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Abstract. Asymptotic model of a shell (Koiter, Sanchez-Palencia, Cia-
rlet etc.) is revised based on the calculus of tangent Gunter’s derivatives,
developed in the recent papers of the author with D. Mitrea and M. Mitrea
[12]–[14], [16]. As a result the 2-dimensional shell equation on a middle
surface S is written in terms of Gunter’s derivatives, unit normal vector
field and the Lamé constant, which coincides with the Lamé equation on
the hypersurface S , investigated in [12]–[14], [16].
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îâäæñéâ. àŽîïæï Žïæéìðëðñîæ éëáâèæï (çëæðâîæ, ïŽêøâï-ìŽèâêïæŽ, ïæ-
Žîèâ) ûæêŽéáâĲŽîâ éëáæòæçŽùæŽ (àŽáŽýâáãŽ) âòñúêâĲŽ àæñêðâîæï éýâĲæ áæ-
òâîâêùæŽèñîæ ëìâîŽðëîâĲæï ŽôîæùýãŽï, îëéâèæù áŽéñöŽãáŽ êŽöîëéæï Žã-
ðëîæï á. éæðîâŽ áŽ é. éæðîâŽï Ĳëèë Žåûèâñèæï àŽêéŽãèëĲŽöæ àŽéëóãâ-
õêâĲñè êŽöîëéâĲöæ [12]{[14], [16]. Žéæï öâáâàŽá àŽîïæï 2-àŽêäëéæèâĲæŽêæ
àŽêðëèâĲŽ øŽûâîæèæŽ àŽîïæï öñŽ äâáŽìæîäâ S àæñêðâîæï ûŽîéëâĲñèâĲæï,
âîåâñèëãŽêæ êëîéŽèñîæ ãâóðëîñèæ ãâèæïŽ áŽ èŽéâï çëêïðŽêðâĲæï éâöãâ-
ëĲæå áŽ àŽîâàêñèŽá âéåýãâãŽ èŽéâï àŽêðëèâĲŽï áîâçŽáæ ßæìâîäâáŽìæîâ-
ĲæïŽåãæï S , îëéâèæù æõë àŽéëõãŽêæèæ áŽ öâïûŽãèæèæ êŽöîëéâĲöæ [12]{[14],
[16].
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Introduction

The purpose of the present investigation is to develop a proper mathemat-
ical tools for a two-dimensional theory of shells. There exist a number of ap-
proaches proposed for modeling linearly elastic shells. Started by the Cosser-
ats pioneering work (1909), Goldenveiser (1961), Naghdi (1963), Vekua
(1965), Novozhilov (1970), Koiter (1970) and many others contributed the
development of the shell theories. Ellipticity of the corresponding partial dif-
ferential equations was proved later by Roug’e (1969) for cylindrical shells,
by Coutris (1973) for the shell model proposed by Naghdi, Gordeziani (1974)
for the shell model proposed by Vekua, Shoikhet (1974) for the shell model
proposed by Novozhilov, Ciarlet & Miara for the model proposed by Koiter
(cf. [1]–[4], [10], [28]–[30] for surveys and further references).

Shell configuration consists of all points in the distance less or equal ε
from a middle surface S given by a local immersion

Θ : ω −→ S , ω ⊂ Rn−1. (1)

In particular,

Ωε :=
{

X t ∈ Rn : X t = X + tν(X ) = Θ(x) + tν
(
Θ(x)

)
,

x ∈ ω, −ε < t < ε
}

, (2)

where ν(X ) = ν(Θ(y)) for X = Θ(y) ∈ S , is the outer unit normal vector

field. We look for the displacement vector field U =
3∑

j=1

Uje
j , represented

in the natural basis e1 = (1, 0, 0)>, e2 = (0, 1, 0)>, e3 = (0, 0, 1)> of the
ambient Euclidean space R3. The approach applies the Gunter’s tangential
derivatives (cf. [17], [20], [11])

Dj := ∂j − νj(X )∂ν = ∂dj , dj := πS ej , j = 1, 2, 3. (3)

where ∂ν :=
n∑

j=1

νj∂j denotes the normal derivative and

πS : R3 −→ TS , πS U := U − 〈ν, U〉ν, t ∈ S (4)

defines the canonical orthogonal projection onto the space of tangential
vector fields TS to the hypersurface. DS

j := πS Dj denotes the covariant
Gunter’s derivatives.

The following form of the deformation (strain) tensor of the hypersurface
S was identified in [16]

Def S (U) =
[
Djk(U)

]
3×3

, U =
n∑

j=1

U0
j dj ∈ TS , (5)

Djk(U) :=
1
2

[
(DS

j U)0k + (DS
k U)0j

]
, j, k = 1, 2, 3,
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where (DS
j U)0k := 〈DS

j U , ek〉. It coincides with the linearized change of
metric tensor on the surface S (see Theorem 5.5 below).

Considering the thickness as a “small” parameter, we apply a standard
asymptotic analysis (see [1], [5], [18], [31], [32]) and derive two dimensional
equation of a shell. The unknown is the displacement vector field

U(X , t) =
3∑

j=1

U0
j (X , t)ej =

3∑

j=1

U0
j (X , t)dj(X ) + U0

4 (X , t)d4(X ),

d4(X ) := ν(X ), U0
4 (X , t) := 〈U(X , t), ν(X )〉, (X , t) ∈ Ωε

of the elastic media Ωε, written on the local variables X ∈ S , −ε < t < ε.
We start from the linearized equation in the variational form, governing the
deformation of the shell

∫

Ωε

E jklm,εDlm(U ε)Djk(V ε) dX =

=
∫

Ωε

〈F ε, V ε〉 dX +
∫

S ε
−∪S ε

+

〈Hε,V ε〉 dσ, (6)

U ε, V ε ∈W1(Ωε,Γε
0) :=

{
X ∈W1(Ωε) : X(X ) = 0 on Γε

0

}
.

Here Djk(X) = 1
2 (∂jXk + ∂kXj) are the components of classical defor-

mation tensor, S ε
± = S × {±ε} are the upper and lower surfaces of

the domain Ωε and Γε
0 := Γ0 × (−ε, ε) is the part of the lateral surface

Γε := Γ× (−ε, ε), Γ0 ⊂ Γ := ∂S , mes Γ0 6= 0. The corresponding elasticity
tensor E ε :=

[
E jklm,ε

]
4×4×4×4

is the standard one for an isotropic case (see
(108)) and only depend on a couple of Lamé constants λε and µε:

E jklm,ε = λεδjkδlm + µε
[
δjlδkm + δjmδkl

]
. (7)

F ε and Hε are the volume and surface forces applied to the shell.
After the standard scaling Ωε 3 (X , t) → (X , εt) ∈ Ω1 := S × (−1, 1),

the following is assumed: the scaled forces and the scaled displacement
vector field have the following asymptotic expansions:

F (ε)(X , t) =
1
ε2

F−2(X , t) +
1
ε

F−1(X , t) + F 0(X , t)+

+ εF 1(X , t) + O(ε2),

H(ε)(X ,±1) =
1
ε

H−1(X ,±1) + H0(X ,±1)

+ εH1(X ,±1) + O(ε2),

U(ε)(X , t) = U0(X , t) + εU1(X , t) + · · · , (X , t) ∈ Ω1, U0 6= 0

(8)

where F−2, F−1, F 0, . . ., H−1, H0, H1, . . . and U0,U1, . . . are independent
of ε. The asymptotic analysis, performed similar to that in [1], [5], [18], [31],
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[32], leads to the following results:

F−2(X , t) = F−1(X , t) = H−1(X ,±1) =

= H0(X ,±1) = 0, ∀ (X , t) ∈ Ω1, (9)

U0(X , t)=U0(X ), U0∈W1(S ,Γ0) :=
{
X∈W1(S ) : X(X )=0 on Γ0

}

and the principal component U0 in the asymptotic expansion of the dis-
placement vector field (cf. (8)) satisfies the variational equation

3∑

j,k,l,m=1

∫

S

SjklmDlm(U0)Djk(X) dσ =
∫

S

〈P 0, X〉dσ, (10)

where U0, X ∈W1(S ,Γ0) and

Sjklm =2E jklm − 2
E jk44E 44lm

E 4444
=

=
4λµ

λ + 2µ
δjkδlm + 2µ

[
δjlδkm + δjmδkl

]
,

P 0(X ) :=
1
2

1∫

−1

F 0(X , t) dt +
1
2

[
H1(X ,−1) + H1(X , 1)

]
.

(11)

The obtained two dimensional equation for a shell coincides with the
Láme equation and operates with the deformation tensor of S . It is re-
markable that equation (9) has a unique solution U0 ∈ W1(S , Γ0) for
arbitrary resultant force P 0 ∈ L2(S ) (see Theorem 7.2 below). Moreover,
if we assume the resultant forces are vanishing

P j(X ) :=
1
2

1∫

−1

F j(X , t) dt +
1
2

[
Hj+1(X ,−1) + Hj+1(X , 1)

]
= 0 (12)

for j = 0, 1, . . . , q − 1, the entries of the asymptotic expansion of the dis-
placement vector field in (8) vanish U j(X , t) = 0 for j = 0, 1, . . . , q− 1, the
next component is independent of the transverse variable U q(x, t) = U q(x)
end is a solution to the variational problem, similar to (10):

3∑

j,k,l,m=1

∫

S

SjklmDlm(U q)Djk(X) dσ =
∫

S

〈P q, X〉dσ, (13)

U q, X ∈W1(S ,Γ0).

The most significant is that the presented approach seems to be universal:
If the “thickness” of a shell and the ratio d=(thickness of a shell=ε)/(
minimal mean curvature of the middle surface of a shell) are related by
the formulae d = εs, shells are usually divided in “membrane” s < 2,
“Novozhilov’s” s = 2 and “shallow” s > 2 shell classes (see [10]). This is
not the case in the present approach and the two-dimensional shell equation
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with the displacement vector filed of the middle surface as an unknown is
uniquely solvable in all these cases.

The paper is organize as follows: After auxiliaries from classical differ-
ential geometry, exposed in § 1, in 2 we consider the deformation tensor,
and the related Lamé equation on an elastic hypersurface S . The calculus
is based on the Gunter’s tangential derivatives, developed in [11], [16]. The
calculus turned out to be relevant for the shell problem.

In the next § 3 we describe configuration of a thin shell Ωε := S ×(−ε, ε)
(see (2)) and study properties of the normal vector field and surface measure
on surfaces St, which are equidistant from the middle surface S = S0.
These properties are crucial for the derivation of 2D shell equations later. In
§ 4 we rewrite some basic differential operators (the divergence, the gradient
etc.) in curvilinear coordinates (X , t) ∈ Ωε, X ∈ S , t ∈ (−ε, ε) of a
thin shell. We also discuss the representation of vector fields in a full (but
linearly dependent) system of tangent vectors

{
dj

}n

j=1
, which represent the

projections of the Cartesian base
{
ej

}n

j=1
to the hypersurface S (see (2)–

(4)).
The most important result in § 5 is the form of deformation tensor and

Lamé operator in the curvilinear coordinates (X , t) ∈ Ωε. We also prove
coerciveness of the Lamé operator and show that the deformation tensor is
nothing but the linearized change of the metric tensor on the surface. In § 6
we formulate rigorous variational problem for the 3D shell configuration and
apply the scaling t → εt, which changes the integration in the transversal
direction from the small interval (−ε, ε) to the finite interval (−1, 1).

Section 7 is the most important in the present paper: By using formal
asymptotic expansion of solutions and applied forces (see (8)) and formal
asymptotic analysis we establish properties of the displacement vector field
(see (9)) and the 2D equation of the shell, written on the middle surface
S (see (10), (11)). We also prove the unique solvability of the obtained
equation of a shell.

In the concluding § 8 we describe, just for the readers convenience, two
other asymptotic models of a shell, most relevant to the model derived in
this paper: Koiter’s and Sanchez-Palencia–Ciarlet models.

1. Auxiliaries from Differential Geometry

By a classical approach differential equations on surfaces are written with
the help of covariant and contravariant frames, metric tensors and Christof-
fel symbols. To demonstrate a difference between a classical and the present
approaches, let us consider an example. A surface S is given by a local
immersion (1), which means that the derivatives

{
gk := ∂kΘ

}n−1

k=1
are lin-

early independent vector fields on the surface S and constitute a covariant
basis in the space of tangential vector fields TS to S . Or, equivalently, the
Gram matrix

GS (X ) = [gjk(X )]n−1×n−1, gjk := 〈gj , gk〉,
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which is the covariant metric tensor, has the inverse G−1
S (X ) =

[gjk(X )]n−1×n−1. This inverse G−1
S (X ) is known as the contravariant met-

ric tensor, represents the Gram matrix gjk := 〈gj , gk〉 of the contravariant
basis {gk}n−1

k=1 and the latter is biorthogonal to the covariant basis

〈gj , g
k〉 = δjk, j, k = 1, . . . , n− 1 . (14)

The Gram matrix GS (X ) is responsible for the Riemannian metric on S .
Here and in what follows

〈U ,V 〉 :=
n∑

j=1

U0
j V 0

j , U =(U0
1 , . . . , U0

n)>∈Rn, V =(V 0
1 , . . . , V 0

n )>∈Rn,

denotes the scalar product in the Euclidean space Rn.
The surface divergence and the surface gradient in classical differential

geometry (i.e., in intrinsic parameters of the surface S ) are defined as
follows:

div S U :=
[
detGS

]−1/2
n∑

j=1

∂j

{[
det GS

]1/2
U j

}
,

∇S f =
n−1∑

j,k=1

(gjk∂jf)∂k, U =
n−1∑

j=1

U jgj

(15)

(see [33, Ch. 2, § 3]). The intrinsic parameters enable generalization to
arbitrary manifolds, not necessarily immersed in the Euclidean space Rn.

An alternative form of these and other operators on a hypersurface S ⊂
Rn is based on the calculus of Gunter’s derivatives and applies the Cartesian
coordinates of the ambient space Rn with the natural basis

e1 = (1, 0, . . . , 0)>, . . . , en = (0, . . . , 0, 1)>. (16)

The calculus itself operates with the field of unit normal vectors to the
hypersurface S

ν(X ) := ± g1(Θ−1(X )) ∧ · · · ∧ gn−1(Θ−1(X ))∣∣g1(Θ−1(X )) ∧ · · · ∧ gn−1(Θ−1(X ))
∣∣ , X ∈ S . (17)

where U (1) ∧ · · · ∧U (n−1) (or also U (1) × · · · ×U (n−1)) denotes the vector
product of vectors U (1), . . . , U (n−1) ∈ Rn. If a hypersurface S in Rn is
defined implicitly

S =
{

X ∈ ω : ΨS (X ) = 0
}
, (18)

where ΨS : ω −→ R is a Ck-smooth, k > 1, or a Lipschitz continuous and
is regular ∇Ψ(X ) 6= 0, the outer unit normal vector field coincides with the
normalized gradient of the generating function

ν(X ) := ± ∇ΨS (X )∣∣∇ΨS (X )
∣∣ , X ∈ S . (19)
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The sign ± is chosen appropriately to make the vector field ν(X ) outer with
respect to the compact domain bordered by S , provided the surface S has
no boundary. If a surface S is hypograph

S =
{

x = (x′, xn)>, x′ ∈ ω ⊂ Rn−1 : xn = ΦS (x′)
}

, (20)

where Φ is either Ck-smooth, k > 1, or Lipschitz continuous, the outer unit
normal vector is defined by the formula

ν(x′) :=
(∇ΦS (x′),−1)>√
1 +

[∇ΨS (X )
]2 , x′ ∈ ω. (21)

The contravariant frame
{
gk

}n−1

k=1
(cf. (14)) can also be defined by the

formulae:

gk =
1

GS
g1 ∧ · · · ∧ gk−1 ∧ ν ∧ gk+1 ∧ · · · ∧ gn−1, (22)

〈gj , g
k〉 = δjk, k = 1, . . . , n− 1.

The collection of the tangential Günter’s derivatives are defined as follows
(cf. [17], [20], [22], [11], [16])

Dj := ∂j − νj(X )∂ν = ∂dj , dj := πS ej . (23)

Here ∂ν :=
n∑

j=1

νj∂j is the standard normal derivative and

πS : Rn −→ TS , πS U := U − νν>U = U − 〈ν, U〉ν, t ∈ S , (24)

denotes the canonical orthogonal projection π2
S = πS onto the space TS

of tangential vector fields: (ν, πS V ) = 0 for all V ∈ Rn.
The collection {Dj}n

j=1 of the first-order derivatives represent directional
derivatives along the tangential vector fields {dj}n

j=1 to S .
A tangential vector field U ∈ TS has representations

U =
n∑

j=1

U0
j ej =

n∑

j=1

U0
j dj , (25)

where the coefficients U0
1 , . . . , U0

n are the same. Written with the help of
Gunter’s derivatives, the surface gradient ∇S U and the surface divergence
div S U from (15) acquire the form

∇S U := (D1U
0, . . . , DnU0)>, div S U ; =

n∑

j=1

DjU
0
j (26)

(cf. [16]), while the derivative of a vector field V along U and the corre-
sponding covariant derivative have the form

∂UV =
n∑

j=1

U0
j DjV . (27)
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A derivative ∂S
U : C1(S ) −→ C0(S ) along a vector field U ∈ C(S )

is called covariant if it is a linear automorphism of the space of tangential
vector fields

∂S
U : TS −→ TS . (28)

The covariant derivative of a tangential vector field V =
n∑

j=1

V 0
j dj ∈ TS

along a tangential vector field U =
n∑

j=1

U0
j dj ∈ TS is defined by the formula

∂S
U V := πS ∂UV =

n∑

j=1

U0
j DS

j V (29)

(cf. [13], [14]). where the projection πS is defined in (24) and DS
j : TS −→

TS is the covariant Gunter’s derivative

DS
j V := πS DjV = DjV − 〈ν, DjV 〉ν, j = 1, . . . , n. (30)

In the classical differential geometry the derivatives of the covariant basis
∂jgk, of the covariant basis ∂jg

k and of the unit normal vector field are given
by the following formulae

∂kgj(x) = ∂k∂jΘ(x) =
n−1∑
m=1

Γm
jk(x)gm(x) + bjk(x)ν(x), (31)

∂jg
k(x) = −

n−1∑
m=1

Γk
jm(x)gm(x) + bk

j (x)ν(x) ∀x ∈ Ω, (32)

∂jν = −
n−1∑

k=1

bjkgk = −
n−1∑

k=1

bk
j gk, j = 1, . . . , n− 1, (33)

where ν(x) := ν(Θ(x)), x ∈ Ω and Γm
jk(x) are the Christoffel symbols,

defined by the equalities

Γm
jk(x) = Γm

kj(x) = 〈∂kgj(x), gm(x)〉. (34)

The matrices

BS (X ) :=
[
bk
j (X )

]
(n−1)×(n−1)

= G−1
S (X )BS (X ),

BS (X ) :=
[
bjk(X )

]
(n−1)×(n−1)

= B>
S (X ), X ∈ S , (35)

compiled of projections of derivatives of the covariant and contravariant
bases on the normal vector field (cf. (31))

bjk(x) := 〈∂jgk(x),ν(x)〉 = −〈gk(x), ∂jν(x)〉
= 〈∂kgj(x), ν(x)〉 = bkj(x), (36)

bk
j (x) := 〈∂jg

k(x),ν(x)〉 = −〈gk(x), ∂jν(x)〉, ∀x ∈ Ω. (37)

represent the important covariant curvature tensor and the mixed curvature
tensor. The covariant curvature tensor is symmetric bjk = bkj (cf (36)),
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while the mixed curvature tensor is not: in general bk
j 6= bj

k. The coefficients
bjk and bk

j are related as follows:

bk
j =

n−1∑
m=1

gkmbmj , bjk =
n−1∑
m=1

gkmbm
j , j, k = 1, . . . , n− 1. (38)

Within the classical theory the covariant derivative of a tangential vector
field V ∈ TS along a vector field U ∈ TS , where

V =
n−1∑

j=1

V jgj =
n−1∑

j=1

Vjg
j =

n∑

j=1

V 0
j dj ,

U =
n−1∑

j=1

U jgj =
n−1∑

j=1

Ujg
j =

n∑

j=1

V 0
j ej ,

are defined by the formulae

∂S
U V := πS ∂UV :=

n−1∑

j,m=1

U jV m
;j gm, V m

;j = ∂jV
m +

n−1∑

k=1

Γm
jkV k, (39)

:=
n−1∑

j,m=1

UjVm;jg
m, Vm;j := ∂jVm −

n−1∑

k=1

Γk
jmVk (40)

(see (27) for the third form of the covariant derivative).

2. The Deformation Tensor and Lamé Operator on a
Hypersurface

The Lamé operator LS on S is the natural operator associated with
the Euler-Lagrange equations for a variational integral. The starting point
is the total free (elastic) energy

E [U ] :=
∮

S

E(y, DσU(y)) dS, DS U :=
[
(DS

j U)0k
]
n×n

, U ∈ TS , (41)

ignoring at the moment the displacement boundary conditions (Koiter’s
model). Equilibria states correspond to minimizers of the above variational
integral (see [26, § 5.2]). The kernel E = (SS , Def S ) depends bi-linearly
on the stress SS =

[
Sjk

]
n×n

and the deformation Def S (U) tensors. The
following form of the deformation (strain) tensor was identified in [16]

Def S (U) =
[
Djk(U)

]
n×n

, U =
n∑

j=1

U0
j dj ∈ TS , j, k = 1, . . . , n, (42)

Djk(U) :=
1
2

[
(DS

j U)0k+(DS
k U)0j

]
=

1
2

[
DkU0

j +DjU
0
k +

n∑
m=1

U0
mDm(νjνk)

]
,
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where (DS
j U)0k := 〈DS

j U , ek〉. Hooke’s law states that SS = CDef S

for some linear fourth-order tensor C :=
[
cjk`m

]
n×n×n×n

, which is positive
definite:

〈Cζ, ζ〉 :=
n∑

i,j,k,`=1

cijk`ζijζk` > C0

n∑

i,j=1

|ζi,j |2 := C0|ζ|2 (43)

for all symmetric tensors ζij = ζji ∈ C, ζ :=
[
ζij

]
n×n

. Moreover, C has the
following symmetry properties:

cijk` = cij`k = ck`ij ∀ i, j, k, `. (44)

The following form of the Lamé operator for a linear anisotropic elastic
medium was identified in [16]

LS = Def ∗S C Def S =
[ n∑

`m=1

cjk`mDS
j DS

`

]
n×n

, U ∈ TS , (45)

where the adjoint operator to the deformation tensor

Def ∗S U :=
1
2

n∑

j=1

{
(DS

j )∗
[
Ujk + Ukj

]}n

k=1
for U = ‖Ujk‖n×n (46)

maps 2-tensor functions to vector functions.
For an isotropic medium, as usual, the number of distinct coefficients

reduces from 21 to 2 and

cjklm = λδjkδlm + µ
[
δjlδkm + δjmδkl

]
, (47)

where λ and µ are the Lamé constants. The corresponding Lamé operator
acquires a simpler form

LS U = −λ∇S div S U + 2µDef ∗S Def S U =

= −µπS ∆S U − (λ + µ)∇S div S U − µH 0
S WS U , U ∈ TS (48)

(cf. (24) for the projection πS ). λ, µ ∈ R are the Lamé coefficients, whereas

H 0
S = −div S ν := −

n∑

j=1

Djνj = TrWS = TrBS =
n−1∑

j=1

bj
j ,

WS = −[
Djνk

]
n×n

.

(49)

Note, that HS := (n− 1)−1H 0
S represents the mean curvature of the sur-

face S ; WS is the Weingarten curvature tensor of S ; Eigenvalues of WS ,
except one which is 0, represent all principal curvatures of the surface S
and coincide with eigenvalues of the curvature tensors BS (X ) and BS (X )
in (35).

Note, that Gunter’s derivatives were already applied in [22] to minimal
surfaces and in [17], [20] to the problems of 3D elasticity.
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A vector field on Rn near a surface S can be represented in the extended
covariant

{
gj

}n

j=1
and contravariant {gj}n

j=1 frames, where gn = gn := ν

is the outer unit normal vector

U =
n∑

j=1

U jgj =
n∑

j=1

Ujg
j , Un = Un := 〈U ,ν〉. (50)

Let us consider a natural extension of the curvature tensor:
BS = [bjk]n×n , bjk = bkj = 〈∂jgk, ν〉 = −〈gk, ∂jν〉,

bnn = 〈∂νν, ν〉 = 0,
(51)

bnj = bjn = 〈∂νgj , ν〉 = −〈gj , ∂νν〉 = 0, j, k = 1, . . . , n− 1

(cf. (35) and (37)).
Similarly, we consider a natural extension of the deformation tensor

D̃S (U) =
[
D̃jk(U)

]
n×n

, D̃jk(U) :=
1
2

[
Uj;k + Uk;j

]
, (52)

where the extended covariant derivatives Uj;k are defined as

Uj;k := ∂kUj −
n∑

m=1

Γm
kjUm, ∂j := ∂gj ,

Γm
kj := 〈∂kgj , g

m〉 = −〈gj , ∂kgm〉, j, k = 1, . . . , n

(53)

(cf. (39) and (40) for j = 1, . . . , n−1). In particular, ∂n = ∂ν , gn = gn = ν
and the Christoffel symbols are extended by the curvature tensors (cf. (36)):

Γn
jk =Γn

kj :=〈∂kgj , ν〉=−〈gj , ∂kν〉=bkj = bjk, j, k=1, . . . , n−1,

Γk
jn :=〈ν, ∂jg

k〉=−〈∂jν, gk〉=bk
j , j, k=1, . . . , n−1,

Γn
nj =Γn

jn =〈∂jν,ν〉=0, Γj
nn =〈∂νν, gj〉=0, j =1, . . . , n.

(54)

The notation (54) enables to write formulae (31) and (32) in an universal
form

∂kgj =
n∑

m=1

Γm
jkgm, ∂jg

k = −
n∑

m=1

Γk
jmgm j, k = 1, . . . , n.

Theorem 2.1. The linearized change of the extended metric tensor

GS =
[
gjk

]
n×n

, gjk = 〈gj , gk〉, gnj = gjn = δjn, j, k = 1, . . . , n (55)

by a displacement vector field represented in the extended contravariant
frame (50) coincides with the extended deformation tensor:

gjk :=
{
gjk(U)− gjk

}lin =
1
2

[
Uj;k + Uk;j

]
= D̃jk(U). (56)

Here gjk and gjk(U) denote the covariant metric tensors of the surfaces
before S and after S (U) = S + U the displacement U is applied, re-
spectively; Uj;k denotes the covariant derivative (cf. (39)). The notation{ · }lin indicates that we ignore all non-linear summands inside the bracket
(for D̃jk(U) see (52)).
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Proof. By applying (32), (33), (39), (53) and (54) we get:

∂j

[ n∑
r=1

Urg
r
]

=
n∑

r=1

(∂jUr)gr +
n∑

r=1

Ur∂jg
r =

n∑
r=1

[
∂jUr −

n∑
m=1

Γm
jrUm

]
gr =

=
n∑

r=1

Ur;jg
r, j = 1, . . . , n. (57)

We recall that the vectors are biorthogonal 〈gj , g
k〉 = δjk, 〈ν, gk〉 = 0,

j, k = 1, . . . , n − 1, apply the obtained equalities, ignore non-linear terms
like Ur;jUm;k and get:

gjk =
{
gjk(U)−gjk

}lin =
1
2

{
〈∂jΘ+∂jU , ∂kΘ+∂kU〉−〈∂jΘ, ∂kΘ〉

}lin

=

=
1
2

{〈
gj + ∂j

[ n∑
r=1

Urg
r
]
, gk + ∂k

[ n∑
m=1

Umgm
]〉

− 〈gj , gk〉
}lin

=

=
1
2
[
Uj;k+Uk;j

]
=D̃jk(U). ¤

3. Configuration of a thin Shell

We endeavor to study elastic shells, whose reference configuration Ωε is
described by equalities (1) and (2). We will also use the notation ν(y) :=
ν(Θ(y)) for brevity unless this does not leads to a confusion. The variable
t in (2) will be referred to as the transverse variable.

Ωε is referred to as a tubular domain of the middle surface S .

Lemma 3.1. If the hypersurface S is, at least, C1-smooth, the mapping

Θε : ωε := ω × (−ε, ε) −→ Ωε, ωε ⊂ Rn,

Θε(y, t) := Θ(y) + tν(y), (y, t) ∈ ωε,
(58)

is a diffeomorphism, i.e.,

det∇(y,t)Θε(y, t) 6= 0 for all (y, t) ∈ ωε, (59)

provided that ε is sufficiently small.

Proof. Recall that the vectors gj(y) := ∂jΘ(y), j = 1, . . . , n− 1 are linearly
independent (Θ is an immersion), which implies that the corresponding
Gram determinant does not vanishes

G
[
g1(y), . . . , gn−1(y)

] 6= 0 ∀ y ∈ ω.

Then the perturbed system
{
gε

j(y)
}n

j=1
, gε

j(y) := ∂jΘε(y, t) = gj(y) + t∂jν(y), j = 1, . . . , n− 1,

gε
n(y) := ∂tΘε(y, t) = ν(y) = gn(y)

remains linearly independent for |t| 6 ε when ε is sufficiently small and (59)
follows. ¤
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Going into detail one finds easily that 1/ε is more than the maximum of
modules of all principal curvatures of the surface S , i.e.

1
ε

> max
j=1,...,n
X ∈S

|λ1(X )|,

where λ1(X ), . . . , λn−1(X ), λn(X ) ≡ 0 are all eigenvalues of the Weingarten
matrix WS (X ), X ∈ S , then the mapping Θε in (58) is a diffeomorphism.

Let us use the notation

St :=
{

X t ∈ Ωε : X t = X + tν(X ), X ∈ S
}

=

=
{
z ∈ Ωε : dist(z, S ) = t

}
, −ε < t < ε, (60)

for the surface on the distance t from the middle surface S . If t is fixed
and sufficiently small, St is a surface, defined by the immersion Θε(y, t) in
(58). Let σt denote the surface measure on St and use dσ = dσ0 for the
measure on the middle surface S = S0.

Lemma 3.2. The unit normal vector field νt(X t), X t ∈ St, is indepen-
dent of the transversal variable t ∈ [−ε, ε]:

νt(X t)=ν(X ), X =Θ(x)∈S , X t =X +tν(X )=Θε(x, t)∈St. (61)

Proof. The covariant bases on the surfaces S and St, defined by the dif-
seomorphisms Θ(x) in (1) and Θε(x, t) in (58) are, respectively,

gj(x) :=∂jΘ(x) and gj,t(x) :=∂jΘε(t, x), (x, t)∈ωε, j =1, . . . , n−1. (62)

First recall that

gj1 ∧ · · · ∧ gjn−1
= σ(j1, . . . , jn−1)g1 ∧ · · · ∧ gn−1, (63)

where σ(j1, . . . , jn−1) = 0,±1 denotes the permutation sign:

σ(j1, . . . , jk) =

=





+1 if (j1, . . . , jk) is an even permutation of (1, . . . , n− 1),
0 if jr = js for some r, s = 1, . . . , n− 1 and r 6= s,

−1 if (j1, . . . , jk) is an odd permutation of (1, . . . , n− 1).
(64)

Also recall, that

∂jν = −
n−1∑

k=1

bk
j gk, (65)

(see (33)) and

HS =
1

n− 1
TrBS =

1
n− 1

n−1∑

j=1

bj
j , KS = det BS (66)

are, respectively, the mean curvature (cf. (49)) and the Gaussian curvature
of the hypersurface S .
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Using natural identifications

ν(X ) = ν(Θ(x)) for X = Θ(x) ∈ S ,

ν(X t) = ν(Θt(x)) for X t = Θt(x) ∈ St

and by invoking equalities (65)–(66), we obtain the following

g1,t(x) · · · ∧ gjn−1,t(x) = ∂1[Θ(x) + tν(x)] ∧ · · · ∧ ∂n−1[Θ(x) + tν(x)] =

=
[
1− (n− 1)tHS (x) + · · ·+ (−t)n−1KS (x)

]
g1(x) ∧ · · · ∧ gn−1(x) (67)

and the function 1 − (n − 1)tHS (x) + · · · + (−t)n−1KS (x) is positive,
provided t is sufficiently small. Then, in view of the established dependence
(67) and by the definition of the unit normal vector fields,

νt(X t) = ± g1,t(x) ∧ · · · ∧ gjn−1,t(x)
|g1,t(x) ∧ · · · ∧ gjn−1,t(x)| =

= ± g1(x) ∧ · · · ∧ gjn−1
(x)

|g1(x) ∧ · · · ∧ gjn−1
(x)| = ν(X ),

X = Θ(x)∈S , X t =Θε(x, t)=X +tν(X )∈Ωε, ∀x∈ω, t∈ [−ε, ε],

(68)

which proves the asserted equality. ¤

Remark 3.3. The foregoing Lemma 3.2 justifies that the extension of the
unit normal vector field ν(X ) on the hypersurface S as a constant in the
transversal direction is natural.

The next Corollary 3.4 is proved in [27, Theorem 2.5.18] for n = 3 and
represents a consequence of equality (67).

Corollary 3.4. Under the conditions of the foregoing Lemma 3.2, the
surface measures dσt on St and dσ on S are related as follows

dσt(X t) :=
[
1− (n− 1)tHS (X ) + · · ·+ (−t)n−1KS (X )

]
dσ, (69)

X t = X + tν(X ) ∈ St, X ∈ S ,

provided ε is small enough that

inf
−ε<t<ε

[
1− (n− 1)tHS (X ) + · · ·+ (−t)n−1KS (X )

]
> 0. (70)

In particular, for n = 3, the following equality is valid:

dσt :=
[
1− 2tHS (X ) + t2KS (X )

]
dσ. (71)

Proof. The proof is a direct consequence of the well known formulae for the
surface measures

dσ = |g1 ∧ · · · ∧ gn−1|, dσt = |g1,t ∧ · · · ∧ gn−1,t|
and the equality (67) proved above. ¤
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Remark 3.5. The estimate for the determinant GS = det GS

0 < C0 6 GS (x) 6 C1 < ∞ (72)

of the covariant metric tensor GS := [〈gj , gk〉](n−1)×(n−1), is a consequence
of the definition of the surface.

The similar estimate for the determinant GS ,t = det GS ,t

0 < D0 6 GS ,t(x, t) 6 D1 < ∞ (73)

of the covariant metric tensors GS ,t :=
[〈gj,t, gk,t〉

]
(n−1)×(n−1)

of the equi-
distant surfaces St, provided ε is so small that (70) holds, is a consequence
of equality

dσt =
√

GS ,t(x, t)dx, dσ =
√

GS (x) dx, (x, t) ∈ ωε = ω × [−ε, ε]. (74)

and of (69), (72).
Moreover, (69) and (74) imply that

GS ,t(x, t) :=
[
1− (n− 1)tHS (X ) + · · ·+ (−t)n−1KS (X )

]2
GS (x), (75)

(x, t) ∈ ωε = ω × [−ε, ε].

In particular, for n = 3, the following equality is valid:

GS ,t(x, t) :=
[
1− 2tHS (X ) + t2KS (X )

]2
GS (x). (76)

Hereafter we will tacitly assume that ε is sufficiently small that the map-
ping Θ in (1) is a diffeomorhism and the estimates (70), (73) are both valid.

A vector field N (x), defined in the tubular neighborhood Ωε of the
hypersurface S , is called a proper extension of the unit normal vector field
ν on S , if the conditions

∂kNj(x)−∂jNk(x)=0 ∂N Nj(x)=0 for all x∈Ωε, j, k=1, . . . , n, (77)

hold.
Easy to check, that the extensions given, for example, by equalities (19)

and (21), are both proper. A simplest proper extension of ν(x) is to make
the extended field independent of the transversal variable

N (x) = N (X , t) := ν(X ), x = (X , t) ∈ Ωε. (78)

Lemma 3.6. The extended Günter’s derivatives Dj := ∂j −Nj∂N , j =
1, . . . , n (cf. (23)) for a properly extended unit normal vector field N (x),
have the following properties:

i.
n∑

j=1

NjDj = 0;

ii. ∂jNk = DjNk = DkNj;

iii. [Dj , ∂N ] = 〈DjN , ∇〉 =
n∑

r=1
(DjNr)∂r;

iv. The adjoint operator to the Günter’s derivative is D∗
j = −Dj− (n−

1)NjHS , where HS (X ) is the mean curvature of S ;
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v. The adjoint operator to the normal derivative is ∂∗N = −∂N +(n−
1)HS .

Proof. The asserted properties are easy to check (see [12], [13], [14], [16] for
these and other similar equalities). ¤

4. Basic Differential Operators in Curvilinear Coordinates

The n-tuple g1 := ∂1Θ, . . . , gn−1 := ∂n−1Θ, gn := N , where N is the
proper extension of ν in the neighborhood Ωε (cf. (77)), is a basis in Ωε

and arbitrary vector field U =
n∑

j=1

U0
j ej ∈ V (Ωε) is represented with this

basis in “curvilinear coordinates”.
Let us consider the system of (n + 1)-vectors

dj := ej −NjN , j = 1, . . . , n and dn+1 := N , (79)

where e1, . . . , en is the Cartesian frame in Rn (cf. (16)); the first n vectors
d1, . . . , dn are tangential to the surface S (cf. (23)), while the last one
dn+1 = N is orthogonal to it and, thus, to d1, . . . , dn. This system is,
obviously, linearly dependent, but full and any vector field U ∈ V (Ωε) is
written in the following forms:

U =
n∑

j=1

U0
j ej =

n+1∑

j=1

U0
j dj , where U0

n+1 := 〈N ,U〉 =
n∑

j=1

NjU
0
j . (80)

Note for a later use, that due to the conventions (79) and (80)

Nn+1 := 〈N , N 〉 = 1, (81)

∂U =
n∑

j=1

U0
j ∂j =

n+1∑

j=1

U0
j Dj . (82)

Since the system
{
dj

}n+1

j=1
is linearly dependent, the representation of a

vector is not unique. Next Lemma 4.1 addresses such representation because
it is crucial in the present investigation.

Lemma 4.1. Vector fields

U =
n+1∑

j=1

U0
j dj and V =

n+1∑

j=1

V 0
j dj . (83)

coincide U(X ) = V (X ) if and only if

V 0
n+1 = U0

n+1 = 〈N , U〉 and V 0
j = U0

j + cNj for j = 1, . . . , n (84)

for arbitrary function c ∈ L∞(S ).
The components U0

1 , . . . , U0
n, U0

n+1 in the representation (83) of a vector
field U are defined in a unique way if

U0
n+1 = 〈Û , N 〉 =

n∑

j=1

U0
j Nj , Û := (U0

1 , . . . , U0
n)>. (85)
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Proof. We leave the proof to the reader. ¤
Definition 4.2. For a function ϕ ∈ W1(Ωε) we define the extended

gradient

∇Ωεϕ =
{
D1ϕ, . . . , Dnϕ, Dn+1ϕ

}>
, Dn+1ϕ := ∂N ϕ (86)

and for a smooth vector field U =
n∑

j=1

U0
j ej =

n+1∑
j=1

U0
j dj ∈ V (Ωε) we define

the extended divergence

div ΩεU :=
n+1∑

j=1

DjU
0
j = −∇∗

ΩεU , (87)

where (cf. equality (77))

Dn+1U
0
n+1 := ∂N U0

n+1 = 〈N , ∂N U〉 = (Dn+1U)0n+1. (88)

Caution: While defining the divergence in (87) we should only use the

representation in Cartesian coordinates U =
n∑

j=1

U0
j ej ∈ V (Ωε), because

for other representations, differing from this one by the vector cN with
arbitrary function c(X ) (cf. (84)), the divergence will differ by the summand
div Ωε

(
c(X )N (X )

)
= ∂N c(X ) − (n − 1)c(X )HS (X ), where HS is the

mean curvature of S (see (66)).

Lemma 4.3. The classical gradient ∇ϕ := {∂1ϕ, . . . , ∂nϕ}>, written
in the full system of vectors

{
dj

}n+1

j=1
in (79) coincides with the extended

gradient ∇Ωεϕ in (86).

Similarly: the classical divergence div U :=
n∑

j=1

∂jU
0
j of a vector field

U :=
n∑

j=1

U0
j ej, written in the full system (79), coincides with the extended

divergence div U = div ΩεU in (87).
The extended gradient and the negative extended divergence are dual

∇∗
Ωε = −div Ωε with respect to the scalar product in Rn.
The Laplace–Beltrami operator ∆Ωε := div Ωε∇Ωεϕ = −∇∗

Ωε(∇Ωεϕ) on
Ωε, written in the full system (79), acquires the following form

∆Ωεϕ =
n+1∑

j=1

D2
j ϕ, ϕ ∈W2(Ωε). (89)

Proof. That the gradients coincide follows from the choice of the system (79):

∇ϕ :=
{
∂1ϕ, . . . , ∂nϕ

}> =
n∑

j=1

ej∂jϕ =
n∑

j=1

ej(Djϕ + NjDn+1ϕ) =

=
n∑

j=1

djDjϕ + N Dn+1ϕ =
n+1∑

j=1

djDjϕ = ∇Ωεϕ
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since ∂j = Dj + NjN and
n∑

j=1

ejDjϕ =
n∑

j=1

djDjϕ.

By applying (77) for the divergence we get:

div U =
n∑

j=1

∂jU
0
j =

n∑

j=1

DjU
0
j +

n∑

j=1

Nj∂N U0
j =

n∑

j=1

DjU
0
j +

n∑

j=1

∂N

(
NjU

0
j

)
=

=
n∑

j=1

DjUj + ∂N U0
n+1 =

n+1∑

j=1

DjUj = div ΩεU . (90)

The foregoing assertions combined with the classical equality ∇∗ =
−div , ensures the equality ∇∗

Ωε = −div Ωε .
Formula (89) for the Laplace–Beltrami operator is a direct consequence

of equalities (86) and (87). ¤

Let us check the following equalities for a later use:

∇ΩεU =
[
DjU

0
k

]
n+1×n+1

and, in particular:

∇Ωεx=In+1×n+1, x∈Rn. (91)

where

U :=
n+1∑
m=1

U0
mdm =

n∑
m=1

U0
mem,

U0
n+1 =

n∑
m=1

U0
mνm, In+1×n+1 = [δjk]n+1×n+1.

In fact:

DjU :=Dj

[ n+1∑
m=1

U0
kdk

]
=Dj

[ n∑

k=1

U0
kek

]
=

n∑

k=1

(∂jU
0
k )ek−νj

n∑

k=1

(∂νU0
k )ek =

=
n+1∑

k=1

(∂jU
0
k )dk − νj

n+1∑

k=1

(∂νU0
k )dk =

n+1∑

k=1

(DjU
0
k )dk, j = 1, . . . , n,

Dn+1U = ∂νU =
n∑

m=1

(∂νU0
m)em =

n+1∑

k=1

(∂νU0
m)dm.

The second equality in (91) is a direct consequence of the first one for
U(x)= x.

Next we will rewrite the deformation tensor. For this we need to define
the extended curvature tensor

BΩε(x) :=
[
bjk(x)

]
(n+1)×(n+1)

,

bjk(x) := 〈Djd
k(x),N (x)〉 = −〈dk(x),DjN (x)〉

(92)

in a tubular domain Ωε (cf. (2)), where N is a proper extension of the
unit normal vector field ν on S (cf. (77)). The concluding equality in (92)
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is based on the equalities 〈dk,N 〉 = 0, k = 1, . . . , n, and 〈dn+1,N 〉 =
〈N , N 〉 = 1:

〈Djd
k(x), N (x)〉=Dj〈dk(x),N (x)〉−〈dk(x), DjN (x)〉=〈dk(x),DjN (x)〉.

Lemma 4.4. The following is an equivalent definition of the extended
curvature tensor:

BΩε := −∇ΩεN . (93)

The last column and the last row in the extended curvature tensor BΩε

are trivial
bj(n+1) = b(n+1)j = 0, j = 1, . . . , n + 1. (94)

The remainder
[
bjk

]
n×n

coincides with the extended Weingarten matrix

bjk = −DjNk, j, k = 1, . . . , n + 1, (95)

and restricted to the middle surface S , coincides with the Weingarten ma-
trix

WΩε

∣∣
S

= WS = −[Djνk]n×n.

Proof. Equality (93) is a direct consequence of equalities (94) and (95) .
Thus, we concentrate on the proof of the latter two equalities.

To prove (94) we invoke (92) and proceed as follows:

bj(n+1) = 〈Djd
n+1, N 〉 = 〈DjN , N 〉 =

1
2
Dj〈N , N 〉 =

1
2
Dj1 = 0,

b(n+1)j = 〈∂dn+1dj ,N 〉 = 〈∂N dj , N 〉 = −〈dj , ∂N N 〉 = 0.

We have applied that 〈N , N 〉 = 1, ∂N N = 0 and 〈dj , N 〉 = 0 for all
j = 1, . . . , n.

To prove (95) it suffices to note that

bjk = −〈dk, DjN 〉 = −〈ek −NkN ,DjN 〉 =

= −DjNk + Nk〈N , DjN 〉 = −DjNk, ∀ j, k = 1, . . . , n,

since 〈DjN , N 〉 = 0 for all j = 1, . . . , n. ¤

Corollary 4.5. Let Ωε be a tubular domain in the 3-dimensional Eu-
clidean space R3 with the middle hypersurfaces S = S0 and St be the
equidistant hypersurfaces defined in (60).

The Weingarten matrix, the mean and the Gaußian curvatures of the
surfaces St are independent of the parameter t:

WSt ≡ WS = −[
Djνk

]
n×n

,

HSt = HS =
1
2

TrWSt , KSt = KS = λ1λ2 ∀ t ∈ (−ε, ε),
(96)

where λ1 and λ2 are those eigenvalues of the Weingarten matrix WS which
are left after removing two trivial eigenvalues λ3 = λ4 = 0.
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Proof. The proof follows immediately from the foregoing Lemma 4.4 and
form the independence of the vector field νt(X t) = ν(X ) from the transver-
sal variable t ∈ (−ε, ε) (see (61)). ¤

5. Elastic Deformation in Curvilinear Coordinates

Theorem 5.1. The classical deformation tensor

Def Ωε(U) :=
[1
2

[
∂jUk + ∂kUj

]]
n×n

, U ∈ V (Ωε),

written in the full system of vectors {dj}n+1
j=1 in (79), has the form

Def Ωε(U) :=
[
Djk(U)

]
(n+1)×(n+1)

, (97)

Djk(U) :=
1
2

[
(DS

j U)0k + (DS
k U)0j

]
, j, k = 1, . . . , n + 1, (98)

(DS
j U)0k :=

:=

{
DjU

0
k − 〈N , DjU〉Nk for j = 1, . . . , n + 1, k = 1, 2, . . . , n,

〈N ,DjU〉 = (DjU)0n+1 for j = 1, . . . , n + 1, k = n + 1

and, in particular (cf. (88)),

(DS
n+1U)0n+1 = 〈N , ∂N U〉 = ∂N 〈N ,U〉 = ∂N U0

n+1. (99)

Proof. To prove (97) let us consider the full systems
{
ejk := ej ⊗ ek

}n+1

j=1
,

{
djk := dj ⊗ dk

}n+1

j=1
,

ej = dj + Njd
n+1, j = 1, . . . , n, en+1 := dn+1 := N ,

(100)

apply the equalities
∂j = Dj + NjDn+1, ∂jNk = ∂kNj , Dn+1Nk = ∂N Nk = 0,
n∑

j=1

NjDj = 0, U0
n+1 =

n∑

j=1

NjU
0
j ,

n∑

j=1

Njd
jk =

n∑

k=1

Nkdjk = 0
(101)

(cf. (77)) and derive

Def (U) =
1
2

n∑

j,k=1

(∂jU
0
k + ∂kU0

j )ejk =

=
1
2

n∑

j,k=1

[
∂jU

0
k +∂kU0

j

]
(djk+Njd

n+1,k+Nkdj,n+1+NjNkdn+1,n+1)=

=
1
2

n∑

j,k=1

[
∂jU

0
k +∂kU0

j

]
djk+

1
2

n∑

j=1

[
Dn+1U

0
j +

n∑

k=1

Nk∂jU
0
k

]
dj,n+1+

+
1
2

n∑

k=1

[
Dn+1U

0
k +

n∑

j=1

Nj∂kU0
j

]
dn+1,k+
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+
n∑

j=1

Nj(Dn+1U
0
j )dn+1,n+1 =

=
1
2

n∑

j,k=1

[
(DS

j U)0k+(DS
k U)0j +〈DjU ,N 〉Nk+〈DkU , N 〉Nj

]
djk+

+
1
2

n∑

j=1

[
(DS

n+1U)0j + 〈Dn+1U ,N 〉Nj+

+
n∑

k=1

[
NkDjU

0
k + NjNkDn+1U

0
k

]]
dj,n+1+

+
1
2

n∑

k=1

[
(DS

n+1U)0k + 〈Dn+1U , N 〉Nk+

+
n∑

j=1

[
NjDkU0

j + NkNjDn+1U
0
j

]]
dn+1,k+

+
n∑

j=1

Dn+1(NjU
0
j )dn+1,n+1 =

=
1
2

n∑

j,k=1

[
(DS

j U)0k + (DS
k U)0j

]]
djk+

+
1
2

n∑

j=1

[
(DS

n+1U)0j + (DjU)0n+1

]
dj,n+1+

+
1
2

n∑

k=1

[
(DS

n+1U)0k+(DkU)0n+1

]
dn+1,k+Dn+1U

0
n+1d

n+1,n+1=

=
n+1∑

j,k=1

Djk(U)djk. ¤

Now we are prepared to write the Lamé operator in curvilinear coor-
dinates, namely in the full system (79). The medium is assumed to be
isotropic.

Let U ∈ W1(Ωε) be a displacement field of the body subject to defor-
mation by surface and volume forces. We follow Koiter’s model as in [16]:
depart from the total free elastic energy

E [U ] :=
∫

Ωε

E(x, ∇U(x)) dx ∇U :=
[
(∂jUk

]
n×n

, (102)

U = (U1, . . . , Un)> ∈W1(Ωε)

and ignore at the moment the displacement boundary conditions. Equilib-
ria states correspond to minimizers of the above variational integral (see
[26, § 5.2]). At the moment the most important is to identify a correct
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form of the stored energy density E(x, ∇U(x)). It turns out that the case
of linear elasticity the energy density depends bi-linearly on the stress ten-
sor S =

[
Sjk

]
n×n

and the deformation (strain) tensor Def Ωε (see (98)):
E(x, ∇U(x)) = E(S, Def ΩεU). The result formulated in the next Theo-
rem 5.2 is well known (see [16] for the proof in the above described scenario).

Theorem 5.2. A vector field U ∈ V (Ωε) minimizes the free elastic
energy (102) modeling a homogeneous, linear, isotropic, elastic medium, if
and only if it is a solution to the following Lamé equation

LΩεU = 2µDef ∗ΩεDef ΩεU − λ∇Ωεdiv ΩεU = 0, (103)

where λ and µ are the Lamé constants.

Since Def ΩεU is the classical deformation tensor, just represented in a
different (full) system of vectors, solutions to the system of partial differen-
tial equations

Def ΩεU = 0, U ∈W1(Ωε)

coincides with the space of rigid motions R(Ωε), which consists of linear
vector-functions

V (x) = a + Bx, B =
[
bjk

]
n×n

, a ∈ Rn, x ∈ Ωε, (104)

restricted to the domain Ωε. The matrix B in (104) is skew symmetric

B :=




0 b12 b13 · · · b1(n−2) b1(n−1)

−b12 0 b21 · · · b1(n−3) b2(n−2)

· · · · · · · · · · · · · · · · · ·
−b1(n−2) −b2(n−3) −b3(n−4) · · · 0 b(n−1)1

−b1(n−1) −b2(n−2) −b3(n−3) · · · −b(n−1)1 0




=

= −B> (105)

with real valued entries bjk ∈ R. For n = 3, 4, . . . the space R(Ωε) is finite
dimensional and dim R(Ωε) = n + n(n−1)

2 = n(n+1)
2 .

Note that for n = 3 the vector field V ∈ R(Ωε) is the classical rigid
displacement

V (x) = a + Bx = a + b ∧ x,

b := (b1, b2, b3)> ∈ R3, x ∈ Ωε,
B :=




0 −b3 b2

b3 0 −b1

−b2 b1 0


 . (106)

Moreover, Korn’s inequality

∥∥U
∣∣W1(Ωε)

∥∥ 6 M
[∥∥U

∣∣L2(Ωε)
∥∥2 +

∥∥Def ΩεU
∣∣L2(Ωε)

∥∥2
]1/2

(107)

holds with some constant M > 0. For the classical deformation tensor in
Cartesian coordinates Def (U) the inequality (107) is well known (see e.g.,
[2]).
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Theorem 5.3. The Lamé operator LΩε in (103) is a formally self-
adjoint differential operator of second order and, written in the full system
(79), acquires the form

LΩεU = −µ∆ΩεU − (λ + µ)∇Ωεdiv ΩεU =

= − [µδjk∆Ωε + (λ + µ)DjDk]n+1×n+1 U . (108)

The operator LΩε is positive definite modulo rigid motions (see (104)
and (106)):

(LΩεU , U)S > 2µ
∥∥Def ΩεU

∣∣L2(Ωε)
∥∥2

. (109)
Moreover, the operator LΩε satisfies G̊arding’s inequality

(LΩεU , U)S > 2µ

M

∥∥U
∣∣W1(Ωε)

∥∥2 − ∥∥U
∣∣L2(Ωε)

∥∥2
, (110)

where M is the constant from (107) for p = 2 and µ is the constant from
(109).

Proof. To prove (108), we depart from the representation of the deformation
tensor

Def (U) =
1
2

n∑

j,k=1

(∂jU
0
k + ∂kU0

j )ejk

in the Cartesian frame, and get

(Def ∗Def (U), V ) = (Def (U),Def V ) =

=
1
4

n∑

j,k=1

∫

Ωε

(∂jUk + ∂kUj)(∂jVk + ∂kVj) dy =

=
1
2

n∑

j,k=1

∫

Ωε

∂∗j (∂jUk + ∂kUj)Vk dy,

Then

Def ∗Def (U) =
1
2

{ n∑

k=1

∂∗k(∂k + ∂j)U0
j

}n

j=1

=

=
1
2

{ n∑

k=1

(−∂2
k − ∂j∂k)U0

j

}n

j=1

=

= −1
2

∆U − 1
2

∇div U , U ∈ V (Ωε) (111)

which gives the well-known representation of the Lamé operator in the same
(canonical) basis

LΩεU = 2µDef ∗Def U − λ∇div U =

= −[
µδjk∆ΩεU0

k + (λ + µ)DjDkU0
k

]
n×n

=

= −µ∆U − (λ + µ)∇div U =

= −µ∆ΩεU − (λ + µ)∇Ωεdiv ΩεU (112)
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(cf. e.g. [2], [21]). The claimed equality (108) follows from (112) if we insert
the representation of the operators ∇ = ∇Ωε , div = div Ωε and ∆ = ∆Ωε

in the system
{
dj

}n+1

j=1
from Lemma 4.3.

The inequality (109) is a simple consequence of (103)

(LΩεU , U)Ωε = 2µ
∥∥Def Ωε(U)

∣∣L2(Ωε)
∥∥2 + λ

∥∥div ΩεU
∣∣L2(Ωε)

∥∥2 >

> 2µ
∥∥Def ΩεU

∣∣L2(Ωε)
∥∥2

,

while G̊arding’s inequality (109) follows from (109) and from the classical
Korn’s inequality (107):

(LΩεU , U)Ωε > 2µ
∥∥Def ΩεU

∣∣L2(Ωε)
∥∥2 >

> 2µ

M

∥∥∇ΩεU
∣∣W1(Ωε)

∥∥2 − ∥∥∇ΩεU
∣∣L2(Ωε)

∥∥2
. ¤

Let us reveal the geometric content of the extended deformation tensor.
For this we consider the linearized change of the extended metric tensor on
a surface.

If vector fields U and V are represented in the extended Cartesian system

U =
n∑

j=1

U0
j ej =

n+1∑

j=1

U0
j dj , V =

n∑

j=1

V 0
j ej =

n+1∑

j=1

V 0
j dj , (113)

dn+1 = ν, U0
n+1 = 〈U ,ν〉, V 0

n+1 = 〈V , ν〉,
The linearized change of the metric tensor becomes a matrix of order n+1.

Corollary 5.4. The linearized change

DS (U) =
[
djk(U)

]
(n+1)×(n+1)

:=
[{gjk(U)− gjk}lin

]
(n+1)×(n+1)

(114)

of the extended metric tensor by a displacement vector field U in (113)
coincides with the extended deformation tensor

djk(U) =
1
2

[
(DS

j U)0k + (DS
k U)0j

]
= Djk(U), j, k = 1, . . . , n + 1, (115)

defined in (97), (98).

Proof. Changing the extended contravariant frame (see (50)) to the ex-
tended Cartesian full system (see (79)), due to Theorem 5.1, the defor-
mation tensor D̃S (U) = [D̃jk(U)]n×n changes to the deformation tensor
DS (U)=[Djk(U)](n+1)×(n+1). Then (115) follows from (56). ¤

Theorem 5.5. The linearized change of metric the tensor on a surface

GS =
[
gjk

]
(n−1)×(n−1)

, gjk = 〈gj , gk〉, j, k = 1, . . . , n− 1, (116)
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by a non-tangential displacement vector field represented in the contravari-
ant frame (50) is given by the formulae:

gjk := {gjk(U)− gjk}lin =
1
2

[
Uj;k + Uk;j

]− bjkUn =

= D̃jk(U)− bjkUn, j, k = 1, . . . , n− 1. (117)

Here gjk and gjk(U) denote the covariant metric tensors of the surfaces
S before and after a displacement U is applied S (U) = S + U , respec-
tively; Uj;k denotes the covariant derivative (cf. (39)). The notation

{ ·}lin

indicates that we ignore all non-linear summands inside the bracket.

Proof. Similarly to (57), by applying (32), (33) and (40) we get:

∂j

[ n−1∑
r=1

Urg
r + Unν

]
=

n−1∑
r=1

(∂jUr)gr + (∂jUn)ν +
n−1∑
r=1

Ur∂jg
r + Un∂jν =

=
n−1∑
r=1

[
∂jUr −

n−1∑
m=1

Γm
jrUm

]
=

=
n−1∑
r=1

Ur;jg
r + (∂jUn)ν − Un

n−1∑
r=1

bjrg
r, j = 1, . . . , n− 1. (118)

Again, we apply that 〈gj , g
k〉 = δjk, 〈ν, gk〉 = 0, j, k = 1, . . . , n− 1, ignore

non-linear terms like Ur;jUm;k, Ur;j∂jUn, Ur;jUn, and get:

gjk =
{
gjk(U)−gjk

}lin =
1
2

{
〈∂jΘ+∂jU , ∂kΘ+∂kU〉−〈∂jΘ, ∂kΘ〉

}lin

=

=
1
2

{〈
gj + ∂j

[ n∑
r=1

Urg
r
]
, gk + ∂k

[ n∑
m=1

Umgm
]〉

− 〈gj , gk〉
}lin

=

=
1
2

[
Uj;k − bjkUn + Uk;j − bkjUn

]
= D̃jk(U)− bjkUn. ¤

If vector fields U and V are represented in the extended Cartesian system
(113), the linearized change of the metric tensor on a surface becomes a
matrix of order n while the matrix

[
bjk

]
(n−1)×(n−1)

transforms into the

Weingarten matrix
[
∂jνk

]
n×n

(cf. [15]) and we prove the following.

Corollary 5.6. The linearized change

DS (U) =
[
djk(U)

]
n×n

:=
[{djk(U)− djk}lin]

n×n
(119)

of metric tensor on a surface by a non-tangential displacement vector field
U in (113) coincides with the extended deformation tensor

djk(U) :=
{
djk(U)−djk

}lin =
1
2

[
(DS

j U)0k+(DS
k U)0j

]−(∂jνk)U0
n+1 =

= Djk(U)− (∂jνk)〈U , ν〉, j, k = 1, . . . , n, (120)

defined in (97), (98).
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6. The Three Dimensional Equations Over a Domain
Independent of ε

In the the present section we describe the basic preliminaries of the as-
ymptotic analysis of a linearly elastic shell, based on a similar analysis by
Sanchez-Palencia [31], [32], Miara & Sanchez-Palencia [23], Ciarlet & Lods
[6]–[8], Ciarlet, Lods & Miara [9] and exposed in details in Ciarlet [3], [5].

In the present section we accept the common Einstein’s convention and
drop the sum, interpreting repeated indices as a summation. In particular,
The vector filed U in a tubular domain of the three dimensional Euclidean
space Ωε ⊂ R3 with a middle surface S ⊂ Ωε (cf. (1), (2)) will be written as

U ε(x) = Uε
j dj , which means U ε(x) =

n+1∑

j=1

Uε
j dj

or U ε(x) = Uε
j ej , which means U ε(x) =

n∑

j=1

Uε
j ej

(121)

where the system of unit (linearly dependent) vectors d1, . . . , dn, dn+1 is
defined in (79), while e1, . . . , en is the natural Cartesian basis, defined in
(16). The sum will appear if the summation is not full, e.g.,

n∑

j=1

Ujd
j or

n−1∑

j=1

Uje
j .

Along with the domains ω ⊂ Rn−1, ωε ⊂ Rn (see (2)) and the tubular
domain Ωε ⊂ Rn (see (2)) we define the sets

Γ = ∂S , ωε
± := ω × {±ε},

S ε
± = Θ(ωε

±) :=
{
x ∈ Rn : x = Θ(y) : y ∈ ωε

±
}

= S × {±ε}. (122)

Let Γ0 ⊂ Γ := ∂S be a measurable subset of the boundary of hypersurface
S . Along with a “thin” domain Ωε = Ω × (−ε, ε) we consider the scaled
domain Ω1 := Ω× (−1, 1), its lateral surface Γ1, the subsurface Γ1

0 and the
upper and the lower hypersurfaces S±:

mes Γ0 6= 0, Γ1 := Γ× [−1, 1], Γ1
0 := Γ0 × [−1, 1],

S± = S 1
± := S × {±1}. (123)

Similarly, we consider the “scaled” initial domain ω1 := ω × [−1, 1] and
its two “faces” ω± := ω1

± = ω × {±1}.
We establish the isomorphism

πε : Ω1 −→ Ωε, πε
X = X

ε, ∀X = (X 1, . . . , X n, t)> ∈ Ω1, (124)

X
ε = (X 1, . . . , X n, εt)> ∈ Ωε

and introduce the differentiation with respect to these variables

Dε
j := Dj = ∂dj , j = 1, , . . . , n, Dε

n+1 := ∂dε
n+1

=
1
ε

Dn+1 =
1
ε

∂N . (125)
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The variables X
ε
n+1 = εt and t will be referred to as the “scaled transverse

variable” and the “transverse variable”, respectively.

Remark 6.1. Note that, due to the equality νt(X t) = ν(X ), X t =
X + itν(X ) ∈ St (cf. Lemma 3.2) for the unit normal vector field to
the equidistant (level) surface St, −ε < t < ε (cf. (60)), the Gunter’s
derivatives Dj = ∂dj

= ∂j − νj∂ν , j = 1, . . . , n, are independent of the
transverse variable t ∈ (−ε, ε).

Formulation of 3D variational problem P(Ωε) of a linearly elastic shell in
curvilinear coordinates: We depart, as usual, from the following equation of
linearized elasticity in variational formulation in curvilinear coordinates in
a domain Ωε ⊂ R3 (see (97) for the deformation tensors Djk):

∫

Ωε

E jklm,εDlm(U ε)Djk(V ε) dX =

=
∫

Ωε

〈F ε, V ε〉 dX +
∫

S ε
−

〈Hε, V ε〉 dσ−ε +
∫

S ε
+

〈Hε,V ε〉 dσ+ε, (126)

U ε, V ε ∈W1(Ωε,Γ0) :=
{
X ∈W1(Ωε) : X(X ) = 0 on Γ0

}
.

Due to (74) we can rewrite (6) into the form

ε∫

−ε

∫

S

E jklm,εDlm(U ε)Djk(V ε) dσt dt =

=

ε∫

−ε

∫

S

〈F ε, V ε〉 dσt dt +
∫

S−

〈Hε,V ε〉 dσ−ε +
∫

S+

〈Hε, V ε〉 dσ+ε, (127)

where dσt is the suraface measure on St (cf. (60)), An endeavor will be
achieved by studying U ε as ε → 0. The main objective is the displacement
field U ε(X ) = Uε

j (X )dj(X ) in the tubular domain Ωε, and its behavior
as ε → 0. The vector fields F ε on the tubular domain Ωε and Hε on the
boundary ∂Ωε are prescribed, while the vector field V ε is arbitrary (the
appropriate spaces for the participating vector fields are specified later).

E ε :=
[
E jklm,ε

]
4×4×4×4

is the elasticity tensor for an isotropic case (see
(108)) and only depend on a couple of Lamé constants λε and µε:

E jklm,ε = λεδjkδlm + µε
[
δjlδkm + δjmδkl

]
. (128)

The bilinear form associated with the elasticity tensor on a space of sym-
metric matrices ζ =

[
ζjk

]
4×4

= ζ> is positive definite

〈E εζ, ζ〉 := E jklm,εζjkζlm > C0|ζlm|2 for all ζjk = ζkj ∈ C, (129)

where the constant C0 is independent of the parameter ε.
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Note, that in a similar treatment of elasticity problems in curvilinear
coordinates in [3], [4], [18], [24], [25], [34], the elasticity tensor in the varia-
tional problem (6), is not sparse (see § 8 below).

In order to carry out an asymptotic treatment we make the following
assumptions:

A. For the unknown U ε =
{
Uε

j

}4

j=1
: Ωε → R4 and the “test” V ε =

{
V ε

j

}4

j=1
: Ωε → R4 vector fields we assume that

Uε
j (X

ε) = Uj(ε)(X ) and V ε
j (X

ε) = Vj(X ) ∀X
ε = πε

X ∈ Ωε, (130)

where the components of the scaled unknown Uε
1 , . . . , Uε

4 are called
the scaled displacements.

Moreover, it is supposed that the scaled displacement vector U ε

is of order zero with respect to ε. This means that if ε → 0, the
scaled displacement vector U ε neither “blows up” nor converges to
0, provided the applied forces have the right orders.

B. The elasticity tensor

E jklm,ε = E jklm(ε), j, k, l,m = 1, 2, 3, 4, (131)

in general and Lamé constants λε = λ(ε) and µε = µ(ε) in particu-
lar, depend on the small parameter ε continuously and E jklm(ε) →
E jklm(0) = E jklm(0) (similarly, λ(ε) → λ(0) = λ, µ(ε) → µ(0) = µ)
as ε → 0.

Note that due to the independence of the constant C0 from ε,
the inequality (129) holds also for the limiting value ε = 0.

C. For the external force F and boundary data H

F ε(X
ε) = εpF (X ) for all X

ε = πε
X ∈ Ωε,

Hε(X
ε) = εp+1H(X ) for all X

ε = πε
X ∈ ∂Ωε.

(132)

where the exponent p will be specified later.

Theorem 6.2. Consider a shell Ωε whose reference configuration coin-
cides with the tubular domain Ωε (cf. (2)) around a middle surface given
by a local immersion Θ in (1).

With any vector field U ∈ W1(Ω) we associate the scaled deformation
tensors defined by (cf. (98))

Def Ωε(V ; ε) :=
[
Djk(V ; ε)

]
4×4

, (133)

Djk(V ; ε) :=
1
2

[
(DS ,ε

j V )0k + (DS ,ε
k V )0j

]
, j, k = 1, 2, 3, 4, (134)

(DS ,ε
j V )0k = (DS

j V )0k, (DS ,ε
4 V )0k =

1
ε

(DS
4 V )0k, j, k = 1, 2, 3,

(DS ,ε
j V )04 = (DjV )04, (DS ,ε

4 V )04 =
1
ε

(D4V )04, j = 1, 2, 3.

Let the assumptions on the data be as in (130)–(132). Then, rescaling
the variable X

ε = (X , t) ∈ Ωε to X = (X , εt) ∈ Ω1 (see (124)), due to (74),
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the variational problem P(Ωε) of a linearly elastic shell (127) for the scaled
unknown vector U(ε) acquires the form:

1∫

−1

∫

S

E jklm(ε)Dlm(U(ε); ε)Djk(V ; ε) dσεt dt =

= εp

1∫

−1

∫

S

〈F (ε), V 〉 dσεt dt + εp

∫

S−

〈H(ε), V 〉 dσ−ve+

+εp

∫

S+

〈H(ε), V 〉 dσ+ε, (135)

U(ε), V ∈W1(Ω1, Γ1
0) :=

{
X ∈W1(Ω1) : X(X ) = 0 on Γ1

0

}
,

where Ω1 := ω × [−1, 1], S± = S × {±1}, Γ1
0 = Γ0 × [−1, 1] (see (122),

(123)).

7. Equations of Linearly Elastic Shells Derived by a Formal
Asymptotic Analysis

Consider the 3D shell problem P(Ωε) as stated in (6) for ε > 0. To the
assumptions A, B and C in (130)–(132) we add the smoothness requirement
on the function Θ in (1) which defines the middle surface S of a shell
configuration Ωε:

Θ ∈ C3(ω,R3). (136)

For the unknown U ε =
{
Uε

j

}4

j=1
: Ωε → R4 and the “test” V ε =

{
V ε

j

}4

j=1
:

Ωε → R4 vector fields we assume the condition (130) holds. On the external
force F and the boundary data H we impose less restrictions than (132)

F ε(X
ε) = F (ε)(X ) for all X

ε = πε
X ∈ Ωε,

Hε(X
ε) = H(ε)(X ) for all X

ε = πε
X ∈ ∂Ωε (137)

and will show later that the constraints (132) are natural (see (148), (151),
(155) and (171) below).

For the volume measure dσtdt, where dσt is the suraface measure on St,
holds the following equality (cf. (71)):

dσtdt =
[
1− 2HS (X )t + KS (X )t2

]
dσ dt ∀ (X , t) ∈ Ωε. (138)

Under these constraints the variational problem P(Ωε) in (127) refor-
mulates into the following problem P∗(Ωε):

∫

Ω1

E jklm(ε)Dlm(U(ε); ε)Djk(V ; ε) dσεt dt =

=
∫

Ω1

〈F (ε), V 〉 dσεt dt +
1
ε

∫

S−

〈H(ε), V 〉 dσ−εt dt+
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+
1
ε

∫

S+

〈H(ε), V 〉 dσεt dt, (139)

U(ε), V ∈W1(Ω1, Γ1
0) :=

{
X ∈W1(Ω1) : X(x) = 0 on Γ1

0

}
,

where Ω1 := S × [−1, 1], S± = S × {±1}, Γ1
0 := Γ0 × [−1, 1].

The scaled unknown U ε =
{
Uε

j

}4

j=1
, the scaled functions E jklm(ε) and

the scaled deformation tensor Djk(V ; ε) are defined in (130), (88), (133),
(134) and appeared in the problem P(Ωε) (cf. (134)). Difference between
problems P∗(Ωε) and P(Ωε) lies in the right-hand sides, where we have
performed different scaling.

Let us assume that the scaled unknown vector has a formal asymptotic
expansion:

U(ε)(X , t) = U0(X , t) + εU1(X , t) + · · · , (X , t) ∈ Ω1, U0 6= 0. (140)

Recall, that Dε
n+1 = ∂εν = 1

εDn+1 (cf. (125)) while, in contrast to this,
Gunter’s first n derivatives are independent of the transverse variable t nd,
therefore, from the small parameter ε: Dε

j = Dj for all j =, . . . , n (cf. Re-
mark 6.1), Then the formal asymptotic expansion of the scaled deformation
tensor reads

Djk(U ; ε) =
1
ε

D−1
jk (U) + D0

jk(U) + εD1
jk(U) + ε2D2

jk(U) + · · · , (141)

D−1
jk (U) =





0 if j, k = 1, 2, 3,
1
2

(DS
4 U0)0j , if j = 1, 2, 3, k = 4,

1
2
(DS

4 U0)0k if j = 4, k = 1, 2, 3,

(D4U
0)04, if j = k = 4,

(142)

Dm
jk(U) =





1
2

[
(DS

j Um)0k + (DS
k Um)0j

]
if j, k = 1, 2, 3,

1
2

[
(DjU

m)04+ (DS
4 Um+1)0j

]
if j =1, 2, 3, k=4

1
2

[
(DS

4 Um+1)0k+(DkUm)04
]

if j =4, k=1, 2, 3,

(D4U
m+1)04, if j = k = 4.

(143)

for m = 0, 1, 2, . . . (cf. (99)).
The deformations Djk(V ; ε) have much simpler finite expansions, be-

cause V is independent of the parameter ε:

Djk(V ; ε) =
1
ε

D−1
jk (V ) + D0

jk(V ), (144)
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D−1
jk (V ) =





0 if j, k = 1, 2, 3,
1
2
(DS

4 V )0k if j = 4, k = 1, 2, 3,

1
2
(DS

4 V )0j , if k = 4, j = 1, 2, 3,

(D4V )04, if j = k = 4,

(145)

D0
jk(V ) =





1
2

[
(DS

j V )0k + (DS
k V )0j

]
if j, k = 1, 2, 3,

1
2
(DjV )04 if j = 1, 2, 3, k = 4,

1
2
(DkV )04 if j = 4, k = 1, 2, 3,

0 if j = k = 4.

(146)

For time being and the sake of simplicity we accept stronger convention
than (131): The elasticity tensor E ε =

[
E jklm,ε

]
4×4×4×4

in general and
Lamé constants λε, µε in particular, are independent of the small parameter
ε:

E jklm,ε = E jklm, ∀ j, k, l, m = 1, 2, 3, 4 (λε = λ, µε = µ). (147)

As a concluding part of preparation let us prove the following.

Lemma 7.1 (see [3, § 3.4]). Let S ⊂ Rn−1 be a Lipschitz hypersurface
with the surface measure dσ, γ := ∂S be its boundary and let w ∈ Lp(Ω1),
1 < p < ∞, Ω1 := S × (−1, 1). If

∫

Ω1

w(X , t)∂tv(X , t) dσ dt = 0 ∀ v ∈ Lip(Ω1),

where Lip(Ω1) is the space of Lipschitz continuous functions on Ω1, then
ϕ = 0.

Proof. Since ∂t : Lip(Ω1) −→ L∞(Ω1) is a surjection with an obvious right
inverse

∂−1
t u(X , t) :=

t∫

−1

u(X , τ) dτ,

the condition of the lemma reads
∫

Ω1

w(X , t)u(X , t) dσ dt = 0 ∀u ∈ L∞(Ω1).

Now the result follows, since L∞(Ω1) is a dense linear subset of the space
Lp′(Ω1), p′ = p/(p− 1), which is dual to the space Lp(Ω1). ¤



A Revised Asymptotic Model of a Shell 97

Step 1 : Since the lowest power of ε in the equation (7) is −2 (see (141) and
(144)), we shall suppose that

F (ε)(X , t) =
1
ε2

F−2(X , t) +
1
ε
F−1(X , t) + F 0(X , t)+

+ εF 1(X , t) + O(ε2),

H(ε)(X ,±1) =
1
ε

H−1(X ,±1)+H0(X ,±1)+εH1(X ,±1)+O(ε2)

(148)

for the functions in (137), where F−2, F−1, F 0, F 1, . . ., H−1, H0,H1, . . .
are independent of ε.

The cancelation of the variable ε−2 in the equation (7), together with
the assumptions (138), (140)–(148), leads to the following equality:

∫

Ω1

E jklmD−1
lm(U)D−1

jk (V ) dσ dt =

=
∫

Ω1

〈F−2,V 〉 dσ dt +
∫

S−

〈H−1,V 〉 dσ +
∫

S+

〈H−1, V 〉 dσ. (149)

for all V ∈ W1(Ω1,Γ1
0). By taking V (X , t) = V (x) independent of the

transverse variable t ∈ [−1, 1], we find that the left-hand side in the equality
vanishes

0 =
∫

Ω1

〈F−2, V 〉 dσ dt +
∫

S−

〈H−1, V 〉dσ +
∫

S+

〈H−1,V 〉dσ =

=
∫

S+

〈P−1(x),V 〉dσ.

Here the first resultant force

P−1(X ) :=
1
2

1∫

−1

F−2(X , t) dt +
1
2

[
H−1(X ,−1) + H−1(X , +1)

]
(150)

emerges after integration of the body force across the thickness (−1, 1).
Consequently, if we let (cf. e.g., [3, Page 167])

F−2(X , t) = H−1(X ,±1) = 0 ∀X ∈ S , ∀ t ∈ [−1, 1], (151)

we get P−1(X ) = 0 and back to (149) this gives (see (142) and (145)):

3∑

j,k=1

∫

Ω1

E j4k4D−1
k4 (U)D−1

j4 (V ) dσ dt =

=
1
4

3∑

j,k=1

∫

Ω1

E j4k4(∂νU0)0k(∂νV )0j dσ dt = 0.
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The tensor E = [E jklm]4×4×4×4 is positive definite (see (129)); then its
part, the matrix E =

[
E j4k4

]
4×4

, is positive definite as well (to check this
it suffices to introduce ζjk = 0 for k 6= 4 in (129)) and implies that, by
introducing V = U0, that

∫

Ω1

∣∣(∂νU0)0j
∣∣2 dσ dt = 0 ∀ j = 1, 2, 3.

The obtained equality implies (∂νU0)01 = (∂νU0)02 = (∂νU0)03 = 0 and also

(∂νU0)04 = ∂ν〈U0, ν〉 = 0.

Then ∂νU0(X , t) = ∂tU
0(X , t) = 0 and, consequently, the leading term of

the asymptotic expansion (140) is independent of the transverse variable
t = X 4, parallel to ν.

Thus, the outcome of the Step 1 is:
{

U0(X , t) = U0(X ), U0 ∈W1(S ,Γ0),
D−1

jk (U) = 0 in Ω1.
(152)

Step 2 : With the assumption (148) and the equality D−1
jk (U) = 0 (cf. (152))

at hand the cancelation of the variable ε−1 in the equation (7), together with
the assumptions (140)–(147), lead to the following equality:

∫

Ω1

E jklmD0
lm(U)D−1

jk (V ) dσ dt =

=
∫

Ω1

〈F−1, V 〉 dσ dt +
∫

S−

〈H0,V 〉dσ +
∫

S+

〈H0,V 〉dσ (153)

for all V ∈W1(Ω1, Γ1
0). And again, by taking V (x, t) = V (x) independent

of the transverse variable t ∈ [−1, 1], we find that the left-hand side in the
latter equality vanishes

0 =
∫

Ω1

〈F−1, V 〉dσ dt +
∫

S−

〈H0,V 〉dσ +
∫

S+

〈H0,V 〉dσ =

=
∫

S+

〈P 0(X ), V 〉dσ,

where

P−1(X ) :=
1
2

1∫

−1

F−1(X , t) dt +
1
2

[
H0(X ,−1) + H0(X , 1)

]
(154)

is another resultant force. Consequently, if we let (cf. e.g., [3, Page 168])

F−1(X , t) = H0(X ,±1) = 0 ∀X ∈ S , ∀ t ∈ [−1, 1], (155)
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Introducing this into (153) we get

0 = 2
∫

Ω1

[ 3∑

j,k=1

E j4k4D0
j4(U)D−1

k4 (V ) +
4∑

j,k=1

E jk44D0
jk(U)D−1

44 (V )
]
dσ dt =

=
∫

Ω1

[ 3∑

j,k=1

E j4k4D0
j4(U)D−1

k4 (V )+

+
( 3∑

j,k=1

E jk44D0
j4(U) + E 4444D0

44(U)
)
D−1

44 (V )
]

dσ dt.

Invoking the positive definiteness of
[
E j4k4

]
3×3

(see inequality (129)), Lem-
ma 7.1 and choosing D−1

k4 (V ) = D0
k4(U) ∈ L2(Ω1, Γ1

0) for k = 1, 2, 3,

D−1
44 (V ) ∈ L2(Ω1, Γ1

0) arbitrary, we easily derive the following outcome of
the Step 2:





D0
j4(U) = D0

4j(U) =
1
2

[
(DS

j U0)04 + (∂νU1)0j
]

= 0, j = 1, 2, 3,

D0
44(U) = (∂νU1)04 = −

3∑

j,k=1

E jk44

E 4444
D0

jk(U) in Ω1.
(156)

Step 3 : With the assumption (148) and the equalities D−1
jk (U) = 0 (cf.

(152)) and F−2 = F−1 = H−1 = H0 = 0 (cf. (151) and (155)) at hand
the cancelation of the variable ε0 = 1 in the equation (7), together with the
assumptions (140)–(147), leads to the following equality
∫

Ω1

E jklm
{[

D0
lm(U)D0

jk(V )+D1
lm(U)D−1

jk (V )
]
+B1D0

lm(U)D−1
jk (V )

}
dσdt=

=
∫

S

〈P 0, V 〉dσ (157)

for all V ∈W1(Ω1, Γ1
0) and B1(X ) := −2HS (X )t (see (138)) and with the

resultant force

P 0(X ) :=
1
2

1∫

−1

F 0(X , t) dt +
1
2

[
H1(X ,−1) + H1(X , 1)

]
. (158)

Let V = X ∈ W1(S ,Γ0) be independent of the transverse variable t ∈
[−1, 1]. Then D−1

jk (X) = 0 (cf. (145)) and two summands in the obtained
expression eliminate. By invoking the equalities (156) obtained for D0

j4(U),
in Step 2 we proceed as follows:

∫

Ω1

E jklmD0
lm(U)D0

jk(X) dσ dt =



100 R. Duduchava

= 2
3∑

j,k=1

∫

S

[ 3∑

l,m=1

E jklmD0
lm(U) + E jk44D0

44(U)
]
D0

jk(X)dσ =

= 2
3∑

j,k,l,m=1

∫

S

[
E jklm − E jk44E 44lm

E 4444

]
D0

lm(U)D0
jk(X)dσ =

=
∫

S

〈P 0, X〉dσ. (159)

Due to formula (128) we get the following values for the two-dimensional
elasticity tensor for an isotropic shell:

Sjklm = 2E jklm − 2
E jk44E 44lm

E 4444
=

= 2λδjkδlm + 2µ
[
δjlδkm + δjmδkl

]− 2
λ2

λ + 2µ
δjkδlm =

=
4λµ

λ + 2µ
δjkδlm + 2µ

[
δjlδkm + δjmδkl

]
. (160)

Step 4 : Consider the space

W1(S , Γ0) :=
{
X ∈W1(S ) : X(x) = 0 on Γ0

}
(161)

and note that

D0
lm(U) = Dlm(U0) =

1
2

[
(DS

j U0)0k + (DS
k U0)0j

]
,

D0
lm(X) = Dlm(X) =

1
2

[
(DS

j X)0k + (DS
k X)0j

]
, j, k = 1, 2, 3,

(162)

where Dlm is the surface deformation tensor (see (143) and (146)). The ob-
tained equation in (159) is interpreted as a variational problem with surface
deformation tensor for the leading term U0 ∈W1(S ,Γ0) in the asymptotic
expansion (140) of the displacement U , which only depends on the tangent
variable U0(X , t) = U0(X ) (see (152)):

3∑

j,k,l,m=1

∫

S

SjklmDlm(U0)Djk(X)dσ =
∫

S

〈P 0, X〉dσ, (163)

Sjklm = 2E jklm − 2
E jk44E 44lm

E 4444
, U0, X ∈W1(S ,Γ0).

The resultant force P 0(X ) is defined in (158) and Sjklm in (163) is the
two-dimensional elasticity tensor for a shell.

Note, that the factor 2 in the coefficients Sjklm appeared due to the
integration over the interval [−1, 1], since the integrand is independent of
the transverse variable t.
Step 5 : Now we assume the resultant force is vanishing P 0 = 0 and trace
what happens with the displacement U(ε)(X , t) = U0(X , t) + εU1(X , t) +
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· · · (cf. (140)). Due to forthcoming Theorem 7.2 the variational problem
(163) then has a trivial solution

U0 = D0
jk(U) = Djk(U0) = 0 (164)

for all j, k = 1, 2, 3 and from (156) follows

(∂νU1)0j = 2D0
4j(U)− (DS

j U0)04 = 0, j = 1, 2, 3,

(∂νU1)04 = D0
44(U) = −

3∑

j,k=1

E jk44

E 4444
D0

jk(U) = 0.
(165)

The latter equalities imply (compare with a similar equality for U0 in (152))

U1(X , t) = U1(X ), U1 ∈W1(S , Γ0). (166)

Next by introducing the equalities Djk(U0) = 0, P 0 = 0 into equation
(7) we get

0 =
∫

Ω1

E jkm4D1
jk(U)D−1

m4(V ) dσ dt =

=
3∑

j,k=1

4
∫

Ω1

E j4k4D1
j4(U)D−1

k4 (V ) dσ dt+

+
∫

Ω1

[ 3∑

j,k=1

E jk44D1
jk(U) + E 4444D0

44(U)
]
D−1

44 (V ) dσ dt =

=
∫

Ω1

[
2

3∑

j,k=1

E j4k4D1
j4(U)(∂νV )1k+

+
( 3∑

j,k=1

E jk44D1
jk(U) + E 4444(∂νU1)14

)
(∂νV )14

]
dσ dt.

From the obtained equality, similarly to (156) follows that

D1
j4(U) = D1

4j(U) =
1
2

[
(DS

j U1)04 + (∂νU2)0j
]

= 0, j = 1, 2, 3,

D1
44(U) = (∂νU1)14 = −

3∑

j,k=1

E jk44

E 4444
D1

jk(U) in Ω1.
(167)

With the assumption (148) and the equalities D−1
jk (U) = D0

jk(U) = 0
(cf. (152), (164) and F−2 = F−1 = H−1 = H0 = 0 (cf. (151) and (155))
at hand the cancelation of the variable ε in the equation (7), together with
the assumptions (140)–(147), leads to the following equality

∫

Ω1

E jklm
[
D1

lm(U)D0
jk(V )+D2

lm(U)D−1
jk (V )+D1

lm(U)D−1
jk (V )B1

]
dσdt =
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=
∫

Ω1

〈F 1,V 〉 dσ dt +
∫

S−

〈H2, V 〉dσ +
∫

S+

〈H2, V 〉dσ+

+
∫

Ω1

〈F 0, V 〉B1(x) dx dt +
∫

S−

〈H1, V 〉B1(x) dx +
∫

S+

〈H1,V 〉B1(x) dx

for all V ∈ W1(Ω1, Γ1
0) and B1(X ) := −2HS (X )t (see (138)). Let V =

X ∈W1(S , Γ0) be independent of the transverse variable t ∈ [−1, 1]. Then
D−1

jk (X) = D0
44(X) = 0 (cf. (145)) and the corresponding summands in

the obtained expression eliminate. Using the equalities (167) obtained for
D1

j4(U) we proceed as follows:
∫

Ω1

E jklmD1
lm(U)D0

jk(X) dσ dt =

= 2
3∑

j,k=1

∫

S

[ 3∑

l,m=1

E jklmD1
lm(U) + E jk44D1

44(U)
]
D0

jk(X)dσ =

= 2
3∑

j,k,l,m=1

∫

S

SjklmD1
lm(U)D0

jk(X) dσ =

= 2
∫

S

〈P 1, X〉dσ + 2
∫

S

〈P 0,X〉B1(X ) dσ = 2
∫

S

〈P 1, X〉dσ. (168)

Here we have applied that P 0 = 0 by our assumption and

P 1(X ) :=
1
2

1∫

−1

F 1(X , t) dt +
1
2

[H2(X ,−1) + H2(X , 1)] . (169)

Since D1
lm(U) = Dlm(U1) and D0

lm(X) = 2Dlm(X) for j, k = 1, 2, 3 (see
(162)), equation (168) writes as

3∑

j,k,l,m=1

∫

S

SjklmDlm(U1)Djk(X)dσ =
∫

S

〈P 1, X〉dσ, (170)

U1, X ∈W1(S , Γ0).

What we get is similar to equation (163), but with respect to the displace-
ment U1 instead of U0 and the resultant force P 1 instead of P 0.
Step 6 : It is clear that the process can be iterated: if we assume the resultant
forces

P j(X ) :=
1
2

1∫

−1

F j(X , t) dt +
1
2

[
Hj+1(X ,−1) + Hj+1(X , 1)

]
(171)

are vanishing for j = 0, 1, . . . , q− 1, the entries of the asymptotic expansion
of the displacement vector field U(X , t) in (140) are independent of the
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transverse variable Uk(X , t) = Uk(X ) for k = 0, 1, . . . , q and all of them,
except the last one, vanish U j(X ) = 0 for j = 0, 1, . . . , q − 1. The vector
field U q(X ) is a solution to the variational problem (see similar (163) and
(170))

3∑

j,k,l,m=1

∫

S

SjklmDlm(U q)Djk(X)dσ =
∫

S

〈P q, X〉dσ, (172)

U q, X ∈W1(S ,Γ0).

Theorem 7.2. The variational problem (172) has a unique solution
U q ∈ W1(S , Γ0) for arbitrary resultant force P q ∈ W̃−1(S ,Γ0) for all
q = 0, 1, . . ..

Proof. First let us check the uniqueness of a solution. For this let the matrix[
γjk

]
3×3

with real valued entries be non-degenerated and symmetric:

det[γjk]3×3 6= 0, G> = G. (173)

Then for λ > 0, µ > 0 the tensor

A jklm =
4λµ

λ + 2µ
γjkγlm + 2µ

[
γjlγkm + γjmγkl

]
, (174)

is positive definite: There exists a constant C0 > 0 such that

A jklmζjkζlm > C0|ζlm|2 for all ζjk = ζkj ∈ C. (175)

The asserted positive definiteness (175) is is proved, e.g., in [3, Theorem
3.3-2,a] and in [20, Ch. 1, § 7]. Here is a sketch of the proof: From (174) and
(173) follows that the tensor A jkml in (174) has the following symmetry

A jklm = A kjlm = A lmjk ∀ j, k, l, m = 1, 2, 3. (176)

The sum η := A jklmζjkζlm is real valued because η = η and the symmetry
properties (176) apply.

Note that, due to symmetries (173) and (175),
[
γjlγkm + γjmγkl

]
ζjkζlm = 2γjkγlmζjkζlm = 2

∣∣γjkζjk

∣∣2 > 0. (177)

Using the representation[
γjlγkm + γjmγkl

]
ζjkζlm = 〈A ζ, ζ〉, ζ := (ζ11, ζ12, ζ13, ζ22, ζ23, ζ33)>,

where the 6× 6 matrix A is positive definite (all six principal minors of A
are positive), we get

[
γjlγkm + γjmγkl

]
ζjkζlm > C0

2
|ζ|2 = C0|ζjk|2. (178)

for some C0 (actually C0/2 coincides with the minimal eigenvalue of A ).
The inequality in (175) is an immediate consequence of the inequalities (177)
and (178).

In particular, the elasticity tensor for an isotropic shell

S :=
[
Sjklm

]
3×3×3×3

,
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exposed in (160), is positive definite, since the corresponding 3 × 3 tensor
G =

[
γjk

]
3×3

(see (173)) is the identity matrix G :=
[
δjk

]
3×3

= I3×3.
If the resultant force is zero P q = 0, from (163) and the positive def-

initeness of the tensor S :=
[
Sjklm

]
3×3×3×3

follows Djk(U q) = 0 for all
j, k = 1, 2, 3, i.e. U q is a Killing’s vector field U q ∈ R(S ).

On the other hand, due to the strong unique continuation property from
the boundary (cf. [13, Lemma 3.12]) a Killing’s vector field which vanishes
on a part of the boundary is trivial, i.e.,

R(S ) ∩W1(S , Γ0) = {0} . (179)

The property (179) implies U q = 0.
The existence of a solution follows from the celebrated Lax–Milgramm

Lemma (cf., e.g., [3, § 6.3]) and can also be proved by means of the potential
method. ¤

8. Appendix: About Koiter’s and Asymptotic Linear Models of
a Shell

In the present appendix we describe shortly, just for the readers conve-
nience, the models of shell equations, which are most relevant to the model
presented above.

The two-dimensional Koiter’s equation for a linearly elastic shell, pro-
posed by Koiter in 1970 (see [19]), is formulated in the following form: The

covariant displacement vector field U ε(x) =
3∑

j=1

Uj(x)gj , g3 = ν, of the

middle surface S of the shell Ωε satisfies

U ∈ V Γ0(ω) :=

:=
{

U ∈W1(ω)×W1(ω)×W2(ω) : U(x)=∂νU3(x)=0 ∀x∈Γ0

}
, (180)

2∑

j,k,l,m=1

∫

ω

[
εajklmγlm(U)γjk(X) +

ε3

3
ajklmρlm(U)ρjk(X)

]√
G (x) dx =

=
∫

ω

〈P 0, X〉
√

G (x) dx, (181)

ajklm =
4λµ

λ + 2µ
gjkglm + 2µ

[
gjlgkm + gjmgkl

]
.

Here

γjk(U) :=
{
gjk(U)− gjk

}lin =
1
2

[
Uj;k + Uk;j

]− bjkU3 =

=
1
2

[
∂jUk + ∂kUj

]−
2∑

m=1

Γm
jkUm − bjkU3, j, k = 1, 2 (182)

is the linearized change of the metric tensor, while
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ραβ(U) :=
1
2

{
bjk(U)− bjk

}lin =

= ∂αβg3 − Γσ
αβ∂σg3 − bσ

αbασg3 + bσ
α

(
∂βg3 − Γr

βσgr
)
+

+ bβ
r

(
∂αgr − Γσ

αrg
r
)

+
(
∂αbr

β + Γr
ασbσ

βbσ
β − Γσ

αβbr
σ

)
gr (183)

is the linearized change of curvature tensor. gjk = 〈gj , gk〉, j, k = 1, 2 by
the displacement U of the surface S . The vectors g1 := ∂1Θ, g2 := ∂1Θ,
g3 = ν := g1 ∧ g2 constitute the covariant basis in TS , while {gj}3j=1 is
the corresponding contravariant basis 〈gj , gk〉 = δjk. Γm

jk(x) = Γm
kj(x) =

〈∂kgj(x), gm(x)〉 are the Christoffel symbols (see (34)).
P 0(x) is the resultant force, defined by formula (163). glm := 〈gj , gk〉,

j, k = 1, 2 and it represents the contravariant metric tensor (the inverse to
the covariant metric tensor).

Further asymptotic analysis of Koiter’s equation leaded to the asymp-
totic models of a shell, developed by Sanchez-Palencia [31], [32], Miara &
Sanchez-Palencia [23], Ciarlet & Lods [6]–[8], Ciarlet, Lods & Miara [9] (see
[1], [5] for rigorous formulations and details).

The asymptotic models are derived similarly by assuming the expansions
(140) and (148). Although the equation derived in in the above mentioned
papers (see [1], [5]) have a similar to (163) form, there is an essential dif-
ference: one has to distinguish between a “membrane shell” and a “flexural
shell”, depending on the space

W1
0(ω, Γ0) :=

{
U ∈W1(ω, Γ0) : γjk(U) = 0 ∀ j, k = 1, 2, 3, in ω

}
(184)

(see e.g., [3, § 3.3]).
If W1

0(ω, Γ0) = {0} is trivial we deal with the “membrane shell” case,
while if the space W1

0(ω, Γ0) 6= {0} is non-trivial, we deal with the“flexural
shell”, respectively.

In the case of “membrane shell” the equation is similar to (163), written
with respect to the linearized change of metric tensor γjk(U) and has the
form

3∑

j,k,l,m=1

∫

ω

ajklmγlm(U0)γjk(X)
√

G (x) dx =
∫

ω

〈P 0, X〉
√

G (x) dx, (185)

ajklm =
4λµ

λ + 2µ
gjkglm + 2µ

[
gjlgkm + gjmgkl

]
.

In the case of “flexural shell” the equation is written with respect to the
linearized change of curvature tensor

3∑

j,k,l,m=1

∫

ω

ajklmρlm(U0)ρjk(X)
√

G (x) dx =
∫

ω

〈P 0,X〉
√

G (x) dx. (186)

Note that the two-dimensional elasticity tensor A := [ajklm]3×3 for a shell
in (8), in (186) and in (185), is more complicated and compiled of the metric
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tensor of the middle surface S . This tensor is, in general, a fully populated
matrix depending on the surface variable x ∈ S (see e.g., [3, § 3.3] and [5]).

The difference between Koiter’s model and the model suggested here
is that we address the covariant deformation tensor DS

jk(U), which is in-
dependent of the metric tensor

[
gjk(ε;x)

]
2×2

, Chtistoffel symbols{
Γk

ij(ε; X )
}3

i,j,k=1
and other quantities dependent on the thickness parame-

ter ε. This independence simplifies the obtained equations considerably. For
example, in Koiter’s model the deformation tensor is given by the formula

D̃jk(ε; U) =

=





1
2

[
∂kUj + ∂jUk

]−
3∑

m=1

Γm
jk(ε)Um, j, k = 1, 2,

1
2

[
∂jU3 +

1
ε

∂3Uj

]−
2∑

m=1

Γm
j3(ε)Um, j = 1, 2, k = 3,

1
2

[
∂kU3 +

1
ε

∂3Uk

]−
2∑

m=1

Γm
jk(ε)Um, j = 3, k = 1, 2

1
ε

∂3U3, j = k = 3.

(187)

To derive the shell equation (185) one needs, besides the expansion of the
displacement vector field (140), the asymptotic expansion of the Christoffel’s
symbols

Γm
jk(ε) =

=





Γm
jk − εx3b

m
k;j + O(ε2), j, k,m = 1, 2,

bjk −
2∑

r=1

εx3b
r
jbrk, j, k = 1, 2, m = 3,

−bm
j −

2∑
r=1

εx3b
r
jb

m
r , +O(ε2), j = 1, 2, k = 3, m = 1, 2,

0, otherwise

(188)

(cf. [3, § 3.3]). The expansion (8) contributes the summand bjkU3 in the de-
formation tensor and converts it into the linearized change of metric tensor
(182).
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