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Abstract. This paper contrasts the exact solutions for the mean-square
displacements of a cantilever under random loading with those delivered by
asymptotic method. It is shown that probabilistic response evaluated by
the latter method may lead to considerable errors: in the case of a beam
with viscous damping as much as 100%, and in that of structural damping
188%. A new, closed-form, solution is proposed for a cantilever with Voigt
damping. In this case asymptotic method exhibits the maximum error of
312%.
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îâäæñéâ. êŽöîëéöæ éëùâéñèæ äñïðæ ŽéëýïêŽ ñìæîæïìæîáâĲŽ çë-
êïëèæï ïŽöñŽèë çãŽáîŽðñèæ àŽáŽŽáàæèâĲæï ŽéëùŽêæï Žïæéìðëðñî
ŽéëýïêŽï öâéåýãâãæåæ áŽðãæîåãâĲæïŽåãæï, îëéèâĲïŽù æúèâãŽ Žïæéìðë-
ðñîæ éâåëáæ. êŽøãâêâĲæŽ, îëé ŽèĲŽåëĲæåæ ñçñàâĲæï öâòŽïâĲŽï êŽýïâ-
êâĲæ éâåëáæå éæãõŽãŽîå ŽîïâĲæå ùáëéæèâĲŽéáâ: úâèæïåãæï ĲèŽêðæ
óîëĲæï öâéåýãâãŽöæ ùáëéæèâĲŽ Žôûâãï 100%-ï, ýëèë ïðîñóðñîñèæ
óîëĲæï öâéåýãâãŽöæ 188%-ï. öâéëåŽãŽäâĲñèæŽ òëæàðæï óîëĲæå çëê-
ïëèæï ŽéëùŽêæï ŽéëýïêŽ ùýŽáæ ïŽýæå. Žïâå öâéåýãâãŽöæ Žïæéìðëðñîæ
éâåëáæï éŽóïæéŽèñîæ ùáëéæèâĲŽ Žôûâãï 312%-ï.



Comparison of Asymptotic Method with Explicit Solutions in Random Vibration 111

Introduction

The normal-mode method is widely used in both deterministic [1] and
random [2] vibration analyses. The given and sought functions of both kinds
are expanded in terms of the eigenfunctions, whose orthogonality property
allows one to derive equations for the coefficients or functions describing the
time-wise behavior of the system. The response thus determined is an exact
solution of the problem at hand: this straightforward method is however
confined to the cases where explicit analytical expressions are available for
the eigenfunctions, which is rarely the case.

In the sixties, Bolotin [3] devised a procedure (usually referred to as “dy-
namic edge effect” method or as “asymptotic” method) which permits ap-
proximate evaluation of the eigenvalues and eigenfunctions of a wide range
of structures. A concise description of the asymptotic method including a
relevant bibliography can be found in a review paper by Elishakoff [4]. The
method gained considerable popularity in the East (see, e.g., the mono-
graphs, [5] and [6]) and in the West (see, e.g., References [7]–[12]) because
of the accurate predictions it yielded for the high frequencies, where the
energy methods are quite cumbersome.

The present paper examines the accuracy of the asymptotic approach in
random vibration analysis. To this end, we consider a system amenable to
closed-form solution, namely a cantilever beam (that is clamped at one end
and free at the other) under white-noise “rain-on-the-roof” excitation both
in space and in time. This problem was first considered by Houdijk [13], and
the solution was reproduced by van Lear and Uhlenbeck [14] who study in
addition the effect of gravity under single-term approximation. For detailed
derivation of the mean-square tip displacement for a uniform cantilever
Bernoulli-Euler beam via the normal-mode method, one can consult Eringen
[15] (for final results see also [16]).

Beam Possessing Transverse Viscous-Damping

Application of the normal-mode method yields the following formula [17]
for the space-time correlation function Rw(x1, x2, τ) of the displacement
w(x, t) of a Bernoulli–Euler beam under transverse damping

Rw(x1, x2, τ)=
∞∑

j=1

∞∑

k=1

ψj(x1)ψk(x2)

∞∫

−∞
SQjQk

(ω)H∗
j (ω)Hk(ω)eiωτ dω, (1)

where x1 and x2 are the observation points on the beam axes, τ is the time
lag between the observation moments, ψj(x) is the beam mode shapes in
vacuo, SQkQj (ω) are the cross-spectral densities of the generalized forces,
Hj(ω) are the frequency response functions, ω = frequency, j and k are sub-
scripts denoting the sequential numbers of the eigenvalues, the star denotes
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the operation of complex conjugation. For a cantilever beam we have

ψj(ξ) =
cosh(mjξ) cos(mjξ)
cosh(mj) cos(mj)

− sinh(mjξ)− sin g(mjξ)
sinh(mj) + sin(mj)

, (2)

ξ =
x

L
, m4

j =
ω2

j ρAL4

EI
, (3)

where L is the length, ξ the dimensionless axial coordinate and mj satisfies
the following transcendental equation

cos(mj) cosh(mj) + 1 = 0. (4)

The numerical values of mj are as follows [18]:

m1 = 1.875104, m2 = 4.694091, m3 = 7.854757,

m4 = 10.995541, m5 = 14.137168, m6 = 17.278759.
(5)

For higher values of mj the following asymptotic formula holds with suffi-
cient accuracy

mj ≈ 1
2

(2j − 1)π. (6)

The cross-spectral densities are given by the formula

SQjQk
(ω) =

1
v2

j v2
k

L∫

0

L∫

0

Sq(x1, x2, ω)ψk(x2) dx1 dx2, (7)

where

v2
j =

L∫

0

ψ2
j (x) dx = L (j = 1, 2, . . .). (8)

For “rain-on-the-roof” excitation the space-time correlation function reads

Rq(x1, x2, τ) =
R

L
δ(x1 − x2)δ(τ), (9)

where R is a positive constant. The cross-spectral density of the excitation is

Sq(x1, x2, ω) =
1
2π

∞∫

−∞
Rq(x1, x2, τ)e−ωτ dτ =

R

2πL
δ(x1 − x2), (10)

with associated cross-spectral densities given by

SQjQk
(ω) =

1
v2

j

R

2πL
δjk, (11)

where δjk is the Kronecker delta. Since δjk = 0 for non-coincident indices,
the double summation in (1) reduces to a single one

Rw(x1, x2, τ) =
∞∑

j=1

R

2πL

1
v2

j

ψj(x1)ψj(x2)

∞∫

−∞
|Hj(ω)|2eiωτ dω. (12)
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In particular, at the cantilever tip x = L we have

Rw(L,L, τ) =
∞∑

j=1

R

2πL

1
v2

j

ψ2
j (L)

∞∫

−∞
|Hj(ω)|2eiωτ dω. (13)

It was shown by Lord Rayleigh [18, Eq. 164.9] that

v2
j =

L

4
ψ2

j (L) (14)

(see also Prescott [19]). Therefore,

Rw(L,L, τ) =
2R

πL2

∞∑

j=1

∞∫

−∞
|Hj(ω)|2eiωτ dω. (15)

Now
∞∫

−∞
|Hj(ω)|2eiωτ dω =

∞∫

−∞

eiωτ

(ρA)2
[
(ω2

j − ω2)2 + 4ζ2
j ω2

j ω2
] dω =

=
d2

(ρA)2
e−ζjωj |τ |

(
cosωjdτ +

ζjωj

ωjd
sin ωjd|τ |

)
, (16)

where
ζj =

c

2ρAωj
, ωjd = ωj(1− ζ2

j )1/2, d2 =
π

2ηjω3
j

(17)

and ρ is the mass density, A is the cross sectional area, ωjd = “damped”
eigenvalue. For the mean-square tip displacement the formula reads

Rw(L,L, 0) =
2R

cρAL2

∞∑

j=1

1
ω2

j

, (18)

that is, with Eq. (3) taken into account,

Rw(L,L, 0) =
2RL2

EIc

∞∑

j=1

1
m4

j

, (19)

where mj ’s are the roots of Eq. (4) with numerical values as per Eqs. (5)
and (6).

According to Lord Rayleigh [18, Eq. 175.3], the sum in Eq. (19) equals
∞∑

j=1

1
m4

j

=
1
12

(20)

so that the final expression for the mean-square tip displacement becomes

Rw(L,L, 0) =
RL2

6EIc
. (21)

The equation (21) is due to Houdijk [13] and Eringen [15]. It shows
that the mean-square displacement of a cantilever subjected to “rain-on-
the-roof” excitation does not depend on the density of the bar material - as
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is also the case with a simply-supported beam, see [14] and [16]. Both these
results are analogous to that for a single-degree-of-freedom system and ideal
white-noise excitation.

It is instructive to predict the mean square displacement, via an asymp-
totic estimate for the frequency parameter by Eq. (6). Substituting Eq. (6)
into (19), we have

Rw(L,L, 0) =
32RL2

π4EIc

∞∑

j=1

1
(2j − 1)4

. (22)

However,
∞∑

j=1

1
(2j − 1)4

=
π4

96
(23)

(see Eq. 0.234.5 in [20]). With this value

Rw(L,L, 0) =
RL2

3EIc
, (24)

substituted, we obtain double the exact value according to Eq. (21). This
clearly demonstrates the need for caution in straightforward using an as-
ymptotic method for predicting the response.

It is also of interest to look into the error involved in treating an infinite-
degree-of-freedom system (a beam) as a single-degree one. In such a case
retaining only the first term in Eq. (18) yields

Rw(L,L, 0) =
2RL2

EIc

1
m4

1

=
2RL2

(1.875104)4
=

RL2

6.18EIc
. (25)

Comparing the coefficient 6.18 with the exact value 6, we see that the
attendant error is less than 3%. We conclude that in this case including only
the one accurately calculated frequency results in a much smaller error, than
taking an infinite number of frequencies, evaluated asymptotically.

Beam Possessing Structural Damping

For this case the differential equation reads

Ẽ
( ∂

∂t

)
I

∂4w

∂x4
+ ρA

∂2w

∂t2
= q(x, t), (26)

where the operator is defined as

Ẽ
( ∂

∂t

)
eiωt = E(1 + iµ)eiωt, (27)

µ being a structural damping coefficient [17]. For the autocorrelation func-
tion with zero time lag we obtain [21]

Rw(x1, x2, 0) =
R

2π(ρAL)2

∞∑

j=1

ϕj(x1)ϕj(x2)

∞∫

−∞

dω

(ω2
j − ω2)2 + ω2

j µ2
. (28)
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For the cantilever tip we have

Rw(L,L, 0) =
2R

(ρAL)2
(1 +

√
1 + µ2)1/2

µ
√

2(1 + µ2)

∞∑

j=1

1
ω3

j

. (29)

There is no closed-form expression for the sum [22]. Let us first evaluate
the appropriate expression for Rw(L,L, 0) through the asymptotic evalua-
tion of ωj ; from [20, Eq. (1846)] we have

∞∑

j=1

1
(2j − 1)2n

=
(22n − 1)π2n

2(2n)!
|B2n|, (30)

where B2n is a Bernoulli number with index 2n. We have n = 3, so that

|B6| = 1
42

,

∞∑

j=1

1
2j − 1)6

=
π6

960
. (31)

Asymptotic evaluation yields then

Rw(L,L, 0) =
26
√

2
960

,
RL4

√
ρAEI EI

(1 +
√

1 + µ2)1/2

µ
√

1 + 2
µ

=

= 0.09428
RL4

√
ρAEI EI

(1 +
√

1 + µ2)1/2

µ
√

1 + 2
µ

. (32)

For comparison with the exact value, we will evaluate Eq. (29) nu-
merically, summing the first six terms exactly, and using an asymptotic
expression for the remainder. We thus have

6∑

j=1

1
ω3

j

=
(ρAL4

EI

)3/2 6∑

j=1

1
m6

j

=
(ρAL4

EI

)3/2

=

=
[

1
1.8751046

+
1

4.6940916
+

1
7.8547576

+

+
1

10.9955416
+

1
14.1371686

+
1

17.2787596

]
=

= 0.02310
(ρAL4

EI

)3/2

, (33)
∞∑

j=7

1
ω6

j

(ρAL4

EI

)3/2 ∞∑

j=7

1
m6

j

=
(ρAL4

EI

)3/2( 2
π

)6 ∞∑

j=7

1
(2j − 1)6

, (34)
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and
(ρAL4

EI

)3/2( 2
π

)6 ∞∑

j=7

1
(2j − 1)6

=

=
(ρAL4

EI

)3/2( 2
π

)6
[ ∞∑

j=1

1
(2j − 1)6

−
6∑

j=1

1
(2j − 1)6

]
=

=
(ρAL4

EI

)3/2( π6

960
− 1− 1

36
− 1

56
− 1

76
− 1

96
− 1

116

)
=

= 4.2871× 10−6
[ρAL4

EI

]3/2

. (35)

Adding up the two subsums (33) and (35) (the latter being practically
negligible relative to the former), we finally obtain

∞∑

j=1

1
ω3

j

= 0.023104
(ρAL4

EI

)3/2

and

Rw(L,L, 0)exact = 0.03267
RL4

EI
√

ρAEI

(1 +
√

1 + µ2)1/2

µ
√

1 + µ2
. (36)

Comparison of the formulas (32) and (36) demonstrates that the error in-
curred by using asymptotic summation is 188%.

If one could treat the beam as a one-degree-of-freedom system, the re-
sponse would constitute only

Rw(L, L, 0) =
2R

(ρAL)2
(1 +

√
1 + µ2)1/2

µ
√

2(1 + µ2)
1
ω3

j

=

=
√

2
m6

1

RL4

EI
√

ρAEI

(1 +
√

1 + µ2)1/2

µ
√

2(1 + µ2)
=

= 0.325359
RL4

EI
√

ρAEI

(1 +
√

1 + µ2)1/2

µ
√

2(1 + µ2)

that is, the difference of less than one percent.

Beam with Voigt Damping

The governing differential equation reads

EI
(
1 + δ

∂

∂t

) ∂4

∂x4
+ ρA

∂2w

∂t2
= q(x, t), (37)

where δ is the Voigt damping coefficient. For the autocorrelation function
of the cantilever tip at zero time-lag we derive (compare with Eq. (15))

Rw(L,L, 0) =
2R

π(ρAL)2

∞∑

j=1

∞∫

−∞

dω

(ω2
j − ω2)2 + δ2ω2

j ω2
. (38)
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Using Eq. (36) in [21], we arrive at

Rw(L,L, 0) =
2R

π(ρAL)2
π

6

∞∑

j=1

1
ω4

j

. (39)

With Eq. (3) in mind, we have

Rw(L,L, 0) =
2R

π(ρAL)2
[ρAL4

EI

] ∞∑

j=1

1
m8

j

. (40)

According to Lord Rayleigh [18, Eq. (3)] we have
∞∑

j=1

1
m8

j

=
1

122
· 33
35

. (41)

Hence, the exact value is

Rw(L,L, 0) =
33

2520
· RL6

δ(EI)2
' 0.0131 · RL6

δ(EI)2
. (42)

The alternate derivation of Eq. (41) is given in the Appendix. Note that
the one-term approximation in this case yields a negligible error of 0.066%.

To copmare this benchmark solution with an asymptotic one, we will
evaluate the approximation

Rw(L,L, 0) =
2R

δ(ρAL)2
(ρAL4

EI

)2 ∞∑

j=1

(2/π)8

(2j − 1)8
=

=
29

π8

RL6

(EI)2

∞∑

j=1

1
(2j − 1)8

. (43)

In view of Eq. (30) we get

B8 = − 1
30

,

∞∑

j=1

1
(2j − 1)8

=
(28 − 1)π8

2 · 8!
|B8| = 17π8

161280
. (44)

Hence the asymptotic expression becomes

Rw(L,L, 0) =
17
135

RL6

δ(EL)2
' 0.0540

RL6

δ(EI)2
. (45)

Comparison of Eqs. (42) and (45) reveals the error of 312%. In this case
the asymptotic method shows the worst performance.

Conclusion

The above examples bring out the errors involved in using asymptotic ex-
pression for the eigenvalues in wide-band random vibration analysis. In the
case considered, the prediction accuracy of the first eigenvalue by the asym-
ptotic method is very poor: it yields π/2 instead of 1.875104 for m1. Ac-
cordingly, extreme care should be exercised in such cases, which are usually
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associated with the lower end of the eigenvalues (for example, for plates hav-
ing some free boundaries, [3]). Therefore, whereas the asymptotic method is
convenient, it is advisable to combine it with numerical techniques like the
finite-element method, which is especially powerful in the frequency range
where the asymptotic method may fail to predict frequencies (and hence
the response) with sufficient accuracy.
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Appendix: Derivation of Eq. (20) and Eq. (41)

Using the expression for coshm in Eq. (4), as given in [20, Eq. GL.505]

cosh m = sec m + sec m

∞∑

j=1

(−1)j 22jm4j

(4j)!
, (A.1)

we obtain

S =
1
2

(cosm cosh m + 1) = 1 +
1
2

∞∑

j=1

(−1)j 22jm4j

(4j)!
. (A.2)

Now, representing S as the following sum

S = 1 +
∞∑

j=1

Sj , (A.3)
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we get

S1 =
24

4!
m4 = −m4

12
, (A.4)

S2 =
22m8

8!
m4 =

m8

122 · 35
(A.5)

as they are also given by Rayleigh [18].
Since mj are the roots of the characteristic equation (4), we have

1
2

[
cosm coshm + 1

]
=

∞∑

j=1

(
1− m4

m4
j

)
= 1 +

∞∑

j=1

ajm
4j . (A.6)

The first coefficient in the right-hand side of this equation is

a1 = −
∞∑

j=1

1
m4

j

. (A.7)

Hence, comparison with Eq. (A.4) reveals that
∞∑

j=1

1
m4

j

=
1
12

. ¤ (A.8)

Now, the coefficient a2 at m8 is

a2 =
1

m4
1

∞∑

j=2

1
m4

j

+
1

m4
2

∞∑

j=3

1
m4

j

+ · · ·+ 1
m4

n

∞∑

j=n+1

1
m4

j

+ · · · = 1
122 · 35

.

But

1
m4

1

∞∑

j=2

1
m4

j

=
1

m4
1

[ ∞∑

j=1

1
m4

j

− 1
m4

1

]
=

1
12

1
m4

1

− 1
m8

1

,

M
1

m4
2

∞∑

j=3

1
m4

j

=
1

m4
2

[ ∞∑

j=1

1
m4

j

− 1
m4

1

− 1
m4

2

]
=

1
12

1
m4

1

− 1
m8

2

− 1
m4

1m
4
2

,

1
m4

3

∞∑

j=4

1
m4

j

=
1
12

1
m4

3

− 1
m8

3

− 1
m4

2m
4
3

− 1
m4

1m
4
3

,

a2 =
1
12

[ ∞∑

j=1

1
m4

j

]
−

∞∑

j=1

1
m8

j

− a2

and

2a2 =
1
12
−

∞∑

j=1

1
m8

j

.

Now, since

a2 =
1

122 · 35
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we obtain finally
∞∑

j=1

1
m8

j

=
1

2 · 122
− 1

122 · 35
=

33
35
· 1
122

. ¤ (A.9)
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