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Abstract. This contribution deals with systems of generalized linear
differential equations of the form
t

zi(t) = Ty, +/ d[Ak(s)] zk(s) + fu(t) — fu(a), t€a,b], k€N,

a
where —0o < a < b < 00, X is a Banach space, L(X) is the Banach space of
linear bounded operators on X, Ty € X, A : [a,b] — L(X) have bounded
variations on [a,b], fx : [a,b] — X are regulated on [a,b] and the integrals
are understood in the Kurzweil-Stieltjes sense.

Our aim is to present new results on continuous dependence of solutions
to generalized linear differential equations on the parameter k. We continue
our research from [18], where we were assuming that Ay tends uniformly to
A and fj tends uniformly to f on [a,b]. Here we are interested in the cases
when these assumptions are violated.

Furthermore, we introduce a notion of a sequential solution to generalized
linear differential equations as the limit of solutions of a properly chosen
sequence of ODE’s obtained by piecewise linear approximations of functions
A and f. Theorems on the existence and uniqueness of sequential solutions
are proved and a comparison of solutions and sequential solutions is given,
as well.

The convergence effects occurring in our contribution are, in some sense,
very close to those described by Kurzweil and called by him emphatic con-
vergence.
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1. INTRODUCTION

Generalized differential equations were introduced in 1957 by J. Kurzweil
in [14]. Since then they were studied by many authors. (See e.g. the mono-
graphs by Schwabik, Tvrdy and Vejvoda [29], [25], [32] or the papers by
Ashordia [2], [3] or Frankovd [7] and the references therein). Closely related
and fundamental is also the contribution by Hildebrandt [10]. Furthermore,
during the recent decades, the interest in their special cases like equations
with impulses or discrete systems increased considerably (cf. e.g. the mono-
graphs [21], [33], [4], [24] or [1]).

Concerning integral equations in a general Banach space, it is worth to
highlight the monograph by Honig [11] having as a background the interior
(Dushnik) integral. On the other hand, dealing with the Kurzweil-Stieltjes
integral, the contributions by Schwabik in [27] and [28] are essential for this
paper. It is well-known that the theory of generalized differential equa-
tions in Banach spaces enables the investigation of continuous and discrete
systems, including the equations on time scales and the functional differen-
tial equations with impulses, from the common standpoint. This fact can
be observed in several papers related to special kinds of equations, such
as e.g. those by Imaz and Vorel [12], Oliva and Vorel [19], Federson and
Schwabik [6].

In this paper we consider linear generalized differential equations of the
form

t

2k (t) :%kJr/d[Ak(s)] i (s) + fu(t) — fr(a), te€lab], keN, (1.1)

a

and
t

z(t) = E—i—/d[A(s)]:v(s) + f(t) — f(a), t€]a,b]. (1.2)

In particular, we are interested in finding conditions ensuring the conver-
gence of the solutions xy, of (1.1) to the solution z of (1.2). We continue our
research from [9] and [18], where we supposed a.o. that Ay tends uniformly
to A and fj tends uniformly to f on [a,b]. Here we will deal, similarly to
[31] and [8], with the situation when this assumption is not satisfied.

In the paper we use the following notation:

N = {1,2,...} is the set of natural numbers and R stands for the space
of real numbers. If —oo < a < b < oo, then [a,b] and (a,b) denote the
corresponding closed and open intervals, respectively. Furthermore, [a,b)
and (a, b] are the corresponding half-open intervals.

X is a Banach space equipped with the norm | - ||x and L(X) is the
Banach space of linear bounded operators on X equipped with the usual
operator norm. For an arbitrary function f : [a,b] — X, we set

1 Flloe = sup {Ilf()]lx; t € [a,b]}-
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If fr:[a,b] — X for k € N and f: [a,b] — X are such that
Jim i~ flloo = 0,

we say that fi tends to f wniformly on [a,b] and write fr = f on [a,b].
If J C R and f; = f on [a,b] for each [a,b]CJ, we say that fi tends to f
locally uniformly on J and write fy =% f locally on J.

If for each t € [a,b) and s € (a,b], the function f : [a,b] — X possesses
the limits

Jt+) = Tim (), f(s=)i= lm [(r).

we say that f is regulated on [a,b]. The set of all functions with values in X
which are regulated on [a,b] is denoted by G([a,b], X). Furthermore,

AFF() = f(t+) - f() for t€fab), ATF(B) =0,
A~ f(s) = f(s) — f(s-) for s € (@b, A~ f(a)=0

and
Af(t) = f(t+) — f(t—) for t € (a,b).
Clearly, each function, regulated on [a, b], is bounded on [a, b].

The set D = {ag,a1,...,am} C [a,b], where m € N, is called a division
of the interval [a,b], if a = ap < a1 < -+ < @, = b. The set of all divisions
of the interval [a,b] is denoted by Da, b]. For a function f : [a,b] — X and
a division D = {«ag, aq,...,an} € Dla,b], we put

v(D):=m, |D|=max{a; —a;—1; i=1,2,...,m},
o(f, D) =) If () = flaj-)llx
j=1

and

VarZ f=sup {v(f, D); De D[a,b]}
is the wvariation of f over [a,b]. We say that f has a bounded variation on
[a,b] if var® f < oo. The set of X-valued functions of bounded variation on
[a,b] is denoted by BV([a,b], X) and || f|sv = |f(a)|lx + var’ f. Finally,
C(Ja,b], X) is the set of functions f : [a,b] — X which are continuous on
[a, b]. Obviously,

BV ([a,b], X) C G([a,b], X) and C([a,b],X) C G([a,b], X).

The integral which occurs in this paper is the abstract Kurzweil-Stieltjes
integral (in short the KS-integral) as defined by Schwabik in [26]. (For
its further properties see also our previous paper [17]). For the reader’s
convenience, let us recall the definition of the KS-integral.

Let —co<a<b<oo,meN,

D ={ag,a1,...,am} € Dla,b] and & = (&1,&,...,&m) € [a,b]™
Then the couple P = (D, ¢) is called a partition of [a, b] if

aj,lggjgaj for j:172,...7m.
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The set of all partitions of the interval [a, b] is denoted by Pl[a,b]. An arbi-
trary function 6 : [a,b] — (0,00) is called a gauge on [a,b]. Given a gauge &
on [a,b], the partition

P = (D7€) = ({C%0,0éh e 7am}7 (51)527 e u€’m)> S P[a7b]
is said to be J-fine, if

-1, 05] C (& = 0(&5), & +0(&5)) for j=1,2,...,m

The set of all &ine partitions of [a, b] is denoted by A(J; [a, b]).
For the functions f : [a,b] — X, G : [a,b] — L(X) and a partition
P € Pla,b],

P = ({O‘O’alv"'7O‘m}7(§17§27~--75771))7

we define

S(AGHP) =[G Gla;-)]f(&).

j=1
We say that ¢ € X is the KS-integral of f with respect to G from a to b if

{for each € > 0 there is a gauge J on [a, b] such that

lla — S(AGS; P)|| < e forall Pe A(5;[a,b]).

x

In such a case we write
b

b

q:/d[G(t)]f(t) or, more briefly, q:/d[G]f.
b

Analogously we define the integral [ F'd[g] for F : [a,b] — L(X) and

g:la, b — X.
The following assertion summarizes the properties of the KS-integral
needed later. (For the proofs, see [26] and [17].)

Theorem 1.1. Let f € G([a,b], X),G € G([a,b], L(X)) and let at least
one of the functions f+G have a bounded variation on [a,b]. Then there

exists the integral f d[G]f. Furthermore,
b
| / AGls| <G (@ vt ) i £ € BV X (9
X

H/d fH (varg G)[|fllo i G € BV([a,b], L(X)), (1.4)
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t

/d[G]fk = /d[G]f on [a,b] (1.5)

if GeBV([a,b], L(X)), fr€G([a,b], X) for keN and fr,= f,

t

/d[Gk}fj/d[G}f on [a,b] (1.6)

a

if fe BV([a,b],X), GkeG([a,b], L(X)) for keN and g, = g,

/td[Gk]fk = /td[G}f

a

a 1.7
if Gy € BV([a,b],L(X)), fr € G([a,b],X) for k€N, (L)

sup{var Gi; k € N} <00 and fr = f, G = G on [a,b).

Remark 1.2. An assertion analogous to that of Theorem 1.1 holds also
for the integrals

b

/b Fdlg), /b Frdlg), /b Fdgi). [ Fudigi) k€ N,

a

where F, Fy, : [a,b] — L(X) and g, fi : [a,b] — X.

2. GENERALIZED DIFFERENTIAL EQUATIONS

Let A € BV ([a,b],L(X)), f € G(la,b],X) and T € X. Consider the

generalized linear differential equation (1.2). We say that a function x :
b
la,b] — X is a solution of (1.2) on the interval [a,b] if the integral [ d[A]x

has a sense and equality (1.2) is satisfied for all ¢ € [a, b].
Obviously, the generalized differential equation (1.2) is equivalent to the
equation
t
x(t) =2+ / d[Blx + g(t) — g(a)
whenever B — A and g — f are constant on [a, b]. Therefore, without loss of
generality we may assume that

A(a) = Ax(a) =0 and f(a) = fr(a) =0 for ke N.
For our purposes the following property is crucial:
[I—A~A@#)] ™" € L(X) for each ¢ € (a,b]. (2.1)

Its importance is well illustrated by the following assertion which summa-
rizes some of the basic properties of generalized linear differential equations
in abstract spaces. (For the proof see [18, Lemma 3.2].)
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Theorem 2.1. Let A € BV ([a,b],L(X)) satisfy (2.1). Then for each
T € X and each f € G([a,b], X) the equation (1.2) has a unique solution x
on [a,b] and x € G([a,b], X). Moreover, x — f € BV ([a,b], X)

0<ca:= sup{ H[I - AfA(t)]*HL(X) i te (a,b]} < 00, (2.2)

lz(®)lx <ca (17 x +1f(@)llx+ f o) exp(ca vary A) for t€[a,b] (2.3)
and

varZ(x - < cA(varZ A)(||§||X + 2Hf||oo) exp(ca varz A). (2.4)

The following result was proved in [18, Theorem 3.4].

Theorem 2.2. Let A, A, € BV ([a,b], L(X)) f, fr € G([a,b],X), T,%), €
X for k € N. Assume (2.1),

*

o = sup{var® A;; k € N} < oo, (2.5)
A, = A on [a,b],
flc = f on [av b]

and

lim & = 7. (2.8)

k—o0
Then equation (1.2) has a unique solution x on [a, b]. Furthermore, for each
k € N sufficiently large, there exists a unique solution xy on [a,b] for the
equation (1.1) and
xp = x  on [a,b]. (2.9)

Remark 2.3. If (2.5) is not true, but (2.6) is replaced by a stronger notion
of convergence in the sense of Opial ([20, Theorem 1]) (cf. [13, Theorem
1.4.1] for extension to functional differential equations), the conclusion of
Theorem 2.2 remains true (see [18, Theorem 4.2]). If (2.6) or (2.7) does not
hold, the situation becomes rather more difficult (see [7], [8] and [31]). The
next section deals with such a case.

3. EMPHATIC CONVERGENCE

The proofs of the next two lemmas follow the ideas of the proof of [8,
Theorem 2.2].

Lemma 3.1. Let A, Ay € BV([a,b], L(X)), f, fx € G([a,b],X), T, T} €
X for k € N. Assume (2.1), (2.8),

[T — A=A #)] " € L(X) 51)
for all t € (a,b] and k € N sufficiently large, .
A = A and fr, = f locally on (a,b]. (3.2)

Then there ezists a unique solution x of (1.2) on [a,b] and, for each k € N,
sufficiently large, there exists a unique solution xj on [a,b] to the equation
(1.1).
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Moreover, let (2.5) and
Ve>0 30 >0 such that ¥Vt € (a,a+3d) ko =ko(t) €N

such that ||zg(t) — T — AT A(a)Z — AT f(a)||x <€ (3.3)
for all k> kg
hold. Then
klirn x(t) = x(¢) (3.4)

is true for t € [a,b], while x, = x locally on (a,b).

Proof. By (3.1), the solutions x) of (1.1) exist on [a, ] for all k sufficiently
large. Let € > 0 be given and let 6 > 0 and k7 € N be such that

lx(t) — z(a+)||x < e for t € (a,a+9) and ||T) — Z||x <e for k> k.
We may choose ¢ in such way that (3.3) holds. In view of this, for ¢ €
(a,a+0), let kg € N, kg > k1, be such that

s (t) — 2 — AT A(a)T — At f(a)||x < e for k> k.
Then, taking into account the relations
z(a+) = z(a) + AT A(a)z(a) + AT f(a) and x(a) =7,

we get

lx(t) = 2(t)l|x =
= [I(x(t) = Z) + (T = T) + (T = z(a+)) + (z(at) = 2(t))[Ix <
< lww(t) — Zx — w(at) + 2l x + 17 — Zellx + [l2(t) — z(at)llx =
= [lzx(t) — 2 — ATA(a)7 — A” f(a) | x+
+ |7 — Zl|x + [|z(t) — z(a+)||x < 3e.
This means that (3.4) holds for ¢ € [a,a + 0).
Now, let an arbitrary ¢ € (a,a+6) be given. We can use Theorem 2.2 to

show that the solutions zj, to
t

wu(t) = z(c) + / d[Ads + fult) — £(8)

exist on [c,b] and z; = x on [c,b]. The assertion of the lemma follows
easily. a

Lemma 3.2. Let A, A € BV ([a,b], L(X)), f, fr € G([a,b],X), T,Z) €
X for k € N. Assume (2.1), (2.8), (3.1) and

A = A and fr = f locally on [a,b). (3.5)

Then there exists a unique solution x of (1.2) on [a,b] and, for each k € N
sufficiently large, there exists a unique solution xj on [a,b] to the equa-
tion (1.1).
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Moreover, let (2.5) and
Ve>0,0>0 37 € (b—14,b), ko €N such that

2 (b) = 2 () — ATAD) [T = ATAG)] ™ w(b-)— (3.6)
—[I=A—A®)] " A f(b)| <& forall k> ko
hold. Then (3.4) is true, while xy = x locally on [a,b).

Proof. Due to (2.1) and (3.1), there exists a unique solution z of (1.2) on
[a,b], there exists k1 € N such that (1.1) has a unique solution zj on [a, b]
for each k > k;. Furthermore, by Theorem 2.2, x; = z locally on [a,b). It
remains to show that

lim z(b) = z(b) (3.7)

k—oo
is true, as well. Let € > 0, 6 € (0,b — a) be given and let 7 € (b — §,b) and
ko > k1 be such that (3.6) is true. We have

[k (0) — 2(b)||lx =

= [[(er (0) =k (7)) + (2n (1) =2 (7)) + (2(7) —2(b=)) + (2(b—) —2(b))[| x <

< [lw (0) = (7) —2(b) +2(b=) | x +[|(7) —2(b=) | x + [l (T) —2(7) || x,
wherefrom, having in mind that z(b) = z(b—) + A~ A(b)x(b) + A~ f(b), i.e.,

w(b) = [I = ATA®)] a(b=) + [I = ATA@D)] AT f(b)
and
z(b) —x(b—) = ATAD)[I — A~ A(b)] z(b—)+
+ [T+ ATAWD)I — ATAB)] AT £(b),

we deduce that

. (8) = 2(0) | x < [low(b) — x(r) — ATAD)I — ATA®)] " a(b—)—
[+ AT A — A A®) AT I0) |+
+llz(r) = 2(b=) [ x + [z (1) = 2(7)]|x-

We can choose ¢ and kg in such a way that ||z(t) — z(b—)||x < ¢ for each
t € (b—4,b) and |lzp(7) — 2(7)||x < € for k > ko, as well. Furthermore,
notice that if B € L(X) is such that [I — B]™! € L(X), then [ — B]7! =
I+ B[I — B]~!. Thus, using (3.6), we get

2 (b) = 2(B)|x < [law(b) — a(r) = ATAG) — ATAWG)] ™ a(b-)—
—[I=ATA®)] T ATFO)x + [l2(r) = 2(b=) | x + llza(r) —2(7)]x < 3e.
It follows that (3.7) is true and this completes the proof. O

The assertion below may be deduced from Lemmas 3.1 and 3.2
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Theorem 3.3. Let A, Ay, € BV ([a,b], L(X)), f, fr € G([a,b],X), Z,T) €
X for k € N. Assume (2.1), (2.8) and (3.1). Furthermore, let there exist
a division D = {so, S2,...,8m} of the interval [a,b] such that

A = A, fr = f locally on each (s;—1,8:), i=1,2,...,m. (3.8)

Then there exists a unique solution x of (1.2) on [a,b] and, for each k € N
sufficiently large, there exists a unique solution xj on [a,b] to the equation
(1.1).

Moreover, assume (2.5) and let

Ve>0 30; € (0,8, — s;-1) such that Vt € (8i—1,8i—1 + ;)

Jk; = ki(t) € N such that
2k (t) —zn(si-1) —ATA(si—1)2(si—1) —AF f(si-1)l|x <e
for all k> k;

(3.9)

and
Ve>0,0€ (0,8 —s;—1)37 € (s; —9,8:),4; €N such that
lx (1) — 2a(73) — A7 A(si) [I — A A(s)] " (s,-)— (3.10)
—[I=A=A(s)] A f(si)llx <& forall k>4
hold for eachi=1,2,...,m.

Then (3.4) is true for allt € [a, b], while xy, = x locally on each (s;—1,s:),
i=1,2,....m.

Proof. Obviously, there is a division D = {ag, a1, ..., a,} of [a,b] such that
for each subinterval (a1, 5], = 1,2, ..., r, either the assumptions of Lem-
ma 3.1 or the assumptions of Lemma 3.2 are satisfied with o;_; in place of
a and af in place of b. Hence the proof follows by Lemmas 3.1 and 3.2. [

4. SEQUENTIAL SOLUTIONS

The aim of this section is to disclose the relationship between the so-
lutions of generalized linear differential equation and limits of solutions of
approximating sequences of linear ordinary differential equations generated
by piecewise linear approximations of the coefficients A, f.

Let us introduce the following notation.

Notation 4.1. For A € BV ([a,b], L(X)), f € G([a,b], X) and

D = {ao,a]_, .. .,Oém} S D[mb],
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we define
A(t) if te D,
Ap(t) =4 A(ay_y) + A = Al (o (4.1)
Q — Q-1
if t € (aj—1,0;) for some i €{1,2,...,m},
and
f@) if teD,
o) =9 flai1) + flaw) = flaiy) (t — ;1) (4.2)
Qj — Q1
if t e (aj—1,q;) for some i€ {1,2,... m}.

The following lemma presents some direct properties for the functions
defined in (4.1) and (4.2).

Lemma 4.2. Assume that A € BV ([a,b], L(X)), f € G([a,b], X). Fur-
thermore, let D € Dla,b], D = {ap,a1,...,am}, and let Ap and fp be
defined by (4.1) and (4.2), respectively. Then Ap and fp are strongly ab-
solutely continuous on [a,b] and

V&IZ Ap < VarZA and || fplleo < 11f oo

Proof. Tt is clear that Ap and fp are strongly absolutely continuous on
(aj—1,0y), for each ¢ = 1,...,m. Since both functions are continuous on
[a,b], the absolute continuity holds on the closed intervals [a;_1,;],i =
1,...,m (cf. [30, Theorem 7.1.10]).

Let € > 0 be given. For each ¢ = 1,...,m, there exists 1; > 0 such that

P p
€
Z I14p(b;) — Ap(aj)llcx) < . whenever Z;(bj —aj) <,
- =
where [a;,b;], j =1,...,p, are non-overlapping subintervals of [a;_1, cy].

Let n < min{n;; ¢ =1,...,m}. Consider F = {[¢;,d;]; j=1,...,p}, a
collection of non-overlapping subintervals of [a, b], such that

p
Z d; —¢j)
j=1

Without loss of generality, we may assume that for each j = 1,...,p,
[cj,dj] C [o,—1,ag,], for some k; € {1,...,m}. Thus

F = th with F; = {[C,d} e F; [C,d] N [ai—l,ai] + @}’
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and > (d—c¢)<mn,i=1,...,m. In view of this, we get
[e,d]eF;

P

Z |Ap(d;) — Ap(cy)

lL(x) <

<> Y Apla ~Ap@lle) <Y — =
i=1

i=1 [¢,d]€F;

which shows that Ap is strongly absolutely continuous on [a,b]. Similarly
we prove for fp.
Furthermore, for each ¢ =1,2,...,m and each t € [ay_1, ay| we have

varaé 1 AD - ||A(O[€) - A(aé—l)”L( < V&I‘ae A

1

and
Io(lx = | flae) + LOO=LO= g, )
= [ flae) =2+ ) 2| < e
Qp — Q1 Qg X
Therefore,

var Ap = E varg! Ap <
(=1

Z o A=varb A and | fpleo < [|fllec. O

Remark 4.3. Notice that the functions Ap, fp, defined in (4.1) and (4.2),
respectively, are differentiable on (a;_1,;),7 = 1,...,m, and their deriva-
tives are given by

A(Oél) — A(Oti_l)

AB(t) = if t € (;_1,0;) for some i€ {1,2,...,m},
Q; — Q1

fpt) = flaw) = flaizy) if te (—1,0;) for some i€ {1,2,...,m}.
QO — Q-1

By Lemma 4.2, recalling that Ap and fp are strongly absolutely continuous
on [a,b], the Bochner integral (cf. [30, Definition 7.4.16]) exists and hence
also the strong McShane and the strong Kurzweil-Henstock integrals (cf.
[30, Theorem 5.1.4] and [30, Proposition 3.6.3]). Moreover,

t t

AD(t):/A’D(s)ds, fD(t):/f,’:,(s)ds for ¢ € [a,b],

a a
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(cf. [30, Theorem 7.3.10]). Consequently,
¢ ¢

[ dlan)ats) = [ Ap(s)as)as

holds for each x € G([a,b], X) and t € [a,b]. Hence, the generalized differ-
ential equation
t
o) =5+ [ dldp(s)e(s) + folt) - fo(a)
is equivalent to the initial value problem for the ordinary differential equa-
tion (in the Banach space X)
o'(t) = Ap(t)z + fp(t), x(a) =17.

Theorem 4.4. Let A€ BV ([a,b], L(X))NC([a,b], L(X)), f€C([a,b], X)
and T € X. Furthermore, let {Dy} be a sequence of divisions of the interval
[a,b] such that

Dyy1 D Dy, for ke N and klim |Dg| = 0. (4.3)

Finally, let the sequences {Ar} and {fr} be given by
A = Ap, and fr = fp, for k€N, (4.4)

where Ap, and fp, are defined as in (4.1) and (4.2).
Then equation (1.2) has a unique solution x on [a,b]. Furthermore, for
each k € N, equation (1.1) has a solution xj on [a,b] and (2.9) holds.

Proof. Step 1. Since A is uniformly continuous on [a, b], we have

for each € >0 there is a § >0 such that [|A(t)—A(s)| (x) <% (4.5)
holds for all t,s € [a,b] such that |t —s| <. '

By (4.3), we can choose kg € N such that |Dy| < 4, for every k > ko.
Given t € [a,b] and k > ko, let ay—1, ¢ € Dy, be such that ¢ € [ay—1, ay).
Notice that |y — ap—1] < 8. So, according to (4.1), (4.4) and (4.5), we get
14k(5) — Ay < 1 A(ar) — Aor—)lzo [t ]+
k L(x) = ¢ AL ZC O] P
e €
FA(ae) ~ Al < S+ S ==
As ko was chosen independently of ¢, we can conclude that (2.6) is true.
Step 2. Analogously we can show that (2.7) is true, as well.

Step 3. By Lemma 4.2, (2.5) holds. Moreover, as A and Ay, k € N, are con-
tinuous, the equations (1.2) and (1.1) have unique solutions by Theorem 2.1
and we can complete the proof by using Theorem 2.2. O
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Notation 4.5. For the given f € G([a,b], X) and k € N, we denote
1
U () ={telatl: [A*F0)x = 1},

U ()= {telotl: 1A FOlx = 3}

Up(f) = U (VU (f) and U(f) = [ Un(f)-
k=1

(Thus U(f) is a set of points of discontinuity of the function f in [a,b].)
Analogous symbols are used also for the operator valued function.

Definition 4.6. Let A € BV ([a,b], L(X)), f € G([a,b], X) and let {Py}
be a sequence of divisions of [a, b] such that

|Py| = (1/2)F for k€ N. (4.6)

We say that the sequence {Ayg, fr} is a piecewise linear approximation (PL-
approximation) of (A, f) if there exists a sequence {D} C Dla,b] of divi-
sions of the interval [a, b] such that

Dy D PkUUk(A)UUk(f) for ke N (4.7)
and Ay, fi are for k € N defined by (4.1), (4.2) and (4.4).

Remark 4.7. Consider the case where dim X < oo and let {Ay, fi} be

a PL-approximation of (A4, f). Then by Lemma 4.2,
varg Ay <varg A and | filloo < [[floc-

Furthermore, as Ay are continuous, due to (2.2), we have c4, = 1 for all
k € N. Hence, (2.4) yields

var® (g — fir) < var® A (||Z||x + 2|/ f]loo) exp(var’ A) < 0o for all k € N

and, by Helly’s theorem, there is a subsequence {k¢} of N and w € G([a, b], X)
such that

Jim (2, (8) = o (1)) = w(t) = f() Tor 1 € [a,b].

In particular, elirn x, (t) = w(t) for all ¢t € [a, b] such that élim fie, () = f(2).

In this context, it is worth mentioning that if the set U(f) has at most
a finite number of elements, then

klim fe@®) = f(t) forall ¢ € [a,b].
Definition 4.8. Let A € BV ([a,b], L(X)), f € G([a,b],X) and T € X.

We say that z* : [a,b] — X is a sequential solution to equation (1.2) on the
interval [a, b] if there is a PL-approximation {Ag, fx} of (A, f) such that

len;O xp(t) =2 (t) for t € [a,b] (4.8)
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holds for solutions xx,k € N, of the corresponding approximating initial
value problems
= ALz + f1.(t), xr(a) =2, keN. (4.9)

Remark 4.9. Notice that using the language of Definitions 4.6 and 4.8,
we can translate Theorem 4.4 into the following form:

Let A € BV([a,b],L(X)) N C([a,b], L(X)), f € C([a,b],X) and T € X.
Then equation (1.2) has a unique sequential solution z* on [a,b] and x*
coincides on [a,b] with the solution of (1.2).

In the rest of this paper we consider the case where the set U(A) UU(f)
of discontinuities of A, f is non-empty. We will start with the simplest case
UA) UU(f) = {b}.

The following natural assertion will be useful for our purposes and, in
our opinion, it is not available in literature.

Lemma 4.10. Let A € BV ([a,b], L(X)). Then

Jim = ( / exp (A1) - AE) ) dr) -
’ (4.10)

exp (ATA(t)(1—0))do if t € (a,b]

Slirgr s i t (/Sexp <[A(5) - A(ﬂ]z_:) dr) =
T (4.11)
= /eXp (ATAM) (1 ~0)) do if t € [a,b).

0
where the integrals are the Bochner ones.

Proof. (i) Let t € (a,b] and € € (0,1) be given. Then there is a § > 0 such
that

Il
o—__

and

|[A(t=) = A(s)ll,(x) <€ whenever t —0 <s <t.

Taking now into account that
| exp(CT) = exp(D7)|[ ) < IC = Dllrcxy exp ((IC|Lcx) + 1D oex))7)
holds for all C,D € L(X), 7 € R, (cf. [22, Corollary 3.1.3]), we get

t—r

/t[exp ([A(t)—A(s)] 7) —exp (A*A(t) i_:ﬂd’"

<

X

1
t—s

t—s

S

t
1 -
< 146) = A6 [ exp (e+ 2187 AW nco) dr =
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= [JA(t—) — A(s)||L(x) exp (e + 2| ATA®) || Lx)) <

<eexp (14 2(|A7A®)|lL(x)) for t—0<s<t.

Therefore,

Jm tis</texp (14() - AGs)] i_;)dr> _

= Jim % (/texp (A‘A(t)t_r)dr) for t € (a,b].

s—t— 1 — t—s
S
It is now easy to see that the substitution o0 = 1 — % into the second
integral yields (4.10).
(ii) The relation (4.11) can be justified similarly. O

Lemma 4.11. Let A € BV ([a,b], L(X)) and f € G([a,b], X) be contin-
uous on [a,b). Let T € X and let x be a solution of (1.2) on [a,b).
Then equation (1.2) has a unique sequential solution x* on [a,b].
Moreover, x* is continuous on [a,b), z* = x on [a,b) and z*(b) = v(1),
where v is a solution on [0,1] of the initial value problem
vV =[ATA®D) v+ [ATf(B)], v(0) =z(b—). (4.12)

Proof. Let {Ag, fr} be an arbitrary PL-approximation of (A, f) and let
{Dy.} be the corresponding sequence of divisions of [a, b] fulfilling (4.6) and
(4.7). Notice that under our assumptions, Dy = Py for k € N. For k € N,
we put

T, = max{t € Py; t < b}.
By (4.3), we have b — %3¢ < 75, < b for k € N, and hence

2k:
lim 7 = b. (4.13)
Now, for k € N and t € [a, b], let us define
N Ak(t) if te [a, Tk],
Ag(t) = y_
A(’W)""W(t_ﬂc) if te (Tk,b],
_ fk(t) if te [a, ’/"k-],
fe(t) = N\
f(Tk)‘FW(t—Tk) if t e (13,0
Furthermore, let
- Aty if t €a,b), f@) if tela,d),
A = Fit) = (4.14)

A(b—) if t=b, Fo—) if t=b.
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It is easy to see that for k£ € N, gk ﬁ are strongly absolutely continuous
and differentiable a.e. on [a,b], A € BV([a,b], L(X))NC([a,b], L(X)) and
f € C([a,b], X).

Step 1. Consider the problems

y;c = Av;c(t)yk + .]?Ilc(t)7 yk(a’) = ‘%7 ke N7 (415)
and
mw=%+/dmy+ﬂw—ﬂw. (4.16)

Taking into account Theorem 4.4 and Remark 4.9, we find that the equation
(4.16) possesses a unique solution y on [a, b] and

im |y — ylleo = 0. (4.17)
k—o0
where for each k € N, yy, is the solution on [a, b] of (4.15).
Note that y is continuous on [a,b] and y = x on [a,b). Let {z} be a

sequence of solutions of the problems (4.9) on [a, b]. We can see that z = yi
on [a, 7] for each k € N, and, due to (4.13), we have

kli_)n;@ zE(t) = kli_)ngo yp(t) = y(t) = x(t) for t € [a,b). (4.18)

Step 2. Next, we prove that
Jim 2 (i) = y(b). (4.19)
Indeed, let € > 0 be given and let § > 0 be such that
ly(®) = y®)lx < 5 for telb— 3,0
Further, by (4.17), there is a ko € N such that
T €[0—06,0) and |y — ylleo < % whenever k > k.
Consequently,

on(mh) —y(O)llx < llzn(tr) — y(7e)llx + ly(m) — y(d)lx =

:wmvw—mmmx+mmo—mwu<g+g:a

holds for k£ > kq. This completes the proof of (4.19).

Step 3. On the intervals [ry,b], the equations from (4.9) reduce to the
equations with constant coefficients

.%';C = Brxy + e, (4.20)

where
AB - Am) =)

B =
k b—Tk b—Tk
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Their solutions x, are on [7}, b] given by
t
x(t) = exp (Br(t — 7)) zr(T) (/exp Bi(t—r )dr)ek,

(cf. [5, Chapter II]). In particular,

z(b) = exp (A(b) — A(7x)) xp (1) +

b
+ bj(/exp ([A(b) — A(7y)] %) dr) [fr(b) — frx(7%)]-

Tk
By Lemma 4.10, we have

b

( / exp (140) = A()] =2 ) ar ) 70— £ ()] =

Tk

1m
k—o0 b_Tk

To summarize,

1
kli_)n;(} zy,(b) = exp (ATA(b)) y(b) + (/exp (AA(b)(1 - s)) ds)A_f(b),
0

ie.,
lim zx(b) = v(1), (4.21)

k—oo

where v is a solution of (4.12) on [0, 1].
Step 4. Define

y(t) if t€la,b),

a*(t) =

v(l) if t=hb.

Then z*(t) = klim x(t) for t € [a,b] due to (4.19) and (4.21). Therefore,
—00

x* is a sequential solution of (1.2). Since it does not depend on the choice of
the approximating sequence { Ay, fx}, we can see that z* is also the unique
sequential solution of (1.2). This completes the proof. O

The following assertion concerns a situation, symmetric to that treated
by Lemma 4.11. Similarly to the proof of Lemma 4.11, we will deal with
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the modified equation

vty =7+ [ dldly+ 7o) - fia), (422)
where y € X and '
_ Ala+) if t=a, _ fla+) if t=a,
At) = and f(t) = (4.23)
A(t) if t € (a,b) f(@) if t € (a,b)].

Lemma 4.12. Let A € BV ([a,b], L(X)) and f € G([a,b], X) be contin-
uous on (a,b]. Then for each T € X, equation (1.2) has a unique sequential
solution x* on [a,b] which is continuous on (a,b].

Furthermore, let w be a solution of the initial value problem

W = (MA@ + [A*f(a)], w(0) =7 (124)
and let y be a solution on [a,b] of equation (4.22), where § = w(1l). Then
x* coincides with y on (a,b].

Proof. Let {Ag, fr} be an arbitrary PL-approximation of (A, f) and let
{Dy.} be the corresponding sequence of divisions of [a, b] fulfilling (4.1) and
(4.2). Just as in the previous proof, Dy = Py for k € N.

For k € N, we put

T, = min{t € Py : t > a}.
By (4.3), we have a + %% > 7, > a for k € N, and hence

lim 7, = a.
k—oo

Let {x} be a sequence of solutions of the approximating initial value prob-
lems (4.9) on [a, b].

Step 1. On the intervals [a,7x], the equations from (4.9) reduce to the
equations (4.20) with the coefficients

Their solutions zj are on [a, %] given by

zy(t) = exp(Bi(t — )7 + </teXP (Bi(t —1)) dT) €k

a

(cf. [5, Chapter II]). In particular,
k(1) = exp (A(7g) — Ala)) 7+

Tk

(feww (140 - a0 222 )ar) ) - )

T —Q

T — Q
a
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By Lemma 4.10, we have

Tk

([ e (1400 = A@) =0 )ar ) i£(m) - )] =

T —a

lim
k—oo T, — Q

- ( / (AT A(0)(1 - ))ds ) 87 a).

Thus, klim xk () = w(l), where w is the solution of (4.24) on [0, 1].
—00

Step 2. Consider equation (4.22) with § = w(1). By Theorem 2.1, it has
a unique solution y on [a,b], y is continuous on [a,b] and, by an argument
analogous to that used in Step 1 of the proof of Lemma 4.11, we can show
that the relation

klim xg(t) = y(t) for t € (a,b]

is true.

Step 3. Analogously to Step 4 of the proof of Lemma 4.11, we can complete
the proof by showing that the function

x if t=a,
z*(t) =
y(t) if ¢ € (a,b],
is the unique sequential solution of (1.2). |

Remark 4.13. Notice that if @ < ¢ < b and the functions z] and 23 are,
respectively, the sequential solutions to

z(t) =2 —|—/d[A}J:+f(t) — f(a), t€la,d,

and
t

ot) =52+ [ dldla+ 1)~ fl0), t€ e
where Zo = 25 (c), then the function
zi(t) if t € la,d],
PN COR
x5(t) if t € (e, ]
is a sequential solution to (1.2).
Theorem 4.14. Assume that A € BV ([a,b], L(X)), f € G([a,b], X) and
UA)JU(f) = {s1,52,---,5m} C [a,D].

Then for each x € X, there is exactly one sequential solution x* of equation
(1.2) on [a,b].
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Moreover,

t

T (t) = ’LUg(l)‘f'/d[;{g]I*‘Fﬁ(t)*‘]?g(Sg) for t€([se, s041), £€NN[0,m],

se
2 (t) = ve(1) for t =54, £€NN[1,m+1],
where g = a, Symy1 = b,wo(1) =T and, for £ € NN[0, m],

Avg(t) _ A(set) of t = sy, ﬁ(t) _ f(se+) if t = sy,

A(t) if t € (s¢,8041), f(t) if t € (se,5041)

and vy and wy denote, respectively, the solutions on [0,1] of the initial value
problems

vy = [AT A(se)]ve + [A7 f(se)],  ve(0) = 2™ (s¢—)
and

wy = [AT A(se)we + [AT f(s0)],  we(0) = 2*(s¢).

Proof. Having in mind Remark 4.13, we deduce the assertion of Theo-
rem 4.14 by a successive use of Lemmas 4.11 and 4.12. Towards this end, it
suffices to choose a division D = {ag, a1, ..., a.} of [a,b] such that for each
subinterval [ag—1, o], k = 1,2,...,r, either the assumptions of Lemma 4.11
or those of Lemma 4.12 are satisfied with aj_1 in place of a and ay, in place
of b. O
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