G(x,D) = 〈G(x), grad〉 is
a tangential operator, G(X ,ν(X)) = 〈G(X),ν(X)〉 ≡ 0 ∀X ∈ S. �

Successive application of integration by parts (3.25) to the basic operator
A(x,D) in (3.1) (not necessarily normal one) provides a Green formula
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(3.13) with some boundary operators {Bj}1
j=0 and {Cj}1

j=0. It is easy to
trace down that these operators have proper orders

ordBj + ordCj = j , j = 0, 1, (3.30)

but it is difficult to control their principal symbols, because we need to
replace these “random” boundary operators by those prescribed in BVPs
(3.10) and (3.11). To this end we should derive the special Green formula
in Theorem 3.8.

The operator A(x,D) in (3.1) can be rewritten in the form

A(x,D) = Apr(x,ν(x))∂2
ν
IN + A1(x,D)∂νIN + A2(x,D) , (3.31)

Ak(x,D) =
∑

|α|6k

a0
k,α(x)Dα , x ∈ Ω , k = 1, 2 ,

where ∂ν is the directional derivative, defined in (3.12), and A1(x,D) and
A2(x,D) are tangential partial differential operators in the plane orthogonal
to the vector field ν of order 1 and 2, respectively (see (3.23)); Apr(x, ξ) is
the principal homogeneous symbol of A(x,D) (see (3.7)).

The representation (3.31) follows easily if we substitute partial derivatives
∂j by (see (3.22))

∂j = Dj + νj∂ν , j = 1, . . . , n. (3.32)

For arbitrary operator A(x,D) of order m we arrange a mathematical in-
duction. Substituting each derivative from clusters ∂α, |α| = m, by the sum
in (3.32), we certainly deduce the formula (3.31) modulo operators of order
m− 1, which are written in the form (3.31) by the assumption.

Theorem 3.8. Let A(x,D) be defined in (3.1) and A0(x,D) :=
Apr(x,ν(x)), A1(x,D), and A2(x,D) be tangential operators from the rep-
resentation (3.31). Then Green’s formula (3.13) holds with the following
boundary operators:

B0(x,D) := IN , B1(x,D) := Apr(x,ν(x))∂νIN , C1(x,D) := IN ,

C0(x,D) := ∂∗
ν
A∗

pr(x,ν(x)) + A∗
1(x,D),

(3.33)

where A∗
1(x,D) and ∂∗

ν
are the formally adjoint operators to A1(x,D) and

∂ν respectively.
The operators C0(x,D) and B1(x,D) are normal.

Proof. By taking u, v ∈ C2(Ω+) and applying (3.27) successively 2 times
we get the following:

∫

Ω+

〈Au, v〉 dy =

∫

S

〈u+, [(A∗
1 + ∂∗

ν
A∗

pr)v]
+〉 dS +

∫

S

〈[∂νu]
+, v+〉 dS

+

∫

Ω+

〈u,A∗v〉 dy.

The Green formula (3.13) for BVPs (3.10), (3.11) with operators (3.33) is
proved.
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Note that for the symbol ∂∗
ν
(X , ξ) of the formally adjoint operator to the

normal derivative ∂ν (see (3.28)) and the symbols A∗
pr(X), A∗

j (X , ξ), j = 1, 2,
have the properties:

(∂∗
ν
)pr(X ,ν(X)) := −

∑

j=1

νj(X)νj(X) ≡ 1, A∗
pr(X) =

[
Apr(X ,ν(X))

]>
,

(A∗
j )pr(X ,ν(X)) ≡ 0 for j = 1, 2.

Then

(B1)pr(X ,ν(X)) = (C0)pr(X ,ν(X)) = [Apr(X ,ν(X))]>

are normal since

det Apr(X ,ν(X)) 6= 0. �

Let us introduce some shortened notation. Consider boundary operator
systems arranged as vectors of length 2:

B(2)(x,D) :=
{
B0(x,D),B1(x,D)

}>
,

C(2)(x,D) :=
{
C1(x,D),C0(x,D)

}>
.

(3.34)

Note, that in (3.34) we have arranged the vector-operators in ascending
orders:

ordB0(x,D) = ordC1(x,D) = 0, ordB1(x,D) = ordC0(x,D) = 1.

Applied to a N -vector-function they produce vector-functions of length 2N :

B(2)(x,D)u :=
(
B0(x,D)u,B1(x,D)u

)>
.

Without restriction of generality we suppose that orders are arranged as
follows

ordB0 = ordC1 = 0, ordB1 = ordC0 = 1. (3.35)

Under the notation (3.34) Green’s formula (3.13) is written in the form
∫

Ω+

[
Au · v − u ·A∗v

]
dy =

∫

S

B(2)u ·C(2)v dS . (3.36)

Moreover, the system of boundary operators B(2)(τ,D) is written as
follows

B(2)(x,D) = b(2×2)(x,D)∂(2)
ν

(x,D) , (3.37)

where

∂(2)
ν

:=

[
IN 0

0 ∂νIN

]
, (3.38)

b(2×2)(x,D) is a 2N × 2N lower block-triangular matrix-operator

b(2×2)(x,D) =

[
B0,pr(x,ν(x)) 0

B1,1(x,D) B1,pr(x,ν(x))

]
(3.39)
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The entry B1,1(x,D) is a first order tangential differential operator from
the representation of the boundary operator

B1(x,D) = B1,pr(x,ν(x))∂νIN + B1,1(x,D), (3.40)

B1,1(x,D) =
∑

|α|61

bα(x)DαIN , x ∈ Ω

and B1,pr(x, ξ) stands for the homogeneous principal symbol of B1(x,D).

A similar representation is available for the system C(2)(τ,D):

C(2)(x,D) = c(2×2)(x,D)∂(2)
ν

(x,D) , (3.41)

where c(2×2)(x,D) is a 2N × 2N lower block-triangular matrix-operator,
similar to b(2×2)(x,D) in (3.39).

Invertible block matrix-operators of type (3.38) will be referred to as
admissible operators. The set of admissible matrix-operators is a multiplica-
tive ring: finite compositions and inverses of admissible matrix-operators
are admissible again. The listed properties are trivial, except the last one.
To check this note that for a Dirichlet system B(2)(τ,D) the corresponding
operator matrix b(2×2)(x,D) in (3.38) is admissible in a neighborhood of S.
Indeed, the boundary operators B0(τ,D), B1(τ,D) are normal and, there-
fore, the entries of the principal diagonal in (3.38) are non-degenerate in a
small neighborhood of the boundary

detBj,pr(x,ν(x)) 6= 0, x ∈ U±
S , j = 0, 1.

This allows to invert the matrix and the inverse reads:

[
b(2×2)(x,D)

]−1
=

[
B−1

0,0(x,ν) 0

−B−1
1,0(x,ν)B1,1(x,D)B−1

0,0(x,ν) B−1
1,0(x,ν)

]
. (3.42)

Now we are in a position to prove the following.

Lemma 3.9. Two Dirichlet systems of partial differential operators
B(2)(x,D) and C(2)(x,D) (see (3.34)) are related as follows

B(2)(x,D) = (bc−1)(2×2)(x,D)C(2)(x,D) , (3.43)

where the matrix

(bc−1)(2×2)(x,D) := b(2×2)(x,D)
[
c(2×2)(x,D)

]−1
(3.44)

is admissible lower triangular (cf. (3.39)).

Proof. The proof follows immediately from the representations (3.37), (3.41)
and the invertibility of the corresponding admissible matrices. �

Corollary 3.10. If {Bj(x,D)}1
j=0 and {Cj(x,D)}1

j=0 are Dirichlet sys-
tems of partial differential operators and the traces

(Cju)
±(X) = G±

j (X), j = 0, 1, X ∈ S, (3.45)
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for some function u ∈ Hs+1
p (Ω), s > 1+1/p, are known. Then the boundary

values {γ±S Bju(X)}1
j=0 are well defined. In particular, the normal derivative

∂νu(X) is well defined.

Proof. Indeed, let us apply (3.43) and write
(
B(2)(X , D)u

)±
(X) = (bc−1)(2×2)(X ,D)

(
C(2)(X , D)u

)±
(X). (3.46)

We get a well defined operation: the tangential operator (bc−1)(2×2)(X ,D)
applied to a vector-function (C(2)(X , D)u)±(X) which is defined on the sur-
face (see (3.21)–(3.23)). �

As a corollary we can derive the order reduction for a boundary operator
Bj(x,D) with high order ordBj(x,D) > 2.

Corollary 3.11. Let the basic operator A(x,D) of order 2 in (3.1) be
normal. If the order of a boundary operator Bj(x,D) in (3.10) is bigger
than 1, rj := ordBj(x,D) > 2 = ordA(x,D), than

Bj(x,D)u(x) = B0
j (x,D)u(x) + C(x,D)A(x,D)u(x) , x ∈ Ω , (3.47)

where ordC(x,D) = rj − 2 and r0j = ordB0
j (x,D) 6 1, i.e.,

B0
j (x,D) =

1∑

j=0

bj(x,D) ∂j
ν
IN (3.48)

and b0(x,D), b1(x,D) are tangential operators.
In particular, if u is a solution of the equation A(x,D)u(x) = f(x) in Ω

and
{
B0

j (X , D)u
}±

(X) = G±
j (X) are given, from (3.47) we get

{
Bj(X , D)u

}±
(X) = G±

j (X) + {C(X , D)f}±(X) , X ∈ S. (3.49)

Proof. Since

Bj(x,D) =

rj∑

j=0

Bjk(x,D)∂k
ν
IN (3.50)

it suffices to have the representation (3.47) only for the Dirichlet data
Bj(x,D) = ∂j

ν
IN for j = 2, 3, . . . .

The operator A(x,D) in (3.1) is normal and due to (3.31) we get the
representation for j = 2:

∂2
ν
IN = [Apr(x,ν(x))]−1

[
A(x,D) −

1∑

k=0

A2−j(x,D)∂j
ν
IN

]
. (3.51)

Further we proceed by mathematical induction: if the representation is
known for j = 2 + k

∂2+k
ν

IN = G2+k(x,D) + C2+k(x,D)A(x,D) , x ∈ Ω ,

G2+k(x,D) :=

1∑

j=0

G2+k,j(x,D)∂j
ν
IN ,

(3.52)
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we write

∂2+k+1
ν

IN = G2+k+1(x,D) + C2+k+1(x,D)A(x,D) , x ∈ Ω ,

C2+k+1(x,D) = ∂νC2+k(x,D),

G2+k+1(x,D) := ∂νG2+k(x,D) =

= G0
2+k1,0(x,D)∂2

ν(x)IN +

1∑

j=0

G0
2+k+1,j(x,D)∂k

ν
IN .

By inserting in the latter ∂2
ν
IN from (3.51), we get a representation for

∂2+k+1
ν

IN similar to (3.52). �

Proof of Theorem 3.4. Let B(2)(x,D) = (B0(x,D),B1(x,D)) be a Dirichlet
system and ordBj = j, j = 0, 1 (cf. (3.35)).

Our starting point is the green formula from Theorem 3.8, which we
rewrite in the form:∫

Ω+

[
〈Au, v〉 − 〈u,A∗v〉

]
dy =

∫

S

〈
(∂(2)

ν
u)+, (G(2)v)+

〉
dS (3.53)

(cf. (3.36)), where ∂
(2)
ν u = (u, ∂νu)

> (see (3.38)) and

G(2)(x,D)v :=
{
G0(x,D)v,G1(x,D)v

}>
=

= (∂(2)
ν

)∗
(
A(2×2)(x,D)

)∗
(v, v)> (3.54)

(see (3.33)). The matrix operator

A(2×2)(x,D) =

[
Apr(x,ν(x)) 0

A1(x,D) Apr(x,ν(x))

]
(3.55)

is composed of tangential differential operators of the representation (3.31).
A(2×2)(x,D) is admissible if and only if A(x,D) is a normal operator.

Due to (3.37),

∂(2)
ν
IN =

[
b(2×2)(X ,D)

]−1
B(2)(X , D) , X ∈ S . (3.56)

Inserting (3.56) into (3.53), taking into account that the admissible matrix
operator b(2×2)(x,D) is tangential and, thus, possesses the surface dual, we
get

∫

Ω+

[
〈Au, v〉 − 〈u,A∗v

]
dy =

=

∫

S

〈
(b(2×2))−1B(2)u,G(2)v

〉
dS =

∫

S

〈
B(2)u,C(2)v

〉
dS , (3.57)

where C(2)(x,D) is uniquely defined by the relation

C(2)(x,D) =
[
(b(2×2))∗(x,D)

]−1[
(∂(2)

ν
)∗

]>
(A(2×2))∗(x,D)S2. (3.58)
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The matrix operators (b(2×2))∗(x,D) and (A(2×2))∗(x,D) are formally ad-
joint (see (3.2), (3.3)) to the corresponding admissible matrix operators
b(2×2)(x,D) in (3.39) and A(2×2)(x,D) in (3.55).

The claimed relation (3.14) between orders follows from (3.58) and we
leave details to the reader. �

Remark 3.12. Let the Dirichlet system B(2)(x,D) be fixed, the ba-
sic operator be normal and the convention (3.35) holds. Then the system
C(2)(x,D) in Green’s formula (3.13) (see (3.36)) is found by the formula
(3.58).

Proof of Theorem 3.5. If we apply (3.25) to (3.16) we get the formula (3.17)

but with systems {B̃j}`−1
j=0 and {C̃j}`−1

j=0, which we can not control. There-
fore we commence by the representations

∂α
x IN = ν

α(x)∂νIN + aα(x,D) , α ∈ N
n
0 , |α| 6 1,

ν
α(x) := ν

α1
1 (x) . . .ναn

n (x)

(cf. (3.31)); by inserting them into (3.16) and applying (3.27) we get

A(u, v) :=
∑

|α|,|β|61

∫

Ω+

〈
∂βu, aα,β

[
ν

α∂νIN + aα(y,D)
]
v
〉
dy =

=
∑

|α|,|β|61

∫

Ω+

[〈
ν

αaα,β∂
βu, ∂νv

〉
+

〈
a∗

α(y,D)aα,β∂
βu, v

〉]
dy =

=

∫

Ω+

〈A(y,D)u, v〉 dy +

∫

S

〈
C(τ,D)u, v

〉
dS , (3.59)

C(x,D) :=
∑

|α|,|β|61

ν
α(x)aα,β(x)∂βIN ,

Thus, we get Green’s formula (3.17).

If A is formally self-adjoint, A = A∗, then A(u, v) = A(v, u) and from
(3.17) written for pairs u, v and v, u we get the simplified Green formula
(3.18). �

3.2. On traces of functions. Besides the classical Sobolev Wm
p (Rn

+), Bes-
sel potential Hs

p(Rn
+) and Besov Bs

p,q(R
n
+) spaces on the half-space Rn

+ and
on a domain Ω with the boundary, we will treat weighted spaces introduced
in Subsection 2.1, which are well-adapted to consideration of potential op-
erators.

Let us define the Trace operator:

Rku = γS∂
(k)
ν
u :=

{
γ0

Su, γ
1
Su, . . . , γ

k
Su

}>
,

γ0
S := γS , γj

S := γS∂
j
ν
IN , u ∈ C∞

0 (Ω) ,
(3.60)
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Theorem 3.13. Let 1 6 p, q 6 ∞, m, k ∈ N0, k < s − 1
p 6∈ N0. The

trace operator

Rk : H
s,m
p,loc(Ω) →

k⊗

j=0

B
s− 1

p
−j

p,p (S) ,

Rk : B
s,m
p,q,loc(Ω) →

k⊗

j=0

B
s− 1

p
−j

p,q (S) .

(3.61)

is a retraction, i.e., it is continuous and has a continuous right inverse,
called a coretraction:

(Rk)−1 :

k⊗

j=0

B
s− 1

p
−j

p,p (S) → H
s,m
p,loc(Ω) ,

(Rk)−1 :

k⊗

j=0

B
s− 1

p
−j

p,q (S) → B
s,m
p,q,loc(Ω) ,

Rk(Rk)−1Φ = Φ , ∀Φ ∈
k⊗

j=0

B
s− 1

p
−j

p,q (S) ,

(3.62)

Proof. The proof represents a slight modification of the proof for the case
m = 0. We will carry out the proof for the space H

s,m
p,loc(Ω). For the space

B
s,m
p,q,loc(Ω) the proof is similar.
Since the assertion has local character, we can dwell on the case of the

half-spaces Ω = Rn
± and k = 0 (cf. [72, Theorem 2.7.2, Steps 6-7] and [72,

Theorem 3.3.3] for details when k 6= 0 and Ω is arbitrary).
Let us recall an alternative definition of (equivalent) norms in the spaces

Bs
p,p(R

n) and Hs
p(Rn) = F s

p,2(R
n):

∥∥ϕ|Bs
p,p(R

n)
∥∥ =

∥∥∥
{
2sjF−1χjFϕ

}∞

j=0

∣∣`p(Lp(R
n))

∥∥∥ ,
∥∥ϕ|Hs

p(Rn)
∥∥ =

∥∥∥
{
2sjF−1χjFϕ

}∞

j=0

∣∣Lp(R
n, `2)

∥∥∥ (3.63)

(see [72, §§ 2.3.1,2.5.6]), where

χj ∈ C∞
0 (Rn) , supp χ0 ⊂

{
x ∈ R

n : |x| 6 2
}
,

suppχj ⊂
{
x ∈ R

n : 2j−1 < |x| < 2j+1
}
,

∞∑

j=0

χj(x) ≡ 1 .

In [72, § 2.3.1, Step 5] the coretraction R−1
0 is defined as follows

R−1
0 ϕ(x′, xn) =

∞∑

j=0

2−jF−1
λn→xn

ψj(λn)F−1
λ′→x′χj(λ

′)Fy′→λ′ [ϕ(y′)] , (3.64)

where

ψj(λn) = ψ(2−jλn) , j ∈ N , ψ0, ψ ∈ C∞
0 (R) ,

supp ψ0 ∈ (0, 1) , supp ψ ∈ (1, 2) , F−1ψ0(0) = F−1ψ(0) = 1 .
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Then F−1ψj(0) = 2j which yields (R−1
0 ϕ)(x′, 0) = ψ(x′, 0). We proceed as

in [72, § 2.7.2-(30)]

∥∥xm
n R−1

0 ϕ
∣∣Bs+m+ 1

p
p,p

∥∥ 6

6 C1

∥∥∥
{
2(s+m+ 1

p
)jF−1

λn→xn

[
(−i∂λn

)mψj(λn)
]
×

×F−1
λ′→x′χj(x)Fy′→λ′ [ϕ(y′)]

}∞

j=0

∣∣∣`p(Lp)
∥∥∥ =

= C1

∥∥∥
{

2(s+ 1
p
)jF−1

λn→xn
ψ

(m)
j (λn)F−1

λ′→x′χj(x)Fy′→λ′ [ϕ(y′)]
}∞

j=0

∣∣`p(Lp)
∥∥∥ 6

6 C2

∥∥{
F−1χjFϕ

}∞

j=0

∣∣`p(Lp)‖ =
∥∥ϕ|Bs

p,p

∥∥ ,

where ψ(m)(t) := ∂m
t ψ(t). Similarly we find

∥∥xm
n R−1

0 ϕ
∣∣Hs+m+1/p

p

∥∥ 6

6 C3

∥∥∥
{
2sjF−1χjFϕ

}∞

j=0

∣∣Lp(R
n, `2)

∥∥∥ 6 C3

∥∥ϕ|Hs
p

∥∥

and the proof is complete. �

Corollary 3.14. Let 1 6 p, q 6 ∞, 1
p + k < s < 1

p + k + 1. Then

rΩH̃
s,m
p (Ω) =

{
u ∈ H

s,m
p (Ω) : Rku = 0

}
,

rΩB̃
s,m
p,q (Ω) =

{
u ∈ B

s,m
p,q (Ω) : Rku = 0} .

(3.65)

Lemma 3.15. Let A(x,D) in (3.1) be a normal operator, 1 < p <
∞, 1 6 q 6 ∞, s > 1/p, and m = 0, 1, . . .; let further B(2)(x,D) :=
{B0(x,D),B1(x,D)}> be a Dirichlet system and

Φ = (ϕ0, ϕ1)
> ∈

1⊗

j=0

Bs+1−j
p,p (S), Ψ = (ψ0, ψ1)

> ∈
1⊗

j=0

Bs+1−j
p,q (S) ,

be given vector-functions. Then, for arbitrary integer m ∈ N0 there exists a
continuous linear operator

PA :
1⊗

j=0

Bs+1−j
p,p (S) → H

s+1+ 1
p

,m

p,loc (Ω)

PA :
1⊗

j=0

Bs+1−j
p,q (S) → B

s+1+ 1
p

,m

p,q,loc (Ω)

(3.66)

such that

γSBjPAΦ = ϕj , γSBjPAΨ = ψj , j = 0, 1, (3.67)

APAΦ ∈ H̃
s−1+ 1

p
,m

p,loc (Ω), APAΨ ∈ B̃
s−1+ 1

p
,m

p,q,loc (Ω) . (3.68)
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Proof. There exists an integer k ∈ N0 such that 1
p < s− k 6 1

p + 1. Due to

(3.65), the condition (3.68) can be reformulated as follows (cf. (3.60)):

RkAPΦ =
{
γ0

SAPΦ, γ1
SAPΦ

}
= 0. (3.69)

The operators

B2+j(x,D) := ∂j
ν
A(x,D) , ordB2+j = 2 + j , j = 0, 1, . . . , k

are normal

B2+j,0(X ,ν(X)) =
(
− i

n∑

s=1

ν
2
s(X)

)j

A0(X ,ν(X)) = (−i)jA0(X ,ν(X)) ,

detB2+j,0(X ,ν(X)) 6= 0 , X ∈ S , j = 0, 1, . . . , k

and adding them to the Dirichlet system B(m)(x,D) we get the extended
Dirichlet system B(3+k)(x,D) := {B0(x,D), . . . ,B1+k(x,D)}>. On defin-
ing

Φ0 := (ϕ0, ϕ1, 0, . . . , 0︸ ︷︷ ︸
(k+1)−times

) ∈
2+k⊗

j=0

Bs+1−j
p,p (S) , (3.70)

we can match conditions (3.67) and (3.69) (which replaces (3.68)) and refor-
mulate the problem as follows: let us look for a continuous linear operator

P(0)
A :

2+k⊗

j=0

Bs+1−j
p,p (S) → H

s+3+ k
p

,k

p,loc (Ω) (3.71)

such that
γ±S B(3+k)P(0)

A Φ0 = Φ0 (3.72)

for Φ0 given in (3.70).
Since B(3+k)(x,D) is a Dirichlet system, there exists an admissible matrix

operator b((3+k)×(3+k))(x,D) such that

B(3+k)(x,D) = b((3+k)×(3+k))(x,D)∂(3+k)
ν

(x,D) (3.73)

(see (3.38), (3.42)). Let us define the coretraction

P(0)
A := R−1

3+k

[
b((3+k)×(3+k))(x,D)

]−1
(3.74)

based on the coretraction in (3.62). The inverse [b((3+k)×(3+k))(x,D)]−1 is
an admissible and tangential differential operator, and can be applied to

the function Φ0 defined on the boundary only. Thus, the operator P (0)
A in

(3.74) is well defined and continuous in the setting (3.71).
Applying (3.73) and (3.74) we find that

γ±S B(3+k)P(0)
A Φ0 = b((3+k)×(3+k))(x,D)γS∂

(3+k)
ν

(x,D)R−1
3+k×

×
[
b((3+k)×(3+k))(x,D)

]−1
Φ0 = Φ0

because

γSb((3+k)×(3+k))(x,D)Ψ = b((3+k)×(3+k))(x,D)γSΨ
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and γS∂
(3+k)
ν

(x,D)R−1
3+kΨ = Ψ

due to (3.62). Equation (3.72) is thus solved. �

For regular case, the counterpart of Lemma 3.15 is proved in [49, Ch. 2,
§ 16], where the operator PA is efficiently constructed by means of the
special potential type operators.

Let us consider the following surface δ-function

〈g ⊗ δS , v〉Rn :=

∫

S

g(τ)γ±S v(τ)dS, g ∈ C∞(S), v ∈ C∞
0 (Rn) (3.75)

and its normal derivatives δ
(k)
S := ∂k

ν
δS :

〈g ⊗ δ
(k)
S , v〉Rn :=

∫

S

g(τ)γ±S ((∂∗
ν
)kv)(τ)dS , k = 1, 2, . . . (3.76)

(see (3.12) for the normal derivatives and (3.28) for the adjoint). Obviously,

supp (g ⊗ δ
(k)
S ) = supp g ⊂ S for arbitrary k ∈ N0.

Definitions (3.75)–(3.76) can be extended to Bessel potential and Besov
spaces.

Lemma 3.16. Let 1 6 p, q 6 ∞, s < 0, g ∈ Bs
p,p(S) and h ∈ Bs

p,q(S).
Then

g ⊗ δ
(k)
S ∈ Hs−k−1/p′

p,com (Rn) ∩ Bs−k−1/p′

p,p,com (Rn) ,

g ⊗ δ
(k)
S ∈ H̃

s−k−1/p′ ,m
p,com (Ω) ∩ B̃

s−k−1/p′,m
p,p,com (Ω) ,

h⊗ δ
(k)
S ∈ Bs−k−1/p′

p,q,com (Rn) ,

h⊗ δ
(k)
S ∈ B̃

s−k−1/p′ ,m
p,q,com (Ω) ,

where Ω = Ω±, p′ = p/(p− 1) and k,m ∈ N0 are arbitrary.

Proof. The distribution g ⊗ δ
(k)
S in (3.75) and (3.76) is a properly defined

functional on the space X−s+k
p (Rn), where, for conciseness, Xµ

p (Rn) denotes
either Hµ

p (Rn) or Bµ
p,p(R

n) (see Theorem 3.13). Moreover, due to the same
Theorem 3.13 we get the inequalities

|〈g ⊗ δ
(k)
S , v〉Rn | 6 Ck(g)‖g|Bs

p,p(S)‖‖χv|X−s+k+1/p′

p′ (Rn)‖ ,

recording the continuity property of the corresponding functionals; here
χ ∈ C∞

0 (Rn) is a cut-off function, which equals 1 in a neighborhood of S.

Therefore, by duality, g ⊗ δ
(k)
S ∈ X

s−k− 1
p′

p,com (Rn).
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To prove the result for the weighted spaces let us note that, for arbitrary
m, k ∈ N0,

∂k
ν
ρm(x) =

m!

k!
ρm−k(x) ,

(∂∗
ν
)kρm(x) =

(
− div ν(x) − ∂ν

)k
ρm(x) =

k∑

j=0

hj(x)∂
j
ν
ρm(x) = (3.77)

=

k∑

j=0

m!

j!
hj(x)ρ

m−j(x) ,

where ρ = ρ(x) := dist(x, S), x ∈ Ω and h0, . . . , hm ∈ C∞(Ω). Indeed, if
tx ∈ S is a point for which the distance ρ(x) := dist(x, S) = dist(x, tx) from
x ∈ Ω to the boundary S is attained then

∂
ν(tx)ρ(x) = lim

h→0

ρ(x+ hν(tx)) − ρ(x)

h
= 1 ,

because ρ(x+hν(tx))− ρ(x) = h. For arbitrary m, k ∈ N0 the first formula
in (3.77) follows by a standard approach and is used to prove the second
one.

Now we apply definition (3.76):

〈
ρ`(g ⊗ δ

(k)
S ), v

〉
Rn :=

∫

S

g(τ)γ±S
[
(∂∗

ν
)k(ρ`v)(Y)

]
dS

=

∫

S

g(Y)γ±S
[
(−div ν(x) − ∂ν)k(ρ`v)(Y)

]
dS =

=

k∑

m=0

m∑

j=0

(−1)kj!

m!(k − j)!

∫

S

hm(Y)g(Y)γ±S
[
∂j

ν
ρ`∂m−j

ν
v
]
(Y) dS =

=
k∑

m=0

min{m,`}∑

j=0

(−1)k`!

m!(k − j)!

∫

S

hm(Y)g(Y)γ±S
[
ρ`−j∂m−j

ν
v
]
(Y) dS =

=





k∑

m=`

(−1)k`!

m!(k − `)!

∫

S

hm(Y)g(Y)γ±S
[
∂m−`

ν
v
]
(Y) dS if ` 6 k ,

0, if ` > k

=





k∑

m=`

(−1)k`!

m!(k − `)!
〈hmg ⊗ δ

(m−`)
S , v〉Rn if ` 6 k ,

0, if ` > k .

(3.78)

According to the proved part of the lemma from (3.78) we get the inclu-

sion ρ`(g ⊗ δ
(k)
S ) ∈ X̃

s−k+`−1/p′,m
p,com (Ω); this yields the inclusion g ⊗ δ

(k)
S ∈
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X̃
s−k−1/p′,m
p,com (Ω) for arbitrary m ∈ N due to the definition of the weighted

space.

For the function h⊗ δ
(k)
S the proof is verbatim. �

3.3. Integral representation formulae and layer potentials. Through-
out the present section we assume that the differential operator A(x,D) in
(3.1) is extendible onto entire Rn and the extension has a fundamental so-
lution KA(x, y) ∈ C∞(Rn, S′(Rn))

A(x,D)KA(x, y) := δ(x− y)IN . (3.79)

Moreover, we assume that the formally adjoint operator possesses the fun-

damental solution KA∗ and KA∗(x, y) = KA(y, x)>.
If the operator A(x,D) = A(D) has constant coefficients, the funda-

mental solution KA(x, y) = KA(x − y) exists, depends on the difference

of variables and KA∗(x − y) = KA(y − x)> (see, e.g., [28, § 10, Theorem
10.2.1]). Moreover, the fundamental solution is smooth outside the diagonal
set: KA ∈ C∞(Rn×Rn\∆Rn), where ∆Rn := {(x, x) ∈ Rn×Rn : ∀x ∈ Rn}
(see [67, § 2.5, Proposition 2.4] and [28, vol. 3, Theorem 18.1.16]).

If A(x,D) is elliptic of order 2, ordA = 2 and has C∞-smooth uniformly
bounded coefficients, then the symbols A(x, ξ) belongs to the class S2(Rn ×
Rn) and the inverse symbol A−1(x, ξ) belongs to the class S̃−2(

•

Rn × Rn)
(cf. Definition 2.12 and (2.25)).

As a first application of Green’s formula (3.13) we can derive the repre-
sentation of a solution to the BVP (3.10). Since the boundary operators
B0(x,D) and C1(x,D) in Green’s formula (3.13) have order 0 (i.e., repre-
sent multiplications by functions), we will suppose, for simplicity, that

B0(x,D) = C1(x,D) = IN , B1(x,D) = B(x,D),

C0(x,D) = C(x,D), ordB(x,D) = ordC(x,D) = 1.
(3.80)

Then the following Green’s third integral representation formula is valid

χΩ+(x)u(x) = NΩ+f(x) + (Wγ+
S u)(x) + (Vγ+

S Bu)(x) , (3.81)

where χΩ+ is the indicator function of the domain Ω+ ⊂ Rn and

Vϕ(x) :=

∫

S

[
KA∗(Y, x)

]>
ϕ(Y) dS =

∫

S

KA(x, Y)ϕ(Y) dS, (3.82)

Wϕ(x) :=

∫

S

[
C(Y, D)KA∗(Y, x)

]>
ϕ(Y) dS =

=
∑

|α|61

∫

S

∂α
y KA(x, Y)c>jα(Y)ϕ(Y) dS (3.83)
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(cf. (3.11)) are the single and the double layer potentials, respectively. The
operator

NΩ+ϕ(x) :=

∫

Ω+

[
KA∗(y, x)

]>
ϕ(y) dy =

∫

Ω+

KA(x, y)ϕ(y) dy (3.84)

is called Newton’s potential and represents a ΨDO of order -2, restricted to
the domain Ω.

The following operators

NΩ+ : H̃s
p(Ω

+) → Hs+2
p,loc(R

n) ,

: B̃s
p,q(Ω

+) → Bs+2
p,q,loc(R

n) (3.85)

are bounded for all s ∈ R, 1 < p <∞, and 1 6 q 6 ∞ (see Corollary 2.13).
The following assertions hold true.

Proposition 3.17. The single and double layer potentials with ϕ ∈
Hs

p(S), s ∈ R, 1 < p <∞, are solutions to the homogeneous equation

A(x,D)Vϕ(x) = A(x,D)Wϕ(x) = 0, x ∈ Ω+ ∪ Ω− . (3.86)

Proposition 3.18. Let m ∈ N0, 1 < p < ∞ and 1 6 q 6 ∞. Then
Newton’s potential operator has following continuous mapping properties:

NΩ+ : H̃
s,m
p (Ω+) → H

s+2,m
p,loc (Rn) ,

: B̃
s,m
p,q (Ω+) → B

s+2,m
p,q,loc(R

n) for s ∈ R, (3.87)

NΩ+ = rΩ+NRn`Ω+ : H
s,m
p (Ω+) → H

s+2,m
p,loc (Ω±) ,

: B
s,m
p,q (Ω+) → B

s+2,m
p,q,loc(Ω

±) for s > −1

p
. (3.88)

Applying the definition (3.75) we can represent the layer potentials (3.82)
and (3.83) in the form of volume potentials:

Vϕ(x) =

∫

Rn

KA(x, y)(ϕ⊗ δS)(y) dy = NRn(ϕ⊗ δS)(x), (3.89)

Wϕ(x) =

∫

Rn

[
C(y,D)KA∗(y, x)

]>
(ϕ⊗ δS)(y) dy. (3.90)

On the other hand, due to Lemma 3.16,

ϕ⊗ δS ∈ H̃
s−1+ 1

p
,m

p,com (Ω) for ϕ ∈ Bs
p,p(S),

ϕ⊗ δS ∈ B̃
s−1+ 1

p
,m

p,q,com (Ω) for ϕ ∈ Bs
p,q(S) ,

(3.91)

for arbitrary s < 0. Therefore continuity properties of layer potentials can
be derived from the foregoing Proposition 3.18. But this approach has a
clear shortcoming: we can not conclude the continuity for s > 0 because
ϕ⊗ δS 6∈ Xs

p,loc(Ω) for s > −1 + 1/p even for ϕ ∈ C∞(S) (i.e., Lemma 3.16

is optimal and can not be improved). Indeed, locally S can be interpreted
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as Rn−1 and Ω as Rn
+. Then 1⊗ δRn−1 = δ(xn) 6∈ Xs

p,loc(R
n
+) if s > −1+1/p

(see [22] for p = 2 and [72,73] for 1 < p <∞).
In the next theorem we choose yet another approach to the continuity of

generalized layer potentials, which enables to prove the continuity property
for positive s > 0.

Theorem 3.19. Let s ∈ R, 1 < p < ∞, 1 6 q 6 ∞, and m ∈ N0. Let
A(x,D) be an elliptic second order partial differential operator as in (3.1).

The single and double layer potentials map continuously the following
spaces:

V : W s
p (S) → H

s+1+ 1
p

,m

p,loc (Ω) provided s > 0

and s 6= 2, 3, . . . , if 1 < p < 2,

: Hs
p(S) → H

s+1+ 1
p

,m

p,loc (Ω) provided s > 0, p > 2,

: Bs
p,p(S) → H

s+1+ 1
p

,m

p,loc (Ω),

: Bs
p,q(S) → B

s+1+ 1
p

,m

p,q,loc (Ω),

(3.92)

W : W s
p (S) → H

s+ 1
p

,m

p,loc (Ω) provided s > 0

and s 6= 2, 3, . . . , if 1 < p < 2,

: Hs
p(S) → H

s+ 1
p

,m

p,loc (Ω) provided s > 0, p > 2,

: Bs
p,p(S) → H

s+ 1
p

,m

p,loc (Ω),

: Bs
p,q(S) → B

s+ 1
p

,m

p,q,loc (Ω).

(3.93)

Proof. Due to Theorem 3.4 we can suppose that Green’s formula (3.13) is
valid and let

{B0(x,D),B1(x,D)} , {C0(x,D),C1(x,D)} , B0(x,D)=C1(x,D)=IN ,

be the Dirichlet systems from formula (3.13), where ordC0 = ordB1 = 1
(see (3.14)).

The continuity results (3.92) and (3.93) for s < 0 in the case of the
spaces Bs

p,p and Bs
p,q follow from Lemma 3.16 and Proposition 3.18 (see

representations (3.89) and (3.90)).
Next we take s > 0, s 6∈ N and define the operators

Pjϕ := PAΨj , Ψ0 := (ϕ, 0), Ψ1 := (0, ϕ);

PA is from Lemma 3.15. From the same Lemma 3.15 we derive the following
continuity properties

Pj : Bs+1−j
p,p (S) → X

s+1+1/p,m
p,loc (Ω) , (3.94)

APj : Bs+1−j
p,p (S) → X̃

s−1+1/p,m
p,loc (Ω) (3.95)
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for arbitrarym = 0, 1, . . ., where either Xν
p,loc(Ω) = Hν

p,loc(Ω) or Xν
p,loc(Ω) =

Bν
p,p,loc(Ω), and similarly for X̃

ν
p,loc(Ω). Moreover,

γ±S BkPj = δjkIN for j, k = 0, 1, (3.96)

where the signs ± stand for the traces from Ω = Ω±.
Let us consider vε,x(y) := χε(x−y)KA(y, x), where KA(x, y) is the funda-

mental solution of A(x,D) and χε ∈ C∞(Rn) is a cut off function: χε(x) = 1
for |x| > ε and χε(x) = 0 for |x| < ε/2. By inserting

v(y) = vε,x(y) , u = P1ϕ , ϕ ∈ Bs+µj
p,p (S)

into Green’s formula (3.13) and sending ε → 0, similarly to (3.81) we find
the following

±Wϕ(x) = χΩ±(x)P1ϕ(x) −NΩ±AP1ϕ(x) +

+
∑

α+β62

∫

Ω±

c1αβ(y)(∂β
y KA)(x, y)c2αβ(y)P1ϕ(y)dy, (3.97)

where c1αβ , c
2
αβ ∈ C∞(Rn).

Applying Lemma 3.15 and Proposition 3.18 from (3.97) we derive the
following continuity results:

W : Bs−1
p,p (S) → H

s−1+ 1
p

, m

p,p,loc (Ω),

: Bs−1
p,q (S) → B

s−1+ 1
p

, m

p,q,loc (Ω),
(3.98)

provided s > 0, s 6= 1, 2, . . . , 1 < p <∞. The continuity

V : Bs
p,p(S) → H

s+1+ 1
p

, m

p,loc (Ω),

: Bs
p,q(S) → B

s+1+ 1
p

, m

p,q,loc (Ω)
(3.99)

for s > 1, s 6= 1, 2, . . . and 1 < p <∞, is proved similarly.
The gaps 0 6 s 6 1 and s = 1, 2, . . . for the spaces Bs

p,q and Bs
p,p are

filled by the interpolation: the complex interpolation method gives

(Bs0
p,p(S), Bs1

p,q(S))θ = Bs
p,q(S), 1 < p <∞, 1 6 q 6 ∞,

(Bs0

p,q,loc(Ω),Bs1

p,q,loc(Ω))θ = B
s
p,q,loc(Ω), s0 6= s1, s = (1 − θ)s0 + θs1

for arbitrary s0, s1 ∈ R (see Proposition 2.25 and Remark 2.26).
The boundedness results for the Bessel spaces Hs

p , s > 0 in (3.92) and
(3.93) follow trivially, since

‖χVϕ|Hs+1+ 1
p

,m
p (Ω)‖ 6 M‖ϕ|Bs

p,p(S)‖ 6 M0‖ϕ|Hs
p(S)‖

for arbitrary smooth cut off function χ ∈ C∞
0 (Ω) and some constantsM > 0,

M0 > 0, due to the continuous embedding Hs
p ⊂ Bs

p,p, which is true for
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p > 2. The gap s = 1, 2, . . . for the spaces Hs
p is filled by the interpolation:

the complex interpolation method gives

(Hs0
p (S), Hs1

p (S))θ = Hs
p(S),

(Hs0

p,loc(Ω),Hs1

p,loc(Ω))θ = H
s
p,loc(Ω), s0 6= s1, s = (1 − θ)s0 + θs1

(see Proposition 2.25 and Remark 2.26).
The boundedness results for the Sobolev-Slobodetskii spacesW s

p in (3.92)
and (3.93) follow trivially, since Bs

p,p = W s
p for all s > 0, s 6= 1, 2, . . . and

H`
p = W `

p for all 2 6 p <∞, ` = 1, 2, . . .. �

Remark 3.20. The continuity properties in the Bessel potential spaces

V : Hs
p(S) → H

s+1+ 1
p

,m

p,loc (Ω) ,

W : Hs
p(S) → H

s+ 1
p

,m

p,loc (Ω)

(3.100)

(see (3.92) and (3.93)) for 1 < p < 2 are false.
Indeed, let us take s > 0 and 1 < p < 2. Then Bp,p(S) is a proper

subset of Hs
p(S) and we can choose ϕ ∈ Hs

p(S) \ Bp,p(S). If (3.100) holds,

Wϕ ∈ H
s+ 1

p
,m

p,loc (Ω). The trace

ϕ := (Wϕ)+ − (Wϕ)−

(see Plemelji’s formulae (3.126) below) should then belong to Bp,p(S) (see
Theorem 3.13), which is false by the assumption. For the operator V we
should face a similar contradiction if the boundary operator B1(x,D) and
formulae (3.126) below are applied:

ϕ := (B1(x,D)Vϕ)+ − (B1(x,D)Vϕ)−.

Moreover, the continuity result for the Sobolev-Slobodetskii spaces W s
p

in (3.92) and (3.93) for s = 1, 2, . . ., 1 < p < 2, does not hold, because
W s

p = Hs
p for integer s = 1, 2, . . . and, after interpolation, we end up with

the false boundedness results (3.100).

3.4. Traces of generalized potentials. Let A(x,D) in (3.1) be an elliptic
differential operator of second order ordA(x,D) = 2 and KA(x, y) be its
fundamental solution. Let us consider a Potential-type operator

VB,C := B(x,D)VC , x ∈ Ω , (3.101)

where V is the single layer potential (see (3.82)) and

B(x,D) =
∑

|α|6k

bα(x)∂α
x , bα ∈ C∞(

•

Ω) , x ∈ Ω ,

C = C(Y,D) =
∑

|α|6µ

cα(Y)Dα, cα ∈ C∞(S) , Y ∈ S,
(3.102)

are some differential operators on the domain Ω and on the boundary surface
S, respectively. C(Y,D) is a tangential differential operator and it can be
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applied to functions defined on the boundary surface S only (see (3.22)
and (3.23)).

Theorem 3.21. Let s ∈ R, 1 < p <∞, k, µ ∈ N0 and 1 6 q 6 ∞. Then
the potential-type operators

VB,C(x,D) : Bs
p,p(S) → H

s+1−k−µ+ 1
p

, m

p,loc (Ω), (3.103)

: Bs
p,q(S) → B

s+1−k−µ+ 1
p

, m

p,q,loc (Ω)

are bounded for all m = 0, 1, . . . ,∞.
Moreover, the traces γ±S VB,C(x,D) exist and are classical pseudodiffer-

ential operators with symbols

VB,C(τ, ξ) '
N∑

k=0

VB,C,k(τ, ξ) + ṼB,C.N+1(τ, ξ) , (3.104)

ṼB,C,N+1 ∈ S
−2`+1+m+µ−N−1(S) ,

where N ∈ N0 is arbitrary and VB,C,k(τ, ξ) are homogeneous functions in ξ
of order −2`+ 1 +m+ µ− |β| − k (τ ∈ S, ξ ∈ Rn \ {0}, k = 0, 1, . . . , N).

Proof. The continuity properties (3.103) follow from Theorem 3.19 and the
boundedness of the differential operators (see the second part of Theorem
2.23)

C(X ,D) : Hs
p(S) → Hs−k

p (S), B(x,D) : H
s,m
p,loc(Ω) → H

s−µ,m
p,loc (Ω),

C(X ,D) : Bs
p,p(S) → Bs−k

p,p (S), B(x,D) : B
s,m
p,p,loc(Ω) → B

s−µ,m
p,p,loc (Ω).

We shall concentrate on the existence of the traces γ±S VB,C(x,D).
Without loss of generality we can suppose C(X ,D) = IN because a com-

position of classical ΨDOs is classical. Decomposing the operator

B(x,D) =

k∑

j=0

B(k−j)(x,D)∂j
ν
IN , B(0)(x,D) = B(x,ν(x))

(cf. (3.31)), where B(r)(x,D) is a tangential differential operator of order
r, we find

VB =
k∑

j=0

B(k−j)(x,D)Ṽj ,

Ṽj := V∂j
ν

:= ∂j
ν
V(x,D) . (3.105)

The generalized potentials Ṽ0 = V coincide with the single layer poten-
tial, while for k = 1 they behave like the double layer potential, where the
boundary operator is B(x,D) = ∂νIN . These are ΨDOs due to Theorem

2.33, Remark 2.35, and the traces γ±S Ṽk(x,D), k = 0, 1, are well defined
classical ΨDOs on S.
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Therefore, in the representation (3.105) both the continuity results (3.103)
and the existence of the traces γ±S VB,C(x,D) are guaranteed.

Now let ordB > 2 and consider the representation (3.31):

A(x,D) = Apr(x,ν(x))∂2
ν
IN + A1(x,D)∂νIN + A2(x,D) ,

Ak(x,D) =
∑

|α|6k

a0
k,α(x)DαIN , x ∈ Ω, k = 1, 2 , (3.106)

where Apr(x, ξ) is the principal symbol of A(x,D) (cf. (3.7)) and the op-
erators A1, A2, restricted to the surface γSAk(X ,D), X ∈ S, k = 1, 2,
are tangential differential operators. Since KA(x, y) is the fundamental so-
lution, A(x,D))KA(x, y) = δ(x − y)IN . On the other hand, by invoking
(3.106), we find

A(x,D)KA(x, y) = Apr(x,ν(x))∂2
ν
KA(x, y)+

+ A1(x,D)∂νKA(x, y) + A2(x,D)KA(x, y) = δ(x− y)IN . (3.107)

Now we recall that A(x,D) is elliptic, which implies detApr(x,ν(x)) 6=
0 in a neighborhood of the boundary S (see Lemma 3.2). This ensures
solvability of equation (3.107) and we find:

∂2
ν
KA(x, y) = δ(x − y)A−1

pr (x,ν(x))+

+

2∑

j=1

A−1
pr (x,ν(x)Aj(x,D)∂2−j

ν
KA(x, y) . (3.108)

Applying the mathematical induction and invoking (3.108) we obtain the
representation

∂r
ν
KA(x, y) = δ(x− y)A−1

pr (x,ν(x))+

+

r∑

j=1

A−1
pr (x,ν(x)Aj(x,D)∂r−j

ν
KA(x, y)

= δ(x− y)B(x) +

1∑

j=0

Bk(x,D)∂kKA(x, y) (3.109)

for arbitrary operator A(x,D) of order r = 2, 3, . . . .
The representation (3.109), inserted into (3.105), diminishes the order

of the operator (i.e., the order with respect to the normal derivative) to
k 6 1. As we have already noted, this guarantees both, the continuity
results (3.103) and the existence of traces. �

3.5. Calderón’s projections. Throughout this section it is assumed that
the hypotheses of Theorem 3.4 hold and Green’s formula (3.13) is valid also
for unbounded domain Ω−

∫

Ω±

[
〈Au, v〉 − 〈u,A∗v(y)〉

]
dy = ±

1∑

j=0

∫

S

〈Bju,Cjv〉 dS (3.110)
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under certain constraints on functions u, v ∈ C2(Ω±) at infinity (e.g, for
u(x), v(x) = O(〈x〉−γ), γ > n/2, as |x| → ∞).

Let

Hs,±
p (A,Bj , S) :=

{
γ±S Bjϕ : ϕ ∈ H

s+j+ 1
p

p (Ω±), A(x,D)ϕ = 0
}
,

Bs,±
p,q (A,Bj , S) :=

{
γ±S Bjϕ : ϕ ∈ B

s+j+ 1
p

p,q (Ω±), A(x,D)ϕ = 0
}
,

(3.111)

for j = 0, 1, s > 0, 1 < p <∞, 1 6 q 6 ∞, where γ±S u denote traces.

Theorem 3.22. Let j = 0, 1, s > 0, 1 < p < ∞, 1 6 q 6 ∞. The
functional spaces are decomposed in the following direct sums

Hs
p(S) = Hs,−

p (A,Bj, S) ⊕Hs,+
p (A,Bj, S) ,

Bs
p,q(S) = Bs,−

p,q (A,Bj, S) ⊕Bs,+
p,q (A, S) ,

Hs,−
p (A,Bj, S) ∩Hs,+

p (A,Bj, S) = {0} ,
Bs,−

p,q (A,Bj, S) ∩ Bs,+
p,q (A,Bj, S) = {0}

(3.112)

and the corresponding Calderón projections

P±
A,j : Hs

p(S) → Hs,±
p (A,Bj, S) ,

: Bs
p,q(S) → Bs,±

p,q (A,Bj, S)
(3.113)

are defined as follows

P±
A,0 = ±γ±S B0W, P±

A,1 = ±γ±S B1V. (3.114)

Proof. Let Xs
p(S) stand either for Hs

p(S) or for Bs
p,q(S). We will prove

(3.112) and (3.113) for the Sobolev–Slobodetskii spaces. For the Bessel
potential spaces we have to prove only the continuity property (3.113) while
the others (including (3.114)) follow from the embedding Bs

p,q(S) ⊂ Hs
r (S)

for 1 < r < p <∞, s ∈ R (see [72, 73]).
The continuity (3.113) follow from Theorem 3.21 since P±

A,j are ΨDOs

of order 0 (see Theorem 2.33 and Remark 2.35) and

ordP±
A,0 = ordB0 + ordW = 0, ordP±

A,1 = ordB1 + ordV = 1− 1 = 0.

By inserting u = Pjϕ, f = Au = APjϕ into (3.81), where B0 = I,
B1 = B (see (3.80)) and involving (3.96), we get

χΩ±P0ϕ(x) = NΩ±AP0ϕ(x) ±WB0P0ϕ(x) ±VB1P0ϕ(x)+

= NΩ±AP0ϕ(x) ±Wϕ(x),

χΩ±P1ϕ(x) = NΩ±AP1ϕ(x) ±WB0P1ϕ(x) ±VB1P1ϕ(x)+

= NΩ±AP1ϕ(x) ±Vϕ(x), x ∈ Ω±.

(3.115)

Since the first summand in (3.115) and its derivatives are continuous across
the surface S,

(γ−S ∂
α
x NΩ−APjϕ)(X) = (γ+

S ∂
α
x NΩ+APjϕ)(X), X ∈ S, (3.116)
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for arbitrary multi-index α ∈ Nn
0 . Taking the sum and invoking (3.96) we

obtain the following

(γ+
S BkVjϕ)(X) − (γ−S BkVjϕ)(X) = BkPjϕ(X) = δkjϕ(X) , (3.117)

where j, k = 0, 1, V0 = W, V1 = V and B0 = I , B1 = B are chosen as in
(3.80). Formula (3.117) yields

P+
A,jϕ+ P−

A,jϕ = γ+
S BjVjϕ− γ−S BjVjϕ = ϕ , ϕ ∈ X

s
p(S) (3.118)

and with (3.113) they imply (3.112).
To prove (3.112) let us apply formula (3.115), written for the homoge-

neous equation Au = APjϕ = 0:

χΩ±P0ϕ(x) = ±Wϕ(x) , χΩP1ϕ(x) = ±Vϕ(x) , x ∈ Ω− ∪ Ω+. (3.119)

Now assume, that ϕ = P+
A,jϕ = P−

A,jϕ, which means that the function ϕ is

in the intersection ϕ ∈ Xs,−
p (A,Bj, S) ∩ Xs,+

p (A,BjS). Then from (3.119),
by applying the operator Bj and invoking (3.96), (3.95) we find that

ϕ±(X) = {B0P0ϕ}±(X) = ±{B0Wϕ}±(X) = P±
A,0ϕ(X),

ϕ±(X) = {B1P1ϕ}±(X) = ±{B1Vϕ}±(X) = P±
A,1ϕ(X), X ∈ S,

and since ϕ = P+
A,jϕ = P−

A,jϕ, we get [ϕ](X) := ϕ+(X) − ϕ−(X) = 0. On

the other hand, by taking the sum of traces, we derive from (3.119) that

P0ϕ(x) = W[ϕ](x) ≡ 0 , P1ϕ(x) = V[ϕ](x) ≡ 0 , x ∈ Ω− ∪ Ω+, (3.120)

which implies ϕ(x) ≡ 0. Thus

PA,j
±PA,j

∓ψ = 0 ∀ψ ∈ X
s
p(S). (3.121)

From (3.118) and (3.121) we get that P±
A,j are projections:

(P±
A,j)

2 = P±
A,j(P

±
A,j + P∓

A,j) = P±
A,j . �

3.6. Plemelji’s formulae for layer potentials. Let

Bj(x,D)Vkϕ(x) =

∫

S

Bj(x,D)
[
Ck(Y, D)K>

A(Y, x)
]>
ϕ(Y) dS, x ∈ Ω±,

Vj,k(X , D)ϕ(X) :=
1

2

[
(BjVkϕ(X))+ + (BjVkϕ(X))−

]
, X ∈ S. (3.122)

According to Theorems 3.19, 3.21 and 3.13, Vj,k is a pseudodifferential
operator, ordBj(X , D) = j, ordCk(X , D) = 1 − k, and maps the spaces

Vj,k : Hs
p(S) → Hs+k−j

p (S),

: Bs
p,q(S) → Bs+k−j

p,q (S), j, k = 0, 1,
(3.123)

continuously, provided that s ∈ R, 1 < p <∞, 1 6 p 6 ∞.
We have already explained in Corollary 3.11 in what sense the operator

Vj,k should be understood when its order is strictly positive, i.e. ordV0,1 =
1. Since ordVj,j = 0 (see (3.14)), Vj,j represents a Calderón–Zygmund
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singular integral operator and the integral in (3.122) is understood in the
Cauchy principal value sense:

Vj,j(X , D)ϕ(X) :=

:= lim
ε→0

∫

S\S(X ,ε)

Bj(X , D)
[
Cj(Y, D)K>

A(Y,X)
]>
ϕ(Y) dS . (3.124)

Here S(X , ε) is the part of the surface S inside the sphere Sn−1(X , ε) with
radius ε centered at X ∈ S. Then Vj,j is continuous in the spaces Hs

p(S)
and Bs

p,q(S) (see (3.123)).

Theorem 3.23. Let the BVP (3.11) be formally adjoint to (3.10) and
suppose that Green’s formula (3.110) holds. Then, for the traces γ±

S BjVk

the following Plemelji’s formulae are valid:

(γ−S Bj(X , D)Vkϕ)(X) = (γ+
S Bj(X , D)Vkϕ)(X) for k 6= j , (3.125)

(γ±S Bj(X , D)Vjϕ)(X) = ± 1

2
ϕ(X) + Vj,j(X , D)ϕ(X) , (3.126)

X ∈ S , k, j = 0, 1 , ϕ ∈ Hs
p(S) .

We remind, that V1 = V is the single layer and V0 = W is the double
layer potential.

Proof. (3.125) follows directly from (3.117).
Let X ∈ S be the projection of x ∈ Ω, i.e. x = X ± cxν(X) (recall that

ν(X) is the unit exterior normal vector to S). The potential-type operator

Vj,jϕ(x) :=

∫

S

Kj,A(x, Y)ϕ(Y)dS , (3.127)

Kj,A(x, Y) := Bj(Y, D)
[
Cj(Y, D)K>

A(Y, x)
]>
, x ∈ Ω ,

restricted to S, has order 0 and has the following Calderón–Zygmund kernel

Kj,A ∈ C∞(Rn ⊗ R
n \ ∆Rn) , (3.128)

∣∣Kj,A(x, Y)
∣∣ 6 M0|Y|1−n , Y ∈ R

n , Y 6= 0 . (3.129)

Then the truncated operator

V0
j,j,εϕ(x) :=

∫

S\S(X ,ε)

Kj,A(x, Y)ϕ(Y)dS , ε > 0 (3.130)

(see (3.124)) has C∞-smooth kernel (see (3.128)) and

lim
ε→0

(γ−S V0
j,j,εϕ)(X) = lim

ε→0
(γ+

S V0
j,j,εϕ)(X) . (3.131)
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Due to the definition (3.124) and the continuity property (3.131),

(γ±S Bj(x,D)Vjϕ)(X) = (Vj,j(X , D)ϕ)(X) + lim
ε→0

(γ±S Vj,j,εϕ)(X) ,

Vj,j,εϕ(x) =

∫

S(X ,ε)

Kj,A(x, Y)ϕ(Y)dS , x ∈ Ω , ϕ ∈ C∞(S) . (3.132)

Since ε > 0 is sufficiently small there exists a diffeomorphism

κ : S0(X , ε) → S(X , ε) , κ(x′) = (x′, g(x′)) ∈ S(X , ε) ⊂ S ,

x′ = (x1, . . . , xn−1) ∈ S0(X , ε) ⊂ R
n−1
X , (3.133)

g(X) = X ∈ S , (∂kg)(X) = 0 , k = 1, . . . , n− 1

and S0(X , ε) is the projection of the part S(X , ε) into the tangential plane
Rn−1

x to S at X ∈ S. By the variable transformastion X = κ(y′), y′ ∈
S0(X , ε) in the integral (3.6) we get the following

Vj,j,εϕ(x) :=

∫

Rn−1

Kj,A(x, x − κ(y′))Gκ(y′)χε(y
′)ϕ(κ(y′))dy′ ,

|x− y′| < 2ε , x 6= y′ ,

where χε is the indicator function of the part S0(X , ε) ⊂ Rn−1 and

Gκ(y′) :=
√
|∂ g(y′)|2 + 1 = 1 + O|y′ − X | (3.134)

is the Gram determinant (see (2.86) in § 6.3).
Next we note that

Vj,εϕ(x) :=

∫

Rn−1

Kj,A(x, y′)χε(y
′)ϕ(κ(y′)) dy′ + o(1) (3.135)

as ε→ 0 uniformly for x ∈ R
n.

Indeed, the remainder kernel

K0
j,A(x, y′) := Kj,A(x,κ(y′))Gκ(y′) −Kj,A(x, y′)

is weakly singular
∣∣K0

j,A(x, y′)
∣∣ 6 M1|x− y′|2−n , x, y′ ∈ R

n , x 6= y′ (3.136)

(cf. (3.128); see (3.131)) and, almost obviously,

lim
ε→0

γ±S

∫

S0(X ,ε)

K0
j,A(x, y′)Gκ(y′)χε(y

′)ϕ(κ(y′)) dS = 0

for arbitrary ϕ ∈ C∞(S). By the same reason

Vj,εϕ(x) := ϕ(X)

∫

S0(X ,ε)

Kj,A(x, x − y′)dS + o(1) as ε→ 0 , (3.137)

because |ϕ(κ(y′)) − ϕ(X)| 6 M2|y′ − X |.
The difference between the kernel Kj,A(x, y′) in (3.127) defined by the dif-

ferential operators Bj(x,D), Cj(x,D) and A(x,D) and the kernel
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K0
j,A(x, y′) defined by the principal parts Bj,0(X , D), Cj,0(X , D) is weakly

singular and admits an estimate similar to (3.136). Therefore, as in (3.137),

Vj,εϕ(x) := ϕ(X)

∫

S0(X ,ε)

Kj,0,A(x, y′)dy′ + o(1) as ε→ 0 . (3.138)

We can further simplify the integral in (3.138):

(1) Replace the domain of integration S0(X , ε) by the ball

B(X , ε) :=
{
|y′ − X | 6 ε : y′ ∈ R

n−1
}
.

Observe that mesB(X , ε) − mesS0(X , ε) = O(ε), while the corre-
sponding integrals differ by o(1) as ε→ 0.

(2) Freeze coefficients at X 0 ∈ S as ε→ 0, to consider a pure convolution
kernel Kj,X 0,A(x−y′), which is translation invariant; the remainder
has a weak singularity and contributes the summand o(1) in (3.138).

(3) Due to the described simplifications, the domain of integration in
(3.138), |y′ − X | 6 ε can be translated (shifted) to the origin and
stretched to the unit ball |y′| 6 1; the integral is invariant with
respect to translations and dilations (stretching).

Finally, taking the traces, we get the following

(γ±S Vj,εϕ)(X) := ±c0 ϕ(X) + o(1) as ε→ 0 , (3.139)

where γ± denote the traces on different faces of the surface; the integral

c0 :=

∫

|y′|61

Kj,x0,A(y′) dy′

is independent of ε > 0 and X0 ∈ S. By invoking (3.120) we find c0 = 1/2.
Now (3.6) and (3.139) yield (3.126). �

4. Representation Formulae in Thermoelasticity and
Piezo-Thermoelasticity

In this section we apply the general results established in the previous
two sections to the differential equations of the theory of thermoelasticity
and piezo-thermoelasticity. In particular, we derive general representation
formulas of solutions to some special BVS which are very important in our
analysis. Moreover, we calculate explicitly the principal homogeneous sym-
bol matrices of the boundary integral (pseudodifferential) operators gen-
erated by the corresponding single and double layer potentials and study
their properties which are essentially applied in the subsequent sections in
the qualitative analysis of solutions of the mixed boundary-transmission
problems.
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4.1. Fundamental solutions in thermoelasticity and piezo-thermo-
elasticity. Recall that Fx→ξ and F −1

ξ→x stand for the generalized direct

and inverse Fourier transforms. Denote by Ψ (m)(· , τ) = [ Ψ
(m)
kj (· , τ) ]4×4

and Ψ(· , τ) = [ Ψkj(· , τ) ]5×5 the fundamental matrices of the operators

A (m)(∂, τ) and A(∂, τ),

A (m)(∂x, τ)Ψ
(m)(x− y, τ) = δ(x − y) I4,

A(∂x, τ)Ψ(x − y, τ) = δ(x − y) I5,

where δ(·) denotes Dirac’s delta function. We have then the following rep-
resentation formulas

Ψ (m)(x, τ) = F −1
ξ→x

(
[A(m)(−iξ, τ)]−1

)
=

=
1

(2π)3
lim

R→∞

∫

|ξ|<R

[A(m)(−iξ, τ)]−1 e−ixξ dξ, (4.1)

Ψ(x, τ) = F −1
ξ→x

(
[A(−iξ, τ)]−1

)
=

=
1

(2π)3
lim

R→∞

∫

|ξ|<R

[A(−iξ, τ)]−1 e−ixξ dξ. (4.2)

Recall that A (m, 0)(∂) and A (0)(∂) are the principal homogeneous parts of
the differential operators A (m)(∂, τ) and A(∂, τ), respectively (see (1.13)
and (1.28)). The principal singular parts of the matrices Ψ (m)( · , τ) and
Ψ( · , τ) can be represented as (see [7])

Ψ (m, 0)(x) = F −1
ξ′→x′

(
1

2π

∫

`±

[
A (m, 0)(−iξ)

]−1
e−i ξ3 x3 dξ3

)

= − 1

8π2 |x|

2π∫

0

[
A (m, 0)(Λ η)

]−1
dθ, (4.3)

Ψ (0)(x) = F −1
ξ′→x′

(
1

2π

∫

`±

[
A (0)(−iξ)

]−1
e−i ξ3 x3 dξ3

)

= − 1

8π2 |x|

2π∫

0

[
A (0)(Λ η)

]−1
dθ, (4.4)

where x = (x1, x2, x3), ξ = (ξ1, ξ2, ξ3), x
′ = (x1, x2), ξ

′ = (ξ1, ξ2), the
sign “−” corresponds to the case x3 > 0, and the sign “+” to the case
x3 < 0; `+ (respectively `−) is a closed simple contour in the complex
half-plane Im ξ3 > 0 (respectively Im ξ3 < 0) orientated counterclockwise
(respectively clockwise) and enveloping all the roots of the corresponding
polynomials detA (m, 0)(−i ξ) and detA (0)(−i ξ) with respect to ξ3 with
positive (respectively negative) imaginary parts; here Λ = [Λkj ]3×3 is an
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orthogonal matrix associated with x and possessing the property Λ>x =
(0, 0, |x|)>, and η = (cos θ, sin θ, 0)>.

Note that

Ψ (m, 0)(x, τ) = Ψ (m, 0)(−x, τ) =
[
Ψ (m, 0)(x, τ)

]>
,

Ψ (0)(x, τ) = Ψ (0)(−x, τ) 6=
[
Ψ (0)(x, τ)

]>
.

These matrices have the singularity of type O(|x|−1) in a neighbourhood
of the origin and at infinity decay as O(|x|−1). Moreover, there are positive

constants c
(m)
0 > 0 and c0 > 0 (depending on τ and on the material param-

eters) such that in a neighbourhood of the origin (say |x| < 1/2) there hold
the estimates

∣∣Ψ (m)
kj (x, τ) − Ψ

(m, 0)
kj (x)

∣∣ 6 c
(m)
0 log |x|−1,

∣∣ ∂α
[
Ψ

(m)
kj (x, τ) − Ψ

(m, 0)
kj (x)

] ∣∣ 6 c
(m)
0 |x|−|α|

for |α| = 1, 2, and k, j = 1, 4,

∣∣ Ψpq(x, τ) − Ψ (0)
pq (x)

∣∣ 6 c 0 log |x|−1,
∣∣ ∂α

[
Ψpq(x, τ) − Ψ (0)

pq (x)
] ∣∣ 6 c 0 |x|−|α|

for |α| = 1, 2, and p, q = 1, 5,

where α = (α1, α2, α3) is a multi-index and |α| = α1 + α2 + α3. Moreover,

Ψ
(m, 0)
k4 (x) = Ψ

(m, 0)
4k (x) = 0, Ψ

(0)
j4 (x) = Ψ

(0)
4j (x) = 0,

k = 1, 2, 3, j = 1, 2, 3, 5,

and the kernels κ
(m)
jl νj(y) ∂lΨ

(m, 0)
44 (x − y) and κjl nj(y) ∂lΨ

(0)
44 (x − y),

associated with the co-normal derivatives corresponding to the thermo-

conductive operators κ
(m)
jl ∂j ∂l and κjl ∂j ∂l, have weak singularity on

∂Ω (m) and ∂Ω respectively.
For the Newton type volume potentials

N (m)
τ (Φ(m))(x) :=

∫

Ω(m)

Ψ(m)(x− y, τ)Φ(m)(y) dy,

Nτ (Φ)(x) :=

∫

Ω

Ψ(x− y, τ) Φ(y) dy,

the following theorem holds.

Theorem 4.1. Let Ω(m) and Ω be Lipschitz domains and 0 < β′ < 1.
Then the operators

N (m)
τ : [L2(Ω)]4 → [W 2

2 (Ω)]4 , (4.5)

: [C 0,β′

(Ω)]4 → [C 2,β′

(Ω)]4 ∩ [C 1,β′

(Ω)]4 ,
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Nτ : [L2(Ω)]5 → [W 2
2 (Ω)]5 , (4.6)

: [C 0,β′

(Ω)]5 → [C 2,β′

(Ω)]5 ∩ [C 1,β′

(Ω)]5

are bounded. Moreover,

A (m)(∂, τ)N (m)
τ (Φ (m))(x) = Φ (m)(x), x ∈ Ω (m), (4.7)

A(∂, τ)Nτ (Φ)(x) = Φ(x), x ∈ Ω, (4.8)

for almost all x ∈ Ω (m) and for almost all x ∈ Ω respectively. In addition,

if Φ (m) ∈ [C 0,β′

(Ω (m))]4 and Φ ∈ [C 0,β′

(Ω)]5, then the relations (1.44) and
(1.45) hold for all x ∈ Ω (m) and for all x ∈ Ω, respectively.

4.2. Layer potentials of thermoelasticity and piezo-thermoelasti-

city. Let Ψ (m)(· , τ) =
[
Ψ

(m)
kj (· , τ)

]
4×4

and Ψ(· , τ) =
[
Ψkj(· , τ)

]
5×5

be

the fundamental matrix-functions of the differential operators A (m)(∂x, τ)
and A(∂x, τ) constructed above and introduce the single and double layer
potentials:

V (m)
τ (h (m))(x) =

∫

∂Ω (m)

Ψ (m)(x− y, τ) h (m)(y) dyS, (4.9)

W (m)
τ (h (m))(x) =

=

∫

∂Ω(m)

[
T̃ (m)(∂y , ν(y), τ )

[
Ψ(m)(x− y, τ)

]>]>
h(m)(y) dyS, (4.10)

Vτ (h)(x) =

∫

∂Ω

Ψ(x− y, τ) h(y) dyS, (4.11)

Wτ (h)(x) =

∫

∂Ω

[
T̃ (∂y, n(y), τ )

[
Ψ(x− y, τ)

]> ]>
h(y) dyS, (4.12)

where h (m) = (h
(m)
1 , h

(m)
2 , h

(m)
3 , h

(m)
4 )> and h = (h1, h2, h3, h4, h5)

> are
densities of the potentials.

For the boundary integral (pseudodifferential) operators generated by the
layer potentials we will employ the following notation:

H (m)
τ (h (m))(x) :=

∫

∂Ω(m)

Ψ (m)(x − y, τ) h (m)(y) dyS,

K (m)
τ (h (m))(x) :=

∫

∂Ω(m)

[
T (m)(∂x, ν(x))Ψ

(m)(x− y, τ)
]
h (m)(y) dyS,

K̃(m) ∗
τ (h (m))(x) :=

∫

∂Ω(m)

[
T̃ (m)(∂y, ν(y), τ )

[
Ψ (m)(x−y, τ)

]> ]>
h (m)(y) dyS,

Hτ (h)(x) :=

∫

∂Ω

Ψ(x− y, τ) h(y) dyS,
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Kτ (h)(x) :=

∫

∂Ω

[
T (∂x, n(x))Ψ(x − y, τ)

]
h(y) dyS,

K̃∗
τ (h)(x) :=

∫

∂Ω

[
T̃ (∂y, n(y), τ )

[
Ψ(x− y, τ)

]> ]>
h(y) dyS,

L (m)
τ (h (m))(x) :=

{
T (m)(∂x, ν(x))W

(m)(h (m))(x)
}±

, x ∈ ∂Ω (m),

Lτ (h)(x) :=
{
T (∂x, n(x))Wτ (h)(x)

}±
, x ∈ ∂Ω.

The boundary operators H (m)
τ , Hτ and L (m)

τ , Lτ are pseudodifferential

operators of order −1 and 1, respectively, while the operators K (m)
τ , K̃(m) ∗

τ ,

Kτ and K̃∗
τ are singular integral operators (pseudodifferential operators of

order 0) (for details see [4–7,9, 29, 30, 53]).

4.3. Properties of layer potentials of thermoelasticity and piezo-
thermoelasticity. Recall that n and ν stand for the unite outward normal
vectors to ∂Ω and ∂Ω (m), respectively, and that ∂Ω, ∂Ω (m) ∈ C∞. We
describe here mapping properties of the layer potentials and the boundary
integral operators generated by them which actually have been proved in the

previous two sections. However, we note that for the potentials V
(m)

τ and

W
(m)

τ with regular densities the proofs can be found in [33], in the isotropic
case, and in [29, 30, 54], in the anisotropic case, while for the potentials
Vτ and Wτ the proofs can be found in [4, 6, 7, 9]. Note that the main
ideas for generalization to the scale of Bessel potential and Besov spaces
are based on the duality and interpolation technique and is described in the
references [10,17–19,27,63], using the theory of pseudodifferential operators
on smooth manifolds without boundary.

For similar properties in the case of general Lipschitz domains see [25,
44, 50].

Theorem 4.2. Let 1 < p <∞, 1 6 t 6 ∞, and s ∈ R. The operators

V (m)
τ :

[
Bs

p,p(∂Ω (m))
]4 →

[
H

s+1+ 1
p

p (Ω (m))
]4

:
[
Bs

p,t(∂Ω (m))
]4 →

[
B

s+1+ 1
p

p,t (Ω (m))
]4
,

W (m)
τ :

[
Bs

p,p(∂Ω (m))
]4 →

[
H

s+ 1
p

p (Ω (m))
]4
,

:
[
Bs

p,t(∂Ω (m))
]4 →

[
B

s+ 1
p

p,t (Ω (m))
]4
,

Vτ :
[
Bs

p,p(∂Ω)
]5 →

[
H

s+1+ 1
p

p (Ω)
]5

:
[
Bs

p,t(∂Ω)
]5 →

[
B

s+1+ 1
p

p,t (Ω)
]5
,

Wτ :
[
Bs

p,p(∂Ω)
]5 →

[
H

s+ 1
p

p (Ω)
]5
,

:
[
Bs

p,t(∂Ω)
]5 →

[
B

s+ 1
p

p,t (Ω)
]5
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are continuous.

Theorem 4.3. Let 1 < p <∞, 1 6 t 6 ∞,

h (m) ∈
[
B

− 1
p

p,t (∂Ω (m))
]4
, g (m) ∈

[
B

1− 1
p

p,t (∂Ω (m))
]4
,

h ∈
[
B

− 1
p

p,t (∂Ω)
]5
, g ∈

[
B

1− 1
p

p,t (∂Ω)
]5
.

Then
{
V (m)

τ (h (m))
}+

=
{
V (m)

τ (h (m))
}−

= H (m)
τ h (m) on ∂Ω (m),

{
T (m)(∂, ν)V (m)

τ (h (m))
}±

=
[
∓ 2−1I4 + K (m)

τ

]
h (m) on ∂Ω (m),

{
W (m)

τ (g (m))
}±

=
[
± 2−1I4 + K̃(m)∗

τ

]
g (m) on ∂Ω (m),

{
Vτ (h)

}+
=

{
Vτ (h)

}−
= Hτ h on ∂Ω,

{
T (∂, n)Vτ (h)

}±
=

[
∓ 2−1I5 + Kτ

]
h on ∂Ω,

{
Wτ (g)

}±
=

[
± 2−1I5 + K̃∗

τ

]
g on ∂Ω,

where Ik stands for the k × k unit matrix. Moreover,
{
T (m)(∂, ν)W (m)

τ (g (m))
}+

=
{
T (m)(∂, ν)W (m)

τ (g (m))
}−

on ∂Ω (m)

and {
T (∂, n)Wτ (g)

}+
=

{
T (∂, n)Wτ (g)

}−
on ∂Ω.

Theorem 4.4. Let 1 < p <∞, 1 6 t 6 ∞, s ∈ R. The operators

H (m)
τ :

[
Hs

p(∂Ω (m))
]4 →

[
Hs+1

p (∂Ω (m))
]4
,

:
[
Bs

p,t(∂Ω (m))
]4 →

[
Bs+1

p,t (∂Ω (m))
]4
,

K (m)
τ , K̃(m)∗

τ :
[
Hs

p(∂Ω (m))
]4 →

[
Hs

p(∂Ω (m))
]4
,

:
[
Bs

p,t(∂Ω (m))
]4 →

[
Bs

p,t(∂Ω (m))
]4
,

L (m)
τ :

[
Hs+1

p (∂Ω (m))
]4 →

[
Hs

p(∂Ω (m))
]4
,

:
[
Bs+1

p,t (∂Ω (m))
]4 →

[
Bs

p,t(∂Ω (m))
]4
,

Hτ :
[
Hs

p(∂Ω)
]5 →

[
Hs+1

p (∂Ω)
]5
,

:
[
Bs

p,t(∂Ω)
]5 →

[
Bs+1

p,t (∂Ω)
]5
,

Kτ , K̃∗
τ :

[
Hs

p(∂Ω)
]5 →

[
Hs

p(∂Ω)
]5
,

:
[
Bs

p,t(∂Ω)
]5 →

[
Bs

p,t(∂Ω)
]5
,

Lτ :
[
Hs+1

p (∂Ω)
]5 →

[
Hs

p(∂Ω)
]5
,

:
[
Bs+1

p,t (∂Ω)
]5 →

[
Bs

p,t(∂Ω)
]5

are continuous.
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Moreover, the following operator equalities hold in appropriate function
spaces:

K̃ (m)∗
τ H (m)

τ = H (m)
τ K (m)

τ , L (m)
τ K̃ (m)∗

τ = K (m)
τ L (m)

τ ,

L (m)
τ H (m)

τ = −4−1I4 +
[
K (m)

τ

]2
, H (m)

τ L (m)
τ = −4−1I4 +

[
K̃(m)∗

τ

]2
,

K̃∗
τ Hτ = Hτ Kτ , Lτ K̃∗

τ = Kτ Lτ ,

Lτ Hτ = −4−1I5 +
[
Kτ

]2
, Hτ Lτ = −4−1I5 +

[
K̃∗

τ

]2
.

Theorem 4.5. Let 1 < p <∞, 1 6 t 6 ∞, s ∈ R and τ = σ + i ω. The
operators

H (m)
τ :

[
Hs

p(∂Ω (m))
]4 →

[
Hs+1

p (∂Ω (m))
]4
,

:
[
Bs

p,t(∂Ω (m))
]4 →

[
Bs+1

p,t (∂Ω (m))
]4
,

Hτ :
[
Hs

p(∂Ω)
]5 →

[
Hs+1

p (∂Ω)
]5
,

:
[
Bs

p,t(∂Ω)
]5 →

[
Bs+1

p,t (∂Ω)
]5

are invertible if σ > 0 or τ = 0.
The operators

±1

2
I 4 + K(m)

τ :
[
Hs

p(∂Ω (m))
]4 →

[
Hs

p(∂Ω (m))
]4
,

:
[
Bs

p,t(∂Ω (m))
]4 →

[
Bs

p,t(∂Ω (m))
]4
,

±1

2
I 4 + K̃ (m)∗

τ :
[
Hs

p(∂Ω (m))
]4 →

[
Hs

p(∂Ω (m))
]4
,

:
[
Bs

p,t(∂Ω (m))
]4 →

[
Bs

p,t(∂Ω (m))
]4

are invertible if σ > 0.
The operators

±1

2
I 5 + Kτ :

[
Hs

p(∂Ω)
]5 →

[
Hs

p(∂Ω)
]5
,

:
[[
Bs

p,t(∂Ω)
]5 →

[
Bs

p,t(∂Ω)
]5

]

are Fredholm with the index equal to zero for any τ ∈ C.

4.4. Explicit expressions for symbol matrices. Here we present the
explicit expressions for the principal homogeneous symbol matrices of the
pseudodifferential operators introduced in Subsection 4.2, and establish
their properties. Recall that the principal homogeneous symbol matrix
of the pseudodifferential operator A on a manifold S is denoted by
SA(x, ξ1, ξ2), x ∈ S, (ξ1, ξ2) ∈ R2 \ {0}. With the help of the relations
(1.13), (1.16), (1.28), (1.34), (1.35), (4.3) and (4.4) we can derive the follow-
ing formulas for the principal homogeneous symbol matrices of the operators
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H (m)
τ , −2−1I4 + K (m)

τ , H, and −2−1I5 + Kτ :

M̃ (m)(x, ξ1, ξ2) := S
H

(m)
τ

(x, ξ1, ξ2) =
[
M̃

(m)
kj (x, ξ1, ξ2)

]
4×4

=

=


[M

(m)
kj (x, ξ1, ξ2)]3×3 [ 0 ]3×1

[ 0 ]1×3 M
(m)
44 (x, ξ1, ξ2)




4×4

=

= − 1

2π

∫

`±

[A (m, 0)(Bν ξ ) ]−1 dξ3, ξ = (ξ1, ξ2, ξ3), (4.13)

Ñ
(m)
± (x, ξ1, ξ2) := S

±2−1I4+K
(m)
τ

(x, ξ1, ξ2) =
[
Ñ

(m)
kj,±(x, ξ1, ξ2)

]
4×4

=

=

[
[N

(m)
kj,±(x, ξ1, ξ2)]3×3 [ 0 ]3×1

[ 0 ]1×3 ±2−1

]

4×4

=

=
i

2π

∫

`∓

T (m,0)(Bν ξ, ν)
[
A (m, 0)(Bν ξ )

]−1
dξ3, (4.14)

M̃(x, ξ1, ξ2) := SHτ
(x, ξ1, ξ2) =

[
M̃kj(x, ξ1, ξ2)

]
5×5

=

=




[Mkj(x, ξ1, ξ2)]3×3 [ 0 ]3×1 [Mk5(x, ξ1, ξ2)]3×1

[ 0 ]1×3 M44(x, ξ1, ξ2) 0

[M5j(x, ξ1, ξ2)]1×3 0 M55(x, ξ1, ξ2)




5×5

=

= − 1

2π

∫

`±

[
A (0)(Bn ξ )

]−1
dξ3, (4.15)

Ñ±(x, ξ1, ξ2) := S±2−1I5+Kτ
(x, ξ1, ξ2) =

[
Ñkj,±(x, ξ1, ξ2)

]
5×5

=

=




[Nkj,±(x, ξ1, ξ2)]3×3 [ 0 ]3×1 [Nk5,±(x, ξ1, ξ2)]3×1

[ 0 ]1×3 ±2−1 0

[N5j,±(x, ξ1, ξ2)]1×3 0 N55,±(x, ξ1, ξ2)




5×5

=

=
i

2π

∫

`∓

T (0)(Bn ξ, n)
[
A (0)(Bn ξ )

]−1
dξ3, (4.16)

Bν =




l′1 l′′1 ν1

l′2 l′′2 ν2

l′3 l′′3 ν3


 for x ∈ ∂Ω (m), Bn =




l′1 l′′1 n1

l′2 l′′2 n2

l′3 l′′3 n3


 for x ∈ ∂Ω,

where Bν(x) and Bn(x) are orthogonal matrices with detBν(x) = 1 and
detBn(x) = 1, ν(x) for x ∈ ∂Ω (m) and n(x) for x ∈ ∂Ω are the exterior unit
normal vectors, respectively, and l′(x) and l′′(x) are orthogonal unit vectors
in the tangent plane associated with some local chart; `+ (respectively `−)
is a closed simple contour in the complex half-plane Im ξ3 > 0 (respectively
Im ξ3 < 0) , orientated counterclockwise (clockwise) and circumventing all
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the roots with positive (respectively negative) imaginary parts of the equa-
tions detA (m, 0)(Bν ξ ) = 0 and detA (0)(Bn ξ ) = 0, respectively, with
respect to ξ3, while (ξ1, ξ2) ∈ R

2 \ {0} play the role of parameters.

In equations (4.14) and (4.16) we employed that the operators [K (m)
τ ]44

and [Kτ ]44 are weakly singular integral operators due to the remark at the
end of Subsection 4.1.

The matrix −M̃ (m)(x, ξ1, ξ2) is positive definite, while −M̃(x, ξ1, ξ2) is
strongly elliptic (for details see [6,29,30]), that is there are positive constants
c (m) and c depending on the material parameters such that

−M̃ (m)(x, ξ1, ξ2)η · η > c (m) |ξ|−1 |η|2 (4.17)

for all x ∈ ∂Ω (m), (ξ1, ξ2) ∈ R
2 \ {0}, η ∈ C

4,

Re {−M̃(x, ξ1, ξ2)η · η} > c |ξ|−1 |η|2 (4.18)

for all x ∈ ∂Ω, (ξ1, ξ2) ∈ R
2 \ {0}, η ∈ C

5.

In particular, −M (m)
44 (x, ξ1, ξ2) > 0 for x ∈ ∂Ω (m), (ξ1, ξ2) ∈ R2 \ {0}, and

−M44(x, ξ1, ξ2) > 0 for x ∈ ∂Ω, (ξ1, ξ2) ∈ R2 \ {0}.
The entries of the matrices M̃ (m)(x, ξ1, ξ2) and M̃(x, ξ1, ξ2) are even

functions in (ξ1, ξ2).
The matrices (4.14) and (4.16) are nondegenerate, that is

det Ñ (m)(x, ξ1, ξ2) 6= 0 for all x ∈ ∂Ω (m), (ξ1, ξ2) ∈ R
2 \ {0}

and

det Ñ±(x, ξ1, ξ2) 6= 0 for all x ∈ ∂Ω, (ξ1, ξ2) ∈ R
2 \ {0}.

It is evident that the principal homogeneous symbol matrix of the operator
Pτ , given by (4.41), reads as

SPτ
(x, ξ1, ξ2)=S−2−1I5+Kτ

(x, ξ1, ξ2)=Ñ−(x, ξ1, ξ2)=:Ñ(x, ξ1, ξ2) (4.19)

and is nondegenerate.
Further, for the principal homogeneous symbol matrix of the operator

Aτ = Hτ [Pτ ]−1 we have

SAτ
(x, ξ1, ξ2) = SHτ

(x, ξ1, ξ2)
[
SPτ

(x, ξ1, ξ2)
]−1

=

= M̃(x, ξ1, ξ2)
[
Ñ(x, ξ1, ξ2)

]−1
. (4.20)

Clearly, this matrix is nondegenerate as well.
Let us introduce the matrices obtained from (4.15) and (4.19) by deleting

the fourth column and fourth row (see (4.16))

M(x, ξ1, ξ2) :=

[
[Mkj(x, ξ1, ξ2)]3×3 [Mk5(x, ξ1, ξ2)]3×1

[M5j(x, ξ1, ξ2)]1×3 M55(x, ξ1, ξ2)

]

4×4

,

N(x, ξ1, ξ2) :=

[
[Nkj(x, ξ1, ξ2)]3×3 [Nk5(x, ξ1, ξ2)]3×1

[N5j(x, ξ1, ξ2)]1×3 N55(x, ξ1, ξ2)

]

4×4

.
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Note that these non-degenerate matrices represent the principal homoge-
neous symbol matrices of the corresponding operators of piezoelastostatics
and it is shown in [6] that the symbol

D(x, ξ1, ξ2) := [Dkj(x, ξ1, ξ2)]4×4 = M(x, ξ1, ξ2) [N(x, ξ1, ξ2)]
−1 (4.21)

is a strongly elliptic matrix, that is

Re
{
D(x, ξ1, ξ2)η · η

}
> c |ξ|−1 |η|2

for all x ∈ ∂Ω, (ξ1, ξ2) ∈ R
2 \ {0}, η ∈ C

4.

As an easy consequence we conclude that the symbol

S̃1(x, ξ1, ξ2) := SAτ
(x, ξ1, ξ2) = M̃(x, ξ1, ξ2) [Ñ(x, ξ1, ξ2)]

−1 =

=




[Dkj(x, ξ1, ξ2)]3×3 [0]3×1 [Dk4(x, ξ1, ξ2)]3×1

[0]1×3 −2M44(x, ξ1, ξ2) 0

[D4j(x, ξ1, ξ2)]1×3 0 D44(x, ξ1, ξ2)




5×5

(4.22)

is strongly elliptic, since −2M44(x, ξ1, ξ2)>0. Moreover, since M44(x, ξ1, ξ2)
is an even function with respect to (ξ1, ξ2) we derive

[
S̃1(x, 0,+1)

]−1
S̃1(x, 0,−1) =

=




[Dkj(x)]3×3 [0]3×1 [Dk4(x)]3×1

[0]1×3 1 0

[D4j(x)]1×3 0 D44(x)




5×5

, (4.23)

where

D(x) := [Dkj(x)]4×4 = [D(x, 0,+1)]−1 D(x, 0,−1), x ∈ ∂Ω. (4.24)

Denote by λ
(1)
j (x), j = 1, 4, the eigenvalues of the matrix (4.24), that is the

roots of the equation

det
[
D(x) − λ I4

]
= 0 (4.25)

with respect to λ. Then λ
(1)
j (x), j = 1, 4, and λ

(1)
5 = 1 are eigenvalues

of the matrix (4.23). From the strong ellipticity property of the symbol

matrix (4.21) it follows that λ
(1)
j (x), j = 1, 4, are complex numbers, in

general, and −π < argλ
(1)
j (x) < π, that is λ

(1)
j (x) 6∈ (−∞, 0]. Remark, that

the numbers λ
(1)
j (x), j = 1, 4, coincide with the eigenvalues corresponding to

piezoelastostatics without taking into consideration thermal effects (see [6]).
Quite analogously for the homogeneous principal symbol matrix of the

operator Aτ + B (m)
τ at a point x ∈ Γ (m) we get (see (5.18))

S̃2(x, ξ1, ξ2)=S
Aτ+B

(m)
τ

(x, ξ1, ξ2)=SAτ
(x, ξ1, ξ2)+S

B
(m)
τ

(x, ξ1, ξ2) =

= S̃1(x, ξ1, ξ2) + S̃
(m)
1 (x, ξ1, ξ2), (ξ1, ξ2) ∈ R

2 \ {0}, (4.26)



Interface Crack Problems for Metallic-Piezoelectric Composite Structures 91

where S̃1(x, ξ1, ξ2) is given by (4.22) and

S̃
(m)
1 (x, ξ1, ξ2) := S

B
(m)
τ

(x, ξ1, ξ2) =

=




[D
(m)
kj (x, ξ1, ξ2)]3×3 [0]3×1 [0]3×1

[0]1×3 −2M
(m)
44 (x, ξ1, ξ2) 0

[0]1×3 0 0




5×5

, (4.27)

D (m)(x, ξ1, ξ2) := [D
(m)
kj (x, ξ1, ξ2)]3×3 =

= M (m)(x, ξ1, ξ2) [N (m)(x, ξ1, ξ2)]
−1 (4.28)

with

M (m)(x, ξ1, ξ2) :=
[
M

(m)
kj (x, ξ1, ξ2)

]
3×3

,

N (m)(x, ξ1, ξ2) :=
[
(N

(m)
− )kj(x, ξ1, ξ2)

]
3×3

.
(4.29)

Here M
(m)

kj (x, ξ1, ξ2) and (N
(m)
− )kj(x, ξ1, ξ2) are the entries of the matrices

(4.13) and (4.14). The matrices M (m)(x, ξ1, ξ2) and N (m)(x, ξ1, ξ2) corre-
spond to the operators of the classical elastostatics, while (4.28) represents
the homogeneous symbol matrix of the so called Steklov–Poincaré opera-
tor and is positive definite (see [54]). Therefore, it is clear that (4.27) is

a nonnegative definite matrix due to the inequality −2M
(m)
44 (x, ξ1, ξ2) > 0

and consequently (4.26) is strongly elliptic symbol matrix due to the strong

ellipticity of S̃1(x, ξ1, ξ2).
Thus we have

S̃2(x, ξ1, ξ2) =

=




[Dkj(x, ξ1, ξ2)]3×3 [0]3×1 [Dk4(x, ξ1, ξ2)]3×1

[0]1×3 −2M44(x, ξ1, ξ2) 0

[D4j(x, ξ1, ξ2)]1×3 0 D44(x, ξ1, ξ2)




5×5

+

+




[D
(m)
kj (x, ξ1, ξ2)]3×3 [0]3×1 [0]3×1

[0]1×3 −2M
(m)
44 (x, ξ1, ξ2) 0

[0]1×3 0 0




5×5

=

=




[D∗
kj(x, ξ1, ξ2)]3×3 [0]3×1 [Dk4(x, ξ1, ξ2)]3×1

[0]1×3 −2D∗
44(x, ξ1, ξ2) 0

[D4j(x, ξ1, ξ2)]1×3 0 D44(x, ξ1, ξ2)




5×5

, (4.30)

where

D∗
kj(x, ξ1, ξ2) = Dkj(x, ξ1, ξ2) +D

(m)
kj (x, ξ1, ξ2), k, j,= 1, 2, 3,

D∗
44(x, ξ1, ξ2) = M44(x, ξ1, ξ2) +M

(m)
44 (x, ξ1, ξ2).
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Denote

T (x, ξ1, ξ2) :=

[
[D∗

kj(x, ξ1, ξ2)]3×3 [Dk4(x, ξ1, ξ2)]3×1

[D4j(x, ξ1, ξ2)]1×3 D44(x, ξ1, ξ2)

]

4×4

,

D (m)(x) :=
[
D (m)

kj (x)
]
4×4

= [T (x, 0,+1)]−1 T (x, 0,−1). (4.31)

One can easily check that

[
S̃

(m)
1 (x, 0,+1)

]−1
S̃

(m)
1 (x, 0,−1) =

=




[D (m)
kj (x)]3×3 [0]3×1 [D (m)

k4 (x)]3×1

[0]1×3 1 0

[D (m)
4j (x)]

1×3
0 D (m)

44 (x)




5×5

. (4.32)

Denote by λ
(2)
j (x), j = 1, 4, the eigenvalues of the matrix (4.31), that is the

roots of the equation

det
[
D (m)(x) − λ I4

]
= 0 (4.33)

with respect to λ. Then λ
(2)
j (x), j = 1, 4, and λ

(2)
5 = 1 are eigenvalues

of the matrix (4.32). From the strong ellipticity of the symbol matrix

(4.30) it follows that λ
(2)
j (x), j = 1, 4, are complex numbers, in general,

and −π < argλ
(2)
j (x) < π, that is λ

(2)
j (x) 6∈ (−∞, 0]. Remark, that again

the numbers λ
(2)
j (x), j = 1, 4, coincide with the eigenvalues correspond-

ing to the piezoelastostatics case without taking into consideration thermal
effects (see [6]).

4.5. Auxiliary problems and representation formulas of solutions.
Here we assume that Re τ = σ > 0 and consider two auxiliary boundary
value problems needed for our further purposes.

Auxiliary problem I: Find a vector function U (m) : Ω (m) → C4 which
belongs to the space [W 1

2 (Ω (m)) ]4 and satisfies the following conditions:

A (m)(∂, τ)U (m) = 0 in Ω (m), (4.34)
{
T (m) U (m)

}+
= χ (m) on ∂Ω (m), (4.35)

where χ(m) = (χ
(m)
1 , χ

(m)
2 , χ

(m)
3 , χ

(m)
4 )> ∈ [H

− 1
2

2 (∂Ω (m)) ]4. With the help
of Green’s formula it can easily be shown that the homogeneous version of
this auxiliary BVP possesses only the trivial solution. Moreover, we have
the following result concerning the representation of solutions of equation
(4.34).

Lemma 4.6. Let Re τ = σ > 0 and 1 < p < ∞. An arbitrary solution
vector U (m) ∈ [W 1

p (Ω (m)) ]4 to the homogeneous equation (4.34) can be
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uniquely represented by the single layer potential

U (m)(x) = V (m)
τ

( [
P (m)

τ

]−1
χ (m)

)
(x), x ∈ Ω (m), (4.36)

where
P (m)

τ := −2−1 I 4 + K(m)
τ ,

χ (m) =
{
T (m)U (m) }+ ∈

[
B

− 1
p

p,p (∂Ω (m))
]4
.

(4.37)

Proof. Clearly, if

χ(m) =
(
χ

(m)
1 , . . . , χ

(m)
4

)>
=

{
T (m)U (m)

}+ ∈
[
B

− 1
p

p,p (∂Ω (m))
]4

then the vector function (4.36) solves the auxiliary BVP and belongs to the
space [W 1

p (Ω (m)) ]4 by Theorems 4.2, 4.3 and 4.5. The uniqueness follows
from the following general integral representation formula for an arbitrary
solution vector U (m) ∈ [W 1

p (Ω (m)) ]4 of the homogeneous equation (4.34)

U (m)(x) = W (m)
τ

(
{U (m)}+

)
(x) − V (m)

τ

(
{T (m)U (m)}+

)
(x), x ∈ Ω (m),

and invertibility of the operator

−2−1 I 4 + K̃ (m)∗
τ :

[
Bs

p,p(∂Ω (m))
]4 →

[
Bs

p,p(∂Ω (m))
]4

(see Theorem 4.5). �

Auxiliary problem II: Find a vector function U : Ω → C5 which belongs
to the space [W 1

2 (Ω) ]5 and satisfies the following conditions:

A(∂, τ)U = 0 in Ω, (4.38)
{
T U

}+
+ β {U }+ = χ on ∂Ω, (4.39)

where χ := (χ1, χ2, χ3, χ4, χ5)
> ∈ [H

− 1
2

2 (∂Ω) ]5, β is a smooth real valued
scalar function which does not vanish identically and

β > 0, supp β ⊂ SD . (4.40)

By the same arguments as in the proof of Theorem 1.1 we can easily show
that the homogeneous version of this boundary value problem possesses only
the trivial solution in the space [W 1

2 (Ω) ]5.
We look for a solution to the auxiliary BVP (4.38)-(4.39) as a single layer

potential, U(x) = Vτ (f)(x), where f = (f1, f2, f3, f4, f5)
> ∈ [H

− 1
2

2 (∂Ω) ]5

is an unknown density. The boundary condition (4.39) leads then to the
system of equations:

(
− 2−1 I5 + Kτ

)
f + βHτ f = χ on ∂Ω.

Denote the matrix operator generated by the left hand side expression of
this equation by Pτ and rewrite the system as

Pτ f = χ on ∂Ω,

where

Pτ := −2−1 I5 + Kτ + βHτ . (4.41)
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Lemma 4.7. Let Re τ = σ > 0. The operators

Pτ :
[
Hs

p(∂Ω)
]5 →

[
Hs

p(∂Ω)
]5
, (4.42)

:
[
Bs

p,t(∂Ω)
]5 →

[
Bs

p,t(∂Ω)
]5
, (4.43)

are invertible for all 1 < p <∞, 1 6 t 6 ∞, and s ∈ R.

Proof. From the uniqueness result for the auxiliary BVP (4.38)–(4.39) it
follows that the operator (4.42) is injective for p = 2 and s = −1/2. The

operator Hτ : [H
− 1

2
2 (∂Ω) ]5 → [H

− 1
2

2 (∂Ω) ]5 is compact. By Theorem
4.5 we then conclude that the index of the Fredholm operator (4.42) equals
to zero. Since Pτ is an injective singular integral operator of normal type
with zero index it follows that it is surjective. Thus the operator (4.42) is
invertible for p = 2 and s = −1/2.

The invertibility of the operators (4.42) and (4.43) for all 1 < p < ∞,
1 6 t 6 ∞, and s ∈ R then follows by standard duality and interpolation
arguments for the C∞−regular surface ∂Ω (see, e.g., [1, 63]). �

As a consequence we have the following representation formula.

Lemma 4.8. Let Re τ = σ > 0 and 1 < p < ∞. An arbitrary solu-
tion U ∈ [W 1

p (Ω) ]5 to the homogeneous equation (4.38) can be uniquely

represented by the single layer potential U(x) = V τ

(
P−1

τ χ
)
(x), where

χ = {T U}+ + β {U}+ ∈ [B
− 1

p
p,p (∂Ω) ]5.

Remark 4.9. By standard arguments it can be shown that Lemmata 4.6,
4.7 and 4.8 with p = 2 remain true for Lipschitz domains Ω (m) and Ω (cf.
[44]).

5. Existence and Regularity Results for Problem (ICP-A)

5.1. Reduction to boundary equations. Let us return to the interface
crack problem (1.46)–(1.55) and derive the equivalent boundary integral
formulation of this problem. Keeping in mind (1.57), let

G :=

{
Q on SN ,

Q̃ on Γ
(m)
C ,

G(m) :=

{
Q(m) on S

(m)
N ,

Q̃(m) on Γ
(m)
C ,

(5.1)

G ∈
[
B−1/p

p,p (SN ∪ Γ
(m)
C )

]5
, G(m) ∈

[
B−1/p

p,p (S
(m)
N ∪ Γ

(m)
C )

]4
,

and

G0 = (G01, . . . , G05)
> ∈

[
B

− 1
p

p,p (∂Ω)
]5
,

G
(m)
0 = (G

(m)
01 , . . . , G

(m)
04 )> ∈

[
B

− 1
p

p,p (∂Ω (m))
]4

be some fixed extensions of the vector-functionG andG(m) respectively onto
∂Ω and ∂Ω (m) preserving the space. It is evident that arbitrary extensions
of the same vector functions can be represented then as

G∗ = G0 + ψ + h, G (m)∗ = G
(m)
0 + h (m), (5.2)



Interface Crack Problems for Metallic-Piezoelectric Composite Structures 95

where

ψ := (ψ1, . . . , ψ5)
> ∈

[
B̃

− 1
p

p,p (SD)
]5
,

h := (h1, . . . , h5)
> ∈

[
B̃

− 1
p

p,p (Γ
(m)
T )

]5
,

h (m) := (h
(m)
1 , . . . , h

(m)
4 )> ∈

[
B̃

− 1
p

p,p (Γ
(m)
T )

]4
(5.3)

are arbitrary vector-functions.
We develop here the so-called indirect boundary integral equations me-

thod. In accordance with Lemmas 4.6 and 4.8 we look for a solution pair
(U (m), U) of the interface crack problem (1.46)–(1.55) in the form of single
layer potentials,

U (m) = (u
(m)
1 , . . . , u

(m)
4 )> =

= V (m)
τ

(
[P (m)

τ ]−1
[
G

(m)
0 + h (m)

] )
in Ω (m), (5.4)

U = (u1, . . . , u5)
> = Vτ

(
P−1

τ

[
G0 + ψ + h

] )
in Ω, (5.5)

where P (m)
τ and Pτ are given by (4.37) and (4.41), and h (m), h and ψ are

unknown vector-functions satisfying the inclusions (5.3).
By Lemmas 4.6, 4.8 and the property (4.40), we see that the homogeneous

differential equations (1.46)–(1.47), boundary conditions (1.48)–(1.49) and
crack conditions (1.54)–(1.55) are satisfied automatically.

The remaining boundary and transmission conditions (1.50)–(1.5) lead
to the equations

r
SD

[
Hτ P−1

τ

(
G0 + ψ + h

) ]
k

= fk on SD, k = 1, 5, (5.6)

r
Γ

(m)
T

[
Hτ P−1

τ (G0 + ψ + h)
]
5

= f
(m)
5 on Γ

(m)
T , (5.7)

r
Γ
(m)
T

[
Hτ P−1

τ (G0 + ψ + h)
]
j
− r

Γ
(m)
T

[
H (m)

τ [P(m)
τ ]−1(G

(m)
0 + h(m))

]
j

=

= f
(m)

j on Γ
(m)
T , j = 1, 4, (5.8)

r
Γ
(m)
T

[G0+ψ+h ]j+r
Γ

(m)
T

[
G

(m)
0 +h(m)

]
j
=F

(m)
j on Γ

(m)
T , j=1, 4. (5.9)

After some evident simplification we arrive at the system of pseudodifferen-
tial equations with the unknown vector-functions ψ, h and h (m)

r
SD

[
Hτ P−1

τ (ψ + h)
]
k

= f̃k on SD, k = 1, 5, (5.10)

r
Γ

(m)
T

[
Hτ P−1

τ (ψ + h)
]
5

= f̃
(m)
5 on Γ

(m)
T , (5.11)

r
Γ

(m)
T

[
Hτ P−1

τ (ψ + h)
]
j
− r

Γ
(m)
T

[
H (m)

τ [P (m)
τ ]−1 h (m)

]
j

=

= f̃
(m)

j on Γ
(m)
T , j = 1, 4, (5.12)

r
Γ

(m)
T

h
(m)
j + r

Γ
(m)
T

hj = F̃
(m)

j on Γ
(m)
T , j = 1, 4, (5.13)
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where

f̃k := fk − r
SD

[
Hτ P−1

τ G0

]
k
∈ B

1− 1
p

p,p (SD), k = 1, 5, (5.14)

f̃
(m)
5 := f

(m)
5 − r

Γ
(m)
T

[
Hτ P−1

τ G0

]
5
∈ B

1− 1
p

p,p (Γ
(m)
T ), (5.15)

f̃
(m)
j := f

(m)
j + r

Γ
(m)
T

[
H (m)

τ [P (m)
τ ]−1G

(m)
0

]
j
−

− r
Γ
(m)
T

[
Hτ P−1

τ G0

]
j
∈ B

1− 1
p

p,p (Γ
(m)
T ), j = 1, 4, (5.16)

F̃
(m)
j := F

(m)
j − r

Γ
(m)
T

G0j−r
Γ
(m)
T

G
(m)
0j ∈r

Γ
(m)
T

B̃
− 1

p
p,p (Γ

(m)
T ), j=1, 4. (5.17)

The last inclusions are the compatibility conditions for Problem (ICP-A).

Therefore, in what follows we assume that F̃
(m)

j are extended from Γ
(m)
T

onto the whole of ∂Ω (m) ∪ ∂Ω by zero, i.e., F̃
(m)

j ∈ B̃
− 1

p
p,p (Γ

(m)
T ), j = 1, 3.

Let us introduce the Steklov–Poincaré type 5×5 matrix pseudodifferential
operators

Aτ := Hτ P−1
τ , B (m)

τ :=

[
[H (m)

τ [P (m)
τ ]−1 ]4×4 [ 0 ]4×1

[ 0 ]1×4 [ 0 ]1×1

]
]5×5 , (5.18)

and rewrite equations (5.10)–(5.13) as

r
SD

Aτ (ψ + h) = f̃ on SD, (5.19)

r
Γ

(m)
T

Aτ (ψ + h) + r
Γ

(m)
T

B (m)
τ h = g̃ (m) on Γ

(m)
T , (5.20)

r
Γ

(m)
T

hj + r
Γ

(m)
T

h
(m)
j = F̃

(m)
j on Γ

(m)
T , j = 1, 4, (5.21)

where

f̃ := (f̃1, . . . , f̃5)
> ∈

[
B

1− 1
p

p,p (SD)
]5
, (5.22)

g̃ (m) := (g̃
(m)
1 , . . . , g̃

(m)
5 )> ∈

[
B

1− 1
p

p,p (Γ
(m)
T )

]5
, (5.23)

g̃
(m)
j := f̃

(m)
j + r

Γ
(m)
T

[
H(m)

τ [P(m)
τ ]−1 F̃ (m)

]
j
, j = 1, 4, (5.24)

g̃
(m)
5 = f̃

(m)
5 , F̃ (m) := (F̃

(m)
1 , . . . , F̃

(m)
4 )> ∈

[
B̃

− 1
p

p,p (Γ
(m)
T )

]4
. (5.25)

We note here that since the unknown vector function h is supported on

Γ
(m)
T , the operator B (m)

τ h is defined correctly provided h is extended by

zero on S
(m)
N ∪ Γ

(m)
C (see Figure 1). For this extended vector function we

will keep the same notation h. So, actually, in what follows we can assume

that h is a vector function defined on ∂Ω∪∂Ω(m) and is supported on Γ
(m)
T .

It is easy to see that the simultaneous equations (5.6)–(5.9) and (5.19)–
(5.21), where the right hand sides are related by the equalities (5.14)–
(5.17) and (5.22)–(5.24), are equivalent in the following sense: if the triplet
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(ψ, h, h (m)) ∈ [B̃
− 1

p
p,p (SD)]5 × [B̃

− 1
p

p,p (Γ
(m)
T )]5 × [B̃

− 1
p

p,p (Γ
(m)
T )]4 solves the sys-

tem (5.19)–(5.21), then the pair (G0 +ψ+h,G
(m)
0 +h (m)) solves the system

(5.6)–(5.9), and vice versa.

5.2. Existence theorems and regularity of solutions. Here we show
that the system of pseudodifferential equations (5.19)–(5.21) is uniquely
solvable in appropriate function spaces. To this end, let us put

N (A)
τ :=




r
SD

Aτ r
SD

Aτ r
SD

[ 0 ]5×4

r
Γ

(m)
T

Aτ r
Γ

(m)
T

[Aτ + B (m)
τ ] r

Γ
(m)
T

[ 0 ]5×4

r
Γ

(m)
T

[ 0 ]4×5 r
Γ

(m)
T

I4×5 r
Γ

(m)
T

I4




14×14

, (5.26)

I4×5 :=




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0


 . (5.27)

Further, let

Φ : = (ψ, h, h (m))>, Y := (f̃ , g̃ (m), F̃ (m))>,

Xs
p :=

[
B̃s

p,p(SD)
]5 ×

[
B̃s

p,p(Γ
(m)
T )

]5 ×
[
B̃s

p,p(Γ
(m)
T )

]4
,

Ys
p :=

[
Bs+1

p,p (SD)
]5 ×

[
Bs+1

p,p (Γ
(m)
T )

]5 ×
[
B̃s

p,p(Γ
(m)
T )

]4
,

Xs
p,q :=

[
B̃s

p,q(SD)
]5 ×

[
B̃s

p,q(Γ
(m)
T )

]5 ×
[
B̃s

p,q(Γ
(m)
T )

]4
,

Ys
p,q :=

[
Bs+1

p,q (SD)
]5 ×

[
Bs+1

p,q (Γ
(m)
T )

]5 ×
[
B̃s

p,q(Γ
(m)
T )

]4
.

Due to Theorems 4.4 and 4.5, the operator N (A)
τ has the following mapping

properties

N (A)
τ : Xs

p → Ys
p

[
Xs

p,q → Ys
p,q

]
, (5.28)

for all s ∈ R, 1 < p <∞ and all 1 6 q 6 ∞.
Clearly, we can rewrite the system (5.19)-(5.21) as

N (A)
τ Φ = Y, (5.29)

where Φ ∈ Xs
p is the unknown vector introduced above and Y ∈ Ys

p is a
given vector.

As it will become clear later the operator (5.28) is not invertible for
all s ∈ R. The interval a < s < b of invertibility depends on p and on
some parameters γ ′ and γ ′′ which are determined by the eigenvalues of
special matrices constructed by means of the principal homogeneous symbol

matrices of the operators Aτ and Aτ + B (m)
τ (see (5.18) and (5.39)). Note

that the numbers γ ′ and γ ′′ define also Hölder smoothness exponents for
the solutions to the original interface crack problem in a neighbourhood of

the exceptional curves ∂SD, ∂Γ
(m)
C and ∂Γ (m). We start with the following

theorem.
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Theorem 5.1. Let the conditions

1 < p <∞, 1 6 q 6 ∞,
1

p
− 1 + γ ′′ < s+

1

2
<

1

p
+ γ ′ (5.30)

be satisfied with γ ′ and γ ′′ given by (5.36), (5.37), and (5.39). Then the
operators in (5.28) are invertible.

Proof. We prove the theorem in several steps. First we show that the oper-
ators (5.28) are Fredholm with zero index and afterwards we establish that
the corresponding null-spaces are trivial.

Step 1. First of all let us note that the operators

r
SD

Aτ :
[
B̃s

p,q(Γ
(m)
T )

]5 →
[
Bs+1

p,q (SD)
]5
,

r
Γ

(m)
T

Aτ :
[
B̃s

p,q(SD)
]5 →

[
Bs+1

p,q (Γ
(m)
T )

]5
,

(5.31)

are compact since SD and Γ
(m)
T are disjoint, SD ∩ Γ

(m)
T = ∅. Further, we

establish that the operators

r
SD

Aτ :
[
H̃

− 1
2

2 (SD)
]5 →

[
[H

1
2
2 (SD)

]5
,

r
Γ

(m)
T

[
Aτ + B (m)

τ

]
:

[
H̃

− 1
2

2 (Γ
(m)
T )

]5 →
[
H

1
2
2 (Γ

(m)
T )

]5
(5.32)

are strongly elliptic Fredholm pseudodifferential operators of order −1 with
index zero. We note that the principal homogeneous symbol matrices of
these operators are strongly elliptic.

Using Green’s formula (1.40) and the Korn’s inequality (see, e.g., [23]), for
an arbitrary solution vector U ∈ [H1

2 (Ω)]5 ≡ [W 1
2 (Ω)]5 to the homogeneous

equation A(∂, τ)U = 0 in Ω by standard arguments we derive

Re
〈
[U ]+, [T U ]+

〉
∂Ω

> c1 ‖U ‖2
[H1

2 (Ω)]5 − c2 ‖U ‖2
[H0

2 (Ω)]5 . (5.33)

Substitute here U = Vτ (P−1
τ ζ) with ζ ∈ [H

− 1
2

2 (∂Ω)]5. Due to the equal-
ity ζ = PτH−1

τ {U}+ and boundedness of the operators involved, we have
‖ζ‖2

[H
− 1

2
2 (∂Ω)]5

6 c∗‖{U}+‖2

[H
1
2
2 (∂Ω)]5

with some positive constant c∗. There-

fore, by the trace theorem from (5.33) we easily obtain

Re 〈HτP−1
τ ζ, ζ〉

∂Ω
> c′1 ‖ ζ ‖2

[H
− 1

2
2 (∂Ω)]5

+

+
∥∥βHP−1

τ ζ
∥∥

[H
− 1

2
2 (∂Ω)]5

− c′2
∥∥Vτ (P−1

τ ζ)
∥∥2

[H0
2 (Ω)]5

. (5.34)

In particular, in view of Theorem 4.2, for arbitrary ζ ∈ [H̃
− 1

2
2 (SD)]5 we have

‖U ‖2
[H0

2 (Ω)]5 6 c∗∗ ‖ ζ ‖2

[H
− 3

2
2 (SD)]5

,

and, consequently,

Re
〈
r

SD
H

τ
P−1

τ ζ, ζ
〉

∂Ω
> c′′1 ‖ ζ ‖2

[H̃
− 1

2
2 (SD)]5

− c′′2 ‖ ζ ‖2

[H̃
− 3

2
2 (SD)]5

. (5.35)



Interface Crack Problems for Metallic-Piezoelectric Composite Structures 99

From (5.35) it follows that

r
SD

Aτ = r
SD

HτP−1
τ :

[
H̃

− 1
2

2 (SD)
]5 →

[
H

1
2
2 (SD)

]5

is a strongly elliptic pseudodifferential Fredholm operator with index zero.
Then the same is true for the operator (5.32) since the principal homo-

geneous symbol matrix of the operator B (m)
τ is nonnegative (see formula

(4.27)).
Therefore, due to the compactness of the operators (5.31), the operator

(5.28) is Fredholm with index zero for s = −1/2, p = 2 and q = 2.
Step 2. With the help of the uniqueness Theorem 1.1 via representation

formulas (5.4) and (5.5) with G
(m)
0 = 0 and G0 = 0 we can easily show that

the operator (5.28) is injective for s = −1/2, p = 2 and q = 2. Since its
index is zero, we conclude that it is surjective. Thus the operator (5.28) is
invertible for s = −1/2, p = 2 and q = 2.

Step 3. To complete the proof for the general case we proceed as follows.
The following lower triangular operator

N (A,0)
τ :=




r
SD

Aτ r
SD

[ 0 ]5×5 r
SD

[ 0 ]5×4

r
Γ

(m)
T

[ 0 ]5×5 r
Γ

(m)
T

[Aτ + B (m)
τ ] r

Γ
(m)
T

[ 0 ]5×4

r
Γ

(m)
T

[ 0 ]4×5 r
Γ

(m)
T

I4×5 r
Γ

(m)
T

I4




14×14

is a compact perturbation of the operator N (A)
τ . Therefore it suffices to

establish the properties of the diagonal entries

r
SD

Aτ : [ B̃s
p,q(SD) ]5 →

[
Bs+1

p,q (SD)
]5
,

r
Γ

(m)
T

[
Aτ + B (m)

τ

]
:

[
B̃s

p,q(Γ
(m)
T )]5 →

[
Bs+1

p,q (Γ
(m)
T )

]5
.

To this end, we apply the results presented in Section 3. Let

S1(x, ξ1, ξ2) := S(Aτ )(x, ξ1, ξ2)

be the principal homogeneous symbol matrix of the operator Aτ and λ
(1)
j (x)

(j = 1, 5) be the eigenvalues of the matrix

D1(x) :=
[
S1(x, 0,+1)

]−1
S1(x, 0,−1)

for x ∈ ∂SD (see (4.20) and (4.23)).
Similarly, let

S2(x, ξ1, ξ2) = S(Aτ + B (m)
τ )(x, ξ1, ξ2)

be the principal homogeneous symbol matrix of the operator Aτ +B (m)
τ and

λ
(2)
j (x) (j = 1, 5) be the eigenvalues of the corresponding matrix

D2(x) :=
[
S2(x, 0,+1)

]−1
S2(x, 0,−1)
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for x ∈ ∂Γ
(m)
T (see (4.20) and (4.23)). Note that the curve ∂Γ

(m)
T is the

union of the curves where the interface intersects the exterior boundary,

∂Γ (m), and the crack edge, ∂Γ
(m)
C .

Further, we set

γ′1 := inf
x∈∂SD, 16j65

1

2π
arg λ

(1)
j (x),

γ′′1 := sup
x∈∂SD, 16j65

1

2π
arg λ

(1)
j (x),

(5.36)

γ′2 := inf
x∈∂Γ

(m)
T

, 16j65

1

2π
arg λ

(2)
j (x),

γ′′2 := sup
x∈∂Γ

(m)
T , 16j65

1

2π
arg λ

(2)
j (x).

(5.37)

As is shown in Subsection 4.4, one of the eigenvalues equals to one, namely,

λ
(1)
5 = 1. Therefore

γ′1 6 0, γ′′1 > 0. (5.38)

Note that γ′j and γ′′j (j = 1, 2) depend on the material parameters, in

general, and belong to the interval (− 1
2 ,

1
2 ). We put

γ′ := min {γ′1, γ′2}, γ′′ := max {γ′′1 , γ′′2 }. (5.39)

In view of (5.38) we have

−1

2
< γ′ 6 0 6 γ′′ <

1

2
. (5.40)

From Theorem 2.28 we conclude that if the parameters r1, r2 ∈ R, 1 < p <
∞, 1 6 q 6 ∞, satisfy the conditions

1

p
− 1 + γ′′1 < r1 +

1

2
<

1

p
+ γ′1,

1

p
− 1 + γ′′2 < r2 +

1

2
<

1

p
+ γ′2,

then the operators

r
SD

Aτ :
[
H̃r1

p (SD)
]5 →

[
Hr1+1

p (SD)
]5
,

:
[
B̃r1

p,q(SD)]5 →
[
[Br1+1

p,q (SD)
]5
,

r
Γ

(m)
T

[
Aτ + B (m)

τ

]
:

[
H̃r2

p (Γ
(m)
T )

]5 →
[
Hr2+1

p (Γ
(m)
T )

]5
,

:
[
B̃r2

p,q(Γ
(m)
T )

]5 →
[
Br2+1

p,q (Γ
(m)
T )

]5
,

are Fredholm operators with index zero.
Therefore, if the conditions (5.30) are satisfied, then the above opera-

tors are Fredholm with zero index. Consequently, the operators (5.28) are
Fredholm with zero index and are invertible due to the results obtained in
Step 2. �
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Now we formulate the basic existence and uniqueness results for the in-
terface crack problem under consideration.

Theorem 5.2. Let the inclusions (1.56) and compatibility conditions
(5.17) hold and let

4

3 − 2γ′′
< p <

4

1 − 2γ′
(5.41)

with γ′ and γ′′ defined in (5.39). Then the interface crack problem (1.46)–
(1.55) has a unique solution

(U (m), U) ∈
[
W 1

p (Ω (m))
]4 × [W 1

p (Ω) ]5,

which can be represented by formulas

U (m) = V (m)
τ

( [
P (m)

τ

]−1 [
G

(m)
0 + h (m)

] )
in Ω (m), (5.42)

U = Vτ

(
P−1

τ

[
G0 + ψ + h

] )
in Ω, (5.43)

where the densities ψ, h, and h (m) are to be determined from the system
(5.10)-(5.13) (or from the system (5.19)–(5.21)).

Moreover, the vector functions G0 + ψ + h and G
(m)
0 + h (m) are de-

fined uniquely by the above systems and are independent of the extension
operators.

Proof. From Theorems 4.2, 4.3 and 5.1 with p satisfying (5.41) and s =
−1/p it follows immediately that the pair (U (m), U) ∈ [W 1

p (Ω (m))]4 ×
[W 1

p (Ω)]5 given by (5.42)–(5.43) represents a solution to the interface crack
problem (1.46)–(1.55). Next we show the uniqueness of solutions.

Due to the inequalities (5.40)

p = 2 ∈
( 4

3 − 2γ′′
,

4

1 − 2γ′

)
.

Therefore the unique solvability for p = 2 is a consequence of Theorem 1.1.
To show the uniqueness result for all other values of p from the interval

(5.41) we proceed as follows. Let a pair

(U (m), U) ∈
[
W 1

p (Ω (m))
]4 × [W 1

p (Ω) ]5 (5.44)

with p satisfying (5.41) be a solution to the homogeneous boundary-trans-
mission problem. Then, it is evident that

{
U (m)

}+ ∈
[
B

1− 1
p

p,p (∂Ω (m))
]4
,

{
U

}+ ∈
[
B

1− 1
p

p,p (∂Ω)
]5
,

{
T (m)U (m)

}+ ∈
[
B

− 1
p

p,p (∂Ω (m))
]4
,

{
T U

}+ ∈
[
B

− 1
p

p,p (∂Ω)
]5
,

(5.45)

and the vectors U (m) and U in Ω (m) and Ω respectively are representable
in the form

U (m) = V (m)
τ

( [
P(m)

τ

]−1
h(m)

)
in Ω(m), h(m) =

{
T (m)U (m)

}+
, (5.46)

U = Vτ

(
P−1

τ χ
)

in Ω, χ =
{
T U

}+
+ β

{
U

}+
, (5.47)
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due to Lemmas 4.6 and 4.8. Moreover, due to the homogeneous boundary
and transmission conditions we have

h(m) ∈
[
B̃

− 1
p

p,p (Γ
(m)
T )

]4
, χ = h+ ψ,

ψ ∈
[
B̃

− 1
p

p,p (SD)
]5
, h ∈

[
B̃

− 1
p

p,p (Γ
(m)
T )

]5
.

(5.48)

By the same arguments as above we arrive at the homogeneous system

N (A)
τ Φ = 0 with Φ := (ψ, h, h (m))> ∈ X

− 1
p

p .

Due to Theorem 5.1, Φ = 0 and we conclude that U (m) = 0 in Ω (m) and
U = 0 in Ω.

The last assertion of the theorem is trivial and is an easy consequence of
the fact that if the single layer potentials (5.42) and (5.43) vanish identically
in Ω (m) and Ω, then the corresponding densities vanish as well. �

Remark 5.3. Theorems 5.1 and 5.2 remain valid with p = 2 and s =
−1/2 for Lipschitz domains Ω (m) and Ω. Indeed, one can easily verify that
the arguments, applied in the first two steps of the proof of Theorem 5.1
and in the proof of Theorem 5.2, hold true in the case of Lipschitz domains.

Finally, we can prove the following regularity result for the solution of
Problem (ICP).

Theorem 5.4. Let the inclusions (1.56) and compatibility conditions
(5.17) hold and let 1 < r <∞, 1 6 q 6 ∞,

4

3− 2γ′′
< p <

4

1 − 2γ′
,

1

r
− 1

2
+ γ′′ < s <

1

r
+

1

2
+ γ′, (5.49)

with γ′ and γ′′ defined in (5.39).
Further, let U (m) ∈ [W 1

p (Ω (m))]4 and U ∈ [W 1
p (Ω)]5 be a unique solution

pair to the interface crack problem (1.46)–(1.55). Then the following hold:
i) if

Qk ∈ Bs−1
r,r (SN ), Q

(m)
j ∈ Bs−1

r,r (S
(m)
N ), fk ∈ Bs

r,r(SD),

f
(m)

k ∈ Bs
r,r(Γ

(m)
T ), F

(m)
j ∈ Bs−1

r,r (Γ
(m)
T ), Q̃

(m)
j ∈ Bs−1

r,r (Γ
(m)
C ),

Q̃k ∈ Bs−1
r,r (Γ

(m)
C ), k = 1, 5, j = 1, 4,

and the compatibility conditions

F̃
(m)

j := F
(m)

j − r
Γ

(m)
T

G0j − r
Γ

(m)
T

G
(m)
0j ∈ r

Γ
(m)
T

B̃s−1
r,r (Γ

(m)
T ), j = 1, 4,

are satisfied, then U (m) ∈ [H
s+ 1

r
r (Ω (m)) ]4 and U ∈ [H

s+ 1
r

r (Ω) ]5;
ii) if

Qk ∈ Bs−1
r,q (SN ), Q

(m)
j ∈ Bs−1

r,q (S
(m)
N ), fk ∈ Bs

r,q(SD),

f
(m)

k ∈ Bs
r,q(Γ

(m)
T ), F

(m)
j ∈ Bs−1

r,q (Γ
(m)
T ), Q̃

(m)
j ∈ Bs−1

r,q (Γ
(m)
C ),

Q̃k ∈ Bs−1
r,q (Γ

(m)
C ), k = 1, 5, j = 1, 4,
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and the compatibility conditions

F̃
(m)

j := F
(m)

j − r
Γ

(m)
T

G0j − r
Γ

(m)
T

G
(m)
0j ∈ r

Γ
(m)
T

B̃s−1
r,q (Γ

(m)
T ), j = 1, 4,

are satisfied, then

U (m) ∈
[
B

s+ 1
r

r,q (Ω (m))
]4
, U ∈

[
B

s+ 1
r

r,q (Ω)
]5

; (5.50)

iii) if α > 0 is not integer and

Qk ∈ Bα−1
∞,∞(SN ), Q

(m)
j ∈ Bα−1

∞,∞(S
(m)
N ), fk ∈ Cα(SD),

f
(m)

k ∈ Cα(Γ
(m)
T ), F

(m)
j ∈ Bα−1

∞,∞(Γ
(m)
T ), Q̃

(m)
j ∈ Bα−1

∞,∞(Γ
(m)
C ),

Q̃k ∈ Bα−1
∞,∞(Γ

(m)
C ), k = 1, 5, j = 1, 4,

(5.51)

and the compatibility conditions

F̃
(m)

j := F
(m)

j − r
Γ

(m)
T

G0j − r
Γ

(m)
T

G
(m)
0j ∈ r

Γ
(m)
T

B̃α−1
∞,∞(Γ

(m)
T ), j = 1, 4,

are satisfied, then

U (m) ∈
⋂

α ′< κ

[
Cα ′

( Ω (m) )
]4
, U ∈

⋂

α ′< κ

[
Cα ′

( Ω )
]5
,

where κ = min{α, γ ′ + 1
2} > 0.

Proof. The proofs of items i) and ii) follow easily from Theorems 5.1, 5.2,
and 4.2.

To prove (iii) we use the following embedding (see, e.g., [72])

Cα(M) = Bα
∞,∞(M) ⊂ Bα−ε

∞,1 (M) ⊂
⊂ Bα−ε

∞,q (M) ⊂ Bα−ε
r,q (M) ⊂ Cα−ε− k

r (M), (5.52)

where ε is an arbitrary small positive number, M ⊂ R3 is a compact k-
dimensional (k = 2, 3) smooth manifold with smooth boundary, 1 6 q 6 ∞,
1 < r <∞, α− ε− k/r > 0, and α and α− ε− k/r are not integers.

From (5.51) and the embedding (5.52) the condition (5.50) follows with
any s 6 α− ε.

Bearing in mind (5.49) and taking r sufficiently large and ε sufficiently
small, we can put

s = α− ε if
1

r
− 1

2
+ γ′′ < α− ε <

1

r
+

1

2
+ γ′, (5.53)

and

s ∈
(1

r
− 1

2
+ γ′′,

1

r
+

1

2
+ γ′

)
if

1

r
+

1

2
+ γ′ < α− ε. (5.54)

By (5.50) for the solution vectors we have U (m) ∈ [B
s+ 1

r
r,q (Ω (m)) ]4 and

U ∈ [B
s+ 1

r
r,q (Ω) ]5 with

s+
1

r
= α− ε+

1

r
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if (5.53) holds, and with

s+
1

r
∈

(2

r
− 1

2
+ γ′′,

2

r
+

1

2
+ γ′

)

if (5.54) holds. In the last case we can take

s+
1

r
=

2

r
+

1

2
+ γ′ − ε .

Therefore, we have either

U (m) ∈
[
B

α−ε+ 1
r

r,q (Ω (m))
]4
, U ∈

[
B

α−ε+ 1
r

r,q (Ω)
]5
,

or

U (m) ∈
[
B

1
2 + 2

r
+γ′−ε

r,q (Ω (m))
]4
, U ∈

[
B

1
2 + 2

r
+γ′−ε

r,q (Ω)
]5
,

in accordance with the inequalities (5.53) and (5.54). The last embedding
in (5.52) (with k = 3) yields then that either

U (m) ∈
[
Cα−ε− 2

r (Ω (m))
]4
, U ∈

[
Cα−ε− 2

r (Ω)
]5
,

or

U (m) ∈
[
C

1
2−ε+γ′− 1

r (Ω1)
]4
, U ∈

[
C

1
2−ε+γ′− 1

r (Ω)
]5
.

These relations lead to the inclusions

U (m) ∈
[
Cκ−ε− 2

r (Ω (m))
]4
, U ∈

[
Cκ−ε− 2

r (Ω)
]5
, (5.55)

where κ = min{α, γ′ + 1
2} and κ > 0 due to the inequality (5.40). Since r is

sufficiently large and ε is sufficiently small, the inclusions (5.55) accomplish
the proof. �

Regularity results for u4 = ϑ and u
(m)
4 = ϑ(m) can be refined. Namely,

we can assert the following

Proposition 5.5. Let conditions of Theorem 5.4 hold. Then,

u4 ∈ C
1
2−ε(Ω), u

(m)
4 ∈ C

1
2−ε(Ω(m)), (5.56)

where ε is an arbitrarily small positive number.

Indeed, u4 = ϑ and u
(m)
4 = ϑ(m) solve the following transmission problem





κij∂i∂ju4 = Q∗ in Ω,

κ
(m)
ij ∂i∂ju

(m)
4 = Q(m)∗ in Ω(m),

r
Γ

(m)
T

{u4}+ − r
Γ

(m)
T

{u(m)
4 }+ = f

(m)
4 on Γ

(m)
T ,

r
Γ

(m)
T

{
[T (∂, n)U ]4

}+
+

+r
Γ

(m)
T

{
[T (m)(∂, ν)U (m)]4

}+
= F

(m)
4 on Γ

(m)
T ,

r
SN∪Γ

(m)
C

{
[T (∂, n)U ]4

}+
= Q̃4 on SN ∪ Γ

(m)
C ,

r
S

(m)
N

∪Γ
(m)
C

{
[T (m)(∂, ν)U (m)]4

}+
= Q̃

(m)
4 on S

(m)
N ∪ Γ

(m)
C ,

rSD
{u4}+ = f4 on SD,

(5.57)
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Due to Theorem 5.4.(i) we deduce

U ∈
[
H

s+ 1
r

r (Ω)
]5
, U (m) ∈

[
H

s+ 1
r

r (Ω(m))
]4
,

whence
[
T (∂, n)U

]
4

= κil ni ∂lϑ,
[
T (m)(∂, ν)U (m)

]
4

= κ
(m)
il νi ∂lϑ

(m),

Q∗ = τ T0 γie ∂lui − τ T0 gi∂iϕ+ τ αϑ ∈ H
s+ 1

r
−1

r (Ω),

Q(m)∗ = τ T
(m)
0 γ

(m)
ie ∂lu

(m)
i + τ α(m) ϑ(m) ∈ H

s+ 1
r
−1

r (Ω(m)),

f
(m)
4 ∈ Bs

r,r(Γ
(m)
T ), F

(m)
4 ∈ Bs−1

r,r (Γ
(m)
T ), f4 ∈ Bs

r,r(SD),

Q4 ∈ Bs−1
r,r (SN

⋃
Γ

(m)
C ), Q

(m)
4 ∈ Bs−1

r,r (S
(m)
N

⋃
Γ

(m)
C ),

1

r
− 1

2
+ γ′′ < s <

1

r
+

1

2
+ γ′, 1 < r <∞.

Since the symbols of the differential operators −κij∂i∂j and −κ
(m)
ij ∂i∂j are

positive, the above problem can be reduced to the strongly elliptic system
of pseudodifferential equations. Moreover, the corresponding pseudodiffer-
ential operator is positive definite. Therefore (see [54])

u4 ∈ H
s+ 1

r
r (Ω), u

(m)
4 ∈ H

s+ 1
r

r (Ω(m)),
1

r
− 1

2
< s <

1

r
+

1

2
, 1 < r <∞.

Due to the embedding theorem (see [72]), for sufficiently small δ > 0, suffi-
ciently large r and s > 1/2 + 1/r − δ we have

H
s+ 1

r
r (Ω) ⊂ C

1
2−

1
r
−δ(Ω), H

s+ 1
r

r (Ω(m)) ⊂ C
1
2−

1
r
−δ(Ω(m)).

Whence (5.56) follows with ε = 1/r + δ.

5.3. Asymptotic formulas for solutions of Problem (ICP-A). Here
we study general asymptotic properties of solutions to the problem (ICP-A)
near the exceptional curves. Namely, we investigate in detail the asymp-

totic expansion of solutions at the interface crack edge ∂Γ
(m)
C and at the

curve ∂Γ(m) where the interface intersects the exterior boundary. Note that

∂Γ
(m)
C ∪ ∂Γ(m) = ∂Γ

(m)
T =: `m.

For simplicity of description of the method, we assume that the boundary
data of the problem are infinitely smooth. Namely,

Qk ∈ C∞(SN ), Q
(m)
j ∈ C∞(S

(m)
N ), fk ∈ C∞(SD),

f
(m)

k ∈ C∞(Γ
(m)
T ), F

(m)
j ∈ C∞(Γ

(m)
T ), Q̃

(m)
j ∈ C∞(Γ

(m)
C ),

F̃
(m)

j := F
(m)

j − r
Γ

(m)
T

G0j − r
Γ

(m)
T

G
(m)
0j ∈ C∞

0 (Γ
(m)
T ),

Q
(m)
j ∈ C∞(Γ

(m)
C ), j = 1, 4, k = 1, 5,

(5.58)

where C∞
0 (Γ

(m)
T ) denotes a space of infinitely differentiable functions van-

ishing on ∂Γ
(m)
T along with all tangential derivatives.
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We have already shown that the interface crack problem (ICP-A) is
uniquely solvable and the pair of solution vectors (U (m), U) are represented
by (5.42)-(5.43) with the densities defined by the system of pseudodifferen-
tial equations (5.10)–(5.13) (or (5.19)–(5.21)).

Let Φ := (ψ, h, h (m))> ∈ Xs
p be a solution of the system (5.19)-(5.21)

which is written in matrix form as

N (A)
τ Φ = Y,

(see Subsections 5.1 and 5.2) where

Y ∈
[
C∞(SD)

]5 ×
[
C∞(Γ

(m)
T )

]5 ×
[
C∞

0 (Γ
(m)
T )

]4
.

To establish asymptotic properties of the solution vectors U (m) and U near

the exceptional curve ∂Γ
(m)
T , we rewrite the representations (5.42)–(5.43) in

the form

U (m) = V (m)
τ ([P (m)

τ ]−1h (m)) +R (m) in Ω (m),

U = Vτ (P−1
τ ψ) + Vτ (P−1

τ h) +R in Ω,

where h (m) = −(h1, · · · , h4)
> +

(
F̃

(m)
1 , . . . , F̃

(m)
4

)>
on Γ

(m)
T ,

R (m) := V (m)
τ ([P (m)

τ ]−1G
(m)
0 ) ∈

[
C∞(Ω (m))

]4
,

R := Vτ (P−1
τ G0) ∈

[
C∞(Ω)

]5
.

The vectors h = (h1, . . . , h5)
> and ψ = (ψ1, . . . , ψ5)

> solve the following
strongly elliptic system of pseudodifferential equations:

r
SD

Aτψ = Φ(1) on SD,

r
Γ

(m)
T

(Aτ + B (m)
τ )h = Φ(2) on Γ

(m)
T ,

where

Φ(1) = (Φ
(1)
1 , . . . ,Φ

(1)
5 )> ∈

[
C∞(SD)]5,

Φ
(1)
k = fk − r

SD
[AτG0]k − r

SD
[Aτh]k, k = 1, 5,

Φ(2) = (Φ
(2)
1 , · · · ,Φ(2)

5 )> ∈
[
C∞(Γ

(m)
T )

]5
,

Φ
(2)
j = f

(m)
j + r

Γ
(m)
T

[
H (m)

τ (P (m)
τ )−1G

(m)
0

]
j
− r

Γ
(m)
T

[AτG0]j+

+ r
Γ

(m)
T

[
H (m)

τ (P (m)
τ )−1F̃ (m)

]
j
− r

Γ
(m)
T

[Aτψ]j , j = 1, 4,

Φ
(2)
5 = f

(m)
5 − r

Γ
(m)
T

[AτG0]5 − r
Γ

(m)
T

[Aτψ]5 .

Applying a partition of unity, natural local co-ordinate systems and stan-
dard rectifying technique based on canonical diffeomorphisms, we can as-

sume that ∂Γ
(m)
T is rectified. Then we identify a one-sided neighbourhood

on Γ
(m)
T of an arbitrary point x̃ ∈ ∂Γ

(m)
T as a part of the half-plane x2 > 0.
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Thus we assume that (x1, 0) = x̃ ∈ ∂Γ
(m)
T = `m and (x1, x2,+) ∈ Γ

(m)
T for

0 < x2,+ < ε with some positive ε.
Consider the 5 × 5 matrix D2(x1) related to the principal homogeneous

symbol S2(x, ξ) of the operator Aτ + B (m)
τ (see Subsection 5.2) for x̃ =

(x1, 0) ∈ `m

D2(x1) :=
[
S2(x1, 0, 0,+1)

]−1
S2(x1, 0, 0,−1).

We introduce the short notation λj(x1) for the eigenvalues λ
(2)
j (x1), j = 1, 5,

of the matrix D2(x1) and denote bymj the algebraic multiplicities of λj(x1).
Let µ1(x1), . . . , µl(x1), 1 6 l 6 5, be the distinct eigenvalues. Evidently, mj

and l depend on x1, in general, and m1 + · · · +ml = 5.
It is well known that the matrix D2(x1) admits the following decompo-

sition (see, e.g., [24])

D2(x1) = D(x1)JD2(x1)D−1(x1), (x1, 0) ∈ ∂Γ
(m)
T ,

where D is 5× 5 nondegenerate matrix with infinitely differentiable entries
and JD2 is block diagonal

JD2(x1) := diag
{
µ1(x1)B

(m1)(1) , . . . , µl(x1)B
(ml)(1)

}
.

Here B(ν)(t), ν ∈ {m1, . . . ,ml}, are upper triangular matrices:

B(ν)(t) =
∥∥b(ν)

jk (t)
∥∥

ν×ν
, b

(ν)
jk (t) =





tk−j

(k − j)!
, j < k,

1, j = k,

0, j > k,

i.e.,

B(ν)(t) =




1 t
t2

2!
. . .

tν−2

(ν − 2)!

tν−1

(ν − 1)!

0 1 t . . .
tν−3

(ν − 3)!

tν−2

(ν − 2)!
. . . . . . . . . . . . . . . . . .
0 0 0 . . . 1 t
0 0 0 . . . 0 1




ν×ν

.

Denote

B0(t) := diag
{
B(m1)(t), . . . , B(ml)(t)

}
.

Applying the results from the reference [12], we derive the following asymp-
totic expansion

h(x1, x2,+) = D(x1)x
− 1

2 +∆(x1)
2,+ B0

(
− 1

2πi
logx2,+

)
D−1(x1) b0(x1)

+

M∑

k=1

D(x1)x
− 1

2+∆(x1)+k
2,+ Bk

(
x1, logx2,+

)
+ hM+1(x1, x2,+), (5.59)
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where b0 ∈
[
C∞(`m)

]5
, hM+1 ∈ [C∞(`+m,ε) ]5, `+m,ε = `m × [0, ε], and

Bk(x1, t) = B0

(
− t

2πi

) k(2m0−1)∑

j=1

tj dkj(x1).

Here m0 = max {m1, . . . ,ml}, the coefficients dkj ∈ [C∞(`m)]5 and ∆ :=
(∆1, . . . ,∆5)

>,

∆j(x1) =
1

2πi
logλj(x1) =

1

2π
argλj(x1) +

1

2πi
log |λj(x1)|,

−π < argλj(x1) < π, (x1, 0) ∈ `m, j = 1, 5.

Furthermore, let

x
− 1

2+∆(x1)
2,+ := diag

{
x
− 1

2+∆1(x1)
2,+ , . . . , x

− 1
2+∆5(x1)

2,+

}
.

Now, having in hand the above asymptotic expansion for the density vector
function h, we can apply the results of the reference [13] and write the
spatial asymptotic expansions of the solution vectors U and U (m)

U(x) =
∑

µ=±1

{ l0∑

s=1

ns−1∑

j=0

xj
3

[
dsj(x1, µ)z

1
2+∆(x1)−j
s,µ B0(ζ)

]
cj(x1)+

+

M+2∑

k,l=0

M+2−l∑

j+p=0

xl
2 x

j
3dsljp(x1, µ) z

1
2+∆(x1)+p+k
s,µ Bskjp(x1, log zs,µ)

}
+

+UM+1(x) , x3 > 0, ζ := − 1

2πi
log zs,µ, (5.60)

U (m)(x) =

=
∑

µ=±1

{ l
(m)
0∑

s=1

n (m)
s −1∑

j=0

xj
3

[
d

(m)
sj (x1, µ)(z (m)

s,µ )
1
2+∆(x1)−j B0(ζ

(m))
]
cj(x1)+

+

M+2∑

k,l=0

M+2−l∑

j+p=0

xl
2 x

j
3d

(m)
sljp (x1, µ) (z (m)

s,µ )
1
2 +∆(x1)+p+k B

(m)
skjp(x1, log z (m)

s,µ )

}
+

+U
(m)
M+1(x) , x3 > 0, ζ(m) := − 1

2πi
log z (m)

s,µ . (5.61)

The coefficients dsj(· , µ), d
(m)
sj (· , µ), dsljp(· , µ) and d

(m)
sljp (· , µ) are matrices

with entries from the space C∞(`m), Bskjp(x1, t) and B
(m)
skjp(x1, t) are poly-

nomials in t with vector coefficients which depend on the variable x1 and
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have the order νkjp = k(2m0−1)+m0−1+p+j withm0 = max{m1, . . . ,ml},

cj ∈ [C∞(`m)]5, UM+1 ∈
[
CM+1(Ω)

]5
, U

(m)
M+1 ∈

[
CM+1(Ω (m))

]4
,

zκ+∆(x1)
s,µ := diag

{
zκ+∆1(x1)

s,µ , . . . , zκ+∆5(x1)
s,µ

}
,

(z (m)
s,µ )κ+∆(x1) := diag

{
(z (m)

s,µ )κ+∆1(x1), . . . , (z (m)
s,µ )κ+∆5(x1)

}
,

κ ∈ R, µ = ±1, (x1, 0) ∈ `m,

zs,+1 = −x2 − x3τs,+1, zs,−1 = x2 − x3τs,−1,

z
(m)
s,+1 = −x2 − x3τ

(m)
s,+1, z

(m)
s,−1 = x2 − x3τ

(m)
s,−1,

−π < arg zs,±1 < π, −π < arg z
(m)
s,±1 < π,

τs,±1 ∈ C∞(`m), τ
(m)

s,±1 ∈ C∞(`m).

(5.62)

Here {τs,±1}l0
s=1 (respectively {τ (m)

s,±1}
l
(m)
0

s=1 ) are the different roots of multipli-

city ns, s=1, . . . , l0, (respectively n
(m)
s , s=1, . . . , l

(m)
0 ) of the polynomial in

ζ, detA(0)([J>
κ

(x1, 0, 0)]−1η±) (respectively detA(m,0)([J>
κm

(x1, 0, 0)]−1η±))

with η± = (0,±1, ζ)>, satisfying the condition Re τs,±1 < 0 (respectively

Re τ
(m)

s,±1 < 0). The matrix Jκ (respectively Jκm
) stands for the Jacobi

matrix corresponding to the canonical diffeomorphism κ (respectively κm)
related to the local co-ordinate system. Under this diffeomorphism the
curve `m is locally rectified and we assume that (x1, 0, 0) ∈ `m, x2 =

dist(x
(m)
T , `m), x3 = dist(x,Γ

(m)
T ), where x

(m)
T is the projection of the ref-

erence point x ∈ Ω (respectively x ∈ Ω (m)) on the plane corresponding to

the image of Γ
(m)
T under the diffeomorphism κ (respectively κm).

Note that the coefficients dsj( · , µ) and d
(m)
sj ( · , µ) can be calculated ex-

plicitly, whereas the coefficients cj can be expressed by means of the first
coefficient b0 in the asymptotic expansion of (5.59) (see [13])

dsj(x1,+1) =
1

2π
Gκ(x1, 0)P+

sj(x1)D(x1),

dsj(x1,−1) =
1

2π
Gκ(x1, 0)P−

sj (x1)D(x1) e
iπ( 1

2−∆(x1)),

s = 1, l0, j = 0, ns − 1,

d
(m)
sj (x1, +1) =

1

2π
Gκm

(x1, 0)P
+(m)
sj (x1) D̃(x1),

d
(m)
sj (x1, −1) =

1

2π
Gκm

(x1, 0)P
−(m)
sj (x1) D̃(x1) e

iπ( 1
2−∆(x1)),

s = 1, l
(m)
0 , j = 0, n

(m)
s − 1,

where D̃ = ‖Dkj‖4×5,

P±
sj(x1) := V

(s)
−1, j(x1, 0, 0,±1)S−1

−1
2 I+K

(x1, 0, 0,±1),
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P
±(m)
sj (x1) := V

(m),s
−1, j (x1, 0, 0,±1)S−1

−1
2 I+K(m)(x1, 0, 0,±1),

V
(s)
−1, j(x1, 0, 0,±1) := − ij+1

j!(ns − 1 − j)!

dns−1−j

dτns−1−j
(ζ − τs,±1)

ns×

×
(
A(0)

(
(J>

κ (x1, 0))−1
)
· (0,±1, ζ)>

)−1
∣∣∣∣
ζ=τs,±1

,

V
(m),s
−1, j (x1, 0, 0,±1) := − ij+1

j!(n
(m)
s − 1− j)!

dn(m)
s −1−j

dτn
(m)
s −1−j

(ζ − τ
(m)
s,±1)

n(m)
s ×

×
(
A(m, 0)

(
(J>

κm
(x1, 0))−1

)
· (0,±1, ζ)>

)−1
∣∣∣∣
ζ=τ

(m)
s,±1

,

Gκ(x1, 0) and Gκm
(x1, 0) are the square roots of the Gram’s determinant

of κ and κm respectively, and

cj(x1) = aj(x1)B
−
0

(
− 1

2
+ ∆(x1)

)
D−1(x1)b0(x1), (5.63)

j = 0, . . . , ns − 1, (j = 0, . . . , n(m)
s − 1),

where

B−
0

(
− 1

2
+ ∆(x1)

)
=

= diag

{
Bm1

−

(
− 1

2
+ ∆1(x1)

)
, . . . , Bml

−

(
− 1

2
+ ∆l(x1)

)}
,

B
mq

− (t) =
∥∥b̃mq

kp (t)
∥∥

mq×mq
, q = 1, . . . , l,

b̃
mq

kp (t) =





( 1

2πi

)p−k (−1)p−k

(p− k)!

dp−k

dtp−k
Γ(t+ 1) e

iπ(t+1)
2 , for k 6 p,

0, for k > p,

and Γ(t+ 1) is the Euler function,

aj(x1) = diag
{
am1(α

(j)
1 ), . . . , aml(α

(j)
l )

}
,

α(j)
q (x1) = −3

2
− ∆q(x1) + j, q = 1, l, j = 0, ns − 1 (j = 0, n

(m)
s − 1)

amq (α(j)
q ) =

∥∥amq

kp (α(j)
q )

∥∥
mq×mq

,

a
mq

kp (α(j)
q ) =





−i
p∑

l=k

(−1)p−k(2πi)l−pb̃
mq

kl (µq)

(α
(0)
q + 1)p−l+1

, j = 0, k 6 p,

(−1)p−k b̃
mq

kp (α(j)
q ), j = 1, ns − 1 (j = 1, n

(m)
s − 1), k 6 p,

0, k > p,

µq = −1

2
− ∆q(x1), −1 < Reµq < 0.

Analogous investigation for basic mixed and interior crack problems for
homogeneous piezoelectric bodies has been carried out in the reference [8],
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where the asymptotic properties of solutions have been established near the
crack edges and the curves where the different boundary conditions collide.
In [8] it is shown that the stress singularity exponents at the interior crack
edges are independent of the material parameters and equal to −0.5, while
they essentially depend on the material parameters at the curves where
different boundary conditions collide.

As it is evident from the above exposed results the stress singularity ex-
ponents at the interface crack edges and at the curves where the interface
intersects the exterior boundary essentially depend on the material param-
eters. More precise results for particular cases are presented in the next
subsection, where these exponents are calculated explicitly for some partic-
ular values of the material parameters.

5.4. Analysis of singularities of solutions to Problem (ICP-A). As

in the previous subsection, let `m = ∂Γ
(m)
T . For x′ ∈ `m by Π

(m)
x′ we denote

the plane passing trough the point x′ and orthogonal to the curve `m. We
introduce the polar coordinates (r, α), r > 0, −π 6 α 6 π, in the plane

Π
(m)
x′ with pole at the point x′. Denote by Γ

(m)±
T the two different faces of

the surface Γ
(m)
T . It is evident that (r,±π) ∈ Γ

(m)±
T .

The intersection of the plane Π
(m)
x′ and Ω is identified with the half-plane

r > 0 and −π 6 α 6 0, while the intersection of the plane Π
(m)
x′ and Ω(m)

is identified with the half-plane r > 0 and 0 6 α 6 π.
The roots given by (5.62) are represented as follows

zs,+1 = −r
[
cosα+ τs,+1(x

′) sinα
]
, zs,−1 = r

[
cosα− τs,−1(x

′) sinα
]
,

s = 1, . . . , l0, x′ ∈ `m,

z
(m)
s,+1 = −r

[
cosα+ τ

(m)
s,+1(x

′) sinα
]
, z

(m)
s,−1 = r

[
cosα− τ

(m)
s,−1(x

′) sinα
]
,

s = 1, . . . , l
(m)
0 , x′ ∈ `m.

From the asymptotic expansions (5.60) and (5.61) we get

U(x) =
∑

µ=±1

l0∑

s=1

ns−1∑

j=0

csjµ(x′, α) rγ+iδB0(ζ) c̃sjµ(x′, α) + · · · , (5.64)

U (m)(x) =
∑

µ=±1

l
(m)
0∑

s=1

n(m)
s −1∑

j=0

c
(m)
sjµ (x′, α) rγ+iδB0(ζ) c̃

(m)
sjµ (x′, α) + · · · , (5.65)

where

rγ+iδ = diag
{
rγ1+iδ1 , . . . , rγ5+iδ5

}
, ζ = − 1

2πi
log r,

γj =
1

2
+

1

2π
argλj(x

′), δj = − 1

2π
log |λj(x

′)|, x′∈`m, j=1, 5, (5.66)

and λj , j = 1, 5, are eigenvalues of the matrix

D2(x
′) =

[
S2(x

′, 0,+1)
]−1

S2(x
′, 0,−1), x′ ∈ `m. (5.67)
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Note that the subsequent terms in the expansion (5.64) and (5.65) have
higher regularity, i.e., the real parts of the corresponding exponents are
greater than γj .

The coefficients csjµ, c̃sjµ, c
(m)
sjµ and c̃

(m)
sjµ in asymptotic expansions (5.64)

and (5.65) read as

csjµ(x′, α) = sinjα dsj(x
′, µ)

[
ψs,µ(x′, α)

]γ+iδ−j
,

c̃sjµ(x′, α) = B0

(
− 1

2πi
logψs,µ(x′, α)

)
cj(x

′),

j = 0, ns − 1, µ = ±1, s = 1, l0,

c
(m)
sjµ (x′, α) = sinjα d

(m)
sj (x′, µ)

[
ψ(m)

s,µ (x′, α)
]γ+iδ−j

,

c̃
(m)
sjµ (x′, α) = B0

(
− 1

2πi
logψ(m)

s,µ (x′, α)
)
cj(x

′),

j = 0, ns − 1, µ = ±1, s = 1, l
(m)
0 ,

where

ψs,µ(x′, α) = −µ cosα− τs,µ(x′) sinα, s = 1, l0,

ψ(m)
s,µ (x′, α) = −µ cosα− τ (m)

s,µ (x′) sinα, s = 1, l
(m)
0 ,

csjµ(x′, α) =
∥∥c(kp)

jµ (x′, α)
∥∥

5×5
, c

(m)
sjµ (x′, α) =

∥∥c((m)kp)
sjµ (x′, α)

∥∥
4×5

.

Remark 5.6. If B0 is the identity matrix, then the coefficients c̃sjµ and

c̃
(m)
sjµ take simpler form

c̃sjµ(x′, α) = cj(x
′), j = 0, ns − 1,

c̃
(m)
sjµ (x′, α) = cj(x

′), j = 0, n
(m)
s − 1,

where
cj(x

′) = i j Γ(j − γ − iδ)Γ(γ + iδ)D−1(x′)b0(x
′). (5.68)

In what follows for particular piezoelectric elastic materials we will ana-
lyze the exponents γj + iδj , which determine the behaviour of U and U (m)

near the line `m. Non-zero parameters δj lead to the so called oscillating

singularities for the first order derivatives of U and U (m), in general. In
turn, this yields oscillating stress singularities, which sometimes lead to me-
chanical contradictions, for example, to an overlapping of materials. So,
from the practical point of view, it is important to single out classes of
solids for which the oscillating effects do not occur.

To this end, let us consider the case when the domain Ω is occupied by a
special class of solids belonging to the 422 (Tetragonal) or 622 (Hexagonal)
class of crystals for which the corresponding system of differential equations
reads as follows (see, e.g., [16])

(c11 ∂
2
1 + c66 ∂

2
2 + c44 ∂

2
3)u1 + ( c12 + c66 ) ∂1∂2u2 + ( c13 + c44 ) ∂1∂3u3−

−γ̃1 ∂1ϑ− e14 ∂2∂3ϕ− % τ2 u1 = 0,
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( c12 + c66 ) ∂2∂1u1 + ( c66 ∂
2
1 + c11 ∂

2
2 + c44 ∂

2
3 )u2 + ( c13 + c44 ) ∂2∂3u3−

−γ̃1∂2ϑ+ e14∂1∂3ϕ− % τ2 u2 = 0,

( c13 + c44 ) ∂3∂1u1 + ( c13 + c44 ) ∂3∂2u2 + ( c44 ∂
2
1 + c44 ∂

2
2 + c33 ∂

2
3 )u3−

−γ̃3 ∂3ϑ− % τ2 u3 = 0,

−τ T0 ( γ̃1 ∂1u1 + γ̃1 ∂2u2 + γ̃3 ∂3u3 ) + ( κ11 ∂
2
1 + κ11 ∂

2
2 + κ33 ∂

2
3 )ϑ+

+τ T0 g3 ∂3ϕ− τ αϑ = 0,

e14∂2∂3u1 − e14∂1∂3u2 − g3 ∂3ϑ+ ( ε11 ∂
2
1 + ε11 ∂

2
2 + ε33 ∂

2
3 )ϕ = 0,

where c11, c12, c13, c33, c44, and c66 = (c11−c12)/2 are the elastic constants,
e14 is the piezoelectric constant, ε11 and ε33 are the dielectric constants,
γ̃1 and γ̃3 are the thermal strain constants, κ11 and κ33 are the thermal
conductivity constants, g3 is the pyroelectric constant.

It turned out that some important polymers and bio-materials (for ex-
ample, the collagen-hydroxyapatite and TeO2) are modelled by the above
partial differential equations. These materials are widely used in biology
and medicine (see [69]). In this model the thermoelectromechanical stress
operator is defined as T (∂, n) = ‖Tjk(∂, n)‖5×5 with

T11(∂, n) = c11 n1 ∂1 + c66 n2 ∂2 + c44 n3 ∂3,

T12(∂, n) = c12 n1 ∂2 + c66 n2 ∂1, T13(∂, n) = c13 n1 ∂3 + c44 n3 ∂1,

T14(∂, n) = −γ̃1 n1, T15(∂, n) = −e14 n3 ∂2,

T21(∂, n) = c66 n1 ∂2 + c12 n2 ∂1,

T22(∂, n) = c66 n1 ∂1 + c11 n2 ∂2 + c44 n3 ∂3,

T23(∂, n) = c13 n2 ∂3 + c44 n3 ∂2,

T24(∂, n) = −γ̃1 n2, T25(∂, n) = e14 n3 ∂1,

T31(∂, n) = c44 n1 ∂3 + c13 n3 ∂1, T32(∂, n) = c44 n2 ∂3 + c13 n3 ∂2,

T33(∂, n) = c44 n1 ∂1 + c44 n2 ∂2 + c33 n3 ∂3,

T34(∂, n) = −γ̃3 n3, T35(∂, n) = 0,

T4j(∂, n) = 0 for j = 1, 2, 3, 5,

T44(∂, n) = κ11 (n1 ∂1 + n2 ∂2 ) + κ33 n3 ∂3,

T51(∂, n) = e14 n2 ∂3, T52(∂, n) = −e14 n1 ∂3,

T53(∂, n) = e14 (n2 ∂1 − n1 ∂2), T54(∂, n) = −g3 n3,

T55(∂, n) = ε11 (n1 ∂1 + n2 ∂2 ) + ε33 n3 ∂3.

The material constants satisfy the following inequalities

c11 > |c12|, c44 > 0, c66 > 0, c33(c11 + c12) > 2c213,

ε11 > 0, ε33 > 0, κ11 > 0, κ33 > 0,
ε33α

T0
> g2

3 ,
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which follow from the positive definiteness of the internal energy form (see
Subsection 1.3).

Further, we assume that the domain Ω(m) is occupied by an isotropic
material modeled by the Lamé equations

µ∆u(m) + (λ(m) + µ(m)) graddivu(m) − γ(m) gradϑ(m) − %(m)τ2u(m) = 0,

∆ϑ(m) − τα(m)ϑ(m) − τT
(m)
0 u(m) = 0,

µ(m) > 0, 3λ(m) + 2µ(m) > 0, γ(m) > 0, α(m) > 0.

Furthermore, we assume that the interface crack edge ∂Γ
(m)
C is parallel to

the plane of isotropy (i.e., to the plane x3 = 0). In this case the symbol
matrix S2(x

′, 0,±1) is calculated explicitly and has the form S2(x
′, 0,±1) =

[D±
kj ]5×5, where

D±
12 = D±

21 = D±
13 = D±

31 = D±
14 = D±

41 = D±
24 = D±

42 =

= D±
25 = D±

52 = D±
34 = D±

43 = D±
35 = D±

53 = D±
45 = D±

54 = 0,

D±
11 =

2a11

b∗1
+

1

µ(m)
, D±

15 = ± i4a11A15

b∗1
, D±

22 =
2a22

b∗2
+ a(m),

D±
23 = ± i4a22A23

b∗2
± i b(m), D±

32 = ± i4a33A32

b∗2
∓ i b(m),

D±
33 =

2a33

b∗2
+ a(m), D±

44 = −2a44 + 1,

D±
51 = ± i4a55A51

b∗1
, D±

55 =
2a55

b∗1
,

with

A15 =
e14 c66 (b1 − b2)

2 b1 b2
√
B

, A51 =
e14 ε33 (b1 − b2)

2
√
B

,

b1 =

√
A−

√
B

2 c44 ε33
, b2 =

√
A+

√
B

2 c44 ε33
,

a11 =
(b1 − b2)(ε11 + ε33b1b2)

2b1b2
√
B

, a44 = − 1

2
√

κ11κ33
,

a55 =
(b1 − b2)(c66 + c44b1b2)

2b1b2
√
B

, d1 =

√
C −

√
D

2 c44 c33
, d2 =

√
C +

√
D

2 c44 c33
,
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a22 =





(d1 − d2) (c44 + c33 d1d2)

2 d1 d2

√
D

for D > 0,

− a
√
c33√

−D√
c11

(c44 +
√
c11

√
c33) for D < 0,

a33 =





(d1 − d2) (c11 + c44 d1 d2)

2 d1 d2

√
D

for D > 0,

− a√
−D (c44 +

√
c11

√
c33) for D < 0,

A23 =





c44 (d2 − d1) (c11 − c13 d1d2)

2 d1 d2

√
D

for D > 0,

a c44(
√
c11 c33 − c13)√
−D

for D < 0,

A32 =





−c44 (d2 − d1) (c33 d1 d2 − c13)

2 d1 d2

√
D

for D > 0,

−a c44(
√
c11 c33 − c13)

√
c33√

−D√
c11

for D < 0,

a(m) =
2(λ(m) + 2µ(m))µ(m)

λ(m) + µ(m)
, b(m) =

(µ(m))2

λ(m) + 3µ(m)
,

a =
1

2

√
−C + 2c44

√
c11c33

c44c33
> 0 , A = e214 + c44 ε11 + c66 ε33 > 0,

B = A2 − 4 c44 c66 ε11 ε33 > 0, b∗1 = −4A15A51 − 1 < 0,

b∗2 = −4A32A23 − 1 < 0, D = C2 − 4 c244 c33c11,

C = c11 c33 − c213 − 2 c13 c44.

It is easy to see that

a33A32 = −a22A23, a11A15 = a55A51, A >
√
B,

A15A51 > 0, A23A32 < 0.

The characteristic polynomial of the matrix D2(x
′) for x′ ∈ ∂Γ

(m)
C can be

represented in the following form

det




κ1 d11 0 0 0 κ2 d15

0 κ1 d22 κ2 d23 0 0

0 −κ2 d23 κ1 d33 0 0

0 0 0 κ1 d44 0

κ2 d15 0 0 0 κ1 d55




, (5.69)
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where

κ1 = 1 − λ, κ2 = −1 − λ,

d11 =
2a11

b∗1
+

1

µ(m)
, d15 =

i 4a11A15

b∗1
, d22 =

2a22

b∗2
+ a(m) ,

d23 =
i 4a22A23

b∗2
+ i b(m) , d33 =

2a33

b∗2
+ a(m) ,

d44 = −2a44 + 1, d55 =
2a55

b∗1
.

It can easily be verified that we have the following expressions for the eigen-
values of the matrix D2(x

′) (i.e., the roots of the polynomial (5.69) with
respect to λ):

λ1 =
1 − i p

1 + i p
, λ2 =

1

λ1
, λ3 =

1 − q

1 + q
, λ4 =

1

λ3
, λ5 = 1,

where

p =
|d15|√
d11 d55

> 0, q =
|d23|√
d22 d33

> 0 .

Note that |λ1| = |λ2| = 1, λ3 > 0 and λ4 > 0.
Applying the above results we can write the exponents of the first domi-

nant terms of the asymptotic expansions of solutions explicitly (see (5.64)–
(5.66))

γ1 =
1

2
+

1

2π
argλ1 =

1

2
+

1

2π

[
arg(1−i p)−arg(1+i p)

]
=

1

2
− 1

π
arctanp ,

δ1 = 0, γ2 =
1

2
+

1

π
arctan p , δ2 = 0; γ3 = γ4 =

1

2
,

δ3 = −δ4 = δ̃ =
1

2π
ln

1 − q

1 + q
, γ5 =

1

2
, δ5 = 0.

Clearly, 0 < γ1 < 1/2 and 1/2 < γ2 < 1 and we can draw the following
conclusions:

(1) In view of Proposition 5.5, solutions of the problems under con-
sideration have the following asymptotic behaviour near the curve

∂Γ
(m)
C

(u, ϕ)> = c0 r
γ1 + c1 r

1
2 +i δ̃ + c2 r

1
2−i δ̃ + c3 r

1
2 + c4 r

γ2 + · · · ,
ϑ = b̃0 r

1
2 + b̃1 r

γ2 + · · · , (5.70)

u(m) = c
(m)
0 rγ1 + c

(m)
1 r

1
2+i δ̃ + c

(m)
2 r

1
2−i δ̃+

+ c
(m)
3 r

1
2 + c

(m)
4 rγ2 + · · · ,

ϑ(m) = −b(m)
0 r

1
2 + b

(m)
1 rγ2 + · · · , (5.71)

where γ1, γ2 and δ̃ are defined above.
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(2) As we can see, the exponent γ1, characterizing the behaviour of

U and U (m) near the line ∂Γ
(m)
C , belongs to the interval (0, 1/2).

It depends only on the elastic constants c44 , c66 , µ(m), dielectric
constants ε11 , ε33 , and piezoelectric constant e14 , and does not
depend on the thermal constants.

(3) In the above asymptotic expansions, the first five terms of u, ϕ,
and u(m) and the first two terms of ϑ and ϑ(m) do not contain
logarithmic factors due to the equality B0(t) = I .

(4) Since γ1 < 1/2, there do not appear oscillating singularities for

physical fields in some vicinity of the curve ∂Γ
(m)
C . Recall that in

the classical elasticity theory (for both isotropic and anisotropic
solids) for interface crack problems the dominant exponents are 1/2
and 1/2±i β with β 6= 0 and, consequently, the corresponding stress
tensor possesses oscillating singularities, in general.

(5) In the considered case,

B0(t) = I, l
(m)
0 = 1, n

(m)
1 = 4,

τ
(m)
1,µ = −i, l0 = 5, ns = 1, s = 1, 5,

τ1,µ = −ib1, τ2,µ = −ib2, τ3,µ = −id1,

τ4,µ = −id2, τ5,µ = −i
√
κ11/κ33, µ = ±1.

Note, that if D > 0, then the roots τ3µ and τ4µ are pure imagi-
nary. For D < 0 the roots are complex numbers with opposite real
parts and equal imaginary parts (see [8]). Therefore, in view of Re-
mark 5.6 the coefficients of the dominant terms in the asymptotic
expansions (5.70) and (5.71) read as

c 0 = c 0(x
′, α) =

∑

µ=±1

5∑

s=1

c
(1)
0 (x′)c

(1)
s0µ(x′, α), (5.72)

b̃ 0 = b̃ 0(x
′, α) =

∑

µ=±1

5∑

s=1

c
(5)
0 (x′)c

(45)
s0µ (x′, α), (5.73)

c
(m)
0 = c

(m)
0 (x′, α) =

∑

µ=±1

3∑

j=0

c
(1)
j (x′)c

((m),1)
1jµ (x′, α), (5.74)

b
(m)
0 = b

(m)
0 (x′, α) =

∑

µ=±1

3∑

j=0

c
(5)
j (x′)c

((m),45)
1jµ (x′, α), (5.75)

where the vector c
(1)
s0µ is composed of the first three and fifth entries

of the first column of the matrix cs0µ, while the vector c
((m),1)
1jµ is

composed of the first three entries of the first column of the matrix

c
(m)
1jµ . The coefficients c

(1)
j and c

(5)
j are the first and the fifth compo-

nents, respectively, of the vector cj , j = 0, 3. In our case they read
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as

c
(1)
j (x′) = i j Γ(j − γ1) Γ(γ1) b̃

(1)
0 (x′),

c
(5)
j (x′) =

√
π i j Γ(j − 1/2) b̃

(5)
0 (x′),

where b̃
(1)
0 and b̃

(5)
0 are the first and the fifth components of the

vector D−1b0 respectively.

As we will see below, there exists a class of piezoelectric media for which

the dominant stress singularity exponent near the line ∂Γ
(m)
C does not de-

pend on the material constants and equals to −1/2.
Let us consider the class of piezoelectric media with cubic anisotropy.

The corresponding system of differential equations are:

(c11 ∂
2
1 + c44 ∂

2
2 + c44 ∂

2
3)u1 + ( c12 + c44 ) ∂1∂2u2+

+( c12 + c44 ) ∂1∂3u3 − γ̃1 ∂1ϑ+ 2e14 ∂2∂3ϕ− % τ2 u1 = F1,

( c12 + c44 ) ∂2∂1u1 + ( c44 ∂
2
1 + c11 ∂

2
2 + c44 ∂

2
3 )u2+

+( c12 + c44 ) ∂2∂3u3 − γ̃1∂2ϑ+ 2e14∂1∂3ϕ− % τ2 u2 = F2,

( c12 + c44 ) ∂3∂1u1 + ( c12 + c44 ) ∂3∂2u2+

+( c44 ∂
2
1 +c44 ∂

2
2 +c11 ∂

2
3 )u3−γ̃3 ∂3ϑ+2e14∂1∂2ϕ−% τ2 u3 =F3,

−τ T0 ( γ̃1 ∂1u1 + γ̃1 ∂2u2 + γ̃3 ∂3u3 )+

+( κ11 ∂
2
1 + κ11 ∂

2
2 + κ33 ∂

2
3 )ϑ− τ αϑ+ τ T0 g3 ∂3ϕ = F4,

−2e14∂2∂3u1 − 2e14∂1∂3u2 − 2e14∂1∂2u3 − g3 ∂3ϑ+

+( ε11 ∂
2
1 + ε11 ∂

2
2 + ε11 ∂

2
3 )ϕ = F5,

(5.76)

where the elastic, piezoelectric and thermal constants involved in the gov-
erning equations satisfy the conditions:

c11 > 0, c44 > 0, −1

2
<
c12
c11

< 1,

ε11 > 0,
ε11α

T0
> g2

3 , κ11 > 0, κ33 > 0. (5.77)

In this case, the matrix S2(x
′, 0, ±1) is self-adjoint

S2(x
′, 0,±1) =

=




−2a11 + [µ(m)]−1 0 0 0 0

0 Q1 ±iQ2 0 0

0 ∓iQ2 Q1 0 0

0 0 0 −2a44 + 1 0

0 0 0 0 −2a55




,
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where

Q1 =
2a22

b∗
+ a(m), Q2 =

4a22A23

b∗
+ b(m), b∗ = 4A2

23 − 1,

a22 =





(d1 − d2) (c11 + c44)

2
√
D

for D > 0,

−a (c11 + c44)√
−D for D < 0,

a11 =
(b1 − b2)ε11√

B
, a44 = −1

2

√
κ33√
κ11

, a55 =
(b1 − b2)c44√

B
,

A23 =





c44 (d2 − d1)(c11 − c12)

2
√
D

for D > 0,

c44 a (c11 − c12)

2
√
−D for D < 0,

b1 =

√
A−

√
B

2c44ε11
, b2 =

√
A+

√
B

2c44ε11
,

d1 =

√
C −

√
D

2c44c11
, d2 =

√
C +

√
D

2c44c11
,

D = C2 − 4 c211 c
2
44, a =

1

2

√
−C + 2c44

√
c11

c44c11
> 0,

A = 2c44ε11 + 4e214, B = A2 − 4c244ε
2
11, C = c211 − c212 − 2 c12 c44.

The eigenvalues of the matrix

D2(x
′) =

[
S2(x

′, 0,+1)
]−1

S2(x
′, 0,−1), x′ ∈ ∂Γ

(m)
C ,

read as

λj = 1, j = 1, 2, 5; λ3 =
1 − q

1 + q
> 0, λ4 =

1

λ3
> 0, γj =

1

2
, j = 1, 5,

δj = 0, j = 1, 2, 5, δ3 = −δ4 = δ̃ =
1

2π
ln

1 − q

1 + q
,

q =
∣∣∣2a22A23 + b(m)b∗

2a22 + a(m)b∗

∣∣∣ .

The matrix D2 is self-adjoint and, consequently, is similar to a diagonal
matrix, i.e., there is a unitary matrix D such that DD2 D−1 is diagonal. In
turn, this implies that B0(t) = I and the leading terms of the asymptotic

expansion near the curve ∂Γ
(m)
C do not contain logarithmic factors. As a



120 T. Buchukuri, O. Chkadua, R. Duduchava, and D. Natroshvili

result we obtain the asymptotic expansion

(u, ϕ)> = c0 r
1
2 + c1 r

1
2 +i δ̃ + c2 r

1
2−i δ̃ + · · · ,

ϑ = b0 r
1
2 + · · · ,

u(m) = c
(m)
0 r

1
2 + c

(m)
1 r

1
2+i δ̃ + c

(m)
2 r

1
2−i δ̃ + · · · ,

ϑ(m) = b
(m)
0 r

1
2 + · · · ,

(5.78)

where the first coefficients have the same structure as in (5.72)–(5.75). Con-
sequently, the solution is C1/2-smooth in a one sided closed neighbourhood

of the curve ∂Γ
(m)
C .

5.5. Numerical results for stress singularity exponents. The above
analysis based on the asymptotic expansions of solutions (see [12, 13])
shows that for sufficiently smooth boundary data (e.g., C∞-smooth data
say) the principal dominant singular terms of the solution vectors U (m)

and U near the exceptional curves ∂SD and ∂Γ
(m)
T can be represented as

a product of a smooth vector-function and a singular factor of the form

[ ln %(x) ]mk−1[ %(x) ]γk+i δk . Note that the crack edge ∂Γ
(m)
C is a proper

part of the curve ∂Γ
(m)
T . Here %(x) is the distance from a reference point

x to the exceptional curves. Therefore, near these curves the dominant sin-
gular terms of the corresponding generalized stress vectors T (m)U (m) and
T U are represented as a product of a smooth vector-function and the factor
[ ln %(x) ]mk−1[ %(x) ]−1+γk+i δk . The numbers δk are different from zero, in
general, and display the oscillating character of the stress singularities.

The exponents γk+i δk and the corresponding eigenvalues of the matrices
(4.23) are related by the equalities

γk =
1

2
+

arg λk

2π
, δk = − ln |λk|

2π
.

Here either λk ∈ {λ (1)
j (x)}5

j=1 for x ∈ ∂SD or λk ∈ {λ (2)
j (x)}5

j=1 for

x ∈ ∂Γ
(m)
T . In the above expressions the parameter mk denotes the al-

gebraic multiplicity of the eigenvalue λk. It is evident that at the excep-
tional curves the components of the generalized stress vector behave like

O([ln %(x)]m0−1[%(x)]−
1
2+γ′

), where m0 denotes the maximal multiplicity of
the eigenvalues. This is a global singularity effect for the first order deriva-
tives of the vectors U (m) and U . Note that γk, δk and γ ′ depend on the
material parameters (see (5.36)-(5.39)). Moreover, γ ′ is non-positive and
δk 6= 0, in general. This is related to the fact that the eigenvalues λk are
complex and |λk | 6= 1, in general.

For numerical calculations, we have considered particular cases when the
domain Ω (m) is occupied by the isotropic metallic material silver-palladium
alloy whereas the domain Ω is occupied by one of the following piezoelectric
materials: BaTiO3 (with the crystal symmetry of the class 4mm), PZT-4
and PZT-5A (with the crystal symmetry of the class 6mm). Calculations
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have shown that the parameters γ ′k and γ′′k depend on the material param-
eters. In particular, γ′k = −γ′′k and we have the following values for them

BaTiO3 PZT-4 PZT-5A

γ′1 −0.12 −0.12 −0.13

γ′2 −0.06 −0.08 −0.09

(5.79)

Therefore, for γ′ := min {γ′1, γ′2} we have (see (5.36)-(5.39))

BaTiO3 PZT-4 PZT-5A

γ′ -0.12 -0.12 -0.13

Consequently, if the boundary data of the transmission problem under con-
sideration are sufficiently smooth (e.g., satisfy the conditions of Theorem
5.4. iii with α > 0.5), then for the Hölder smoothness exponent κ, involved
in Theorem 5.4.iii, we derive

BaTiO3 PZT-4 PZT-5A

κ 0.38 0.38 0.37

Thus, in the closed domains the solution vectors have Cκ−δ-smoothness ,
where δ > 0 is an arbitrarily small number. This shows that the Hölder
smoothness exponents depend on the material parameters. Moreover, for
these particular cases, from the table (5.79) it follows that γ ′

1 < γ′2, which
yields that the stress singularities at the curve ∂SD are higher than the

singularities near the curve ∂Γ
(m)
T .

The graphs presented below show the significant influence of the piezo-
electric constants on the stress singularity exponents and on the oscillating
stress singularity effects. We have calculated the deviation γ(j) of the stress
singularity exponents γ ′j from the value −0, 5 (the value for the materials

without piezoelectric properties): γ(j) = | − 0, 5− γ′j |, j = 1, 2, and param-

eters δ(1) = max
16k65

sup
x∈∂SD

|δk| and δ(2) = max
16k65

sup
x∈∂Γ

(m)
T

|δk|, which determine

stress oscillating singularity effects at the exceptional curves ∂SD and ∂Γ
(m)
T

respectively. We carried out calculations for PZT-4 with the constants tekj

instead of ekj , where 1 < t < 2. The corresponding graphs are presented in
Figures 2 and 3.

We see that the stress singularity exponents essentially depend on the
piezoelectric constants. In particular, when the piezoelectric constants are
sufficiently small, the stress singularity exponents are equal to −0.5, similar
to the materials without piezoelectric properties. Starting from some thresh-

old value of t (which is different for ∂SD and ∂Γ
(m)
T ) the stress singularities

differ from −0.5 and simultaneously we have no oscillating singularities any
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more (see Figures 4 and 5). Note that the threshold value of the parame-

ter t corresponding to the curve ∂Γ
(m)
T is smaller than the threshold value

corresponding to the curve ∂SD. However, when t grows, the stress sin-
gularity exponent near the curve ∂SD increases more rapidly and starting
from some value of the parameter t it exceeds the stress singularity exponent

corresponding to the curve ∂Γ
(m)
T .
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The graphs presented below in Figures 6-9 show the dependence of the
stress singularity exponents and the oscillation parameters δ(1) and δ(2) on
the angle βπ between the symmetry axis of the piezoelectric material and

the normal of surface at the reference point x ∈ ∂SD ∪ ∂Γ
(m)
T . As we see,

the stress singularity exponents essentially depend on the angle βπ ∈ [0, 2π]
as well.
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6. Existence and Regularity Results for Problem (ICP-B)

Here we will consider the interface crack problem (ICP-B), see (1.60)–
(1.71). As we will see this problem is reduced to a more complicated, non-
classical system of boundary pseudodifferential equations which needs a
special analysis.

6.1. Reduction to boundary integral equations. For the data of the
problem (ICP-B) we assume that

Q
(m)
j ∈ B

− 1
p

p,p (S
(m)
N ), j = 1, 4,

Qk ∈ B
− 1

p
p,p (SN ), fk ∈ B

1
p ′

p,p(SD), k = 1, 5,

f
(m)

l ∈ B1/p ′

p,p (Γ
(m)
T ), l = 1, 2, 3,

f
(m)

t ∈ B
1

p ′

p,p(Γ
(m)), t = 4, 5,

F
(m)

l ∈ B
− 1

p
p,p (Γ

(m)
T ), l = 1, 2, 3,

F
(m)

4 ∈ B
− 1

p
p,p (Γ(m)),

Q̃l ∈ B
− 1

p
p,p (Γ

(m)
C ), l = 1, 2, 3,

Q̃
(m)
l ∈ B

− 1
p

p,p (Γ
(m)
C ), l = 1, 2, 3,

(6.1)

Further, let

Gl :=

{
Ql on SN ,

Q̃l on Γ
(m)
C ,

l = 1, 2, 3,

G
(m)
l :=

{
Q

(m)
l on S

(m)
N ,

Q̃
(m)
l on Γ

(m)
C ,

l = 1, 2, 3,

Gt := Qt on SN , t = 4, 5,

G
(m)
4 := Q

(m)
4 on S

(m)
N .

(6.2)
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Denote by

G0k ∈ B
− 1

p
p,p (∂Ω), k = 1, 5, and G

(m)
0j ∈ B

− 1
p

p,p (∂Ω (m)), j = 1, 4,

some fixed extensions of the functions Gk and G
(m)
j respectively onto ∂Ω

and ∂Ω (m) preserving the space,

G0 := (G01, . . . , G05)
> ∈

[
B

− 1
p

p,p (∂Ω)
]5
,

G
(m)
0 := (G

(m)
01 , . . . , G

(m)
04 )> ∈

[
B

− 1
p

p,p (∂Ω (m))
]4
.

(6.3)

It is clear that arbitrary extensions G∗
j and G

(m)∗
j of the same functions can

be represented then as

G∗
k = G0k + ψk + hk, k = 1, 5, G

(m)∗
j = G

(m)
0j + h

(m)
j , j = 1, 4, (6.4)

where

ψk ∈ B̃
− 1

p
p,p (SD), k = 1, 5, hl ∈ B̃

− 1
p

p,p (Γ
(m)
T ), l = 1, 3, (6.5)

ht ∈ B̃
− 1

p
p,p (Γ (m)), t = 4, 5, h

(m)
l ∈ B̃

− 1
p

p,p (Γ
(m)
T ), l = 1, 2, 3, (6.6)

h
(m)
4 ∈ B̃

− 1
p

p,p (Γ (m)),

are arbitrary functions. We set

ψ := (ψ1, . . . , ψ5)
> ∈

[
B̃

− 1
p

p,p (SD)
]5
,

h := (h1, . . . , h5)
> ∈

[
B̃

− 1
p

p,p (Γ
(m)
T )

]3 ×
[
B̃

− 1
p

p,p (Γ (m))
]2
,

h (m) := (h
(m)
1 , . . . , h

(m)
4 )> ∈

[
B̃

− 1
p

p,p (Γ
(m)
T )

]3 × B̃
− 1

p
p,p (Γ (m)).

(6.7)

As in the previous subsection, we develop here the indirect boundary inte-
gral equations method, and in accordance with Lemmata 4.6 and 4.8, we
look for a solution pair (U (m), U) of the interface crack problem (1.60)–
(1.71) in the form of single layer potentials,

U (m) = (u (m), . . . , u
(m)
4 )> =

= V (m)
τ

( [
P (m)

τ

]−1 [
G

(m)
0 + h (m)

] )
in Ω (m), (6.8)

U = (u1, . . . , u5)
> = Vτ

(
P−1

τ [G0 + ψ + h]
)

in Ω, (6.9)

where P (m)
τ and Pτ are given by (4.37) and (4.41), G0 and G

(m)
0 are the

above introduced known vector-functions, and h (m), h and ψ are unknown
vector-functions satisfying the inclusions (6.7).

By Lemmata 4.6, 4.8 and the property (4.40) we see that the homoge-
neous differential equations (1.60)-(1.61), the boundary conditions (1.62)–
(1.63) and the crack conditions (1.70)–(1.71) are satisfied automatically.
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The remaining boundary and transmission conditions (1.64)–(1.69) lead
to the equations

r
SD

[
HτP−1

τ (G0 + ψ + h)
]
k

= fk on SD , k = 1, 5, (6.10)

r
Γ (m)

[
HτP−1

τ (G0 + ψ + h)
]
5

= f
(m)
5 on Γ (m), (6.11)

r
Γ
(m)
T

[
HτP−1

τ (G0 + ψ+)
]
l
− r

Γ
(m)
T

[
H(m)

τ [P(m)
τ ]−1(G

(m)
0 +h(m))

]
l
=

= f
(m)

l on Γ
(m)
T , l = 1, 3, (6.12)

r
Γ

(m)
T

[G0 + ψ + h ]l + r
Γ

(m)
T

[
G

(m)
0 + h (m)

]
l
=

= F
(m)

l on Γ
(m)
T , l = 1, 3, (6.13)

r
Γ(m)

[
HτP−1

τ (G0+ψ+h)
]
4
−r

Γ(m)

[
H(m)

τ [P(m)
τ ]−1(G

(m)
0 +h(m))

]
4
=

= f
(m)
4 on Γ (m), (6.14)

r
Γ (m)

[
G0 + ψ + h

]
4

+ r
Γ (m)

[
G

(m)
0 + h (m)

]
4

= F
(m)

4 on Γ (m). (6.15)

We can rewrite these system as the following simultaneous pseudodifferential
equations with respect to the unknown vector-functions ψ, h and h (m):

r
SD

[
HτP−1

τ (ψ + h)
]
k

= f̃k on SD , k = 1, 5, (6.16)

r
Γ
(m)
T

[
HτP−1

τ (ψ + h)
]
l
− r

Γ
(m)
T

[
H(m)

τ [P(m)
τ ]−1h(m)

]
l
=

= f̃
(m)
l on Γ

(m)
T , l = 1, 3, (6.17)

r
Γ (m)

[
HτP−1

τ (ψ + h)
]
4
− r

Γ(m)

[
H(m)

τ [P(m)
τ ]−1h(m)

]
4

=

= f̃
(m)
4 on Γ (m), (6.18)

r
Γ (m)

[
HτP−1

τ (ψ + h)
]
5

= f̃
(m)
5 on Γ (m), (6.19)

r
Γ

(m)
T

h
(m)
l + r

Γ
(m)
T

hl = F̃
(m)

l on Γ
(m)
T , l = 1, 3, (6.20)

r
Γ (m)

h
(m)
4 + r

Γ (m)
h4 = F̃

(m)
4 on Γ (m), (6.21)

where

f̃k := fk − r
SD

[
HτP−1

τ G0

]
k
∈ B

1− 1
p

p,p (SD), k = 1, 5, (6.22)

f̃
(m)

l := f
(m)

l + r
Γ

(m)
T

[
H (m)

τ [P (m)
τ ]−1G

(m)
0

]
l
−

− r
Γ

(m)
T

[
HτP−1

τ G0

]
l
∈ B

1− 1
p

p,p (Γ
(m)
T ), l = 1, 3, (6.23)

f̃
(m)
4 := f

(m)
4 + r

Γ (m)

[
H (m)

τ [P (m)
τ ]−1G

(m)
0

]
4
−

− r
Γ (m)

[
HτP−1

τ G0

]
4
∈ B

1− 1
p

p,p (Γ (m)), (6.24)

f̃
(m)
5 := f

(m)
5 − r

Γ (m)

[
HτP−1

τ G0

]
5
∈ B

1− 1
p

p,p (Γ (m)), (6.25)
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F̃
(m)
l :=F

(m)
l −r

Γ
(m)
T

G0l−r
Γ
(m)
T

G
(m)
0l ∈r

Γ
(m)
T

B̃
− 1

p
p,p (Γ

(m)
T ), l=1, 3, (6.26)

F̃
(m)

4 := F
(m)

4 − r
Γ (m)

G04 − r
Γ (m)

G
(m)
04 ∈ r

Γ (m)
B̃

− 1
p

p,p (Γ (m)). (6.27)

The inclusions (6.26) and (6.27) are the compatibility conditions for Problem
(ICP-B) due to the relations (6.7). Therefore, in what follows we assume

that F̃
(m)

l and F̃
(m)

4 are extended from Γ
(m)
T and Γ (m), respectively, onto

∂Ω (m) by zero, i.e., F̃
(m)

l ∈B̃− 1
p

p,p (Γ
(m)
T ), l = 1, 3, and F̃

(m)
4 ∈ B̃

− 1
p

p,p (Γ (m)).
We employ the notation (5.18) to rewrite equations (6.16)–(6.21) as (see

the remark after formula (5.25))

r
SD

[
Aτψ

]
k

+ r
SD

[
Aτh

]
k

= f̃k on SD, k = 1, 5, (6.28)

r
Γ
(m)
T

[
Aτψ

]
l
+r

Γ
(m)
T

[
(Aτ + B(m)

τ )h
]
l
= g̃

(m)
l on Γ

(m)
T , l=1, 2, 3, (6.29)

r
Γ (m)

[
Aτψ

]
4

+ r
Γ (m)

[
(Aτ + B (m)

τ )h
]
4

= g̃
(m)
4 on Γ (m), (6.30)

r
Γ (m)

[
Aτψ

]
5

+ r
Γ (m)

[
Aτh

]
5

= g̃
(m)
5 on Γ (m), (6.31)

r
Γ

(m)
T

h
(m)
l + r

Γ
(m)
T

hl = F̃
(m)

l on Γ
(m)
T , l = 1, 2, 3, (6.32)

r
Γ (m)

h
(m)
4 + r

Γ (m)
h4 = F̃

(m)
4 on Γ (m), (6.33)

with

g̃
(m)
l := f̃

(m)
l +r

Γ
(m)
T

[
H(m)

τ [P(m)
τ ]−1F̃ (m)

]
l
∈B1− 1

p
p,p (Γ

(m)
T ), l=1, 3,

g̃
(m)
4 := f̃

(m)
4 + r

Γ (m)

[
H (m)

τ [P (m)
τ ]−1F̃ (m)]4 ∈ B

1− 1
p

p,p (Γ (m)),

g̃
(m)
5 = f̃

(m)
5 ∈ B

1− 1
p

p,p (Γ (m)).

(6.34)

It is easy to see that the simultaneous equations (6.10)–(6.15) and (6.28)–
(6.33), where the right hand sides are related by the equalities (6.22)–(6.27)
and (6.34), are equivalent in the following sense: if the triplet

(ψ, h, h (m)) ∈
[
B̃

− 1
p

p,p (SD)
]5 ×

[
B̃

− 1
p

p,p (Γ
(m)
T )

]3×

×
[
B̃

− 1
p

p,p (Γ (m))
]2 ×

[
B̃

− 1
p

p,p (Γ
(m)
T )

]3 × B̃
− 1

p
p,p (Γ (m))

solves the system (6.28)–(6.33), then the pair (G0+ψ+h,G
(m)
0 +h (m)) solves

the system (6.10)–(6.15), and vice versa.
Note that the above simultaneous equations are not classical systems

of pseudodifferential equations since the sub-manifolds Γ
(m)
T and Γ

(m)
C are

proper parts of Γ (m). We will discuss this problem in detail in the next
subsection.

6.2. Existence theorems for problem (ICP-B). Here we show that the
system of pseudodifferential equations (6.28)-(6.33) is uniquely solvable. To
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this end, let us denote by N (B)
τ the operator generated by the left hand side

expressions of the equations (6.28)–(6.33),

N (B)
τ :=

:=




r
SD

Aτ r
SD

Aτ r
SD

[ 0 ]5×4

r
Γ

(m)
T

[(Aτ )l,k]3×5 r
Γ

(m)
T

[(Aτ +B (m)
τ )l,k]3×5 r

Γ
(m)
T

[ 0 ]3×4

r
Γ (m)

[(Aτ )t,k]2×5 r
Γ (m)

[(Aτ +B (m)
τ )t,k]2×5 r

Γ (m)
[ 0 ]2×4

r
Γ

(m)
T

[ 0 ]3×5 r
Γ

(m)
T

I3×5 r
Γ

(m)
T

I3×4

r
Γ (m)

[ 0 ]1×5 r
Γ (m)

I1×5 r
Γ (m)

I1×4




14×14

, (6.35)

where the operators Aτ and B (m)
τ are defined in (5.18), the subindexes

involved in the block matrices take the following values k = 1, 5, l = 1, 2, 3,
and t = 4, 5; the symbol [ 0 ]N×M stands for the zero matrix of dimension
N ×M , while

I3×5 :=



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0


 , I3×4 :=



1 0 0 0

0 1 0 0

0 0 1 0


 ,

I1×5 = (0, 0, 0, 1, 0), I1×4 = (0, 0, 0, 1).

Further, let

X
s
p,q :=

[
B̃s

p,q(SD)
]5 ×

[
B̃s

p,q(Γ
(m)
T )

]3 ×
[
B̃s

p,q(Γ
(m))

]2×
×

[
B̃s

p,q(Γ
(m)
T )

]3 × B̃s
p,q(Γ

(m)) ,

Y
s
p,q :=

[
Bs+1

p,q (SD)
]5 ×

[
Bs+1

p,q (Γ
(m)
T )

]3 ×
[
Bs+1

p,q (Γ (m))
]2×

×
[
B̃s

p,q(Γ
(m)
T )

]3 × B̃s
p,q(Γ

(m)) ,

X
s
p :=

[
H̃s

p(SD)
]5 ×

[
H̃s

p(Γ
(m)
T )

]3 ×
[
H̃s

p(Γ (m))
]2×

×
[
H̃s

p(Γ
(m)
T )

]3 × H̃s
p(Γ (m)) ,

Y
s
p :=

[
Hs+1

p (SD)
]5 ×

[
Hs+1

p (Γ
(m)
T )

]3 ×
[
Hs+1

p (Γ (m))
]2×

×
[
H̃s

p(Γ
(m)
T )

]3 × H̃s
p(Γ (m)) .

Note that Xs
2,2 = Xs

2 and Ys
2,2 = Ys

2.
Employing the notation (6.2), we rewrite then the system (6.28)–(6.33) as
follows

N (B)
τ Φ = Y, (6.36)

where the vector Φ := (ψ, h, h (m))> ∈ X
− 1

p
p,p is unknown, while Y :=

(f̃ , g̃ (m), F̃ (m))> ∈ Y
− 1

p
p,p is a given vector with f̃ = (f̃1, . . . , f̃5)

>, g̃ (m) :=

(g̃
(m)
1 , . . . , g̃

(m)
5 )>, and F̃ (m) := (F̃

(m)
1 , . . . , F̃

(m)
4 )>.
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In accordance with Theorems 4.2, 4.3, and Lemma 4.7 we have the fol-
lowing mapping properties

N (B)
τ : X

s
p→Y

s
p

[
X

s
p,q →Y

s
p,q

]
, s∈R, 1<p<∞, 16q6∞. (6.37)

Our goal is to establish Fredholm properties and invertibility of the operator
(6.37). To this end, first we prove the following lemma.

Lemma 6.1. The operator

N (B)
τ : X

− 1
2

2 → Y
− 1

2
2 (6.38)

is invertible.

Proof. We prove the theorem in several steps. First we show that the op-
erator (6.38) is Fredholm with zero index and afterwards we establish that
the corresponding null-space is trivial.

Step 1. First of all let us remark that the operators

r
SD

Aτ :
[
H̃

− 1
2

2 (Γ (m))
]5 →

[
H

1
2
2 (SD)

]5
,

r
Γ (m)

Aτ :
[
H̃

− 1
2

2 (SD)
]5 →

[
H

1
2
2 (Γ (m))

]5
,

(6.39)

are compact since SD and Γ (m) are disjoint, SD ∩Γ (m) = ∅. Therefore the
operator

N (B,0)
τ :=

:=




r
SD

Aτ r
SD

[ 0 ]5×5 r
SD

[ 0 ]5×4

r
Γ

(m)
T

[ 0 ]3×5 r
Γ

(m)
T

[(Aτ + B (m)
τ )l,k ]3×5 r

Γ
(m)
T

[ 0 ]3×4

r
Γ (m)

[ 0 ]2×5 r
Γ (m)

[(Aτ + B (m)
τ )t,k]2×5 r

Γ (m)
[ 0 ]2×4

r
Γ

(m)
T

[ 0 ]3×5 r
Γ

(m)
T

I3×5 r
Γ

(m)
T

I3×4

r
Γ (m)

[ 0 ]1×5 r
Γ (m)

I1×5 r
Γ (m)

I1×4




14×14

(6.40)

is a compact perturbation of the operator N (B)
τ . As above, here k = 1, 5,

l = 1, 2, 3, and t = 4, 5. More precisely, the operator

N (B)
τ −N (B,0)

τ : X
− 1

2
2 → Y

− 1
2

2 (6.41)

is compact. Clearly the operator N (B,0)
τ has the following mapping property

N (B,0)
τ : X

− 1
2

2 → Y
− 1

2
2 . (6.42)

Further, as we have shown in the proof of Theorem 5.1, the operator

r
SD

Aτ :
[
H̃

− 1
2

2 (SD)
]5 →

[
H

1
2
2 (SD)

]5
(6.43)

is invertible. Therefore, in view of (6.40), it remains to investigate the
operator

N (2)
τ : H̃

− 1
2

2 → H
1
2
2 , (6.44)
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where

H̃
− 1

2
2 :=

[
H̃

− 1
2

2 (Γ
(m)
T )

]3 ×
[
H̃

− 1
2

2 (Γ (m))
]2
,

H
1
2
2 :=

[
H

1
2
p (Γ

(m)
T )

]3 ×
[
H

1
2
2 (Γ (m))

]2
,

(6.45)

and

N (2)
τ :=


rΓ (m)

T

[(Aτ + B (m)
τ )l,k]3×5

r
Γ (m)

[(Aτ + B (m)
τ )t,k]2×5




5×5

(6.46)

with k = 1, 5, l = 1, 2, 3, and t = 4, 5.
In what follows, on the basis of the Lax–Milgram theorem, we show that

the operator (6.44) is invertible. This is equivalent to the unique solvability
of the simultaneous equations:

N (2)
τ h = f∗, (6.47)

or componentwise

r
Γ

(m)
T

[
(Aτ + B (m)

τ )h
]
l
= f∗

l on Γ
(m)
T , l = 1, 2, 3,

r
Γ (m)

[
(Aτ + B (m)

τ )h
]
t
= f∗

t on Γ (m), t = 4, 5,
(6.48)

where

h = (h1, . . . , h5) ∈ H̃
− 1

2
2 =

[
H̃

− 1
2

2 (Γ
(m)
T )

]3 ×
[
H̃

− 1
2

2 (Γ (m))
]2

(6.49)

is unknown and

f∗ = (f∗
1 , · · · , f∗

5 ) ∈ H
1
2
2 =

[
H

1
2
2 (Γ

(m)
T )

]3 ×
[
H

1
2
2 (Γ (m))

]2
(6.50)

is an arbitrary right hand side.
Step 2. Here first we show that the operator (6.44) is injective. Indeed, let

h ∈ H̃
− 1

2
2 be a solution to the homogeneous equation N (2)

τ h = 0. Construct
the vectors

U (m) = −V (m)
τ

( [
P (m)

τ

]−1
h (m)

)
in Ω (m), (6.51)

U = Vτ

(
P−1

τ h
)

in Ω, (6.52)

where h (m) = (h
(m)
1 , . . . , h

(m)
4 ) ∈ [H̃

− 1
2

2 (Γ
(m)
T )]3 × H̃

− 1
2

2 (Γ (m)) and, more-
over,

r
Γ

(m)
T

h
(m)
l = r

Γ
(m)
T

hl and r
Γ (m)

h
(m)
4 = r

Γ (m)
h4. (6.53)

By Lemmas 4.6 and 4.8, then we have

−h (m) =
{
T (m)U (m)

}+
on ∂Ω (m),

h = {T U}+ + β{U}+ on ∂Ω.
(6.54)

It can easily be verified that the pair (U (m), U) solves the homogeneous in-
terface crack problem with homogeneous boundary, transmission and inter-
face crack conditions just as in Problem (ICP-B), but with the homogeneous
Robin type condition

r
SD

[
{T U}+ + β{U}+

]
= 0 on SD,
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for the Dirichlet homogeneous condition (1.64) on SD. Therefore by Green’s
formulae, as in the proof of Theorem 1.1, we derive that U (m) = 0 in Ω (m)

and U = 0 in Ω, which implies that h = 0, i.e. the null space of the operator
(6.44) is trivial.

Step 3. Further we show that the operator (6.44) is Fredholm with zero
index. First we derive an auxiliary coercivity inequality. By summing of
Green’s formulae (1.37) and (1.40) with V (m) = U (m) and V = U we obtain

∫

∂Ω

{T U}+ · {U}+ dS +

∫

∂Ω (m)

{T (m) U (m)}+ · {U (m)}+ dS =

=

∫

Ω

[
E(u, u) + % τ2 |u|2 + γjl ( τ T0 ∂jul u4 − u4 ∂jul )+

+ κjl ∂ju4 ∂lu4 + τ α |u4|2 + elij (∂lu5 ∂iuj − ∂iuj ∂lu5)−

− gl ( τ T0 ∂lu5 u4 + u4 ∂lu5) + εjl ∂ju5 ∂lu5

]
dx+

+

∫

Ω (m)

[
E(m)(u(m), u(m)) + %(m)τ2 |u(m)|2 + κ

(m)
jl ∂ju

(m)
4 ∂lu

(m)
4 +

+ τα(m) |u(m)
4 |2 + γ

(m)
jl

(
τT

(m)
0 ∂ju

(m)
l u

(m)
4 − u

(m)
4 ∂ju

(m)
l

)]
dx. (6.55)

With the help of relations (6.51), (6.52), (6.53), (6.54) and (6.49) we can
show that the left hand side expression can be rewritten as

∫

∂Ω

{T U}+ · {U}+ dS +

∫

∂Ω (m)

{T (m) U (m)}+ · {U (m)}+ dS =

=
〈
{T U}+ + β {U}+, {U}+

〉
∂Ω

−
〈
β {U}+, {U}+

〉
∂Ω

+

+
〈
{T (m) U (m)}+, {U (m)}+

〉
∂Ω (m)

=

=
〈
h, {U}+

〉
∂Ω

−
〈
β {U}+, {U}+

〉
∂Ω

−
〈
h (m), {U (m)}+

〉
∂Ω (m) =

=
〈
h, Hτ [Pτ ]−1 h

〉
Γ (m) −

〈
β {U}+, {U}+

〉
SD

+

+
〈
h (m), H (m)

τ [P (m)
τ ]−1 h (m)}+

〉
Γ (m)

=

= 〈h, Aτ h〉Γ (m) −
〈
β {U}+, {U}+

〉
SD

+
〈
h, B (m)

τ h
〉
Γ (m) =

=
〈
h, [Aτ + B (m)

τ ]h
〉
Γ (m) −

〈
β {U}+, {U}+

〉
SD

=

= 〈h, N (2)
τ h〉Γ (m) −

∫

SD

β |{U}+|2 dS.

On the other hand, with the help of Korn’s inequality and evident standard
manipulations, the real part of the right hand side in (6.55) can be estimated
from below by the expression
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C1

{
‖U‖2

[H1
2 (Ω)]5 + ‖U (m)‖2

[H1
2 (Ω (m))]4

}
−

− C2

{
‖U‖2

[H0
2 (Ω)]5 + ‖U (m)‖2

[H0
2 (Ω (m))]4

}
,

where C1 and C2 are some positive constants depending on the material
parameters and the complex parameter τ . Actually, we can choose C1

independent of τ and C2 = O(|τ |2) for sufficiently large |τ |. Therefore we
finally derive the following inequality

Re 〈N (2)
τ h, h〉Γ (m) > C ′‖h‖2

[H
− 1

2
2 (∂Ω)]5

− C ′′‖Λh‖2

[H
−1

2
2 (∂Ω)]5

, (6.56)

where C ′ and C ′′ are some positive constants depending on the material

parameters and the complex parameter τ , and Λ : H̃
− 1

2
2 → H

1
2
2 is a

compact operator. Note that H̃
− 1

2
2 and H

1
2
2 are mutually adjoint spaces.

Now from (6.56) we conclude that the operator (6.44) is Fredholm with
zero index (see, e.g, [44, Ch. 2]), and consequently, it is invertible, since its
null space is trivial.

Step 4. From the results obtained above it follows that the operator

N (B,0)
τ : X

− 1
2

2 → Y
− 1

2
2 (6.57)

is invertible. Therefore the operator (6.38) is Fredholm with index zero due

to the compactness of the operator (6.41). It remains to prove that kerN (B)
τ

is trivial. We proceed as follows. Let a triplet Φ = (ψ, h, h (m)) solve the

homogeneous equation N (B)
τ Φ = 0 and construct the vectors U (m) and U

by formulae

U (m) = V (m)
τ

( [
P (m)

τ

]−1
h (m)

)
in Ω (m), (6.58)

U = Vτ

(
P−1

τ [ψ + h]
)

in Ω. (6.59)

These vectors solve the homogeneous interface crack problem (ICP-B) and
U (m) = 0 in Ω (m) and U = 0 in Ω by the uniqueness Theorem 1.1. These

equations imply Φ = 0, which shows that kerN (B)
τ is trivial. Consequently,

the operator (6.38) is invertible. The proof is complete. �

Remark 6.2. One can easily verify that all arguments applied in the
proof of Lemma 6.1 remain valid for Lipschitz domains Ω (m) and Ω.

Now we prove the following basic theorem (see Theorem 2.31 for a gen-
eralized version).

Theorem 6.3. The operator N (B)
τ in (6.2) and (6.37) is invertible pro-

vided the following constraints hold

1

p
− 3

2
+ max{γ′′1 , γ′′3 , γ′′4 } < r <

1

p
− 1

2
+ min{γ′1, γ′3, γ′4}, (6.60)
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where γ′1, γ
′′
1 are the same as in Theorem 5.1 and are defined in (5.36),

γ′3 := inf
x∈∂Γ(m), 16j65

1

2π
arg λ

(2)
j (x),

γ′′3 := sup
x∈∂Γ(m), 16j65

1

2π
arg λ

(2)
j (x),

(6.61)

γ′4 := inf
x∈∂Γ (m), 16j65

1

2π
arg µj(x),

γ′′4 := sup
x∈∂Γ (m), 16j65

1

2π
arg µj(x),

(6.62)

µj(x) are the eigenvalues of the matrix in (6.79) and λ
(2)
j (x) are the same

as in (5.37).

Proof. First of all let us remark that the the operator N (B,0)
τ , defined by

(6.40), has the same mapping property as N (B)
τ

N (B,0)
τ : X

s
p → Y

s
p,

: X
s
p,q → Y

s
p,q

(6.63)

for all s ∈ R, 1 < p <∞, and 1 6 q 6 ∞. Moreover, the operators

r
SD

Aτ :
[
B̃s

p,q(Γ
(m))

]5 →
[
Bs+1

p,q (SD)
]5
,

r
Γ (m)

Aτ :
[
B̃s

p,q(SD)
]5 →

[
Bs+1

p,q (Γ (m))
]5

(6.64)

are compact for 1 < p < +∞, s ∈ R and 1 6 q 6 +∞ since the domains are

disjoint SD∩Γ (m) = ∅. ThereforeN (B,0)
τ represents a compact perturbation

of the operator N (B)
τ , i.e., the operators

N (B)
τ −N (B,0)

τ : X
s
p → Y

s
p,

: X
s
p,q → Y

s
p,q

(6.65)

are compact.

The operator N (B,0)
τ in (6.40) is of block-lower triangular form

N (B,0)
τ :=




r
SD

Aτ 0 0

0 N (2)
τ 0

0 I4×5 I4




14×14

, (6.66)

where N (2)
τ is defined in (6.46) and I4×5 is as in (5.26). Further, as we have

shown in the proof of Theorem 5.1, the operators

r
SD

Aτ :
[
H̃r

p (SD)
]5 →

[
Hr+1

p (SD)
]5
,

:
[
B̃r

p,q(SD)
]5 →

[
Br+1

p,q (SD)
]5

(6.67)

are invertible if
1

p
− 1 + γ′′1 < r +

1

2
<

1

p
+ γ′1, (6.68)



Interface Crack Problems for Metallic-Piezoelectric Composite Structures 133

where γ′1 and γ′′1 are determined in (5.36).

To prove the invertibility of N (B,0)
τ in (6.42) it remains to investigate the

operators

N (2)
τ : H̃

r
p → H

r+1
p ,

: B̃
r
p,q → B

r+1
p,q

(6.69)

in the following space settings

H̃
r
p :=

[
H̃r

p (Γ
(m)
T )

]3 ×
[
H̃r

p(Γ (m))
]2
,

H
r+1
p :=

[
Hr+1

p (Γ
(m)
T )

]3 ×
[
Hr+1

p (Γ (m))
]2
,

B̃
r
p,q :=

[
B̃r

p,q(Γ
(m)
T )

]3 ×
[
B̃r

p,q(Γ
(m))

]2
,

B
r+1
p,q :=

[
Br+1

p,q (Γ
(m)
T )

]3 ×
[
Br+1

p,q (Γ (m))]2 .

(6.70)

Since Γ
(m)
T is a proper part of Γ (m) we can not apply Theorem 2.28 to

characterize the Fredholm properties of the operators (6.69). Instead we will
apply the local principle for para-algebras, exposed in Section 2. To this

end, let either Zr
p := Hr

p (Z̃r
p := H̃r

p) or Zr
p := Br

p,q (Z̃r
p := B̃r

p,q). Consider
the quotient para-algebra

Ψ′(Z̃r
p,Z

r+1
p ) =

[
Ψ(Z̃r

p,Z
r+1
p )/C(Z̃r

p,Z
r+1
p )

]
2×2

,

of all ΨDOs Ψ(Z̃r
p,Z

r+1
p ) acting between the indicated spaces factored by

the space of all compact operators C(Z̃r
p,Z

r+1
p ). Further, for arbitrary point

y ∈ Γ(m) we define the following localizing class

∆y :=
{
[gyI5], gy∈C

∞(Γ(m)), supp gy⊂Wy, gy(x)=1 ∀x∈W̃y

}
, (6.71)

where W̃y ⊂Wy ⊂ Γ(m) are arbitrarily small embedded neighborhoods of y.
The symbol [A] stands for the quotient class containing the operator A. It
is obvious that the system {∆y}y∈Γ(m) is covering and all its elements [gyI5]

commute with the class [A] for arbitrary ΨDO A ∈ Ψ(Z̃r
p,Z

r+1
p ) (to justify

the commutativity recall that a commutant AgI − gA, with the identity
operator I , is compact for an arbitrary smooth function g).

The ΨDO Aτ = Hτ P−1
τ “lives” on the surface ∂Ω (see (5.18) and Section

2). Let us consider a similar operator A(m)
τ := H(m)

τ g(P(m)
τ )−1 which “lives”

on the surface ∂Ω(m), where the ΨDOs H(m)
τ and P(m)

τ are the direct values
of potential operators, defined in Section 2. The closed surfaces ∂Ω and

∂Ω(m), where the operators Aτ and A(m)
τ are defined, have in common the

open surface Γ(m) = ∂Ω ∩ ∂Ω(m). On the other hand, an arbitrary ΨDO

A(x,D) and, in particular the operators Aτ and A(m)
τ , are of local type:

if g1 and g2 are functions with disjoint supports supp g1 ∩ supp g2 = ∅,
then the operator g1A(x,D)g2I is compact in the spaces where A(x,D) is
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bounded. Applying the mentioned property, it is easy to check the following
local equivalences

[Aτ ]
∆y∼ [Aτ,y] , [A(m)

τ ]
∆y∼ [A(m)

τ,y ] for all y ∈ Γ(m).

Consequently,

[N (2)
τ ]

∆y∼ [N (2)
τ,y ], (6.72)

where

N (2)
τ,y :=Aτ +B (m)

τ :
[
Hr

p(∂Ω(m))
]5→

[
Hr+1

p (∂Ω(m))
]5

for y∈Γ
(m)
T , (6.73a)

N (2)
τ,y :=

[
(Aτ +B (m)

τ )t,q

]
2×2

:
[
Hr

p(∂Ω(m))]2→ [Hr+1
p (∂Ω(m))

]2
(6.73b)

for y ∈ Γ
(m)
C ,

N (2)
τ,y :=

[
r
Γ (m)

(Aτ +B (m)
τ )

]
5×5

:
[
H̃r

p (Γ(m))
]5→

[
Hr+1

p (Γ(m))
]5

(6.73c)

for y ∈ ∂Γ(m),

N (2)
τ,y :=

:=


rΓ c

(m)
[(Aτ+B (m)

τ )l,k]3×3 rΓ c
(m)

[(Aτ+B (m)
τ )l,q ]3×2

[(Aτ+B (m)
τ )t,k]2×3 [(Aτ+B (m)

τ )t,q ]2×2



5×5

: Ṽ
r
p →V

r+1
p (6.73d)

for y ∈ ∂Γ
(m)
C , l, k = 1, 2, 3, t, q = 4, 5.

Here ∂Ω(m) is a closed surface and

Γ c
(m) := ∂Ω(m) \ Γ

(m)
C = Γ

(m)
T ∪ S(m)

N ,

Ṽ
r
p :=

[
X̃r

p(Γ c
(m))

]3 ×
[
Xr

p(∂Ω (m))
]2
, (6.74)

V
r+1
p :=

[
Xr+1

p (Γ c
(m))

]3 ×
[
Xr+1

p (∂Ω (m))
]2

with either Xr
p = Hr

p or Xr
p = Br

p,q.

Due to Theorem 2.45 the operator N (2)
τ in (6.69) is Fredholm if and only

if the operators N (2)
τ,y in (6.73a)-(6.73d) are Fredholm for all y ∈ Γ(m).

The strongly elliptic ΨDOs N (2)
τ,y in (6.73a) and in (6.73b) on the closed

surface ∂Ω(m) are Fredholm with index 0 for all y ∈ Γ
(m)
C ∪ Γ

(m)
T .

The same strongly elliptic ΨDO N (2)
τ,y in (6.73c) but on the surface Γ(m)

with the smooth boundary ∂Γ(m) 6= ∅ is Fredholm if the following con-
straints hold

1

p
− 3

2
+ γ′′3 < r <

1

p
− 1

2
+ γ′3 (6.75)

with γ′3 and γ′′3 defined in (6.61) (see Section2, Theorem 2.28).

To investigate the elliptic ΨDO N (2)
τ,y in (6.73d) for y ∈ ∂Γ

(m)
C , first note

that Gy := [(Aτ + B (m)
τ )t,q ]2×2 is defined on the closed surface ∂Ω(m), has

a strongly elliptic symbol due to Remark 2.30 and, therefore, is Fredholm.
Then the quotient class [Gy ] is invertible and since IndGy = 0 (see Theorem
2.28), there exists a compact operator Ty such that Gy +Ty is invertible for
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all y ∈ ∂Γ
(m)
C . For the quotient classes the equalities [Gy + Ty] = [Gy ] and

[Gy + Ty]−1 = [Gy]−1 hold.
Note that the quotient classes

[F±] :=

[
[I3×3] [ [0]3×2 ]

±[Gy]−1[ [(N (2)
τ,y )t,k]2×3 ] [I2×2]

]

5×5

are invertible

[F−] [F+] = [F+] [F−] = [I5×5]

and composing the quotient class
[
N (2)

τ,y

]
with this invertible quotient class

we get

[
Ñ (2)

τ,y

]
:=

[
N (2)

τ,y

]
[F−] =

[
Dτ,y r

Γ c
(m)

[(N (2)
τ,y )l,q ]3×2

[0]2×3 Gy

]

5×5

, (6.76)

where

Dτ,y :=

:= r
Γ c
(m)

(
[(N (2)

τ,y )l,k]3×3 − [(N (2)
τ,y )l,k]3×2[Gy + Ty]

−1[(N (2)
τ,y )t,k]2×3

)
(6.77)

is the strongly elliptic ΨDO of order −1 due to Lemma 2.29. It is sufficient

to prove that the composition [Ñ (2)
τ,y ] is an invertible class.

[Ñ (2)
τ,y ] in upper block-triangular and the entry [Gy] on the diagonal is

an invertible class. Moreover, the entries on the diagonal Dτ,y and Gy

are ΨDOs and the corresponding quotient classes commute (actually, these
entries are matrices of different dimension 3 × 3 and 2 × 2, but we can

extend the entire matrix [Ñ (2)
τ,y ] by identity on the diagonal and by zeros on

the off-diagonal entries in the last row and the last column, without change
the invertibility properties of the entire matrix and the diagonal entries.
Then [Gy ] extends to the matrix of the same dimension 3×3 as [Dy(D, x)]).

Therefore [Ñy(x,D)] is invertible if and only if the quotient class [Dy(D, x)]
is invertible. This is interpreted as follows: the operator

Ñ (2)
τ,y : Z̃

r
p → Z

r+1
p

is Fredholm if and only if the operator

Dτ,y :
[
X̃r

p (Γ c
(m))

]3 →
[
Xr+1

p (Γ c
(m))

]3
(6.78)

is Fredholm.
Let SDτ,y

(x, ξ1, ξ2) be the principal homogeneous symbol matrix of the
operator Dτ,y and µj(x) (j = 1, 2, 3) be the eigenvalues of the matrix

Dτ,y(x) := [SDτ,y
(x, 0,+1)]−1

SDτ,y
(x, 0,−1) (6.79)

for x ∈ ∂Γ
(m)
C .
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The operators Dτ,y in (6.78) and, therefore, the operator N (2)
τ in (6.69)

are Fredholm if the following constraints are fulfilled

1

p
− 3

2
+ γ′′4 < r <

1

p
− 1

2
+ γ′4, (6.80)

where γ′4 and γ′′4 are defined in (6.62) (cf. Section 2, Theorem 2.31).
The system of inequalities (6.68), (6.75) and (6.80) are equivalent to

(6.60).

Therefore the operator N (B)
τ is Fredholm if the conditions (6.60) hold.

Next we note that the operator N (B)
τ in (6.38) is invertible due to Lem-

ma 6.1.
Therefore, the operator N (B)

τ is invertible for all p and r if the conditions
(6.60) are fulfilled (cf. Theorem 2.31). �

Theorem 6.3 yields the following existence result.

Theorem 6.4. Let the inclusions (6.1) and the compatibility conditions
(6.26) and (6.27) hold and

4

3 − 2γ′′
< p <

4

1 − 2γ′
(6.81)

with

γ′ := min {γ′1, γ′2, γ′3}, γ′′ := max {γ′′1 , γ′′2 , γ′′3 }. (6.82)

Then the interface crack problem (1.60)–(1.71) has a unique solution

(U (m), U) ∈
[
W 1

p (Ω (m))
]4 ×

[
W 1

p (Ω)
]5
,

which can be represented by formulae

U (m) = V (m)
τ

( [
P (m)

τ

]−1 [
G

(m)
0 + h (m)

] )
in Ω (m), (6.83)

U = Vτ

(
P−1

τ

[
G0 + ψ + h

] )
in Ω, (6.84)

where the densities ψ, h, and h (m) are to be determined from the system
(6.16)-(6.21).

Moreover, the vector functions G0 + ψ + h and G
(m)
0 + h (m) are defined

uniquely by the above systems.

Proof. It is word for word of the proof of Theorem 5.2. �

Remark 6.5. Theorem 6.4 with p = 2 remains valid for Lipschitz do-
mains Ω (m) and Ω. This immediately follows from Remark 6.2 and Theo-
rem 1.1.

One can easily formulate the regularity results, similar to Theorem 5.4,
for solutions of the interface crack problem (ICP-B) (see (1.60)–(1.71)).
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6.3. Asymptotic formulas for solutions of problem (ICP-B). In this
section we study asymptotic properties of solutions to the problem (ICP-B)

near the exceptional curve ∂Γ
(m)
T . We assume, that the boundary data of

the problem are infinitely smooth, namely,

Q
(m)
j ∈ C∞(S

(m)

N ), j = 1, 4, Qk ∈ C∞(SN ), k = 1, 5,

fk ∈ C∞(SD), k = 1, 5, f
(m)
5 ∈ C∞(Γ(m)),

f
(m)
l , F

(m)
l ∈ C∞(Γ

(m)
T ), l = 1, 2, 3, f

(m)
4 , F

(m)
4 ∈ C∞(Γ(m)),

Q̃
(m)
l , Q̃l ∈ C∞(Γ

(m)
C ), l = 1, 2, 3,

F̃
(m)
l = F

(m)
l − r

Γ
(m)
T

G0l − r
Γ

(m)
T

G
(m)
0l ∈ C∞

0 (Γ
(m)
T ), l = 1, 2, 3,

F̃
(m)
4 = F

(m)
4 − rΓ(m)G04 − rΓ(m)G

(m)
04 ∈ C∞

0 (Γ(m)).

Let Φ = (ψ, h, h(m))T ∈ Xs
p be a solution of the system (6.28)–(6.33) which

can be written in the following form

N (B)
τ Φ = Y ,

where

Y ∈
[
C∞(SD)

]5 ×
[
C∞(Γ

(m)
T )

]3×

×
[
C∞(Γ(m))

]2 ×
[
C∞

0 (Γ
(m)
T )

]3 × C∞
0 (Γ(m))

To establish asymptotic properties of the solution vectors U (m) and U near

the exceptional curve ∂Γ
(m)
T we rewrite the representations (6.83)–(6.84) in

the following form

U (m) = V (m)
τ

([
P(m)

τ

]−1
h(m)

)
+ R(m) in Ω(m), (6.85)

U = Vτ

(
P−1

τ h
)

+ Vτ

(
P−1

τ ψ
)

+ R in Ω, (6.86)

where

h(m) = (h
(m)
1 , . . . , h

(m)
4 )>, h = (h1, . . . , h5)

>,

h
(m)
l = −hl + F̃

(m)
l , l = 1, 2, 3, on Γ

(m)
T ,

h
(m)
4 = −h4 + F̃

(m)
4 on Γ(m),

and

R(m) := V (m)
τ

( [
P(m)

τ

]−1
G

(m)
0

)
∈

[
C∞(Ω(m))

]4
,

R := Vτ

(
P−1

τ G0

)
∈

[
C∞(Ω)

]5
,
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the vectors h = (h1, h2, h3, h4, h5)
> and ψ = (ψ1, ψ2, ψ3, ψ4, ψ5)

> solve the
following strongly elliptic system of pseudodifferential equations





rSD
Aτψ = Φ(1) on SD,

r
Γ

(m)
T

[
(Aτ +B(m)

τ )l,k

]
3×5

h=Φ(2) on Γ
(m)
T ,

rΓ(m)

[
(Aτ +B(m)

τ )t,k

]
2×5

h=Φ(3) on Γ(m),

l=1, 2, 3; k=1, 5; t=4, 5.

where

Φ(1) =
(
Φ

(1)
1 , . . . ,Φ

(1)
5

)> ∈
[
C∞(SD)

]5
,

Φ
(1)
k = fk − rSD

[AτG0]k − rSD

[
Aτh

]
k
, k = 1, 5,

Φ(2) =
(
Φ

(2)
1 ,Φ

(2)
2 ,Φ

(2)
3

)> ∈
[
C∞(Γ

(m)
T )

]3
,

Φ
(2)
l = f

(m)
l + r

Γ
(m)
T

[
A(m)

τ G
(m)
0

]
l
− r

Γ
(m)
T

[
AτG0

]
l
+

+ r
Γ

(m)
T

[
A(m)

τ F̃ (m)
]
l
− r

Γ
(m)
T

[
A(m)

τ ψ
]
l
, l = 1, 3,

Φ(3) =
(
Φ

(3)
1 ,Φ

(3)
2

)> ∈
[
C∞(Γ(m))

]2
,

Φ
(3)
1 = f

(m)
4 + rΓ(m)

[
A(m)

τ G
(m)
0

]
4
− rΓ(m)

[
AτG0

]
4
+

+ rΓ(m)

[
A(m)

τ F̃ (m)
]
4
− rΓ(m)

[
Aτψ

]
4
,

Φ
(3)
2 = f

(m)
5 + rΓ(m)

[
AτG0

]
5
− rΓ(m)

[
Aτψ

]
5
.

If y ∈ ∂Γ(m), then h = (h1, . . . , h5)
> solves the pseudodifferential equation

on surface Γ(m) with boundary ∂Γ(m)

N (2)
τ,yh = rΓ(m)

(
Aτ + B(m)

τ

)
h = F on Γ(m).

The solution of this equation has the same asymptotics as (5.59) and, con-
sequently, the solution of the problem (ICP-B) in the neighborhood of the
boundary of ∂Γ(m) has the same asymptotics as the solution of the problem
(ICP-A) (see (5.64)–(5.65), (5.70)–(5.71), (5.78)).

Now consider the case, when y ∈ ∂Γm
C . Then h = (h′, h′′)>, where h′ =

(h1, h2, h3)
> and h′′ = (h4, h5)

> satisfy the following system of equations

rΓC
(m)

N3×3h
′ + rΓC

(m)
N3×2h

′′ = F1 on ΓC
(m), (6.87)

N2×3h
′ + N2×2h

′′ = F2 on ∂Ωm, (6.88)

where

F1 ∈
[
C∞

(
ΓC

(m)

) ]3
, F2 ∈

[
C∞(∂Ωm)

]2
,

N3×3 =
[ (

Aτ + B(m)
τ

)
l,k

]
3×3

, N3×2 =
[ (

Aτ + B(m)
τ

)
l,q

]
3×2

,

N2×3 =
[ (

Aτ + B(m)
τ

)
t,k

]
2×3

, N2×2 =
[ (

Aτ + B(m)
τ

)
t,q

]
2×2

,

l, k = 1, 2, 3, t, q = 4, 5.
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The operator N2×2 is a Fredholm operator with zero index, therefore it has
a regularizer R2×2 such, that

R2×2 ◦ N2×2 = I2×2 + T2×2, (6.89)

where T2×2 is a compact operator of order −∞.
Now, using equality (6.89), the second equation of the system

(6.87)–(6.88) can be written as

(R2×2 ◦ N2×3)h
′ + (I2×2 + T2×2)h

′′ = R2×2F2,

whence we get

h′′ = − (R2×2 ◦ N2×3)h
′ − T2×2h

′′ + R2×2F2.

Inserting the obtained expression of h′′ into the (6.87) we get

rΓC
(m)

D̃τ,yh
′ = F on ΓC

(m), (6.90)

where

D̃τ,y = N3×3 −N3×2 ◦ R2×2 ◦ N2×3,

F = F1 +
(
N3×2 ◦ T2×2

)
h′′ −

(
N3×2 ◦ R2×2

)
F2 ∈

[
C∞

(
ΓC

(m)

) ]3
.

The principal homogeneous symbol of the operator D̃τ,y reads as

S
(
D̃τ,y

)
(ξ′) = S

(
N3×3

)
(y, ξ′)−

−S
(
N3×2

)
(y, ξ′)S−1

(
N2×2

)
(y, ξ′)S

(
N2×3

)
(y, ξ′), ξ′ = (ξ1, ξ2).

Let µj , j = 1, 2, 3, be the eigenvalues of the matrix
[
SD̃τ,y

(0,+1)
]−1

SD̃τ,y
(0,−1), y ∈ ∂Γ

(m)
C ,

and denote by mj the algebraic multiplicities of µj , m1 + · · · + ml = 3;
then the asymptotic expansion of solutions of the strongly elliptic equation
(6.90) reads as [12]

h′ = (h1, h2, h3)
> = D(y)r−

1
2+γ+iδB0

(
− 1

2πi
log r

)
D−1(y)b0(y)+

+

M∑

k=1

D(y)r−
1
2+γ+iδ+kBk(y, log r) + h′M+1(x), (6.91)

where

r−
1
2+γ+iδ = diag

{
r−

1
2+γ1+iδ1 , r−

1
2 +γ2+iδ2 , r−

1
2 +γ3+iδ3

}
,

γj =
1

2π
argµj(y), δj = − 1

2π
log |µj(y)|, j = 1, 2, 3, y ∈ ∂Γ

(m)
C ,

Bk(y, t) = B0

(
− t

2πi

k(2m0−1)∑

j=1

tjdkj(y)
)
, m0 = max{m1, . . . ,ml},

b0 ∈
[
C∞

(
∂Γ

(m)
C

)]3
, h′M+1 ∈

[
C∞

(
l+m,ε

)]3
, l+m,ε = ∂Γ

(m)
C × [0, ε],
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while the 3 × 3-dimensional matrices D and B0 are defined likewise to the
respective 5 × 5-dimensional matrices in Section 5.

Denote by C the matrix

C = [Clk ]5×3 =

[
I3×3

−R2×2 ◦ N2×3

]

5×3

, l = 1, 5, k = 1, 3,

and by C ′ the matrix composed from the first four rows of matrix C

C ′ = [Ct,k]4×3, t = 1, 4, k = 1, 3.

Then we can rewrite formulae (6.85) and (6.86) as follows

U (m) = V (m)
τ

[ (
P(m)

τ

)−1
C ′

]
4×3

h′ + R(m)
1 in Ωm,

U = Vτ

[
P−1

τ C
]
5×3

h′ + R1 in Ω,

where R(m)
1 ∈ [C∞(Ωm)]4, R1 ∈ [C∞(Ω)]5.

Now we can apply the asymptotic expansion (6.91) and the asymptotic
expansion of the potential-type functions (see [13]) and obtain the following
asymptotic expansion of solutions of the problem (ICP-B) near the crack

edge ∂Γ
(m)
C

U (m)(y, α, r) =

=
∑

µ=±1

l
(m)
0∑

s=1

n(m)
s −1∑

j=0

c
(m)
sjµ (y, α) r

1
2+γ+iδB0(ζ) c̃

(m)
sjµ (y, α) + · · · , (6.92)

U(y, α, r) =

=
∑

µ=±1

l0∑

s=1

ns−1∑

j=0

csjµ(y, α) r
1
2+γ+iδB0(ζ) c̃sjµ(y, α) + · · · , (6.93)

where ζ = − 1
2πi log r, and ns, n

(m)
s , l0 and l

(m)
0 are defined in the Section 5.

Coefficients csjµ, c̃sjµ, c
(m)
sjµ and c̃

(m)
sjµ in asymptotic expansions (6.92) and

(6.93) read as

csjµ(y, α) = sinj α dsj(y, µ)
[
ψs,µ(y, α)

] 1
2 +γ+iδ−j

,

c̃sjµ(y, α) = B0

(
− 1

2πi
logψs,µ(y, α)

)
cj(y),

j = 0, ns − 1, µ = ±1, s = 1, . . . , l0,

c
(m)
sjµ (y, α) = sinj αd

(m)
sj (y, µ)

[
ψ(m)

s,µ (y, α)
] 1

2+γ+iδ−j

,

c̃
(m)
sjµ (y, α) = B0

(
− 1

2πi
logψ(m)

s,µ (y, α)
)
cj(y)

j = 0, n
(m)
s − 1, µ = ±1, s = 1, . . . , l

(m)
0 ,
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with ψs,µ, ψ
(m)
s,µ defined in the Section 5, and

csjµ =
[
c
(l,k)
sjµ

]
5×3

, c
(m)
sjµ =

[
c
(m),(l,k)
sjµ

]
4×3

,

c̃sjµ =
(
c
(1)
sjµ, c

(2)
sjµ, c

(3)
sjµ

)>
, c̃

(m)
sjµ =

(
c
(m)(1)
sjµ , c

(m)(2)
sjµ , c

(m)(3)
sjµ

)>
,

dsj(y,−1) =
1

2π
Gκ(y, 0)P−

sj (y)D(y)eiπ( 1
2−γ−iδ),

dsj(y,+1) =
1

2π
Gκ(y, 0)P+

sj(y)D(y), s = 1, l0, j = 0, ns − 1,

d
(m)
sj (y,−1) =

1

2π
Gκm

(y, 0)P
−(m)
sj (y)D(y)eiπ( 1

2−γ−iδ),

d
(m)
sj (y,+1) =

1

2π
Gκm

(y, 0)P
+(m)
sj (y)D(y), s = 1, l

(m)
0 , j = 0, n

(m)
s −1,

where

dsj = [d
(l,k)
sj ]5×3, d

(m)
sj =

[
d
(m)(l,k)
sj

]
4×3

,

P±
sj = V

(s)
−1,j(y, 0,±1)SP−1·C′(y, 0,±1),

P
±(m)
sj = V

(m)(s)
−1,j (y, 0,±1)S(P(m))−1·C′(y, 0,±1),

and Gκ , Gκm
, V

(s)
−1,j , V

(m)(s)
−1,j , are defined in Section 5, whereas the coeffi-

cients cj = (c
(1)
j , c

(2)
j , c

(3)
j )> are defined similarly to the comparable coeffi-

cients from (5.63).
Consider the media possessed tetragonal or hexagonal symmetry. In this

case

SD̃τ,y
(0,±1) =




D±
11 −D±

15(D
±
55)

−1D±
51 0 0

0 D±
22 D±

23

0 D±
32 D±

33


 ,

where D±
jk, j, k = 1, 2, 3, 5 are defined in Section 5. To find the eigenvalues

of the matrix
[
SD̃τ,y

(0,+1)
]−1

SD̃τ,y
(0,−1), y ∈ ∂Γ

(m)
C , (6.94)

take into account that D+
kk = D−

kk, k = 1, 2, 3, 5, D±
15 = D±

51 and D±
23 =

−D±
32. Then the characteristic equation of the matrix (6.94) reads

det




(1 − µ)D−
11 −D−

15

(
D−

55

)−1
D−

51 0 0

0 (1 − µ)D−
22 (1 + µ)D−

23

0 (1 + µ)D−
32 (1 − µ)D−

33


 = 0.

From where we get that the eigenvalues of the matrix (6.94) are

µ1 = 1, µ2 =
1 − q

1 + q
> 0, µ3 =

1

µ2
> 0,
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where

q =
|D−

23|2
D−

22D
−
33

,

and

γj = 0, j = 1, 2, 3, δ1 = 0, δ2 = −δ3 = δ̃ =
1

2π
log

1 − q

1 + q
.

The matrix (6.94) is self-adjoint and therefore is similar to a diagonal matrix.
Then B0(t) = I3×3 and we obtain the asymptotic expansion

U = c0r
1
2 + c1r

1
2+iδ̃ + c2r

1
2−iδ̃ + · · · ,

U (m) = c
(m)
0 r

1
2 + c

(m)
1 r

1
2+iδ̃ + c

(m)
2 r

1
2−iδ̃ + · · · .

Consequently, the solution is C
1
2 -smooth in a one sided closed neighborhood

of the curve ∂Γ
(m)
C . The first coefficients have the same structure as in

(5.72)–(5.75), in particular

c 0 = c 0(y, α) =
∑

µ=±1

5∑

s=1

c
(1)
0 (y)c

(1)
s0µ(y, α),

c
(m)
0 = c

(m)
0 (y, α) =

∑

µ=±1

3∑

j=1

c
(1)
j (y)c

((m),1)
1jµ (y, α),

where the vector c
(1)
s0µ is composed of the first column of the matrix cs0µ =

[c
(l,k)
s0µ ]5×3, while the vector c

((m),1)
1jµ is composed of the first column of the

matrix c1jµ = [c
(m)(l,k)
1jµ ]4×3. The coefficients c

(1)
0 and c

(1)
j are the first coef-

ficients of the vector c0 and cj , respectively. In our case they read as

c
(1)
0 (y) = −2π b̃

(1)
0 (y), c

(1)
j (y) =

√
π ij Γ(j − 1/2) b̃

(1)
0 (y),

where b̃
(1)
0 is the first component of the vector D−1b0.

Remark, that we have the same asymptotic expansion of the solution
in the case, when the piezoelectric medium belongs to the class of cubic
anisotropy.

For numerical calculations consider the same example as in the previous
section: the domain Ω (m) is occupied by the isotropic metallic material
silver-palladium alloy whereas the domain Ω is occupied by the piezoelectric
material possessing the crystal symmetry either of the class 4mm or the
class 6mm (e.g. BaTiO3, PZT-4 or PZT-5A).

The graphs presented below show that the stress singularity exponents
as well as the stress oscillation parameters depend on the piezoelectric con-
stants. We have calculated the deviations γ(j) and γ(3) of the stress singu-
larity exponents γ′ and γ from the value −0, 5:

γ(j) = | − 0, 5− γ′j |, j = 1, 2, γ(3) = | − 0, 5− γ|,
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and oscillation parameters

δ(1) = max
16k65

sup
x∈∂SD

|δk|,

δ(2) = max
16k65

sup
x∈∂Γ

(m)
T

|δk|,

δ(3) = δ = max
16k63

sup
x∈∂Γ

(m)
C

|δk|,

which determine stress oscillating singularity effects at the exceptional curves

∂SD and ∂Γ
(m)
T respectively.

We carried out calculations for PZT-4 with the constants tekj instead of
ekj , where 1 < t < 2. The corresponding graphs are presented in Figures 10
and 11.
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We see that the deviation of the stress singularity exponents from −0.5
(the value for the materials without piezoelectric properties) near the crack

edge ∂ΓC is significantly less then near ∂SD or ∂Γ
(m)
T and differs from zero

only in a small range of t whereas the corresponding oscillation parameter
δ(3) is nonzero in full range of t.

The graphs in Figures 12-13 reveal that the stress singularity exponent
γ(3) and the oscillation parameter δ(3) depend on the angle β between the
symmetry axis of the piezoelectric material and the normal of surface at the
reference point x ∈ ∂ΓC as well.

0.502

0.504

0.506

0.508

0.510

PSfrag replacements
γ(3)

δ(3)

2π × β

0.02

0.03

0.04

0.05

PSfrag replacements

γ(3)

δ(3)

2π × β

Figure 12 Figure 13



144 T. Buchukuri, O. Chkadua, R. Duduchava, and D. Natroshvili

Acknowledgements

This research was supported by the Georgian National Science Foun-
dation (GNSF) grant No. GNSF/ST07/3-170 and, in addition, in the case
of the fourth author, by the Georgian Technical University Grant
No. GTU/2011/4.

References

1. M. S. Agranovich, Elliptic operators on closed manifolds. Partial differential equa-
tions. VI. Elliptic operators on closed manifolds. Encycl. Math. Sci. 63 (1994), 1–
130 (1994); translation from Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat., Fundam.
Napravleniya 63 (1990), 5–129.

2. L. Boutet de Monvel, Boundary problems for pseudo-differential operators. Acta
Math. 126 (1971), No. 1-2, 11–51.

3. A. V. Brenner and E. M. Shargorodsky, Boundary value problems for elliptic
pseudodifferential operators. Translated from the Russian by Brenner. Encyclopaedia

Math. Sci., 79, Partial differential equations, IX, 145–215, Springer, Berlin, 1997.
4. T. Buchukuri and O. Chkadua, Boundary problems of thermopiezoelectricity in

domains with cuspidal edges. Georgian Math. J. 7 (2000), No. 3, 441–460.
5. T. Buchukuri, O. Chkadua, and R. Duduchava, Crack-type boundary value prob-

lems of electro-elasticity. Operator theoretical methods and applications to mathemat-
ical physics, 189–212, Oper. Theory Adv. Appl., 147, Birkhauser, Basel, 2004.

6. T. Buchukuri, O. Chkadua, D. Natroshvili, and A.-M. Sändig, Solvability and
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45. S. G. Mikhlin and S. Prössdorf, Singular integral operators. Translated from the
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56. W. Nowacki, Elektromagnitnye effekty v tverdykh telakh. (Russian) [Electromag-

netic effects in solids] Translated from the Polish and with a preface by V. A.
Shachnev. Mekhanika: Novoe v Zarubezhnoi Nauke [Mechanics: Recent Publications
in Foreign Science], 37. “Mir”, Moscow, 1986.

57. W. Nowacki, Mathematical models of phenomenological piezoelectricity. Mathemat-
ical models and methods in mechanics, Banach Cent. Publ. 15 (1985), 593–607.

58. W. Nowacki, Some general theorems of thermopiezoelectricity. J. Thermal Stresses
1 (1962), 171–182.

59. H. Parkus, Magneto-thermoelasticity. Course held at the Department of Mechan-
ics of Solids, June-July 1972, Udine. International Centre for Mechanical Sciences.
Courses and Lectures. No.118. Springer-Verlag, Wien–New York, 1972.

60. V. Rabinovich, An introductory course on pseudodifferential operators. Textos de
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