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1. STATEMENT OF THE PROBLEM AND AUXILIARY DESIGNATIONS
We consider the system of differential equations
yi = aipi(pit1(yit1) (i =1n)," (1.1)
where «; € {—1,1} (i = 1,n), pi : [a,w[—]0,+oc[ (i = 1,n) are continuous

functions, —oo < a < w < +00,m ¢; + A(YL) —]0;+00[ (i = I,n) are
continuously differentiable functions satisfying the conditions

Yip; (i) A .

e o o; (i=1,n), il;[lal #1, (1.2)
Y €AYY)

where Y (i € {1,...,n}) is equal either to 0, or to o0, A(Y?) (i €

{1,...,n}) is a one-sided neighborhood of Y,°.

It follows from the conditions (1.2) that ¢; (i = 1,n) are regularly varying
functions of orders ; as y; — Y, hence (see [1]) these functions admit the
representation

ei(yi) = lyil 7 0i(yi) (i =1,n), (1.3)
where 0; (i = 1,n) are slowly varying functions as y; — Y?. According to
the definition and properties of slowly varying functions and also in view of
(1.2),

0; (Ayi i0; (i L

lim () =1 forany A >0, lim i6i(y:) =0 (t=1,n), (14)
vi—Y? 0i(yi) vi—Y? 0i(ys)

and the first limits are uniform with respect to A on any segment [c,d] €

10, +o0].

If 6;(y;) =1 (: = 1,n), then the system (1.1) is called an Emden—Fowler
system. In case n = 2, the asymptotic behavior of its nonoscillating solu-
tions is thoroughly investigated in [2-6].

In the present paper (as distinct from [2-6]), the system (1.1) is con-
sidered in the case where the functions ¢;(y;) (i = 1,n) are close to the
power functions in the neighborhoods of Y in the sense of the definition of
regularly varying functions.

In T. A. Chanturia’s paper [7], for systems of differential equations that
are close to (1.1) in a certain sense the criteria for the existence of A and
B-properties are established.

A solution (y;)!_; of the system (1.1) is called P, (A, ..., Ap_1)-solution,
if it is defined on the interval [to,w[C [a,w[ and satisfies the following con-

ditions:
yi(t) € A(Y?) while t € [to,w], ngmyl(t) =Y?,
limw = A (i=Tn—1).
t1w y; (O)yit1(t)

* Here and in the sequel, all functions and parameters with the index n + 1 will be
equivalent to the corresponding values with index 1.
T While w = 400 we consider a > 0.
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The aim of this work is to establish sufficient and necessary conditions for
the existence of P, (Aq,...,A,_1)-solutions for the system (1.1), and also
to provide the asymptotic representation (when ¢ 1 w) for these solutions,
when A; (i = 1,n — 1) are real numbers, including those equal to zero, and
Ap_10p =1

Remark 1.1. The definition of P, (A1,...,A,—_1)-solution does not give
the direct connection between the first and the n-th components of the
solution, which appear in the n-th equation of the system. To establish this
connection, we define the following functions:

= 0@
MO = e (=0 (19)
We have
A(t) = P00 Ynyp1 () yn1(Dyno(t)  y2(t)yi(t) _

yh Oy )y (Oyn—1(t) Yo 1 (Oyn—2(t)  yh()yi(t)
1
NGO ) .7

It follows from (1.5) that ltle Ai(t) = A; (i = 1,n —1). Therefore, if there
are zeroes among A; (i = 1,n — 1), taking into account (1.7), we obtain

A, = ltle A (t) = £o0.

In particular, it is evident that the case in which among all A; (i =1,...,n—
1) there is a single 00, while all others are real different from zero numbers,
can be transformed into the case described in this work. This transformation
is carried out by cyclic redesignation of variables, functions and constants.
For instance, if A} = £o0 (I € {1,...,n — 1}), the indices are redesignated
as follows:

l—-n, I+1—->1,....n—>n—-1l, 1l->n—-I01+1,....0—1—>n—1.
It is obvious that A, =0, if i =n —[.
Further, we introduce some auxiliary notation.
First, if
1, as Y) = +oo0,
or Y?=0 and A(Y,?) is right neighborhood of 0,

0_
-1, as Y’ = —o0,

or Y2 =0 and A(Y,?) is left neighboorhood of 0,

it is obvious that p; (i = 1,n) determine the signs of the components of
Puw(A1, ..., Ap_1)-solution in some left neighborhood of w.
Further, we denote the sets

J={ie{l,....n—1}: 1 —=ANjoyy1 #1}, T={1,....n—1}\J
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and suppose that
r=maxJ<n-—1.

Taking into account the fact that » < n—1, we denote auxiliary functions

I;, Q; (i =1,...,n) and none-zero constants 3; (¢ = 1,...,n), supposing
that
t
/pz'(T) dr for i€ 7,
Ai 1—A;0441, for i €73,
t = Bi+14\i, for i €73,
L(t) = /pi(T)Ii+1(T) dr for i€3, B = )
. 1—H0k for i =n,
k=1
/pn(T)q’l‘-‘rl(T) dr for i =n,
An

azﬁz-[z(t) for i€ JU {n},
Qi(t) =4 B L,(t)
i1 ()
where limits of integration A; € {w,a} (i € {1,...,n —1}), A, € {w,b}
(b € [a,w]) are chosen in such a way that the corresponding integral I;
tends either to zero, or to oo as t T w,

for i €73,

T

B IT ok
ara1(t) = 01 (s LD ) [Qu(0)= " x
r—1 ﬁ
EEERND N2
< 11 ‘Qk(t)ekJrl (Mk+1\fk+1(f)|5’““> -
k=1
In addition, we introduce the numbers
1 if Aj=a, .
A =37 1 “ (i=1,...,n—1),
-1, if A, =w
(1.8)

1 it a=y,
" -1, if 4, =w.

These numbers enable us to define the signs of the functions I; (i =
1,...,n — 1) on the interval |a,w| and the sign of the function I,, on the
interval b, w] .

We will define that the function ¢y (k € {1,...,n}) satisfies the condition
S, if for any continuously differentiable function I : A(Y,?) — ]0, +-o0[ with
the property

lim =0,
=y U(2)
2EA(YY)
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the function 6 admits the asymptotic representation
0p(21(2)) = 0(2)[L +0(1)] as z — Y (2 € A(YY)). (1.9)
For instance, the S-condition is, obviously, satisfied by the functions oy
of the type
ee(yr) = ye|™ Inye ™, or(yr) = [yl Iy [In | Inyg |7,

where v1,72 # 0. The S-condition is also satisfied by the functions gy
which include the functions 6, that have the eventual limit as yx — Y.
The S-condition is also satisfied by many other functions.

Remark 1.2. If @5, (k € {1,...,n}) satisfies the S-condition and y; :
[to,w[— A(Y) is a continuously differentiable function with the property

: ye(t) _ €'(1)

lim yy (t) = Y, =2"[r4+0(1)] as tTw,

where r is a non-zero real constant, £ is a continuously differentiable in some
left neighborhood of w real function with &’(¢) # 0, then

Ok (yk () = Ok (€))L +o(1)] as T w,

since in this case

yr(t) = 2(D)I(2(t)), where 2(t) = pu|E(t)]",

and
L) D)
zze—AX;OO Z(Z) tTw l(Z(t))

0 (%2) 1o
s%BWZ?&I[M”]ZO'

2. MAIN RESULTS

Theorem 2.1. Let A; € R (i = 1,n — 1) include those equal to zero, m =
max{i € J: A; =0} andr = maxT < n—1. Let also the functions @i (k =
1,7) satisfy the S-condition. Then for the existence of Py(A1,...,Ap_1)-
solutions of (1.1) it is necessary and, if the algebraic equation

(ﬁ”j*lfx\) nl:[l (Mj +)\) =
Jj=1 j=m+1
= (ﬁ%‘) ( Z f[ (M; +X) ﬁ MS)A,* (2.1)
j=1 k=m j=m+1 s=k+2

l l
* Here and in what follows, we assume that [[ =1, Y =0ifl <s.
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where

n—1

= ([IA) G=mFTaD).
i=j

have no roots with a zero real part, it is also sufficient that

CHOTA0) | P
tTw Il((t)_[i+1(t) ‘ B;

and for each i € {1,...,n} the following conditions be satisfied:

AfBi >0 if V) =400, AIB; <0 if Y =0, (2.3)

(i=Tn—T) (2.2)

Moreover, the components of each solution of that type admit asymptotic
representation when t T w,

L R —
Pit1(Yi+1(t)) = Qi +o()] (i =1, 1), (2.5)
yn(t) — = Qn(t)[1+o(1)], (2.6)

[P (Yrgr (0)]=r

and there exists the whole k-parametric family of these solutions if there are
k positive roots among the solutions of the following algebraic equation:

B A ified\{m+1,... .n—1}
BiAr AE,, ified\{m+1,... . n—1},
Vi = (2.7)

n—1
A;;(Haj - 1)ReA?_m ifie{m+1,... n}
j=1

where X (j = 1,n —m) are the roots of the algebraic equation (2.1) (along
with multiple).

Remark 2.1. The algebraic equation (2.1) has, obviously, no roots with
zero real part, if

r+1 n-—1 n n
(> TIm) I oxl < 1=
k=m+1 j=k k=1 j=1

Proof of Theorem 2.1. Necessity. Let y; : [to,w[— A(Y?) (i = 1,n) be an
arbitrary P, (A1,...,A,_1)-solution of (1.1). Then by virtue of (1.1), we
obtain

yi(t)
ir1(Yit1(t))

=a;pi(t) (i=1,n) as t € [ty,w]. (2.8)
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When i € 7, integrating (2.8) over the interval from B; to ¢, where
B, =w,if A, =w, or B; =tgy, if A; = a, we get

GO N T ) .
/‘Pi+1(yi+1(7'))d B ZIz(t)[1+ (1)] as ¢t w. (2~9)

i

In virtue of de L’Hospital’s rule in the form of Stoltz, we get

vi () yi(t) v Wit ()i (1)
lim Cit1(yir1(t) — lim it1(yit1(t)) / 71 (Wit1(1) _
tlw 1 vl () tTw i)
f m dT Sa'iJrl(yH»l(t))
i1 (B) ! i1 (T (Y (t
e O G 0) )

to i1 () e yi(t)yira (t)
Therefore, in view of (2.9), we have

vi(t)
Pit1(yi+1(t))
Consequently, when ¢ € 7, the asymptotic representation (2.5) is valid and,
in virtue of (2.8) and (2.10),

yi) _ L)

vi(t)  Bili(t)
Further, taking into account that r = maxJ < n — 1, we consider the
relations (2.8) consistently starting with the maximum i € J, that is lower
than r, since i € 3\ {r +1,...,n — 1}. We consider these relations taking
into account that the relations (2.11) are valid for bigger values of i < r.
Multiplying (2.8) by I;+1(t) and integrating over the interval from B; to ¢,
where B; are chosen in the above way, we get

=o; 5 L)1+ 0(1)] as t ] w. (2.10)

[1+0(1)] as t 1 w. (2.11)

t
yi (1) Liga (1)
T Cdr = o L;(H)[1 +0o(1)] as t ] w. 2.12)
/ R ()1 +o(1) (
In virtue of de L’Hospital’s rule in the form of Stoltz, using (2.11) and the
definition of P,(Aq,...,A,_1)- solution, we obtain
yi (t) Lt (t)
lim pit1(yi+1(t)) _
thw jt‘ yi (M) Lig1(7)
i1 (yir1 (7))
yi () Lit1(t) yi i1 (1) v Lt ()i Wi (4)yiy (8)
— m Cit1(yi+1(t) " pit1(yit1(t)) 071 (Wit1 (1) .
- tTw yi(t) Lig1(t) B
Pit1(yit+1(t))
14 lim yi(t) i () lim Yir1 (@i Wisa (1)) lim Yi(0)yia (8)

ttw yi(O)lipa(t) o @ip1(yir1(t)) o yi(t)yiva(t)
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.Y t)yz{—i-l(t)

=1-Ayo; i1l =

T e Y D )
- [yi@yia @)
- ﬁz lim l: = ﬁi Az - ﬁz
e |yl (t) i
Hence, with regard for (2.12), we get
it Bili(t
vil)  _ eiBili®) g s 11 ) (2.13)

@i(yir1 (1) Lipa(t)

Therefore, with regard for (2.8), the asymptotic formula (2.11) is valid.
Consequently, the asymptotic representations (2.5) and (2.11) are admitted
foralli e I\ {r+1,...,n—1}

Taking into account that ¢; satisfy the S-condition for all ¢ € {1,...,r}
and asymptotic representations (2.11) are valid, in virtue of Remark 1.2, we
get

eilwi(t)) = lya )17 0: (sl (1)

According to these representations and the asymptotic representations (2.5)
for i = 1,7, we have

) 4o)] ((=T,7) as t1w.

P11 (8) = 0101 (il L (017 ) [+ 0(1)] =
=61 (il L 1) [l (017 Qu (182 (el B2(1) )
= 0 (a1 17 ) [ @1 (0082 (1ol a(8) )

< [l ()17 Q)65 (sl a(8))7 )| [1 4+ 0(1)] = -+ =

o1

[1+0(1)] =

o1
X

-
IT o:

= @r1(t) [pra(yraa (@)= [L+o0(1)] as £ T w.

From this and the last formula in (2.8), we conclude that

Yn (1)

—— = ()41 (8)[1 +0(1)] as t T w. (2.14)
I ox

[ors1(yraa (t))] 5=
Integrating (2.14) over the interval from B,, to t, where B,, = w, if A,, = w,
and B,, = tg, if A, = b, we obtain
p /
Yn(7)

——dr = a, I, (t)[1 +0o(1)] as ¢t T w.
IT ok
B g1 (yrga (7))]5=1
Using de L’Hospital’s rule, with regard for (1.2), (1.5) and the conditions
1-Ajojp1=0asj=r+1,n—1, weget
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Yn (1)

11 ok
hm [(pT+1(yT+1(t))]k:1
o 1 vl (r)
i n - dr
Br (i (yria ())E=1

y%(t) _ u yr+1(t)4p;+1(yr+1(t)) y;+1(t)yn(t)
1 o |:1 (kl;llak) Prt1(Yr+1(t)) Yr+1(0)y;, (t)

1 o
e lerr (e (0))R=1
R ltlTIB o u®

n—1

I o
[en (yn(t))]+=1

(T o) g B 2] g (O ()
== (o) b i vt

k

Jj=1

The previous asymptotic representation yields

Yn(t)

— AL O o) a1
[0r41(Yra1(t))]F=1 k

Hence, the representation (2.6) is valid and, in virtue of (2.14), (2.11), it
takes place when i = n.

Taking into account that the asymptotic representation (2.11) is valid
for i = n, by the same reasoning (multiplying (2.8) by I;4+1(t) and further
integrating over the interval from B; to t), we conclude that the asymptotic
representations (2.5) and (2.11) are valid for all i = r + 1,n — 1 starting with
i =71+ 1,n— 1. The relations (2.11) are valid for i = 1,n and the solution
under consideration satisfies the last limiting condition from the definition
of Py(Aq,...,A,_1)-solution. Consequently, for all ¢ € {1,...,n — 1}, the
conditions (2.2) are valid. Moreover, from (2.11) it follows that

@) = |LOFTD ((=Tn) as t T w.

On the basis of the above fact, from the condition ltle yi(t) = Y in the def-

inition of the P, (Aq,. .., A,—1)-solution and from the definition of numbers
A, there follow the sign conditions (2.3).

The validity of the sign conditions (2.4) follows immediately from (2.5),
(2.6), if we consider the signs of the functions y; and I; (i = 1,n) over the
interval [t, w].

Sufficiency. Assume that the conditions (2.2)—(2.4) are satisfied and the
algebraic equation (2.1) has no roots with zero real part. We will prove that
the system (1.1) has at least one P,(Aq,...,A,_1)- solution that admits
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the asymptotic representation (2.5), (2.6) as ¢t T w. We will also study the
question about the quantity of such solutions.
First, consider the system of the following relations:

Yi _

Pit+1 (yi+1)
Yn

Qi(1)(1 +v;) (i=T,n—1),
(2.15)

— = Qn()(1+ o).

ok
[@r+1(Yrr1)]=1
We will establish that this system on the sets D = [to, w[xR", where tg €
[a,w[ and R} = {T = (x4,...,2,) € R" : |zg| < 1/2 (k = 1,n)}, defines
2
uniquely continuously differential functions y; = Y;(¢,7) (i = 1,n) of the
type

Yi(t,7) = il L) F O = T, (2.16)

where z; (i = 1,n) are the following functions

|z:(t,7)| < = as (t,v) € D

N =

and

ltiTm zi(t,7) = 0 uniformly over v € R".
w 2

Setting in (2.15)

yi = sl L(6)| 7 ) (i = Ton), (2.17)

and taking into account (1.3), we obtain the following system of relations:

1) %=
Tit1

i (B)) 7o 5
_1 (1 2 [ —
= 1iQi(H0:41 (i1 i 7T ) (L) (=T D),

| L, (1) 7 O+

r4+1
Il ok

k=1
[Lrga (B)] Pri

(1+2r41)

r

5‘#(1""27‘) kl:ll Tk
= 1 @u(®) |41 (sr i1 Loia ()77 ) 5T (1),

With regard to sign conditions (2.3), (2.4), the system is defined for all
lvil <%, ]2l < 3 (i =1,n) and t from some left neighborhood of w.
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Hence, taking the logarithm, we get

0441

/61'+1

i (142ziq1)
= Q)]+ 0spr (il Fia ()] ) L1 4o
(i=1,n-1),

Ltz min) -

ﬁ, (1 +Zi+1)lﬂ|[i+1(t)| =

r+1
I ok

o (1 2) W0 = S (4 ) L ()] =

=In[Qn(t) + ( f[ Uk) 6,11 (/1'7“+1|I7”+1(t)

k=1

ﬁ““ﬁ“) I

+1n |1 + vy
Therefore

 Bioiyr In|Liga (1))
" B In|L(t)]

Biln|Q;(t)] Bilnb;q (Hi+1|ji+1(t)
T mn W]
Bilnl+v] o
L (o bnol
r+1

On [l o

L7 )
Brr W [L,(2)
Bl |Qn(t)]

T L@ T
Bu( TLox) 01 (sl Lo (1) i 1 F50)

k=1
In |1, (2)]

1+ (1+zi41) =

ﬁ(1+2i+1))

+

1+Zn_ (1+ZT+1):

+

B 1n |1 + vy
In |1, (1))

Solving partly this system (as a system of nonhomogeneous linear equa-
tions with variables 1+ z; (1 = 1,n)), we obtain

%= ai(t) + bi(t,7) + Zi(t,Z) (i =T,n), (2.18)

where the functions a;, b;, Z; (i = 1,n) are defined by the following recurrent
relations:

r+1 n—1

BnIn | Lo (t Oh1 B In [Ty q (2t
17(1—[%) n| H(;:kli[r k15, In [ T4 (7))

ary1(t) = -1+
+1(t) Brg1In |1, (¢ Bre1 In [ I ()|

k=1
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Z 5k1n|Qk H Bi0j+1 11f1| 1(1)]

2 “wmor AL S5
r4+1 -
_ B | L1 (8)] 7 okt B I |Teg (1)
bry1(t,7) [ (IIIJ )5r+1 In |1, (2 H eI [1:(0)

y Z 5k1n|1+vk| H Biojr1n |l (t)

In [ Ix(t) Bj+1 ln\fg( )l 7

k=r+1 =r+1

r+1

. Baln L1 (8)] T onsaBeln L (O]
Z’“H(t’z)_l1_</€1:[1”)ﬂr+11n|1 H Brs1in [In(1)] ]

ol Bl O (e D (¢ >|ﬁk+1<”“+”) k=1

In |14 (2)]

Biojrin | (t)]

x
Bjv1In|1;(1)]

k=r+1 j=r+1

671( I1 Uk) Inb, 41 (Mr+1|fr+1( )|ﬁr+1 (1+z,+1)>
k=1
" In [, (1)] x

—1
Bjoj+1ln |Ij+1(t)|]

X

A T L)

r+1

ﬂnngk

7 L (0)
Brex In[h(t)]
r4+1

bn(t,0) = > ’“1;[1 " [ Lr41(2)]

Bror In|L(1)]
r+1

T )
Bry1 In |7, (t)]
- (I42zr41)
O T1 o) b (sl ()75 5)
In |1, (t)] ’
Biln |Q:(t)]
In |7;(t)]
if ie{l,...,n—1}\{r+1},
Biln |1 + v;]
In [1;(2)]
ifie{l,...,n—1}\{r+1},

BnIn [Qn (1))
In|L,(8)]

an(t) = -1+ 1+ ar1(8)] +

Brnn|l + vy
In|L,(t)]

br+1 (ta i) +

Zn(t,Z) =

ZT’+1(t7§)+

Bioiz1 In |41 (t)]
Bit1  In|Li(t)]

az(t) = -1+ [1 + ai+1(t)] +

Bioit1 In [T ()]
Biv1  In|L;(t)]

bi(tvﬁ) = bi+l(t7§> +
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o Bioiy1 In|L;
zit) = 2 b7 .+
ﬂz In6; 1 (Mz+1|fz+1
In[F;(t)]
as i€ {l,...,n—1}\{r+1}.

57+1 (1+ZL+1))

Here liTm I;(t) (i = 1,n) is equal either to zero, or to +oco. Moreover, by
tTw
de L’Hospital’s rule, (2.2), (1.4) and by the above-introduced notation 3;
(i=1,n), we get

B[l (8)] o GG (#)
i Bivin|L(8)] i Bt I[() i1 (t)

_ Baln|Ly ()] .. Bullii ()1 »
1 =1 =(Apyq-Apy _ 7
tlTI};} ﬂT‘-‘rl 111 |In(t)‘ tlleJl 6T+1Ir+1(t)l;l (t) ( +1 1) H Ok

ﬁi = 1 — Ai0i+1 lf Z € j,
lim Biln|Qi(t)]

tlw  In|;(t)] ﬁnzl—HJk if i =n,

k=1

Biln|Qi)| .. L))\ _ Bi+1
tlTrLlhlu,l(t”—ﬁzltl{Ij(l— / )_ﬁl(l_ 62A)—01f7/e

T () B () T () B ()
o, (pal L) 50 =) In 6 (juil (1) % )

1
=— (14 z)lim =
tlw In |1;(t)] Bi ) tlw ln|/14i|[i(t)||ﬁ%(l+2i)
1 Iné;
=— (14 2) lim n6iy) =
Bi y—Y? Iny|
1 N TAC) . 1
1+ 2) lim = =0 uniformly over |z;| < =
"B ( y=v? 0i(y) sl=g
From these limiting relations, starting with ¢ = r 4+ 1, and further for
i=r,r—1,...,1and i =7r+2,...,n, we obtain
ltiTmai(t) =0 (:=1,n), (2.19)
liTm bi(t,7) =0 (¢ =1,n) uniformly over v € RY, (2.20)
tTw 2

%iTm Zi(t,Z) =0 (i =1,n) uniformly over dz € R} . (2.21)
w 2
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Moreover, for each i € {1,...,n}

L0 [mei (M|I,»(t)|%“+2i>)}
| Z;(2)] 0z,

. 2 1 2
1 sl 010 (L5 )
& 0 (Miui(t) B%(Hzi))

and, therefore, this relation because of (1.4), tends to zero as ¢ | w uniformly
over |z;| < 4. Taking this fact into account, starting with i =r + 1 (by the
same method), we obtain
0Z;(t,Z ) — )
lim 9Zt,2) =0 (i,k =1,n) uniformly over Z € R . (2.22)
tTw 8Zk 2
By conditions (2.19)—(2.22), there exists a number ¢y € [a,w| such that

the following inequalities are valid:

i) + bi(.9) + Zi(t,2)| < — (i=Tom) (2.23)

— 2n
as (t,7,%) € [to,w[ xRT x R?
2 2

and Lipschitz conditions are valid

n

1 _
|Zi(t,2") - Zi(t,2%)| < 1 Z |zt — 22| (i=T1,n) (2.24)
k=1
as (t,2'), (t,22) € [to, w[ xR%.
Choosing the number tg gy this method, let B denote the Banach space
of vector-functions z = (z;)1_;; each its component, z; (i € {1,...,n}), is
defined, continuous and bounded on the set D = [tg, w| XR%’ with the norm

Izl = sup{Z|zi(t,v)| : (t,v)eD (i = l,n)}.

i=1

Let us select from this space the subspace Bg of the functions from B with
the property 2| < 1, and consider its elements, arbitrarily choosing the
number v € (0, 1) and the operator ® = (®;)_,, defined by the relations

D, (2)(t,0) = 2(t,0)—

—v[2(t,0) — a; () — b;(t,0) — Z;(t, 21 (¢, V), ... 2, (£,0))] (i =1,n), (2.25)
For each z € By, by the conditions (2.23) we get

;(2)(t,7)| < (l—y)|zi(t,@)|+% (i=T,n) as (7)€ D.
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Therefore, if (¢,7) € D,

n n
1
o, t.v)] <(1-— (T, v —v<
;le i(2)t,0)| < (1-v) ;:1 |2i( ,v)\+2'/_
1 1 1 1
<(1-— —v<(l—-v)=4v-==-.
<1 1/)||z||+2uf(1 V)2+V2 5

This yields that ||®(2)|| < %, i.e., ®(Bo) C By.

Suppose z, z € Bg. Then, from (2.24), if (¢,7) € D,
|@(2)(t,0) = 4(2)(t,0)| < (1 = v)|2i(t,0) = Z(t,0)|+
+ V‘Zi(t,zl(t,@), e (B T) — Zi(t B (D), ()| <

n

>zt ) = Z(t,0)| (i =T, n).

n+1k:1

v

< (1 =v)|z(t,05) — Zi(t, 1) | +

Thus, if (¢,7) € D (i = 1,n),

n

Do 12i(2)(80:) — 2i(3)(1)] <

i=1

n
14 ~ _ v ~
< (1) SR -zl (1 ) 13
consequently,

oG- 03] < (1- -2 ) I~ 21

Thus, the operator ® maps the space By into itself and is a contraction op-
erator on this space. Then, according to the contraction mapping principle,
there exists a unique vector-function z € By such that z = ®(z). By (2.25),
this vector-function with continuous components z; : D — R (i = 1,n) is
the only solution of the system (2.18) that satisfies the conditions [|z|| < 3.
From (2.18) together with the above condition, and from (2.19)—(2.21) it
follows that the components z;(¢,7) (i = 1,n) of this solution tend to zero
when ¢ | w uniformly over 7 € R%. Continuous differentiability of these

2
components on some set [t1,w[xRY, where t; € [tg,w|, follows immediately
2
from the well-known local theorem about the existence of implicit functions
defined by the system of relations. According to the transformation (2.17),
the obtained vector-function z = (z;)?_; corresponds to the continuously
differentiable vector-function (Y;)_; : [t1,w[xR7 with components of the
2
type (2.16). This vector-function is a solution of the system (2.15). More-
over, according to (2.16) and the sign conditions (2.3), (2.4),

ltiTin(t,i) =Y uniformly over 7 € R? (i =1,n). (2.26)
w 2
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Moreover, from (2.15) it follows
(Yi(t,0)); _0iM) | Yi(t,9)pi (Vi (8,7)) (Yir1(t,0));

Yi(t,v) Qi(1) Pir1(Yita(t,0)) Yiqa(t,0)

(i=1,n-1),
(Ya(t.9), _ Ou®) (2.27)
Yn(t’@) Qn(t)

" - Yr+1(t,@)@;ﬁ+1(}/}+1(t7ﬁ)) (}/7"+1(t7f)):5
+(kl:[1 k) Orp1(Yrqa(t,0)) Yo (o)

Here by virtue of (2.26) and (1.2),

o Yilt, v (Yi(t,94))
tw w; (Yi(t,7;))

and according to the form of the functions @; (i = 1,n),

=o0; (i=1,n) uniformly over 7 € R?, (2.28)
2

() o
o ) as i € JU{n}, -
QGO Lo ) (2.29)
Li(t)  Iiza(t) e
First, from (2.27) we obtain
Vo) [ (110 17 Yt Do it o]
Yo (t,0) ‘P<l¥khlll or (Yi(t,7)) ] *
Q) T Yin(0)¢) 0 (Vi (D)
XQZ; uglL 25 (Y;(t,7)) )

Hence, according to (2.28), (2.29) and (2.2), we get

L1 (t) (Yeya(t, D), 1
lim tl( ) Vra ( qi))t = _ uniformly over v € R".
tw Ir+1(t)YT+1(t7 ’U) ﬂr-&-l 2

Further, by virtue of this limiting condition, from (2.27), consistently, start-

ing from ¢ = n to ¢ = r 4+ 2, and then, starting from ¢ = r to i = 1, we get,
(using (2.28), (2.29), (2.2))

L), 1 -
1,51’[{? W = Bz unlformly over v € R% (230)

Applying now to the system of differential equations (1.1) the transfor-
mation

yilt) = Yi(t,5(t) (i=Tn) (2.31)
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and taking into consideration that the vector-function (Y;(¢,7(t)))", with
t € [t1,w| and T(¢) € R} is a solution of the system
2

vi(t)

e (@)~ O] (i=Tn),

2.32

nll) ﬁ = Qn(t)[1 + vn(t)], ( )
[<Pr+1(yT+1 (t))]k=1 k

we obtain the system of differential equations of the type
R (Ot
LOBiL() Qalt)
B Il 4 (t) _ 1+
Bivrliv1(t) 1+ v

(1+v;)—

Hi-ﬁ-l(t:f) (Z = 13 n-— 2)a

A O 0 -
Up—1 = Bo1ln_1(t)  Qun_1(t) (o) (2.33)
14+v,1 ) H({:0) |
B RO

v HED @
"T 0 QD)

(1;[ >1+vn H,41(,9) 10

(14 vn)—

1+ Ur41 6r+llr+1(t) ’
where
H(t,i ) _ ApPn (t)<p1 (Yl (ta @T))

IT ok

[LprJrl (}/T+1 (t7 ﬁ))]k=1

Since the conditions (2.28), (2.30) are valid and the functions ¢; (i =
1,...,r) satisfy the S - condition, by virtue of Remark (2.2), we obtain

Hi(tvﬁ) =0+ Ri(tvv) (Z = ﬁ)a
H(t,5) = copn®ars1 () [ 11+ ol 51 + R(t,7)),
k=1

where

liTm R;(t,7) =0 uniformly over v € R’j (1 =1,n),

lim R(¢,7) = 0 uniformly over 7 € Rl.

tTw
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By virtue of these representations and the conditions (2.2), the system
(2.33) can be rewritten in the form

!/

v; = hi(t) [fi(£,9) — vi + Nioip1vipr + Vi(0)] (i=1,n—2),

U;l_lzhn—l(t) [fn—l(tav)_ZGOkvk_vn—l +'Un+Vn—1<'U)‘| ) (234)
k=1

K
U;z = hn(t) [fvl(t>v) + Z aokVk + QonVr41 — Un + Vn@)

)

k=1
where
_ e
hl(t) - lez(t) (7’ - 17”)7
k
aor, = Haj (k=1,n),
j=1

ltiTm fi(t,7) = 0 uniformly over 7 € RT (i =1,n),
w 2

1 i o
‘/;(@) = _Aio'i+1 |:+U —1—v + ’Ui+1:| (Z =1,n— 2),

1+ v
= L+ v - aok -
Vi1 (@) = — | ——— [T 1+ oxl** = 1= aokvr — vn-1 +va |,
1+,
k=1 k=1
.
_ 1+,
V, = 1 G0k — — =1 -
(@) = LI onf™ — o 2 = 1oy
T
- Z A0V — AonUr41 + AonUn.
k=1
Here

lim ovi(m)
[v1]++|vn|—0  Ovg

and, taking into consideration that liTm I;(t) (i = 1,n) is equal either to zero,
tTw

or to oo, the following conditions are satisfied:

/hi(t) dt = +oo (i =Tn).
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Since m = max{i € 3 : A; = 0} < n —1 and the conditions (2.2) are
valid, when ¢ = m + 1,n — 1, we have

hi(t) = hy,(t) hit) _ hn(t) L)L) _

ha(t) (O
—h, (t)ﬁwljl( Miva(t )ﬁH? z+1(t)l (t) B, n— ()1 () _
Bz z( ) 7,+1( ) ﬁz+1lz+1( ) 2( ) ﬁn 1In— 1(t)I7/l<t)
hn()[1 4 o(1)]

" NAipr - Ay

s tTw.
Therefore, the system (2.34) can be rewritten in the form

’U; = h1<t) [fi(t,ﬁ) —v; + Ai0i+lvi+1 + V;(@)] (Z =1,m- 1),

'U:n = hum(t) [fm(tﬁi) - 'Um]a

P = flt, o) — —2t
v; = hp(t) {fz(t, ) A +
Jit1 Vi(v) P
O _ Vi(w) _ —
+Ai+1"’An_1 UH1+A¢"'A71_J (i=m+1,n-2),

(2.35)

s

U’:’L—l = hn(t) |:fn_1(t,1}) - U’nZaOkUk — OpUp—1+
k=1

+Unvn + Unvnl(v)] )

’U,;L = hn(t) [fn(t,v) + Z agkVk + AonUr41 — Un + Vn(ﬁ)
k=1

where the functions f, (i = m + 1,n — 1) have the same properties as the
functions f; (i =m+ 1,n — 1) in the system (2.34).

The important peculiarity of the system is that the coefficient at v,,41
is equal to zero.

Suppose that Bj,41 is a constant matrix of order (n —m) x (n — m).
This matrix consists of the coefficients at vp,41,...,v, in the last standing
in brakets n — m equations of the system (2.35). Its characteristic equation
is det[By+1 — AEp—mm] = 0, where E,,_,, is the unit matrix of order (n —
m) x (n —m) and is represented by (2.1). Taking into consideration the
conditions of the theorem, it is evident that this equation has no roots
with zero real part. Therefore, using the proof of Theorem 2.1 in [8], we
conclude that there exists a nonsingular constant matrix D,,y; of order
(n—m) x (n—m) and there exists a nonsingular continuously differentiable
and bounded (together with its inverse matrix) on the interval [to, w[ matrix
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Ly41(t) such that

_ _ 1 _
Lm+l( )Dm+1Bm+1Dm+1Lm+1(t) - h (t) L 1(t)L,(t) = CM+17

where C,,,+1 is the upper triangular matrix of the form

Re )\(1) Cm+1m+2 .- Cm+41n—1 Cm+1n
0 Re )\8 cer Cm42n—1 Cm+2n
O = | I I
0 0 oo ReXV_ 1 culin
0 0 . 0 ReX

where \? (i = T,n —m) are all roots (with multipliciting) of the algebraic
equation (2.1), all ¢;5 (k=1i¢+1,n)asi € {m+1,...,n} are equal to zero,
except for a single one that equals 1.

In virtue of this fact, by means of the transformation

U1 E 19) w1
L= " ' I (2.36)
Oz  Dyy1Limia(t) w

Un n

where Oq, Oy are zero-matrices of orders m x (n —m) and (n — m) x
m (respectively), E,, is the unit matrix of order m X m, the system of
differential equations (2.35) takes the form

wi=h;(t) [f1i(t,0) —wi+Aioi1wip1+ f2i ()] (i=1,m—1),

Wi, = o (8) [f1m (£, W) — W],

;o 0
w] = hn(t) {futw *;m i+ (Ro X it (2.37)

+ Z CikWg + fgi(t,’w)] (’L =m-+1,n— ].),
k=i+1

wh=hy,(t) [fln(t, w) +chk (Hwip+ (Re Ad_,,) wn+ fan (t, )|,
k=1

where the functions ¢;, (i = m+1,n, k € {1,...,m}) are continuous and
bounded on the interval [¢t1,w[, the functions fi; : [t1,w[ xR} — R (i =

1,n), for : Ry — R (i = 1,m — 1), the functions fo; : [t1,w[ xR} — R
(z = m + 1,n) are continuous, where RY = {(21,...,2;) € R¥ : |2;| < 4},
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0 > 0 is sufficiently small and satisfy the conditions
liTm fri(t,w) =0 (i =1,m) uniformly over w € RY,
tTw

f2i (W)
wi |+ wipa| =0 [wr’ + -+ -+ [wy]
lim f21(t U})
w4t wn |0 [wi] 4 -+ + |wn]
uniformly over ¢ € [t1,w].

=0 (i=T,m—1),

=0 (i=m+1,n)

Since the functions ¢, (i = m+1,n, k € {1,...,m}) are bounded on
the interval [t;,w[, there exists a number £ > 0 such that the constants B?
(i=m+1,n), defined (starting with ¢ = n) by the recurrent relations

0 __

B
n |Re)\ m‘ chka
5= |Re)\ <Z%+ZI%B,€) (i=m+Ln=T),

1+1
where
A =limsup |cix(t)| (i=m+ Ln, k€ {l,...,m}),
tTw
satisfy the inequalities B? < 1 (i =m + 1,n).
With this choice of the constant € > 0, the system (2.37) by means of
the transformation

w; =¢z (i=1,m), wi=z (i=m+1n) (2.38)

is reduced to a system of differential equations that satisfies all the condi-
tions of Theorem 1.2 in [7]. According to this theorem, this system has at
least one solution (z;)?q : [t2, w[R™ (t2 € [t1,w][), which tends to zero when
t T w. Moreover, there exists the whole k-parametric family of solutions,
if there are k positive numbers among the numbers (2.7). In virtue of the
transformations (2.38), (2.36) and (2.31), each of these solutions corresponds
to the solution of the system (1.1), satisfying (as ¢ T w) the asymptotic rep-
resentations (2.5), (2.6). Furthermore, taking into consideration the form
of functions (2.31) and conditions (2.2)—(2.4), it is easy to see that all these
solutions are the P, (Aq,...,A,_1)-solutions of the system (1.1). Thus the
theorem is proved. O

Consider now the conditions that give an opportunity to rewrite the
asymptotic representations (2.5), (2.6) in an explicit form.

Theorem 2.2. Let A; € R (i = 1,n—1) include those equal zero,
m=max{i € J: A; =0} andr = maxJ < n—1. Moreover, let all the func-
tions oy (k = 1,n) satisfy the S-condition. Then each Py(A1, ..., Ap_1)-
solution (in case it exists) of the system (1.1) admits for t T w asymptotic
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representations
k
j:l;!+2 i
n—1 L — ﬁ o)
v (®) = e [ |ae@®0i (sl T (077 )| 557
k=r+1

i
j=r+2
1 l_r[ o lijilaj
% |Qu(®) [Bra1 (el Lo (07757 ) | 1+ o(1)],

k

r 1Ny I o
i(t) = i T |@u (6011 (sesa Diia (0557 ) =
k=1
rﬁl )
x|y (= L+ o(1)] (i =T,7), (2.39)
n—1 k
_1 N\| Il oy
i) = i [T |@u(0s1 (ssa Do (057 ) =
k=1
r ﬁ aj
I1 oy |7=t*
=1 X

X |Qn(t) |:0T+1 (ur+1|Ir+1(t)|ﬁ>}j

r+1 n
[Mo; Il o

Xy (0= = L4 o(1)] (i =7+ 2,n).

Proof. In Theorem 2.1, it is proved, that for the existence of
Pu(A1, ..., Ap_1)-solutions in (1.1), it is necessary that the conditions (2.2)—
(2.4) valid, and each solution of that type admit for ¢ T w the asymptotic
representations (2.5), (2.6). Moreover, the asymptotic representation (2.11)
for these solutions was obtained. Since all functions ; (i = 1, n) satisfy the
S-condition, in virtue of (2.11) and Remark 1.2, we get

0i(yi(6)) = 0 (pa IL(OI 7 ) [1+0(1)] (G =Tom) as ¢ w.

That is why the asymptotic representations (2.5), (2.6) can be rewritten in
the form

Yi
\Z/iﬂ(

Oit1

(t)
t)

ﬁ)[uo(m ((=Tn-1) as tTw,

= Qi(t)0i11 (Mz’+1 [1it1(2)
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Yn (1)
rﬁl
I o5
[Yri1 ()]~

+ \7 110
= Qn(t) [9r+1 (Mr+1|Ir+1(t)|ﬁ”1 )}Fl [1+o0(1)] as t T w.
Hence, consistently, starting with ¢ = n, we obtain the asymptotic repre-
sentations (2.39). The theorem is proved. O

3. CONCLUSIONS

In this paper, for cyclic system (1.1) with regularly varying non-linearities,
the class of the so-called P, (A1,...,A,_1)-solutions is introduced and the
question of the existence of such solutions in special case (when A; € R
(: =1,n — 1) include zeroes) is discovered. Peculiarity of this case demands
both the validity of the additional S -condition for all nonlinearities of the
system, except one, and the assumption that A,,_1 € J. As a result, the
necessary and sufficient conditions for the existence of P, (Aq1,...,Ap_1)-
solutions for (1.1) are obtained. Implicit asymptotic formulas for compo-
nents of these solutions (when ¢ T w (w < 400)) are established. Explicit
asymptotic formulas for components of these solutions are established, pro-
vided all nonlinearities satisfy the S-condition.

The results may be used, for instance, to establish the asymptotics of
solutions for sufficiently nonlinear differential equations of the type

y" = pOe1(y)pa(y’) and y" = p(t)e(y),
where p : [a,w[— R\ {0} is a continuous function and ¢, ¢; : A(YY) —
10, +00[, @2 : A(Y) —1]0,+00[, A(Y,?) is a one-sided neighborhood, Y, are
continuously differentiable and regularly varying functions of certain orders
(when y — Y and ' — Y{).
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