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Short Communication

Malkhaz Ashordia and Murman Kvekveskiri

THE PRINCIPLE OF A PRIORI BOUNDEDNESS FOR
BOUNDARY VALUE PROBLEMS FOR SYSTEMS OF

NONLINEAR GENERALIZED ORDINARY
DIFFERENTIAL EQUATIONS

Abstract. A general theorem (principle of a priori boundedness) on solv-
ability of the boundary value problem

dx(t) = dA(t) · f(t, x(t)), h(x) = 0

is established, where A : [a, b] × Rn → Rn×n is a nondecreasing matrix-
function, f : [a, b] × Rn → Rn is a vector-function belonging to the
Carathéodory class corresponding to the matrix-function A, and h :
BVs([a, b],Rn) → Rn is a continuous operator.

îâäæñéâ. éëõãŽêæèæŽ äëàŽáæ åâëîâéŽ (Žìîæëîñèæ öâéëïŽäôãîñ-
èëĲæï ìîæêùæìæ)

dx(t) = dA(t) · f(t, x(t)), h(x) = 0
ïŽïŽäôãîë ŽéëùŽêæï ŽéëýïêŽáëĲæï öâïŽýâĲ, ïŽáŽù A : [a, b] × Rn →
Rn×n ŽîŽçèâĲŽáæ éŽðîæùñèæ òñêóùæŽŽ, f : [a, b] × Rn → Rn Žîæï
A éŽðîæùæï öâïŽĲŽéæïæ çŽîŽåâëáëîæï çèŽïæï òñêóùæŽ, ýëèë h :
BVs([a, b],Rn) → Rn çæ ñûõãâðæ ëìâîŽðëîæŽ.
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Let n be a natural number, [a, b] be a closed interval of real axis, A =
(aik)n

i,k=1 : [a, b] → Rn×m be a nondecreasing matrix-function, f be a
vector-function belonging to the Carathéodory class corresponding to the
matrix-function A, and let h : BVs([a, b],Rn) → Rn be a continuous opera-
tor satisfying the condition

sup
{
‖h(x)‖ : x ∈ BVs([a, b],Rn), ‖x‖s ≤ ρ

}
< +∞

for every ρ ∈ ]0, +∞[ .
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Consider the nonlinear system of generalized ordinary differential equa-
tions

dx(t) = dA(t) · f(t, x(t)) (1)

with the boundary condition

h(x) = 0. (2)

The theorem on the existence of a solution of the problem (1), (2) which
will be given below and be called the principle of a priori boundedness,
generalizes the well-known Conti–Opial type theorems (see [8], [16]) and
supplements earlier known criteria for the solvability of nonlinear boundary
value problems for systems of generalized ordinary differential equations
([1], [2], [5], [6], [16]).

Analogous and related questions are investigated in [9]–[14] for the bound-
ary value problems for the nonlinear systems of ordinary differential and
functional differential equations. In the paper we use the methods of inves-
tigation given in [10] and [11].

To a considerable extent, the interest to the theory of generalized ordi-
nary differential equations has also been stimulated by the fact that this
theory enables one to investigate ordinary differential, impulsive and differ-
ence equations from a unified point of view (see, i.e., [1]–[7], [15], [17] and
the references therein).

Throughout the paper the following notation and definitions will be used.
R = ] −∞,+∞[ , R+ = [0,+∞[ , [a, b], ]a, b[ , [a, b[ and ]a, b] (a, b ∈ R)

are, respectively, a closed, an open and semi-open intervals.
Rn×m is the space of all real n × m-matrices X = (xij)

n,m
i,j=1 with the

norm

‖X‖ = max
j=1,...,m

n∑

i=1

|xij |;

Rn×m
+ =

{
(xij)

n,m
i,j=1 : xij ≥ 0 (i = 1, . . . , n; j = 1, . . . , m)

}
.

Rn = Rn×1 is the space of all real column n-vectors x = (xi)n
i=1; Rn

+ =
Rn×1

+ .
b∨
a
(X) is the total variation of the matrix-function X : [a, b] → Rn×m, i.e.,

the sum of total variations of the latter’s components xij (i = 1, . . . , n; j =
1, . . . , m); V (X)(t) = (V (xij)(t))

n,m
i,j=1, where V (xij)(a) = 0, V (xij)(t) =

t∨
a
(xij) for a < t ≤ b;

X(t−) and X(t+) are the left and the right limits of the matrix-function
X : [a, b] → Rn×m at the point t (we will assume X(t) = X(a) for t ≤ a
and X(t) = X(b) for t ≥ b, if necessary);

d1X(t) = X(t)−X(t−), d2X(t) = X(t+)−X(t);

‖X‖s = sup
{‖X(t)‖ : t ∈ [a, b]

}
,
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BV([a, b],Rn×m) is the set of all matrix-functions of bounded total vari-

ations X : [a, b] → Rn×m (i.e., such that
b∨
a
(X) < +∞);

BVs([a, b],Rn) is the normed space (BV([a, b],Rn), ‖ · ‖s);
A matrix-function is said to be continuous, nondecreasing, integrable,

etc., if each of its components is such.
If I ⊂ R is an interval, then C(I,Rn×m) is the set of all continuous

matrix-functions X : I → Rn×m.
sj : BV([a, b],R) → BV([a, b],R) (j = 0, 1, 2) are the operators defined,

respectively, by

s1(x)(a) = s2(x)(a) = 0,

s1(x)(t) =
∑

a<τ≤t

d1x(τ) and s2(x)(t) =
∑

a≤τ<t

d2x(τ) for a < t ≤ b,

and
s0(x)(t) = x(t)− s1(x)(t)− s2(x)(t) for t ∈ [a, b].

If g : [a, b] → R is a nondecreasing function, x : [a, b] → R and a ≤ s <
t ≤ b, then

t∫

s

x(τ) dg(τ) =

=
∫

]s,t[

x(τ) ds0(g)(τ) +
∑

s<τ≤t

x(τ)d1g(τ) +
∑

s≤τ<t

x(τ)d2g(τ),

where
∫

]s,t[

x(τ) ds0(g)(τ) is the Lebesgue–Stieltjes integral over the open

interval ]s, t[ with respect to the measure µ(s0(g)) corresponding to the

function s0(g); if a = b, then we assume
b∫

a

x(t) dg(t) = 0;

L([a, b], R; g) is the space of all functions x : [a, b] → R measurable and
integrable with respect to the measures µ(g) with the norm

‖x‖L,g =

b∫

a

|x(t)| dg(t).

If G = (gik)l,n
i,k=1 : [a, b] → Rl×n is a nondecreasing matrix-function

and D ⊂ Rn×m, then L([a, b], D;G) is the set of all matrix-functions X =
(xkj)

n,m
k,j=1 : [a, b] → D such that xkj ∈ L([a, b],R; gik) (i = 1, . . . , l; k =

1, . . . , n; j = 1, . . . ,m);
t∫

s

dG(τ) ·X(τ) =
( n∑

k=1

t∫

s

xkj(τ)dgik(τ)
)l,m

i,j=1

for a ≤ s ≤ t ≤ b,

Sj(G)(t) ≡ (
sj(gik)(t)

)l,n

i,k=1
(j = 0, 1, 2).
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If D1 ⊂ Rn, D2 ⊂ Rn×m and G = (gik)l,n
i,k=1 : [a, b] → Rl×n, then

K([a, b]×D1, D2;G) is the Carathéodory class, i.e., the set of all mappings
F = (fkj)

n,m
k,j=1 : [a, b] × D1 → D2 such that for each i ∈ {1, . . . , l}, j ∈

{1, . . . , m} and k ∈ {1, . . . , n}:
(i) the function fkj(· , x) : [a, b] → R is µ(gik) measurable for every

x ∈ D1;
(ii) the function fkj(t, ·) : D1 → R is continuous, µ(gik) almost for every

t ∈ [a, b], and

sup
{|fkj(., x)| : x ∈ D0

} ∈ L([a, b],R; gik)

for every compact D0 ⊂ D1.
If G(t) ≡ diag(t, . . . , t), then we omit G in the notation containing G.
The inequalities between the vectors and between the matrices are un-

derstood componentwise.
A vector-function x ∈ BV([a, b],Rn) is said to be a solution of the system

(1) if

x(t) = x(s) +

t∫

s

dA(τ) · f(τ, x(τ)) for a ≤ s ≤ t ≤ b.

Under the solution of the problem (1), (2) we mean solutions of the system
(1) satisfying (2).

We assume that g(t) ≡ ‖A(t)‖.
Definition 1. The pair (P, l) of a matrix-function P ∈ K([a, b] × Rn,

Rn×n; A) and a continuous operator l : BVs([a, b],Rn) × BVs([a, b],Rn) →
Rn is said to be consistent if:

(i) for any fixed x ∈ BVs([a, b],Rn) the operator l(x, .) : BVs([a, b],Rn)
→ Rn is linear;

(ii) for any z ∈ Rn, x and y ∈ BVs([a, b],Rn) and for µ(g) almost all
t ∈ [a, b] the inequalities

‖P (t, z)‖ ≤ α(t, ‖z‖), ‖l(x, y)‖ ≤ α0(‖x‖s) · ‖y‖s

are fulfilled, where α0 : R+ → R+ is a nondecreasing function, and
α : [a, b]× R+ → R+ is a function, measurable and integrable with
respect to the measure µ(g) in the first argument and nondecreasing
in the second one;

(iii) there exists a positive number β such that for any y∈BVs([a, b],Rn),
q ∈ L([a, b],Rn; A) and c0 ∈ Rn, for which the condition

det
(
In + (−1)jdjA(t) · P (t, y(t))

) 6= 0 for t ∈ [a, b] (j = 1, 2)

holds, an arbitrary solution y of the boundary value problem

dx(t) = dA(t) · (P (t, y(t)) · x(t) + q(t)
)
, l(x, y) = c0

admits the estimate

‖y‖s ≤ β(‖co‖+ ‖q‖L,g).
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Theorem 1. Let there exist a positive number ρ and a consistent pair
(P, l) of a matrix-function P ∈ K([a, b] × Rn,Rn×n;A) and a continuous
operator l : BVs([a, b],Rn)×BVs([a, b],Rn) → Rn such that for any λ ∈ ]0, 1[
an arbitrary solution of the problem

dx(t) = dA(t) ·
(
P (t, x(t)) · x(t) + λ

[
f(t, x(t))− P (t, x(t)) · x(t)

])
, (3)

l(x, y) = λ[l(x, x)− h(x)] (4)

admits the estimate
‖x‖s ≤ ρ. (5)

Then the problem (1), (2) is solvable.

Definition 2. Let P ∈ K([a, b] × Rn,Rn×n;A). We say that a matrix-
function B0 ∈ BV([a, b],Rn×n) belongs to the set EA,P if the condition

det
(
In + (−1)jdjB0(t)

) 6= 0 for t ∈ [a, b] (j = 1, 2) (6)

holds and there exists a sequence xk ∈ BV([a, b],Rn) (k = 1, 2, . . .) such
that

lim
k→+∞

t∫

a

dA(τ) · P (τ, xk(τ)) = B0(t) uniformly on [a, b]. (7)

Definition 3. We say that the pair (P, l) of the matrix-function P ∈
K([a, b] × Rn,Rn×n; A) and the continuous operator l : BVs([a, b],Rn) ×
BVs([a, b],Rn) → Rn belongs to the Opial class OA

0 with respect to the
matrix-function A if:

(i) for any fixed x ∈ BVs([a, b],Rn) the operator l(x, .) : BVs([a, b],Rn)
→ Rn is linear;

(ii) for any z ∈ Rn, x and y ∈ BVs([a, b],Rn) and for µ(g) almost all
t ∈ [a, b] the inequalities

‖P (t, z)‖ ≤ α(t), (8)

‖l(x, y)‖ ≤ α0‖y‖s

are fulfilled, where α0 ∈ R+, and α : I → R+ is a function measur-
able and integrable with respect to the measure µ(g);

(iii) for every matrix-function B0 ∈ EA,P the following condition holds:
if y is a solution of the system

dy(t) = dB0(t) · y(t),

and, in addition,

lim
k→+∞

l(xk, y) = 0

for some sequence xk ∈ BVs([a, b],Rn) (k = 1, 2, . . . ), then y(t) ≡ 0.

Remark 1. By equalities (7) and (8) the condition

‖djA(t)‖ · α(t) < 1 for t ∈ [a, b] (j = 1, 2)

guarantees the condition (6).
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Corollary 1. Let there exist a positive number ρ and a pair (P, l) ∈ OA
0

such that for any λ ∈ ]0, 1[ an arbitrary solution of the problem (3), (4)
admits the estimate (5). Then the problem (1), (2) is solvable.

The following result belongs to Z. Opial (see, [9], [16]).

Corollary 2. Let the pair (P, l) ∈ OA
0 be such that∣∣f(t, x)− P (t, x)x

∣∣ ≤ α(t, ‖x‖) for t ∈ [a, b], x ∈ Rn, (9)

|h(x)− l(x)| ≤ l0(|x|) + l1(‖x‖s) for x ∈ BVs([a, b],Rn), (10)

where α ∈ K([a, b]×R+,Rn
+; A) is a nondecreasing in second variable vector-

function, l0 : BVs([a, b],Rn
+) → Rn

+ is a positive homogeneous continuous
operator, l1 ∈ C(R+,Rn

+). Let, moreover,

lim
k→+∞

1
ρ

b∫

a

dV (A)(τ) · α(τ, ρ) = lim
ρ→+∞

‖l1(ρ)‖
ρ

= 0.

Then the problem (1), (2) is solvable.

By YP (x) we denote the fundamental matrix of the system

dy(t) = dA(t) · P (t, x(t))y(t))

for every x ∈ BVs([a, b],Rn), satisfying the condition YP (x)(a) = In.

Corollary 3. Let conditions (9) and (10) hold, where P and l are, re-
spectively, matrix-function and operator, satisfying the conditions (i) and
(ii) of Definition 3; l0 : BVs([a, b],Rn

+) → Rn
+ is a positive homogeneous

continuous operator, and a nondecreasing in second variable vector-function
α ∈ K([a, b] × R+,Rn

+; A) and a vector-function l1 ∈ C(R+,Rn
+) are such

that the condition

inf
{∣∣ det

(
l(x, YP (x))

)∣∣ : x ∈ BVs([a, b],Rn)
}

> 0

holds. Then the problem (1), (2) is solvable.

Corollary 4. Let P (t, x) ≡ P0(t) and l(x, y) ≡ l0(y), where P0 ∈
L([a, b],Rn×n;A), and l0 : BVs([a, b], Rn) → Rn is a bounded linear op-
erator such that

det
(
In + (−1)jdjA(t) · P0(t)

) 6= 0 for t ∈ [a, b] (j = 1, 2)

and the problem

dy(t) = dA(t) · P0(t)y(t), l0(y) = 0

has only the trivial solution. Let, moreover, there exist a positive number ρ
such that for every λ ∈ ]0, 1[ an arbitrary solution of the problem

dx(t) = dA(t) · (P0(t) · x(t) + λ[f(t, x(t))− P0(t) · x(t)]
)
,

l0(x) = λ[l0(x)− h(x)]

admits the estimate (5).Then the problem (1), (2) is solvable.
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