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1. Formulation of the Main Results

1.1. Statement of the problem. In the rectangle Ω = [0, a] × [0, b]
consider the linear hyperbolic equation

u(2,2) =
2∑

i=1

2∑

k=1

hik(x, y)u(i−1,k−1) + h(x, y) (1.1)

with the nonlocal boundary conditions
a∫

0

u(s, y) dαi(s) = 0 for 0 ≤ y ≤ b (i = 1, 2),

b∫

0

u(x, t) dβk(t) = 0 for 0 ≤ x ≤ a (k = 1, 2).

(1.2)

Here

u(i,k)(x, y) =
∂i+ku(x, y)

∂xi∂yk
(i, k = 0, 1, 2),

hik : Ω → R (i, k = 1, 2) are measurable functions, h ∈ L(Ω), and αi :
[0, a] → R and βi : [0, b] → R (i = 1, 2) are functions of bounded variation.

We will use the following notation.
L(Ω) is the Banach space of Lebesgue integrable functions v : Ω → R

with the norm

‖v‖L =

a∫

0

b∫

0

|v(x, y)| dx dy.

C1,1(Ω) is the space of functions u : Ω → R, continuous together with
u(i−1,k−1) (i, k = 1, 2), with the norm

‖u‖C1,1 = max
{ 2∑

i=1

2∑

k=1

∣∣u(i−1,k−1)(x, y)
∣∣ : (x, y) ∈ Ω

}
.

C̃1,1(Ω) is the space of functions u ∈ C1,1(Ω) for which u(1,1) is absolutely
continuous (see, e.g., [1,4]).

The function u ∈ C̃1,1(Ω) is said to be a solution of equation (1.1) if it
satisfies that equation almost everywhere on Ω.

A solution of equation (1.1) satisfying boundary conditions (1.2) is called
a solution of problem (1.1), (1.2).

Along with the equation (1.1) consider the corresponding homogeneous
and perturbed equations

u(2,2) =
2∑

i=1

2∑

k=1

hik(x, y)u(i−1,k−1), (1.10)

u(2,2) =
2∑

i=1

2∑

k=1

hik(x, y)u(i−1,k−1) + h̃(x, y), (1.1′)
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with the nonhomogeneous boundary conditions
a∫

0

u(s, y) dαi(s) =

a∫

0

c(s, y) dαi(s) for 0 ≤ y ≤ b (i = 1, 2),

b∫

0

u(x, t) dβk(t) =

b∫

0

c(x, t) dβk(t) for 0 ≤ x ≤ a (k = 1, 2).

(1.2′)

Following [2], introduce the definitions.

Definition 1.1. Problem (1.1), (1.2) is said to be well-posed if for arbi-
trary h̃ ∈ L(Ω) and c ∈ C̃1,1(Ω) problem (1.1′), (1.2′) is uniquely solvable,
and there exists a positive constant r independent of h̃ and c such that

‖ũ− u‖C1,1 ≤ r
(‖c‖C1,1 + ‖h̃− h‖L

)
,

where u and ũ, respectively, are solutions of problems (1.1), (1.2) and (1.1′),
(1.2′).

Definition 1.2. Problem (1.1), (1.2) is said to be conditionally well-posed
if for an arbitrary h̃ ∈ L(Ω) problem (1.1′), (1.2) is uniquely solvable, and
the exists a positive constant r independent of h̃ such that

‖ũ− u‖C1,1 ≤ r‖h̃− h‖L,

where u and ũ, respectively, are solutions of problems (1.1), (1.2) and (1.1′),
(1.2).

In the case where the coefficients of equation (1.1) are continuous func-
tions sufficient conditions of well-posedness of problems of type (1.1), (1.2)
are established in [3–7]. We are interested in the singular case, where some
of the coefficients hik (i, k = 1, 2) are nonintegrable on Ω. Until recently,
for singular equations only the Dirichlet problem has been studied [8].

General theorems on conditional well-posedness of nonlocal problems for
higher order linear hyperbolic equations with singular coefficients are proved
in [2]. In the present paper effective and unimprovable in a sense conditions,
guaranteeing conditional well-posedness of the singular problem (1.1), (1.2),
are established on the basis of those results.

The following boundary conditions are the particular cases of (1.2):
u(0, y) = 0, u(a, y) = 0 for 0 ≤ y ≤ b,

u(x, 0) = 0, u(x, b) = 0 for 0 ≤ x ≤ a
(1.21)

and

u(0, y) = 0,

a∫

0

u(s, y) dα(s) = 0 for 0 ≤ y ≤ b,

u(x, 0) = 0,

b∫

0

u(x, t) dβ(t) = 0 for 0 ≤ x ≤ a,

(1.22)



Conditional Well–Posedness of Nonlocal Problems . . . 55

where α : [0, a] → R and β : [0, b] → R are functions of bounded variation.
The theorems proved below imply new sufficient conditions of conditional

well-posedness of problems (1.1), (1.21) and (1.1), (1.22).

1.2. Theorems on the Conditional Well-Posedness of Problem
(1.1), (1.2). Let

∆1(x) = α2(a)

a∫

x

α1(s) ds− α1(a)

a∫

x

α2(s) ds,

∆2(y) = β2(b)

b∫

y

β1(t) dt− β1(b)

b∫

y

β2(t) dt.

(1.3)

We study problem (1.1), (1.2) in the case, where

αi(0) = 0, βi(0) = 0, ∆i(0) 6= 0 (i = 1, 2). (1.4)

Introduce the functions

χ(t, s) =

{
1 for s ≤ t,

0 for s > t,
(1.5)

g1(x, s) =
1

∆1(0)

[ a∫

0

α1(τ) dτ

a∫

s

α2(τ) dτ −
a∫

s

α1(τ) dτ

a∫

0

α2(τ) dτ+

+(s− a)∆1(0) + (a− x)∆1(s)
]

+ χ(x, s)(x− s) for 0 ≤ x, s ≤ a, (1.6)

g2(y, t) =
1

∆2(0)

[ b∫

0

β1(τ) dτ

b∫

t

β2(τ) dτ −
b∫

t

β1(τ) dτ

b∫

0

β2(τ) dτ+

+(t− b)∆2(0) + (b− y)∆1(t)
]

+ χ(y, t)(y − t) for 0 ≤ y, t ≤ b, (1.7)

ϕ11(x) = max
{|g1(x, s)| : 0 ≤ s ≤ a

}
,

ϕ12(x) = sup
{∣∣g(1,0)

1 (x, s)
∣∣ : 0 ≤ s ≤ a, s 6= x

}
,

(1.8)

ϕ21(y) = max
{|g2(y, t)| : 0 ≤ t ≤ b

}
,

ϕ22(y) = sup
{∣∣g(1,0)

2 (y, t)
∣∣ : 0 ≤ t ≤ b, t 6= y

}
.

(1.9)

Theorem 1.1. If along with (1.4) the inequalities
b∫

0

a∫

0

ϕ1i(x)ϕ2k(y)|hik(x, y)| dx dy < +∞ (i, k = 1, 2) (1.10)

hold, then problem (1.1), (1.2) is conditionally well-posed if and only if the
corresponding homogeneous problem (1.10), (1.2) has only the trivial solu-
tion.
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Theorem 1.2. If along with (1.4) the condition

2∑

i=1

2∑

k=1

b∫

0

a∫

0

ϕi(x)ψk(y)|hik(x, y)| dx dy < 1 (1.11)

holds, then problem (1.1), (1.2) is conditionally well-posed. Moreover, if

hik ∈ L(Ω) (i, k = 1, 2), (1.12)

then problem (1.1), (1.2) is well-posed.

Theorem 1.3. If conditions (1.4) and (1.11) hold, and

b∫

0

a∫

0

|h11(x, y)| dx dy = +∞, (1.13)

then problem (1.1), (1.2) is conditionally well-posed but not well-posed.

1.3. Corollaries for problem (1.1), (1.21).

Corollary 1.1. If

b∫

0

a∫

0

[
x
(
1−x

a

)]2−i[
y
(
1−y

b

)]2−k

|hik(x, y)| dx dy<+∞ (i, k=1, 2) (1.14)

hold, then problem (1.1), (1.21) is conditionally well-posed if and only if
the corresponding homogeneous problem (1.10), (1.21) has only the trivial
solution.

Corollary 1.2. Let either

2∑

i=1

2∑

k=1

b∫

0

a∫

0

[
x
(
1− x

a

)]2−i[
y
(
1− y

b

)]2−k

|hik(x, y)| dx dy < 1, (1.15)

or

ess sup
{ 2∑

i=1

2∑

k=1

[
x
(
1− x

a

)]2−i[
y
(
1− y

b

)]2−k

|hik(x, y)| : (x, y) ∈ Ω
}

<

<
4
ab

. (1.16)

Then problem (1.1), (1.21) is conditionally well-posed. Moreover, if along
with (1.15) (along with (1.16)) condition (1.12) holds, then problem (1.1),
(1.21) is well-posed.

Corollary 1.3. Let along with condition (1.13) either of conditions (1.15)
and (1.16) hold. Then problem (1.1), (1.21) is conditionally well-posed but
not well-posed.
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1.4. Corollaries for problem (1.1), (1.22). We study problem (1.1),
(1.22) in the case, where

α(0) = 0, α(x) ≤ α(a) a.e. on [0, a],

a∫

0

α(x) dx < aα(a),

β(0) = 0, β(y) ≤ β(b) a.e. on [0, b],

b∫

0

β(y) dy < bβ(b).

(1.17)

Corollary 1.4. If along with (1.17) the condition
b∫

0

a∫

0

x2−iy2−k|hik(x, y)| dx dy < +∞ (i, k = 1, 2) (1.18)

holds, then problem (1.1), (1.22) is conditionally well-posed if and only if
the corresponding homogeneous problem (1.10), (1.22) has only the trivial
solution.

Corollary 1.5. If along with (1.17) the condition

2∑

i=1

2∑

k=1

b∫

0

a∫

0

x2−iy2−k|hik(x, y)| dx dy < 1 (1.19)

holds, then problem (1.1), (1.22) is conditionally well-posed. Moreover, if
along with (1.17) and (1.19) condition (1.12) holds, then problem (1.1), (1.22)
is well-posed.

Corollary 1.6. If along with (1.17) and (1.19) condition (1.13) holds,
then problem (1.1), (1.22) is conditionally well-posed but not well-posed.

1.5. Examples. The examples below demonstrate that in Theorem 1.2
(in Corollary 1.2) condition (1.11) (condition (1.15), as well as condition
(1.16)) is unimprovable in a sense.

Example 1.1. Let ε be an arbitrary positive number and γ > 1 be
sufficiently large number such that

(
γ + 1
γ − 1

)2

< 1 + ε. (1.20)

Set

h0(t) =

{
(γ + 1)tγ−2 − t2γ−2 for 0 ≤ t ≤ 1,

(γ + 1)(2− t)γ−2 − (2− t)2γ−2 for 1 < t ≤ 2,
(1.21)

w0(t) =





t exp
(
− tγ

γ

)
for 0 ≤ t ≤ 1,

(2− t) exp
(
− (2− t)γ

γ

)
for 1 < t ≤ 2,
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and consider the differential equation (1.1), where h ∈ L(Ω) and

h11(x, y) =
16

a2b2
h0

(2x

a

)
h0

(2y

b

)
, hik(x, y) = 0

for (x, y) ∈ Ω, i + k 6= 2. (1.22)

Then problem (1.1), (1.21) is not conditionally well-posed since the corre-
sponding homogeneous problem (1.10), (1.21) has the nontrivial solution

u(x, y) = w0

(2x

a

)
w0

(2y

b

)
.

On the other hand, according to (1.21) and (1.22) we have

2∑

i=1

2∑

k=1

b∫

0

a∫

0

[
x

(
1− x

a

)]2−i[
y

(
1− y

b

)]2−k

|hik(x, y)| dx dy =

=
16

a2b2

a∫

0

x
(
1− x

a

)
h0

(2x

a

)
dx

b∫

0

y
(
1− y

b

)
h0

(2y

b

)
dy ≤

≤ 1
ab

a∫

0

h0

(2x

a

)
dx

b∫

0

h0

(2y

b

)
dy =

1
4

2∫

0

h0(t) dt =

=
( 1∫

0

h0(t) dt

)2

<

(
γ + 1
γ − 1

)2

.

Hence, by (1.20) it follows that

2∑

i=1

2∑

k=1

b∫

0

a∫

0

[
x

(
1− x

a

)]2−i[
y

(
1− y

b

)]2−k

|hik(x, y)| dx dy < 1+ε. (1.23)

Consequently, in Corollary 1.2 condition (1.15) cannot be replaced by the
condition

2∑

i=1

2∑

k=1

b∫

0

a∫

0

ϕ1i(x)ϕ2k(y)|hik(x, y)| dx dy < 1 + ε

no matter how small ε > 0 might be.

Example 1.2. Let

h11(x, y) =
4

x(a− x)y(b− y)
, hik(x, y) = 0 for (x, y) ∈ Ω, i + k > 2.
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Then

ess sup
{ 2∑

i=1

2∑

k=1

[
x
(
1− x

a

)]2−i[
y
(
1− y

b

)]2−k

|hik(x, y)| : (x, y) ∈ Ω
}

=

=
4
ab

. (1.24)

On the other hand, problem (1.1), (1.21) is not conditionally well-posed,
since its corresponding homogeneous problem (1.10), 1.21() has the nontriv-
ial solution

u(x, y) = x(x− a)y(y − b).

Consequently, in Corollary 1.2 inequality (1.16) cannot be replaced by equal-
ity (1.24).

2. Auxiliary Statements

By L([0, T ]) we denote the space of Lebesgue integrable functions v :
[0, T ] → R endowed with the norm

‖v‖L =

T∫

0

|v(t)| dt,

and by C̃1([0, T ]) we denote the space of continuously differentiable func-
tions u : [0, T ] → R for which u′ is absolutely continuous.

Also, we will need to consider the second order ordinary differential equa-
tion

u′′ = q(t) (2.1)

with the nonlocal boundary conditions

T∫

0

u(t) d γi(t) = 0 (i = 1, 2), (2.2)

where q ∈ L([0, T ]), and γi : [0, T ] → R (i = 1, 2) are functions of bounded
variation such that

γi(0) = 0 (i = 1, 2). (2.3)

A solution of problem (2.1), (2.2) will be sought in the space C̃1([0, T ]).

2.1. Lemmas on estimates of solutions to problems of type
(2.1), (2.2). Let

∆(t) = γ2(T )

T∫

t

γ1(s) ds− γ1(T )

T∫

t

γ2(s) ds for 0 ≤ t ≤ T. (2.4)
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If ∆(0) 6= 0, then set

g(t, s) =
1

∆(0)

[ T∫

0

γ1(τ) dτ

T∫

s

γ2(τ) dτ −
T∫

s

γ1(τ) dτ

T∫

0

γ2(τ) dτ

]
+

+
1

∆(0)
[
(s−T )∆(0)+(T−t)∆(s)

]
+χ(t, s)(t−s) for 0≤ t, s≤T, (2.5)

where χ is the function given by equality (1.5).

Lemma 2.1. Problem (2.1) is uniquely solvable if and only if

∆(0) 6= 0. (2.6)

Moreover, is condition (2.6) holds, then the function g given equality (2.5)
is the Green’s function of the boundary value problem

u′′ = 0;

T∫

0

u(t) dγi(t) = 0 (i = 1, 2), (2.7)

and a solution u of problem (2.1), (2.2) admits the estimates

|u(i−1)(t)| ≤ ϕi(t)‖h‖L for 0 ≤ t ≤ T (i = 1, 2), (2.8)

where
ϕ1(t) = max

{|g(t, s)| : 0 ≤ s ≤ T
}
,

ϕ2(t) = sup
{
|g(1,0)(t, s)| : 0 ≤ s ≤ T, s 6= t

}
.

(2.9)

Proof. An arbitrary solution of equation (2.1) admits the representation

u(t) = c1 + c2t +

t∫

0

(t− s)q(s) ds for 0 ≤ t ≤ T. (2.10)

In view of (2.3) the function u is a solution of problem (2.1), (2.2) if and
only if (c1, c2) is a solution of the system of linear algebraic equation

γi(T )c1+
( T∫

0

τ dγi(τ)
)

c2 =

T∫

0

( s∫

0

(τ−s)q(τ) dτ

)
dγi(s) (i=1, 2). (2.11)

However,
T∫

0

τ dγi(τ) = Tγi(T )−
T∫

0

γi(τ) dτ (i = 1, 2),

T∫

0

( s∫

0

(τ − s)q(τ) dτ

)
dγi(s) =
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= γi(T )

T∫

0

(s− T )q(s) ds +

T∫

0

( s∫

0

q(τ) dτ

)
γi(s) ds =

= γi(T )

T∫

0

(s− T )q(s) ds +

T∫

0

( T∫

s

γi(τ) dτ

)
q(s) ds =

=

T∫

0

( T∫

s

γi(τ) dτ − γi(T )(T − s)
)

q(s) ds (i = 1, 2).

Therefore system (2.11) is equivalent to system

γi(T )c1 +
(

Tγi(T )−
T∫

0

γi(τ) dτ

)
c2 =

=

T∫

0

( T∫

s

γi(τ) dτ − γi(T )(T − s)
)

q(s) ds (i = 1, 2).

In view of notation (2.4) the latter system is uniquely solvable if and only
if inequality (2.6) holds. Besides, if this inequality holds, then

c1 =
1

∆(0)

T∫

0

[ T∫

0

γ1(τ) dτ

T∫

s

γ2(τ) dτ −
T∫

s

γ1(τ) dτ

T∫

0

γ2(τ) dτ

]
q(s) ds+

+
1

∆(0)

T∫

0

[T∆(s) + (s− T )∆(0)]q(s) ds, c2 = −
T∫

0

∆(s)
∆(0)

q(s) ds.

Substituting c1 and c2 in (2.10) and taking into account (2.5), we get

u(t) =

T∫

0

g(t, s)q(s) ds for 0 ≤ t ≤ T.

Consequently g is the Green’s function of problem (2.7). On the other
hand, the obtained representation of a solution of problem (2.1), (2.2) im-
plies estimates (2.8), where ϕi (i = 1, 2) are the functions given by equalities
(2.9). ¤

Lemma 2.2. If inequality (2.6) holds, then the functions ϕ1 and ϕ2,
given by equalities (2.9), are continuous on [0, T ]. Moreover, ϕ1 has at
most two zeros, and ϕ2 is positive in [0, T ].

Proof. According to equalities (2.4) and (2.5) the function g : [0, T ] ×
[0, T ] → R is continuous, that guarantees continuity of function ϕ1. On the
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other hand

g(1,0)(t, s) =





1− ∆(s)
∆(0)

for 0 ≤ s < t ≤ T,

−∆(s)
∆(0)

for 0 ≤ t < s ≤ T.
(2.12)

Therefore

ϕ2(t) =
1
2
(ϕ21(t) + ϕ22(t) + |ϕ22(t)− ϕ21(t)|) for 0 ≤ t ≤ T,

where

ϕ21(t)=max
{∣∣∣1−∆(s)

∆(0)

∣∣∣ : 0≤s≤ t

}
, ϕ22(t)=max

{∣∣∣∆(s)
∆(0)

∣∣∣ : t≤s≤T

}
.

Consequently, in view of continuity if the function ∆, the functions ϕ21, ϕ22

and ϕ2 are continuous. Besides,

ϕ2(t)≥ 1
2
(ϕ21(t)+ϕ22(t))≥ 1

2

(∣∣∣1−∆(t)
∆(0)

∣∣∣+
∣∣∣ ∆(t)
∆(0)

∣∣∣
)
≥ 1

2
for 0≤ t≤T.

To complete the proof it remains to show that the function ϕ1 has at
most two zeros in [0, T ]. Assume the contrary that ϕ1 has at least three
zeros t1, t2 and t3, where 0 ≤ t1 < t2 < t3 ≤ T . Let s0 ∈ (t1, t2) be
arbitrarily fixed and set

v(t) = g(t, s0) for 0 ≤ t ≤ T.

Then, in view of the equalities ϕ1(ti) = 0 (i = 1, 2, 3), we have v(ti) = 0 (i =
1, 2, 3). Hence, in view of equality (2.12), it follows that v′(t) = 1−∆(s0)

∆(0) = 0
for t2 ≤ t ≤ t3. Consequently,

v′(t) =

{
−1 for t1 ≤ t < s0,

0 for s0 < t ≤ t2.

But this is impossible since v(t1) = v(t2) = 0. The obtained contradiction
proves the lemma. ¤

If

γ1(t) =

{
0 for t = 0
1 for 0 < t ≤ T

, γ2(t) = γ(t) for 0 ≤ t ≤ T, (2.13)

where γ : [0, T ] → R is a function of bounded variation, then boundary
condition (2.2) receives the form

u(0) = 0,

T∫

0

u(s) dγ(s) = 0. (2.14)
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Lemma 2.3. If

γ(0) = 0, γ(t) ≤ γ(T ) a.e. on [0, T ],

T∫

0

γ(s) ds < Tγ(T ), (2.15)

then problem (2.1), (2.14) is uniquely solvable and the Green’s function of
the problem

u′′ = 0; u(0) = 0,

T∫

0

u(s) dγ(s) = 0

admits the estimates

max
{|g(t, s)| : 0 ≤ s ≤ T

} ≤ t,

sup
{
|g(1,0)(t, s)| : 0 ≤ s ≤ T, s 6= t

}
≤ 1 for 0 ≤ t ≤ T. (2.16)

Proof. According to conditions (2.13) and (2.15) from inequalities (2.4) and
(2.5) we find

∆(0) = Tγ(T )−
T∫

0

γ(s) ds > 0, (2.17)

0 ≤ ∆(t) = (T − t)γ(T )−
T∫

t

γ(s) ds ≤ ∆(0) for 0 ≤ t ≤ T, (2.18)

g(t, s) = −∆(s)
∆(0)

t + χ(t, s)(t− s) for 0 ≤ t, s,≤ T. (2.19)

By Lemma 2.1, inequality (2.17) guarantees unique solvability of problem
(2.1), (2.14). On the other hand, by virtue of inequalities (2.17) and (2.18),
estimates (2.16) follow from representation (2.19). ¤

In conclusion of this subsection consider equation (2.1) with the Dirichlet
boundary conditions

u(0) = 0, u(T ) = 0. (2.20)

Lemma 2.4. Problem (2.1), (2.20) is uniquely solvable and the Green’s
function of the problem

u′′ = 0; u(0) = 0, u(T ) = 0

admits the estimates

max
{|g(t, s)| : 0 ≤ s ≤ T

} ≤ t
(
1− t

T

)
,

sup
{∣∣g(1,0)(t, s)

∣∣ : 0 ≤ s ≤ T, s 6= t
}
≤ 1 for 0 ≤ t ≤ T,

(2.21)
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T∫

0

∣∣g(i−1,0)(t, s)
∣∣ ds ≤ T

2

[
t
(
1− t

T

)]2−i

for 0 ≤ t ≤ T (i = 1, 2). (2.22)

Proof. Boundary condition (2.20) follow from conditions (2.2) in the case
where

γ1(t) =

{
0 for t = 0
1 for 0 < t ≤ T

, γ2(t) =

{
0 for 0 ≤ t < T

1 for t = T
. (2.23)

Therefore equalities (2.4) and (2.5) imply

∆(t) = T − t for 0 ≤ t ≤ T, ∆(0) = T > 0

and

g(t, s) =





s
( t

T
− 1

)
for 0 ≤ s ≤ t ≤ T

t
( s

T
− 1

)
for 0 ≤ t < s ≤ T

. (2.24)

By Lemma 2.1 problem (2.1), (2.2) is uniquely solvable. On the other
hand, estimates (2.21) and (2.22) immediately follow from representation
(2.24).

2.2. Lemma on estimates of functions satisfying conditions (1.21).

Lemma 2.5. Let u ∈ C̃1,1(Ω) be a function satisfying boundary condi-
tions (1.21). Then

|u(i−1,k−1)(x, y)| ≤

≤‖u(2,2)‖L

[
x
(
1− x

a

)]2−i[
y
(
1− y

b

)]2−k

for (x, y)∈Ω (i, k=1, 2). (2.25)

Moreover, if

ρ = ess sup{|u(2,2)(x, y)| : (x, y) ∈ Ω} < +∞, (2.26)

then

|u(i−1,k−1)(x, y)| ≤

≤ ab

4

[
x
(
1− x

a

)]2−i[
y
(
1− y

b

)]2−k

ρ for (x, y) ∈ Ω (i, k = 1, 2). (2.27)

Proof. By Lemma 2.6 from [2], the function u satisfies inequality (2.25) and
admits the representation

u(x, y) =

b∫

0

a∫

0

g2(y, t)g1(x, s)u(2,2)(s, t) ds dt for (x, y) ∈ Ω, (2.28)

where g1 : [0, a]× [0, a] → R and g2 : [0, b]× [0, b] → R, respectively, are the
Green’s functions of the boundary value problems

v′′ = 0; v(0) = 0, v(a) = 0 (2.29)
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and
w′′ = 0; w(0) = 0, w(b) = 0. (2.30)

On the other hand, according to Lemma 2.4, the functions g1 and g2 admit
the estimates

∣∣g(i−1,0)
1 (x, s)

∣∣≤
[
x
(
1− x

a

)]2−i

for 0≤x, s≤a, x 6=s (i=1, 2), (2.31)

∣∣g(0,k−1)
2 (y, t)

∣∣≤
[
y
(
1− y

b

)]2−k

for 0≤y, t≤b, y 6= t (k=1, 2), (2.32)

and
a∫

0

∣∣g(i−1,0)
1 (x, s)

∣∣ ds ≤ a

2

[
x
(
1− x

a

)]2−i

for 0 ≤ x ≤ a (i = 1, 2), (2.33)

b∫

0

∣∣g(0,k−1)
2 (y, t)

∣∣ dt ≤ b

2

[
y
(
1− y

b

)]2−k

for 0 ≤ y ≤ b (k = 1, 2). (2.34)

In view of estimates (2.31) and (2.32), estimates (2.25) follow from (2.28).
Now assume that the function u satisfies condition (2.26). Then repre-

sentation (2.28) yields

∣∣u(i−1,k−1)(x, y)
∣∣ ≤

( a∫

0

|g(i−1,0)
1 (x, s)| ds

)( b∫

0

|g(0,k−1)
2 (y, t)| dt

)
ρ

for (x, y) ∈ Ω (i, k = 1, 2),

whence, by inequalities (2.33) and (2.34), estimates (2.27) follow. ¤

2.3. Lemmas on conditional well-posedness of problem (1.1),
(1.2). Let there exist continuous functions ψ1i : [0, a] → [0,∞), ψ2i :
[0, b] → [0, +∞) (i = 1, 2) such that

ψ1i(x) > 0 a.e. on [0, a], ψ2i(y) > 0 a.e. on [0, b], (2.35)

and arbitrary functions v ∈ C̃1([0, a]) and w ∈ C̃1([0, b]), satisfying the
boundary conditions

a∫

0

v(x) dαi(x) = 0,

b∫

0

w(y) dβi(y) = 0 (i = 1, 2) (2.36)

admit the estimates

|v(i−1)(x)| ≤ ψ1i(x)‖v′′‖L for 0 ≤ x ≤ a (i = 1, 2),

|w(i−1)(y)| ≤ ψ2i(y)‖w′′‖L for 0 ≤ y ≤ b (i = 1, 2).
(2.37)

Then Theorems 1.4, 1.5 and 1.10 from [2] imply the following lemmas.
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Lemma 2.6. If
b∫

0

a∫

0

ψ1i(x)ψ2k(y)|hik(x, y)| dx dy < +∞ (i, k = 1, 2), (2.38)

then problem (1.1), (1.2) is conditionally well-posed if and only if the homo-
geneous problem (1.10), (1.2) has only the trivial solution.

Lemma 2.7. If

2∑

i=1

2∑

k=1

b∫

0

a∫

0

ψ1i(x)ψ2k(y)|hik(x, y)| dx dy < 1, (2.39)

then problem (1.1), (1.2) is conditionally well-posed. Moreover, if along with
(2.39) condition (1.12) holds, then problem (1.1), (1.2) is well-posed.

Lemma 2.8. If conditions (1.13) and (2.39) hold, then problem (1.1),
(1.2) is conditionally well-posed but not well-posed.

3. Proofs of the Main Results

Proof of Theorem 1.1. Set

ψ1i(x)=ϕ1i(x) for 0≤x≤a, ψ2i(y)=ϕ2i(y) for 0≤y≤b (i=1, 2).

Then by conditions (1.4), (1.10) and Lemma 2.2, the functions ψ1i and ψ2i

(i = 1, 2) are continuous and satisfy conditions (2.35) and (2.38). On
the other hand, according to Lemma 2.1, functions v ∈ C̃1([0, a]) and
w ∈ C̃1([0, b]) satisfying boundary conditions (2.36) admit estimates (2.37).
Therefore Theorem 1.1 immediately follows from Lemma 2.6. ¤

Theorem 1.2 follows from Lemmas 2.1, 2.2 and 2.7, while Theorem 1.3
follows from Lemmas 2.1, 2.2 and 2.8.

Proof of Corollary 1.1. Boundary conditions (1.21) follow from the condi-
tions (1.2), where

α1(x) =

{
0 for x = 0
1 for 0 < x ≤ a

, α2(x) =

{
0 for 0 ≤ x < a

1 for x = a
,

β1(y) =

{
0 for y = 0
1 for 0 < y ≤ b

, β2(y) =

{
0 for 0 ≤ y < b

1 for y = b
.

In this case, by Lemmas 2.1 and 2.4, the functions g1 and g2, given by equal-
ities (1.6) and (1.7), are Green’s functions of problems (2.29) and (2.30),
respectively, and the functions ϕik (i, k = 1, 2), given by equalities (1.8) and
(1.9), admit the estimates

ϕ1i(x) ≤
[
x
(
1− x

a

)]2−i

for 0 ≤ x ≤ a (i = 1, 2),
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ϕ2i(y) ≤
[
y
(
1− y

b

)]2−k

for 0 ≤ y ≤ b (k = 1, 2).

According to those estimates, inequalities (1.10) follow from inequalities
(1.14). Now applying Theorem 1.1, the validity of Corollary 1.1 becomes
evident. ¤
Proof of Corollary 1.2. In view of Corollary 1.1, in order to prove Corollary
1.2 it is sufficient to show that problem (1.10), (1.21) has only the trivial
solution provided that inequality (1.15) (inequality (1.16)) holds.

Let u be an arbitrary solution of problem (1.10), (1.2). Then, in view of
Lemma 2.5, estimates (2.25) are valid. Therefore from (1.10) we deduce

‖u(2,2)‖L ≤
( 2∑

i=1

2∑

k=1

b∫

0

a∫

0

[
x
(
1− x

a

)]2−i[
y
(
1− y

b

)]2−k

×

× |hik(x, y)| dx dy

)
‖u(2,2)‖L. (3.1)

If inequality (1.15) holds, then (3.1) and (2.25) imply that ‖u(2,2)‖L = 0
and u(x, y) ≡ 0.

To complete the proof it remains to consider the case, where inequality
(1.16) holds. In that case according to estimates (2.25) we have

ρ = ess sup{|u(2,2)(x, y)| : (x, y) ∈ Ω} ≤ l‖u(2,2)‖L < +∞, (3.2)

where

l = ess sup
{ 2∑

i=1

2∑

k=1

[
x
(
1− x

a

)]2−i[
y
(
1− y

b

)]2−k

×

× |hik(x, y)| : (x, y) ∈ Ω
}

<
4
ab

. (3.3)

But, by Lemma 2.5, condition (3.2) guarantees the validity of estimates
(2.27). Taking in account those estimates from (1.10) we obtain

ρ ≤ ab

4
l ρ. (3.4)

In view of inequality (3.3), (3.4) and (2.27) imply that ρ = 0 and
u(x, y) ≡ 0. ¤

Corollary 1.3 follows from Theorem 1.3 and Lemmas 2.1 and 2.4.
Corollaries 1.4 and 1.5 can be proved in the same manner as Corollar-

ies 1.1 and 1.2. The only difference between the proofs is that instead of
Lemma 2.4 one should use Lemma 2.3.

Corollary 1.6 follows from Theorem 1.3 and Lemmas 2.1 and 2.3.
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