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Abstract. Some transmission problems for scalar second order elliptic
partial differential equations are considered in a bounded composite domain
consisting of adjacent anisotropic subdomains having a common interface
surface. The matrix of coefficients of the differential operator has a jump
across the interface but in each of the adjacent subdomains is represented
as the product of a constant matrix by a smooth variable scalar function.
The Dirichlet or mixed type boundary conditions are prescribed on the
exterior boundary of the composite domain, the Neumann conditions on the
the interface crack surfaces and the transmission conditions on the rest of
the interface. Employing the parametrix-based localized potential method,
the transmission problems are reduced to the localized boundary-domain
integral equations. The corresponding localized boundary-domain integral
operators are investigated and their invertibility in appropriate function
spaces is proved.
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1. INTRODUCTION

We consider the basic, mixed and crack type transmission problems for
scalar second order elliptic partial differential equations with variable coef-
ficients and develop the generalized potential method based on the localized
parametriz method.

For simplicity and detailed illustration of our approach we consider the
simplest case when two adjacent domains under consideration, €2, and s,
have a common simply connected boundary S; called interface surface. The
matrix of coefficients of the elliptic scalar operator in each domain is rep-
resented as the product of a constant matrix by a smooth variable scalar
function. These coefficients are discontinuous across the interface surface.

We deal with the case when the Dirichlet or mixed type boundary con-
ditions on the exterior boundary S. of the composite domain Q; U s, the
Neumann conditions on the the interface crack surfaces and the transmission
conditions on the rest of the interface are prescribed.

The transmission problems treated in the paper can be investigated in
by the variational methods, and the corresponding uniqueness and existence
results can be obtained similar to e.g., [13], [14], [15], [16].

For special cases when the fundamental solution is available the Dirich-
let and Neumann type boundary value problems were also investigated by
the classical potential method (see [3], [13], [16], [23]) and the references
therein).

Our goal here is to show that the transmission problems in question can
be equivalently reduced to some localized boundary-domain integral equa-
tions (LBDIE) and that the corresponding localized boundary-domain inte-
gral operators (LBDIO) are invertible, which beside a pure mathematical
interest may have also some applications in numerical analysis for construc-
tion of efficient numerical algorithms (see, e.g., [17], [21], [27], [30], [31] and
the references therein). In our case, the localized parametrix Py (z —y,v),
g = 1,2, is represented as the product of a Levi function Py (z —y,y) of the
differential operator under consideration by an appropriately chosen cut-off
function x, (x —y) supported on some neighbourhood of the origin. Clearly,
the kernels of the corresponding localized potentials are supported in some
neighbourhood of the reference point y (assuming that z is an integration
variable) and they do not solve the original differential equation.

In spite of the fact that the localized potentials preserve almost all map-
ping properties of the classical non-localized ones (cf. [7]), some unusual
properties of the localized potentials appear due to the localization of the
kernel functions which have no counterparts in classical potential theory
and which need special consideration and analysis.

By means of the direct approach based on Green’s representation formula
we reduce the transmission problems to the localized boundary-domain inte-
gral equation (LBDIE) system. First we establish the equivalence between
the original transmission problems and the corresponding LBDIEs systems
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which proved to be a quite nontrivial problem and plays a crucial role in
our analysis. Afterwards we investigate Fredholm properties of the LBDIOs
and prove their invertibility in appropriate function spaces. This paper is
heavily based and essentially develops methods and results of [5], [6], [7],
8], [19).

2. TRANSMISSION PROBLEMS

Let © and €; be bounded open domains in R? and ©; C . Denote
Qo := 0\ Q; and S; := 90, S := 0. Clearly, 9y = S; U S.. We assume
that the interface surface S; and the exterior boundary S, of the composite
body Q = Q; U Qs are sufficiently smooth, say C>°-regular if not otherwise
stated.

Throughout the paper n(@ = n(® () denotes the unit normal vector
to 09, directed outward the domains Q,. Clearly, n(z) = —n(?(z) for
T € S;.

By H"(QY) = H5(Y) and H"(S) = H5(S), r € R, we denote the Bessel
potential spaces on a domain €2’ and on a closed manifold S without bound-
ary. The subspace of H"(R3) of functions with compact support is denoted
by H.,,.,(R?). Recall that H°(Q') = Ly(£) is a space of square integrable
functions in ’. N

For a smooth proper submanifold M C S we denote by H"(M) the
subspace of H"(S),

H"(M) := {9: g H"(S), suppg C M},

while H"(M) denotes the spaces of restrictions on M of functions from
H7(5),
H"(M) = {er . fe HT(S')},
where r,, is the restriction operator onto M.
Let us consider the differential operators in the domains 2,

3
Ay(z, 0p)u(z) == Z Oz, [ag)(x)ﬁmju(x)], g=1,2, (2.1)
jk=1

where 0, = (01,02,03) 0; = 0, = 0/0x;, j = 1,2,3, and

aif (@) = aff (2) = ay (@)}, (2:2)

ag(x) = [a,(;;) (2)]3x3 = aq(x)[a,i(;)*]gxg, gy 1= [ag;l]gxg. (2.3)

Here a,(;.)* are constants and the matrix ag, = [a,(;;)*] 3x3 18 positive definite.
Moreover, we assume that

ag € C(R?), 0<cy<ay(r)<ec <oo, ¢g=1,2. (2.4)

Further, for sufficiently smooth functions (from the space H%(Q,) say) we
introduce the co-normal derivative operator on 0€2;, ¢ = 1,2, in the usual
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trace sense:

Ty(, 0z )u(z) = T;r(x,az)u(x) =

3
=Y a @) (@)74[0s, u(@)], @ € 09, (25)
k,j=1

where the symbol v, = fy; denotes the trace operator on 0%, from the
interior of €,. Analogously is defined the external co-normal derivative
operator T (x, 0, )w with the help of the exterior trace operator v, on 99,

denoting the limiting value on 0}, from the exterior domain Qf := R3\ Q,:

3
Ty (2,0 )u(z) =Y aff (@)n® (2)7; [0s, u(x)], = € 09,
k,j=1

We set
H"(Qu;A) ={ve HY(Q,): A e H'(Q,)}, ¢=1,2. (2.6)
One can correctly define the generalized (canonical) co-normal derivatives

Tou = T;‘u cH 3 (08) (ct., for example, [9, Lemma 3.2], [16, Lemma 4.3],
[20, Definition 3.3]),

(Tqu,w) =~ = <Tq+u,w>mq =

= / [(Lgw) Agu + Eq(u, byw)] dz Yw € HZ (D), (2.7)
Qq

where /, is a continuous linear extension operator, ¢, : Hz (09Q,) — HY(Qy)
which is a right inverse to the trace operator ,,

3
E,(u,v) ::ijz:lal(g) (x) 6;79(;;) agg(cj) =V, u-a,(2)Vev, V,:=(01,02,03)".
Here and in what follows the central dot denotes the scalar product in R3 or
in C3. In (2.7), the symbol (g1, g2)aq, denotes the duality brackets between
the spaces H™z (9,) and Hz (99,), coinciding with faQq g1(x)g2(x) dS if
g1, 92 € L2(09,). Below for such dualities we will use sometimes the usual
integral symbols when they do not cause confusion. The canonical co-normal
derivative operators T, : H0(Qy; A,) — H~2 (89,) defined by (2.7) are
continuous extensions of the classical co-normal derivative operators from
(2.5), and the second Green identity

/[quu —uAgv]de= / [(vq0)Tqu — (vqu)Tyv] dS, q=1,2, (2.8)
Q, a9,
holds for u,v € H»0(Q,; A,).
Now we formulate the following Dirichlet, Neumann and mixed type
transmission problems:
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Find functions u; € H9(Q1; A1) and up € H0(; Ay) satisfying the differ-
ential equations

A‘I(‘rﬂa)uq = fq in Qqa q=1,2, (29)

the transmission conditions on the interface surface
YU — Yeu2 = po; on S, (2.10)
Thuy + Toug = tho; on S;, (2.11)

and one of the following conditions on the exterior boundary:
the Dirichlet boundary condition

Yoz = Poe ON Se; (2.12)

or the Neumann boundary condition

Tous = hoe on Se, (2.13)

or mixed type boundary conditions
YUy = (p(()i/[) on SeD7 (2.14)
Tyuy = M) on Sew, (2.15)

where S.p and S,y are smooth disjoint submanifolds of S.: S, = Sep U Sen
and S;p NS,y = 2.

We will call these boundary transmission problems as (TD), (TN) and
(TM) problems.

For the data in the above formulated problems we assume

©Yoi € H%(Sz‘), hoi € Hﬁ%(si), ©oe € H%(Se% Yoe € Hﬁ%(se%

(M) (M)

. . . (2.16)
@Oe EH?(SeD)v Oe EIf*i(SeN)v quH (Qq)v q:172

Equations (2.1) are understood in the distributional sense, the Dirichlet
type boundary value and transmission conditions are understood in the
usual trace sense, while the Neumann type boundary value and transmission
conditions for the co-normal derivatives are understood in the sense of the
canonical co-normal derivatives defined by (2.7).

We recall that the normal vectors n") and n(?) in the definitions of the
co-normal derivatives Tyu and Tou on S; have opposite directions.

Further, for the case when the interface crack is present, let the interface
S; be a union of smooth disjoint proper submanifolds, the interface crack
part 5\ and the transmission part S\, ie., S; =5 U S® and 5 N
sW= g,

Let us set the following interface crack type transmission problems for
the composite domain Q = Q; U Qo:
Find functions u; € H9(1; A1) and up € H*9(9; Ay) satisfying the differ-
ential equations (2.9) in ; and 5 respectively, one of the boundary conditions
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(2.12), or (2.13), or (2.14)—(2.15) on the exterior boundary S., the transmission
conditions on Si(t)

VUL — YolUs = gp(()? on Sl-(t), (2.17)
Tyuy + Toug = ’(/J(()? on SZ-(t), (2.18)

and the crack type conditions on Si(c)

Tiu = wél on Si(c), (219)
Tyuy = 1fl; on S\, (2.20)

We will call these crack type boundary transmission problems as (CTD),
(CTN) and (CTM) problems, respectively.

Along with the conditions (2.16), for the data in the above formulated
crack type problems we require that

o) e H2 (S, wy) e HT3(S(Y),

) ) (2.21)
Ui € H3(S), ol € H-3(S).

It is easy to see that for the function

(t) (t)

— 0i on S,

hoi 1= {7//‘ 4" on 5@ (2.22)
0% 07 i 0

the following embedding
Yo € HV2(S,) (2.23)
is a necessary compatibility condition for the above formulated interface
crack problems to be solvable in the space H(:0(Qy; A1) x H10(Qy; Ay)
since
o; = Thuy + Tous on S;. (2.24)

In what follows we assume that for g, given by (2.22) the condition (2.23)
is satisfied.

As we have mentioned in the introduction, all the above formulated trans-
mission problems can be investigated by the functional-variational methods
and the corresponding uniqueness and existence results can be obtained
similar to e.g., [13], [15], [16]. In particular, there holds the following propo-
sition which can be proved on the basis of the Lax-Milgram theorem.

Theorem 2.1. If the conditions (2.16), (2.21), and (2.23) are satisfied,
then

(i) The transmission problems (TD), (TM), (CTD), and (CTM) are
uniquely solvable in the space HY0(Qq; Ay) x HYO0(Qg; As).
(ii) The following condition

/f1 dl‘-f—/fz dx:/wm- dS-i-/woe ds (225)
Q Qo Si Se
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is necessary and sufficient for the transmission problem (TN) to
be solvable in the space HYO(21; A1) x HMO(Q9; Az). The same
condition (2.25) with the function vy; defined by (2.22) is necessary
and sufficient for the crack type transmission problem (CTN) to be
solvable in the space H¥O(1; A1) x HY0(Qo; As). In both cases a
solution pair (u1,us) is defined modulo a constant summand (c, c).

We recall that our goal here is to show that the above transmission prob-
lems can be equivalently reduced to some segregated LBDIEs and to perform
full analysis of the corresponding LBDIOs.

3. PROPERTIES OF LOCALIZED POTENTIALS

It is well known that the fundamental solution-function of the elliptic
operator with constant coefficients

3
Agu(0) = > al®) 0,0, (3.1)

ij=1
is written as (see. e.g., [22], [23])

« 1
I with a, = —

Py(r) = — 24 N
o1+(7) (z-ag'z)? dr[det a2

, age = [0 ]3xs. (3.2)

Here a_,' stands for the inverse matrix to ag,. Clearly, a ;! is symmetric
and positive definite. Therefore there is a symmetric positive definite matrix

dg. such that a;*l = d?l* and
(z-ayle) = |dga|?,  detdg, = [detag] %. (3.3)

Throughout the paper the subscript *x means that the corresponding op-
erator, matrix or function is related to the operator with constant coeffi-
cients (3.1).

Note that

Agu(02) Ppix(z — y) = 6(x — y), (3.4)

where §(-) is the Dirac distribution.
Now we introduce the localized parametriz (localized Levi function) for
the operator A,

1
Pq(x - y»y) = qu(l' - yvy) = a (y) Xq (:L' _y)qu*(x - y)v q= 1> 27 (35)
q
where x is a localizing cut-off function (see Appendix A)
X, (2) = x(dguw) = X(|dgsz|) = X((z - aj)2)'/?), x € X*, k>1. (3.6)

Throughout the paper we assume that the condition (3.6) is satisfied if not
otherwise stated.
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One can easily check the following relations
Az, 0z)u(z) = ag(x)Ag(0z)u(z) + Vaaq(x) - ag. Vau(z), (3.7)
Ag(@,02)Py(x —y,y) = 0(x —y) + Re(z,y), ¢=1,2,
where
Ry(z,y) =
= Gl [ ) Age (00X, (T—9) 2V, (1=) - 3V Py (=) +
1

aq(y)

The function R,(z,y) possesses a weak singularity of type O(|z — y|=2) as
x — y if x, is smooth enough, e.g., if x, € X2

Let us introduce the localized surface and volume potentials, based on
the localized parametrix P,

+

(Vots(@) - 20 Va X, (2 = 9)Pua (@ )] ). (3.9)

V@ g(y) = / Py(x — y.9)g(x) dS., (3.10)
S
WDg(y) = — / (Ty(x,00) Py — y,9)] g(a) dSe,  (3.11)
S
Pof(y) = / Pyl — ) (x) da, (3.12)
Q‘I
Rof () = / Ry (e, ) f(z) d. (3.13)
Q(I

Here and further on
S € {S;,S:,00:}.
Note that for layer potentials we drop the subindex S when S = 9}, i.e.,
V@ .= Va(gz)qv W .= Wé(,(é)q. If the domain of integration in (3.12) is the
whole space , = R, we employ the notation P, f = P, f.
Let us also define the corresponding boundary operators generated by

the direct values of the localized single and double layer potentials and
their co-normal derivatives on S,

ViPg(y) = —/Pq(x —y,y)9(x) dSs, (3.14)
S
W Dg(y) = —/ [T, (2, 0,) Py — y,9)] 9(x) dS., (3.15)

S
WD g(y) = _/ [Ty (y, 8y) Py(x — y,y)] g(z) dSa, (3.16)
S
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LO%g(y) =T, (y,0,) W Vg(y). (3.17)

For the pseudodifferential operator in (3.17), we employ also the notation
E(SQ) = E(S‘I)"'.

Note that the kernel functions of the operators (3.15) and (3.16) are at

most weakly singular if the cut-of function y € X2 and the surface S is C*©
smooth with a > 0:

Tq(-T7 8x>Pq(3j - yay) = O(IQj - y‘—2+a),
Ty(y, 0y) Pyl — y,y) = O(|z — y|~>™)

for sufficiently small |z —y| (cf. [23], [22], [7]).
We will also need a localized parametrix of the constant-coefficient dif-
ferential operator Ag.(0),

(3.18)

Pp(@ —y) =x,(@ — y)Pp.x —y) = ag(y) Py(z — y, 7). (3.19)
‘We have
Ag(02) Pos(z — y) = 6(z — y) + Ryu(2,y), (3.20)
where
RQ*(xv y) =

alx (T =) A (02)x, (x—Yy)+2Vax, (=) - 2 Vo P (z—y).  (3.21)

Denote the surface and volume potentials constructed with the help of
the localized parametrix P, by the symbols Vs(f), Ws(‘f), Pyx and Ry,

—/Pq*(x —y)g(x)dS,, (3.22)

S
WDg(y) = — / (Tye(2,00) P (& — )] g(2) S, (3.23)
Pocf(y / —y)f(z) d, (3.24)
Ry f(y /RQ* x —y)f(z)de. (3.25)

Here Ty, stands for the co-normal derivative operator corresponding to
the constant coefficient differential operator Ay, (9), which for sufficiently
smooth u takes form

Tou (2, 0z )u(z) =

=T} (x,0.) Zakj* (@ (2)7q[0z,u(z)], = € 09y, (3.26)
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that can be continuously extended to u € H"0(Q,; Ag) similar to (2.7).
Note that

HLO(Qq?Aq) = HLO(Qq?Aq*) and Ty(z, 0z )u(z) = aq()Tys (v, Ox )u()

due to (2.5) and (3.26). Again, if the domain of integration in (3.24) is the
whole space 2, = R3, we employ the notation Py, f = P f.

Further, we introduce the boundary operators generated by the direct
values of the localized layer potentials (3.22) and (3.23), and their co-normal
derivatives on S,

VWg(y) = */Pq*(x —y)g(x)dSs, (3.27)
S

Wg / ue (2, 02) Pyw (x — y) | g()dS., (3.28)
S

W/(Q) / v (U, 0y) Pyu(@ — )] g(z) dS,, (3.29)
S

LD%g(y) = Ty (y, 0y) W P g(y). (3.30)

For the pseudodifferential operator in (3.30), we employ also the notation
g(q = L q)+
“In view of the relations (3.5) and (3.19) it follows that

Vig(y) = a; ' (y)V99(y), (3.31)
W Dg(y) = a; ' ()W (ae9)(y), (3.32)
Pof(y) = ag ' (¥)Posf(y). (3.33)

Therefore, the potentials with and without subscript “x” have exactly the
same mapping and smoothness properties for sufficiently smooth variable
coefficients ag.

Before we go over to the localized boundary-domain integral formulation
of the above stated transmission problems we derive some basic properties
of the layer and volume potentials corresponding to the localized parametrix
P,, needed in our further analysis (cf. [7], [13]).

To this end let us note that the volume potential P, f, as a convolution
of Py, and f, can be represented as a pseudodifferential operator

P f(y) =8, [P (©)F(E)], (3.34)

where § and ' stand for the generalized direct and inverse Fourier trans-
form operators, respectively, and overset “tilde” denotes the direct Fourier
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transform,

%w—»& /f 1x§dx

| (3.35)
5= o / F(©)e < de.

The properties of the symbol function P «(&) of the pseudodifferential op-
erator P, is described by the following absertion.
Lemma 3.1.

(i) Let x € X*, k > 0. Then P,.(¢) € C(R3) and for & # 0 the
following expansion holds

Cea §I(k+1)/2/Sln ‘€|Q+7> ®(o)do, (3:36)
qx

0
where k* is the integer part of (k —1)/2 and the sum disappears in
(3.36) if k* <0, d.e., if k=0.
(ii) If x € X}, then

P, €) <0 for almost all € € R3. 3.37
q

(iii) If x € X} and oy (w) > 0 for all w € R (see Definition A.1), then
P, (&) <0 forall € € R3 and there are positive constants ¢; and ca
such that

C1
< —"
S e

Proof. By formulas (3.2) and (3.3) we have
- d.z) . dgx) 4.
Poa(©) :/LX( 0:T) i gy — /L( 0:) i gy
3

for all € € R3. (3.38)

| (x-agla)t [dgs]
_ Qg / X(U) znd Ed — 7i X(n) ”7 dq* 13 dn —
detd,. J |n| am ) Tl
R3
1
0
_Xs'(C |CI) with ¢ = 6. (3.40)

Now (3.36) can be easily obtained from (3.39) by the integration by parts
formula taking into account that ¥~ (o) — 0 as p — oo if ¥ € W{(0, 00).
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Further, since [(|* = [d_'¢]* = £ ag.&, the proof of items (ii) and (iii)
follow from (3.40), (3.36) and Definition A.1. O

By positive definiteness of the matrices ag, and in view of the equality
(3.33), Py = aq’qu*, Lemma 3.1(i) implies the following important asser-
tion.

Theorem 3.2. There exists a positive constant ¢y such that
1P(&) <cr (L+1€2)"F forall E€R? if xe X¥, k=0,1, (3.41)
and the operators
P,, P, : H'(R?) — H'W™FIR3) VteR if xye€ X* k=0,1, (3.42)
are continuous.
In particular, we see that the operators
Pyss Py : HO(Q,) — H*(R?) (3.43)

are continuous for arbitrary bounded domain 2, C R? if x € X
More restrictions on x lead to the following counterpart of [7, Corolla-
ry 5.2(ii)].

Lemma 3.3. Let x € X! and o, (w) > 0 for all w € R (see Definiti-
on A.1). Then the operator

P, :H' (R®) — H™™(R?), reR, ¢=1,2, (3.44)
is invertible and the inverse operator Pq_*1 is a pseudodifferential operator

with the symbol ]qul(f).
Moreover, if x € X{,, then

PrH(6) = —€ - ageb = vgu(€), (3.45)
where
Vs (€) = O(1), 144(€) >0 for all £ € R3. (3.46)
The pseudodifferential operator qu} can be decomposed as
P! = A4.(0) — Ny, (3.47)

where A, (0) is a partial differential operator with constant coefficients
defined by (3.1) and Ny, is a pseudodifferential operator with the symbol

Vgx(€)-

Proof. Tt is an immediate consequence of Lemma 3.1(iii) except the inequal-
ity in (3.46) which follows from the imbedding x € X{,. In fact, we have

1+ (€ aq*g)ﬁq*(f)

T 3. .
e for all &€ € R3. (3.48)

Vg (€) = =Pt (€) —€-agf = —
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Use the notation ( = d;*lg, take into account the relations (A.4), (3.38),
(3.39) and |dq’*1£|2 = a4,{ - £ to obtain

- <] 1 —|¢Ix. (€D 3
ve (&) = |1 = [<IX. ([K])] = = - for all £ € R®.  (3.49)
(O = LI 0D) 2 ey = 214D
Now the desired inequality follows due to the relations (A.5) and o, (w) > 0
for all w € R. O

Let us also denote,

R,.f = / Ryu( — ) f(x) dz = 3 (B ),
R3

where the kernel R, (z — y) is given by (3.20)(3.21) and Ry, = FRyx.
Theorem 3.4. Let x € X*, k> 1. Then

Ryu(§) = —(§ - 2g:6) Py = 1= IR, (1)) — 1= (3.50)
k
_ (_1) + “(2m)
7; |§ . aq*£|m (0)
r k
N W /Sin (|C\9 + 777)%““)(9) do,  (3.51)
q*
0

where ¢ = d_'¢, k* is the integer part of (k—1)/2, and the sum disappears
in (3.51) if k* < 1, i.e., k < 3.
Moreover,

(i) for s € R and k = 1,2, 3, the following operator is continuous
Ry, : H*(R?) — H*TF1(R3); (3.52)
(i) if x € XE,, k> 1, then Ry (€) <0 for all € € R.

Proof. By (3.20) we have Eq*(f) =—(¢- aq*f)ﬁq*fl and Lemma 3.1 implies
(3.50) and (3.51). Equality (3.51) gives the estimates,

RO < (1 +[€)"F forall €€R? if xe X*, k=1,2,3,
which imply (3.52). Finally, (A.5) implies item (ii). O
Taking into account that
Pocf =Pyf, Rgef =Ryef for fe H (), s€R, (3.53)
we can write down the mapping properties for Py, and Rg..
Theorem 3.5. The following operators are continuous

Py Py : H(Qg) — HP2(Q,), s€R, x € X7, (3.54)

. X 1 2k—1 —
D H5(Qy) — H2(Q,), —5<s< T, xeX®, k=1,3, (3.55)



LBDIE for Transmission Problems with Interface Crack 31
Ryt H¥(Q,) — HP1(Q,), seR, ye X* k=1,2,3, (3.56)

DHS(Qy) — H*575(Q), -~ <s, xe X" k=23, (3.7

N |

where € is an arbitrarily small positive number.

Proof. Due to the equality (3.33) it suffices to prove the mapping properties
in (3.54)—(3.55) only for the operator P,.. The mapping property (3.54) is
implied by the first relation in (3.53) and Theorem 3.2. Then (3.55) for
k = 1 follows since in this case H*(,) = ﬁs(ﬂq). Similarly, (3.56) is
implied by the second relation in (3.53) and Theorem 3.4(i).

To show the property (3.55) for k = 2,3 we proceed as follows. From
(3.36) and (3.50), (3.51) we get

_ 1 A 3
Py (§) = £ agt + Qq(§), £ R\ {0}, (3.58)
with
ST 7 (3 . _
Qq(8) = (g.ilq*g)z =0(¢|7"1) as [¢] — o0, k=1,2,3,  (3.59)
The first summand in (3.58), ﬁql* = —1/(¢ - ag§), is the symbol of the

pseudodifferential operator P, of the volume Newton type potential with-
out localization, based on the fundamental solution (3.2). Since the symbol
is of rational type of order —2 possessing the transmission property, P14
maps H*(,) into H*72(Q) for s > —1 due to [2, Section 2] and Theorem
8.6.1 in [13]. More precisely,

1
ro, Poinlo : H*(Qy) — H**?(Q,) for s> —5 (3.60)

where {y is an extension by zero operator from {2, onto the compliment
domain Qf = R*\ Q,.

Further, by (3.59) we see that the corresponding pseudodifferential op-
erator r, Qg with symbol @q(f) has the following mapping properties

1 1
ro,Qqlo : H*(Qy) — HTFH(Q,) if — 5<s<3 (3.61)

2 )
1 1
To, Qqlo : H*(Qq) — H™ () if s> 3 for all sp < 3 +Ek+1. (3.62)
Therefore

1
To, Parx + Qq)lo : H*(Qy) — H™ () for s> —5 k=23, (3.63)

where
1 3 1 3
So=84+21if ——<s< =, $=3+-—¢cif s> —,
2 2 2
1 5 1 5 (3.64)
83=S+21f—§<8<§, 53=4+§—51fs>§;

here € is an arbitrarily small positive number.
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Clearly, Py, = 1o (Pgix + Qq)lo due to (3.58) and the property (3.55)
follows.

Finally, the property (3.57) follows from (3.51) and (3.56) since for s >
1/2 we have H%(Q,) C H'(Q),) with arbitrary t € (—1/2,1/2). O

With the help of (3.9), (3.19) and (3.21) we have

ay(x) 1
Ry(x,y) = L2 Ryu(2,y) + —— V2a,(2) - agu Vo Py (x — y) =
‘Z( y) aq(y) q*( y) aq(y) q( ) q q*( y)

aq(x) 1

= Ry(x,y) — —— Vza,(x) - agVy Py (x — y), 3.65

aq(y) q ( ) aq(y) Q( ) q y-q ( ) ( )

and consequently we get the following representation for the operator R,

1 3 0 (@)
Rofly) = —— |Rox(agf) — E — fa,? djag)|. 3.66
q ( ) aq(y) q*( q ) = ayk q*( kjx~J Q) ( )

Therefore from Theorem 3.5 immediately follows
Theorem 3.6. The following operators are continuous
Ry : H¥(Q,) — H*(Q,), seR, xe X', (3.67)
H5(Q,) — HY275(Q,), % <s, xeX* k=23, (3.68)
where € is an arbitrarily small positive number.

In view of compactness of the imbedding H*(Q,) C H'(Q,) for s > ¢ and
bounded (2, from Theorem 3.6 we obtain the following statement.

Lemma 3.7. The operators
3
Ry HY(Q) — HY(Q,), t< 30 XE€ X2, (3.69)
3
YRyt H' Q) — H2(09), t< 5, xeX?, (3.70)

3
T,R,: H'(Qy) — H'"3(89,), t<

30 XE€ X3 (3.71)

are compact.

Now we study the mapping properties and jump relations of the localized
layer potentials.

First of all let us note that for the single layer potential we have the
following representation (cf. [7])

VIOP(y) = —(ve Pyl = 1), 0) g = —(Pou(- = ), Vit ) s =
=~ [Py + (vi0)] (y) = —Pou (Vi) (y), (3.72)
where * denotes the convolution operator. The operator v is adjoint to
the trace operator v, : H'(R?) — H'"2(S), t > 1/2, i.c., is defined by the
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relation
(Ve By i= (b, ygh), for all he HY(R®), e HZ7Y(S), t> % (3.73)
and thus the operator
N HETYS) — HHR®), ¢ > 1/2 (3.74)

is continuous. Since y,h = 0 for any h € C’gfjmp(R3\S), then suppyZy € S,
i.e. in fact the operator

Vi HETHS) — Hgti={f e H(R®): supp f € S} (3.75)

is also continuous for ¢ > 1/2.
Quite analogously, for the double layer potential we have the following
representation

Ws(g)@(y) = _<Tq*SPq*(' - ), ‘P>s = _<Pq*(' - y)aT;*S<p>R3 =
= =[Py x Tp,50](y) = —Pyu[Ty,5¢(y).  (3.76)

Here Tyus = a%)*nk )( 2)y50q, : H{(R3) — H'3(S) is the classical (de-
fined in terms of the trace) co-normal derivative operator on S that is con-
tinuous for ¢ > % (for the infinitely smooth S), while T}, 5 is the operator
adjoint to it, i.e., defined by the relation

(T, 0, Wps = (9, Tpush), for any he H'(R®), pe HE7Y(S), (3.77)

and thus the operator
3
Trs: CH37HS) — HY(R?), t> 3 (3.78)

is continuous. Since Ty, sh = 0 for any h € Cg5,,,,(R*\S), then supp T wxs¥ €
S, i.e. in fact the operator

Thg: H37H(S) — H! (3.79)
is also continuous for t > 3/2.

Theorem 3.8. If y € X*, k = 2,3, then the following operators are
continuous

ViDL HY(S) — H™3(QS) for s<k—1, (3.80)
A VD H(S) — H*P3(Q5) for s <0, (3.81)
A VD H(S) — H™TF=3(Q5) for s >0, Ye>0 (3.82)
WP HY(S) — H 3 (Q5) for s <k—1, (3.83)
AW 2 H(S) — H*T*3(Q5) for s <0, (3.84)
Agx évi) D H*(S) — H=TF=3(Q5) for s >0, Ve>0, (3.85)

where Q° is an interior or exterior domain bounded by S.
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Proof. For x € X* k = 2,3, by Lemma 3.1 we have }qu* € C(R?) and in
view of (3.58) we have

Pye(€) = —=1¢172 + Qq(©), (3.86)

where ¢ = d_;'¢ € R®\ {0}, and Q,(€) is defined in (3.59).

Note that the symbol of the localized operator Py, is of neither classical
nor rational type, in general. Therefore we can not apply directly the well
known theorems for pseudodifferential operators with rational type symbols
(see, e.g. [4], [13], [25]).

However, due to (3.72), ansatz (3.86) gives us possibility to represent the
localized single layer potential Véz)(z/;) as

VD () = VD () + Qur7 e, (3.87)

where V (q1+) (v) is the non-localized single layer potential constructed by
the fundamental solution qu* —-v),

/qu* LU - )dS = _qu*’ysw’ (388)

where the symbol of the operator P, is —|¢|72, while Q, is pseudodiffer-
ential operator with the symbol Q.

The principal homogeneous symbol of the pseudodifferential operator
P, is rational function in £, and due to equality (3.88) and [4, Ch. 5,
Theorem 2.4] (see also [13, Theorem 8.5.8]) we have

pVEL  HY(S) — B for s € R, Vi€ 0, (7). (3.89)

comp
On the other hand, the asymptotic relation (3.59) and mapping property
(3.74) imply continuity of the mapping

HQqY:  HY(S) — HPFFE(RY) for s <0, Vpe 03, (RY),  (3.90)

comp
and thus also of the mapping
pQgY: s H3(S) — HM37¢(R%) for s >0, Vue O, (RY)  (3.91)

for k=2,3 and Ve > 0.

Let first Q9 be a bounded domain. Then (3.80) follows from (3. 87) by
(3.89), (3.90) and (3.91). Since AQ*V511¢ =0 in Q%, we have, AQ*VS* Y=

AgQqviv in Q5 which by (3.90) and (3.91) also implies (3.81) and (3.82).

Let now Q° be an unbounded domain. Let X € C25p(R?) be such that
A(0) = 1 and represent x = x, + Xx.,, where x, = Ay, x.. = (1 — Ax.
Then evidently VS(Z) (1) is represented in terms of the potentials with the
localizing functions x, and x__, respectively,

VD () = VD () + VD ().

Let us analyze the potential VS(X)O*(w) first. Follow the same arguments

oo oc

as above, we split it in two parts as in (3.87) and arrive at the continuity of
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the mappings similar to (3.89)—(3.91) for them. Due to the compact support

of A and the compactness of the surface S in R3, the support of VS(;I() (W) is

also compact in R? and does not depend on 1. This means that for y such

that ¢ = 1 in the support of Véi)ﬂ*(i/z), we have uVLg(;I() L= VSF;J() ,» that is,

u can be dropped in the mappings similar to (3.89)— (3 91) for them. This

implies the counterparts of mappings (3.80)—(3.82) for VS(;’? . in unbounded
domains Q.

Let us now analyze the potential VS(;]() L(¥). Since x__(0) =0 the term
with m = 0 in the sum in the representation (3.36) for the symbol Py,
of the corresponding volume potential P,y . vanishes, and we have the
estimate

P,

IX oo *

kt

(§)|§c(1—|—|§|2)_Tl for all £ eR® if y e X*, k=2,3.
This implies continuity of the mapping

VED =Py oyt HY(S) — HHE(RY) for s <0, k=23,

and thus also of the mapping

Ve =Py Al HY(S) — HF 5 7SR for s >0, k=23, Ve >0,

which give the counterparts of mappings (3.80)—(3.82) for VS(;? and thus

mappings (3.80)—(3.82) for Vs(q*) in unbounded domains Q.
To show the mapping properties (3.83)—(3.85), we rewrite (3.23) in the
form

W) = [ [10e(2.0,)Pan(a ~ )](2) dS, =

5
- 9
=Y a5 [ Pule =y (@)g(@)] S, =
k.j
= Z a5 vs@ (ni9), g€ H(S). (3.92)
Whence (3.83)—(3.85) follow from (3.80)—(3.82). O

From Theorem 3.8 we have the following assertion.

Theorem 3.9. The localized single and double layer potentials possess
the following mapping properties

V@ H™2(00Q,) — HYO(Q,: 4,), x € X2, (3.93)
W@ : H3(09,) — HYO(Q, A,), x € X°. (3.94)
Moreover, the operators

ro 2V s HoH(S) — H(S,), x € X, (3.95)
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re, VP H73(S;) — H™2(S.), x € X2, (3.96)
TSEVQWS(?) : H_%(Si) — H%(Se)7 x € X2, (3.97)
re, TWP  H™2(S) — H 2(S.), x € X2, (3.98)

are compact.

Proof. Mappings (3.93) and (3.94) immediately follow from Theorem 3.8
and the relations (3.31) and (3.32) . Therefore the co-normal derivative
Tqu(‘Z)g of the localized single layer potential with g € H_%(ﬁQq) and
X € X? is well defined, as well as the co-normal derivative of the localized
double layer potential,

TEWOh = LO%h, he H:(09,), x € X°. (3.99)
Compactness of the operators (3.95)—(3.98) is evident since the surfaces
S; and S, are disjoint. O

By the same arguments as in [7, Theorem 5.13] one can easily show also
the following jump relations for localized layer potentials.

Theorem 3.10. Let g € H2(99Q,) and h € Hz(99,). Then

YV Wg=7VDg=v9g e Xx? (3.100)
1

TEV@g = 50+ WW@Wg e X2 (3.101)
1

VEWDh = Foh+ WDh, e X3, (3.102)

TWDh — T, W Oh= £ Dh — L7 Dh = —(Tya,)g, x € X®. (3.103)
In particular, for ag =1 and S = 09, the following equalities hold
TAWOh =T, W = £&n, xeX?, ¢=1,2. (3.104)

The following statement is implied by Theorems 3.10 and 3.9, and the
relations(3.18).

Theorem 3.11. The fallowing boundary operators are continuous,

V@ H™3(8) — H(S), x € X2, (3.105)
WED  H=3(S) — H73(S), x € X2, (3.106)
W . H3(S) — H(S), x € X3, (3.107)
LO% H3(5) — H™2(5), x € X (3.108)
Moreover, the operators (3.106) and (3.107) are compact.

Proof. The continuity of the operators (3.105)—(3.108) follows from the
mapping properties (3.93)—(3.94). On the other hand, from the relations

(3.18) it follows that the kernels of the integral operators qu) and Wé?)
are weakly singular of type O(|z — y|=27®). Therefore, W/S(q) and Wéq) are
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pseudodifferential operators on S of order —a < 0 and possess the following
mapping properties
WED L H3(S) — H24(S), y e X2,
W s H3(S) — H3F(S), x € X,

implying the compactness of the operators (3.106) and (3.107) due to the
Rellich compact imbedding theorem. O

Taking v(z) := Py(z — y,y) and u = u, € H"°(Q4; A,) in the second
Green identity (2.8), by the standard limiting procedure (see, e.g., [23]), we
obtain the following third Green identity based on the localized parametrix,

Uy + Rytig — VO Tuy + WD, = PyAgu, in Q. (3.109)

Recall that for layer potentials we drop the subindex S when S = 9€,.
Taking in mind the properties of the localized potentials, the trace and
co-normal derivative of (3.109) have the following form,

1
5unq+’YqRq“q_V(q)Tquq+W(q)7q“q:%Pquuq on 08y,  (3.110)

1
5Tquq—l—Tqunq—W’(Q)Tquq—i-ﬁ(q)'yquq:TqPquuq on 09,  (3.111)
Recall that qu) = quH # Ek(gq)* if a4 is not a constant function (see
Theorem 3.10).
With the help of these relations we will construct various types of local-

ized boundary domain integral equation systems for the above formulated
Dirichlet and mixed type transmission BVPs with and without crack.

4. SOME INJECTIVITY RESULTS

Before formulating the boundary-domain integral equations, we present
in this section some auxiliary lemmata which play a crucial role in our
analysis.

Lemma 4.1. If y € X¥, k> 1, and s > —1, then the operator
~P,. : H*(R3) — H*(R?), ¢=1,2, (4.1)
s positive, i.e.,
—~(Pgug,9)ms >0 Vg € H*(R®), g#0,

where (-, -)gs denotes the duality brackets between the spaces H~*(R3) and
H*(R3).

Proof. The continuity of operator (4.1) is implied by Theorem 3.2. For any
g € H*(R3), s > —1, we have,

(Pyg, Drs = (FHPpd), )ms =
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— (20) PG G = (20 [ Pra@BOP e (12
R3
By Lemma 3.1(ii) Py, (£) <0 for a.e. £ € R®. Hence the conclusion. O

Throughout the rest of this section and in the main statements further
on we assume that the following relation holds on S;

az(z) = »ai(x) for z € S;, = const > 0. (4.3)

Lemma 4.2. Let xy € X3,, G, € H(Q,), gin € H™3(S;), giz € H2(S)),
ge € H™2(S.) and condition (4.3) hold. Further let

Vs(il*) (gi1) + Wéj*) (algig) + Pl*(Gl) =0 in Qq, (4.4)
Vs(i) (gﬂ)*W;i) (aggig)+VS(i) (ge)+P2*(G2):O in Qg. (45)

Then
Geg=0inQy, ¢=1,2, g1 =0, go=00nS;, and ge=00nS.. (4.6)
Proof. We set
Ur i= VD (gin) + W (a19i2) + Pr(G1) in R®\ 09, (4.7)
Uz = V2 (gi1) = W) (a29i2) V) () + Pou(Ga) in B2\ 9D (48)
Due to (4.4) and (4.5),
Uy=01in Q4 ¢g=1,2. (4.9)

In view of the restrictions on the density functions G, ¢iq, ¢ = 1,2, and
ge, and on the localizing function x and due to mapping properties (3.43),
(3.93) and (3.94) we have

Uy, € HYO(R3\ 0Qy5 Ags). (4.10)

Then we can write the following Green’s formulas

/ (Al*Ul)Ul dxr + / Eq*(Ul,Ul)dI:—<T1_*U1,’)/1_U1>Si, (411)
R3\Q, R3\Q,
[ tVzdn s [ Ban(Va V) do = ~(T502 35 U, (412)
Ql Q1
/ (AQ*UQ)U2 dz + / EZ*(UZa UQ) dx = _<T2_*U27’72_U2>sea (413)
R3\ (Q:UQ2) R3\ (Q1UQ5)
where
3
Egu(Ug,Ug) = al¥) 04U,0,U, > c|VU, %, q=1,2, (4.14)
k,j=1
with some positive constant ¢ > 0 due to the positive definiteness of the
matrix ag, = [ag?*]gxg.
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With the help of the jump relations and the mapping properties of the
localized layer potentials (3.100)—(3.103) we get

VUL =9 Ur = —a1gi2, 73 Us — 75 Us = azgiz on S;,
Tl-:Ul — Tl_*Ul = TQ-:UQ — TZ_*UQ = gi1 On Si, (415)
’V;Uz = ’75U2 = 0, thUQ - T{*U{ = ge ON Se.

Therefore, from (4.11)—(4.13) with the help of (4.3), (4.9) and (4.15) we
derive

x / [(Al*Ul)U1+E1*(U1,U1)} d$+
RS\,
+ / [(AQ*UQ)UQ + EQ*(UQ, Ug)] dr = 0. (416)
R3\ Q5
Further we proceed as follows. Denote by G, := £y,G, € H°(Q,) the
extensions of the functions G, onto the whole of R? by zero. Then clearly

PGy = PG, and in view of formulas (3.72), (3.76) we can rewrite (4.7)
and (4.8) as
U,=P,F, in R ¢=1,2, (4.17)
in the distributional sense, where the distributions F; and F; on R3 read as
F :COJ — & 91 — T/ 5. (a19:2),
1 - 1 s, 9i1 q*sl( 19i2) (4.18)
Fy = Go — 75,90 + Ty, 5,(a2gi2) — 7S, ge,
and thus F, € H=2(Q,) by (3.75) and (3.79). Whence in view of (3.20) we
have

ApUy = Fy+ Ry Fy = Ry Fy in R\ Q, (4.19)
and Ry F, € H°(R?) by Theorem 3.4. Consequently, from (4.16) we derive
2
S [ [ReE)PLE) + EnUn U] do =0, (120)
=1 pa\g,

where s = 3 and 5 = 1.

Keeping in mind that P, F, € H°(R?) and P, F, = U, = 0 in Q,
we can extend the integration to the whole space R® and apply Parseval’s
formula to obtain

/ (RyuFy)(Pyu Fy) d = /(Rq*Fq)(Pq*Fq) dx =
R3\Q, R3

= /quq*|ﬁq|2d§ >0 (4.21)

R3
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since ?q*(g) <0, Eq*(g) < 0 by Lemma 3.1(ii) and Theorem 3.4(ii). Then
(4.20) and (4.14) imply VU, = 0 in R3\ Q,.

Consequently, U; = C; in R3 \ Q, Uy = Cy in R?\ (Q; UQy), and
Uy = Cs in Qq, where Cj, j = 1,2,3, are arbitrary constants. Since U, €
H! (R3 \ (@ U ﬁg)), we get C; = Cy = 0. Then with the help of the first
two equalities in (4.15) we conclude that C3 = 7, vy U = 0. Thus U, =0
in R3\ Q, and in view of (4.17) we have U, =0, ¢ = 1,2, in R3.

Now taking jumps of traces and co-normal derivatives of (4.7) and (4.8)
on 0€Q; and 01y, respectively, gives g;; = 0 and g;2 =0 on S;, and g. =0

on S, (see (4.15)). Finally Lemma 4.1 implies G, = 0 in R3. O

Lemma 4.3. Let xy € X3,, G, € H(Q,), gin € H™2(S;), giz € H2(S)),
ge € H2(S,) and condition (4.3) hold. Further let

VO (gin) + W (a19i2) + P1u(Gr) =0 in Q, (4.22)
V) (gi1) =W P (a2i2) + W ) (ge) +P2x(G2) =0 in Qs. (4.23)

Then
Gy=0inQy, ¢g=1,2, g1 =0, gio=00nS;, and g. =0 o0nS.. (4.24)
Proof. As in the proof of Lemma 4.2 here we set
Uy = Vs(il*) (9i1) + W.s(‘il*)(algﬂ) +Pi(Gh) in R*\ S, (4.25)
Us ::Vs(i) (gi1)— Ws(z*) (a29¢2)+W5(32 (geH P2u(G2) in R*\(S; U Se). (4.26)

Again, by the assumptions stated in the lemma and the mapping properties
of the localized volume and surface potentials we have

U, € HYO(R3\ 0Q,; Agy), (4.27)

and we can write Green’s formulas (4.11)—(4.13). By relations

N UL =7 Ui = a1gi2, 75 Us — 75 Us = asgiz on S;,
T Uy — TUy = To Uy — Ty, Uy = giy on S;, (4.28)

YUz =73 Up = —ge, T3 Us=T; Uy =0 on S,

and taking into account that U, = 0 in Q, along with the relation (4.3),
we arrive at the formula (4.16). By the word for word arguments from the
proof of Lemma 4.2 we complete the proof. |
Lemma 4.4. Let x € X3,, G, € H(Q), ga € H™2(S)), gin € HZ(S}),

gep € H"2(S.p), gen € H2(S.n) and condition (4.3) hold. Further let
Vs(il*) (911)+WS(3*)(algi2)+791*(G1) =01in Qq, (4.29)

V. (gin) W (a29i2) + V) (9e0) W) (gen) +Pas(G2) =0 in Q. (4.30)

Then Gg =0 1in Q4, ¢ = 1,2, gi1 = 0 and gi2 = 0 on S;, gep = 0 and
gen =0 on Se.
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Proof. As in the proof of Lemma 4.2 here we set

Ur =V (gin) + W (a19i2) + Pru(G1) in R*\ S, (4.31)
Uz = Vs(i) (9i1) — Wéf}(@gﬂ) + V2 (gep) + W (gen)+
+ Pa,(G) in R\ (S;US,). (4.32)

Again, in view of the assumptions stated in the lemma and with the help
of the mapping properties of the localized volume and surface potentials we
have

U, € H'O(R3\ 094; Agw), (4.33)
and we can write Green’s formulas (4.11)—(4.13). By relations
VUL =9 Ur = a1gia, 73 Uz — 75 Uz = azgiz on S,
THU, — T Uy = Ty Uy — Ty, Us = giy on S,
Vo Us — 5 Uy = —gen, T3 Uy — T5,Uy = gep on S, (4.34)
rs aUa=7g 73Uy =0 on Sep,
Ts.n T;*Ug =rs 15Uz =0 on Sen,

and taking into account that U, = 0 in , along with the relation (4.3), we
easily arrive at the formula (4.16). By the word for word arguments applied
in the proof of Lemma 4.2 we complete the proof. O

Lemma 4.5. Let x € X3, condition (4.3) hold and
Gy € H'(Qy), gn€ H 5(SY), gin,gis € HE(S)),
g2 — gis € H¥(S(9), go € HT5(S.).
Further let
VI (gin) + W (a19i2) + P1u(G1) = 0 in Qi (4.35)
—Vs(i) (9i1)+Ws(f3(029i3)+Vs(i) (ge)+P2,(G2) =0 in Q. (4.36)
Then gi1 = gi2 = giz =0 on Si, ge =0 on S, and G4 =0 in Qy, ¢ =1,2.
Proof. Introduce the functions
Uy =V (gin) + W (a1gi2) + Pra(G1) in BR*\ Sy, (4.37)
Uz i= =V (g )+ W) (asgis)+ V) (9e )+ Par(G2) in RP\(S; U S,). (4.38)

Clearly Uy, = 0 in Q4, ¢ = 1,2. Denote again by Gy := lp,G4€ ﬁO(Qq) the
extensions of the functions G, by zero on the whole of R3. Then PoGyq =
PGy qg=1,2.

In view of the assumptions stated in the lemma and with the help of the
mapping properties of the localized volume and surface potentials we have

U, € HYOR3\ 0945 Ags), q=1,2. (4.39)
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Therefore we can write Green’s formulas (4.11)—(4.13). Note that with the
help of the jump relations of the localized layer potentials we get

UL =1 Ui = —a1gi2, 75 Us — 75 Us = —asgiz on S,
TRU = TRUL = gin, T5Us — Ty,Us = —gi1 on S, (4.40)
YUy =y, Uy =0, Ty Us—Ty5 Uy =ge on S,.
Thus from (4.11)—(4.13) due to the lemma hypotheses and (4.3), we derive

»x / (A1 01Uy + By (Uy, Uy) | da+

R3\Q,

+ / [(A2.U2)Us + B3, (Uz, Us)] da =
RB\QQ
= —(gi1, %a19i2) 5, + (gi1, 2gi3)s, = 0. (4.41)
Now, applying the same arguments as in the proof of Lemma 4.2 we conclude
U1 = Cl in RB\Ql, U2 = 02 in Rg\(Ql UQQ), and U2 = 03 in Ql, where Cj,
j =1,2,3, are arbitrary constants. Since U, € H! (]R3 \ (2 Uﬁg)), we get
C1 = Oy = 0, implying U; = 0 in R3 and Uy = 0 in R\ Q. Consequently,
gi2 = 0 on S,L'.
Further, since gi2 — gi3 € %(Si(c))7 from the second equation in (4.40)
we derive

— t
L (5 U2) = T @ (a2gi3) = T o (a2gi2) =0 on Si( ),

Then it follows that C5 = rg 75 Uz = 0. Thus U; = 0 in R3, ¢ = 1,2, and
the relations (4.40) and Lemma 4.1 complete the proof. O

In view of formulas (3.31)—(3.33) the above lemmata lead to the following
corollaries.
Corollary 4.6. Let x € X3, G, € H(Q,), g0 € H2(S)), gz €
Hz(S;), g € H™2(S,) and condition (4.3) hold. Further let
VO (gi1) + W (gi2) + P1(G1) = 0 in Qy, (4.42)
Vs(f)(9i1)—Wéf)(912)+V5,~(f)(9e)+7’2(G2)ZO in Q. (4.43)
Then gin =0, gi2 =0 on S, ge =0 on Se and G4, =0 in Qg4, ¢ =1,2.
Corollary 4.7. Let x € X3, G, € H(,), g0 € H 2(S)), gia €
Hz(S;), go € H2(S.) and condition (4.3) hold. Further let
Vs(il)(gﬂ) + Ws(il)(giz) +P1(G1) =0 in , (4.44)
Vs(f)(gil)_Ws(f)(gw)"'WS(?(ge)+P2(G2):O in Q. (4.45)

Then gi1 =0, gio =001 S;, ge =0 on S, and G, =0 in Q4, ¢ =1,2.
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Corollary 4.8. Let x € X3,, G, € H°(Q,), g1 € H2(S;), giz €
H%(Si), geD € H_%(Sep), geN € H%(SEN), and condition (4.3) hold. Fur-
ther let

Vs(il)(gﬂ) + Ws(il)(giQ) +P1(G1) =0 in Q, (4.46)
V;?)(gil)—WS(?)(gi2)+vs(3)(geD)+Ws(f)(geN)+P2(G2): 0 in Q. (4.47)
Then gin = 0 and gi2 = 0 on Si, gep = 0, geny = 0 on Se and G, = 0 in
Qq, q=1,2.
Corollary 4.9. Let x € Xf’*,

Gy € HOQ), gn€ H 5(SM), gin,gis € H3(S)),
giz — gis € H(S7), go € H 3(S.).
and condition (4.3) hold. Further let
Vs(il)(gﬂ) + Ws(il)(giz) +P1(G1) =0 in Q, (4.48)
—Vs(f) (9i1) + Ws(f) (9i3) + Vs(f) (ge) +Po(G2) =0 in Q. (4.49)

Then gi1 = gi2 =gi3 =0 0n S;, g =0 on S, and G4 =0 in Q,, ¢ =1,2.

5. LBDIE SYSTEMS FOR THE TRANSMISSION-DIRICHLET PROBLEM

Let a pair (u1,u2) € HY0(Qq; A1) x HY0(Qy; A2) be a solution to the
transmission Dirichlet problem (2.9)—(2.12), i.e., Problem (TD). Assume
that the problem right hand sides satisfy the imbeddings

</701'€H%(Sv:)7 ¢0¢€H7%(S¢), SOOeGH%(Se)a f€HY(Q), q=1,2. (5.1)

Let us introduce the following combinations of the unknown boundary func-
tions

1

1
i =5 (Nur = Taua), 90 = 5 (s +72u2), Ye = Touz. (5.2)

Then evidently o; € H2(S;), @i € H2(S;), e € H2(S,).
5.1. LBDIE system (TD1). Let us introduce the vector function
UTD) = (uy, ug, i, 05, %) € HTD), (5.3)
where
H(TDP) .—
= HYO(Q1; A1) x HYO(Qo; Ao) x H™2(S;) x H2(S;) x H2(S.), (5.4)

and assume formally that the components of UTP) are unrelated to each
other (i.e., segregated).

Further, let us employ the third Green identities (3.109) in ©; and s,
difference of their traces (3.110) and sum of their co-normal derivatives
(3.111) on S;, and also the trace (3.110) on S,.
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Then after substituting transmission and boundary conditions (2.10)-
(2.12) and notations (5.2) we arrive at the following system of direct segre-
gated LBDIEs (TD1) for the components of the vector function U(TP) =

(u17u2awi7 Pis ¢C)7

uy + Riup — stj)wi + Ws(j)% = F1(TD) in {, (5.5)
up + Rouz + VO, + Wi ~ Vg, = FT? in 0y, (5.6)
MRiur — 72 Roug — (Vg) + VS))%: + (Wg) - Wg))%' + ’72VS(3)1/Je =
= VlFl(TD) - Vng(TD) — @o; on Sy, (5.7)
TiRvur + ToRauz — WD = W + (£ + L) - TV g =
=1 F"P) T, ™) — gy, on S, (5.8)

72R2uz+72vs(i2)1/}i+72ws(?)@i_Véz)d’e = ’Y2F2(TD) — %0e on S, (5.9)
where
FP) =pf + %Vs(il)ﬂfo@‘ - %Ws(il)sﬁm, (5.10)
F™) = Pafact gVt W 00— W0 (51)
If we introduce the notation

jc(TDh1) _ [’Clng)k“ 1= diag(r, , 7,7, 75, Ts, ) X

I+R1 0 A wib 0
0 I+Rs v W —V®

i

x | mMR1 =R —Vg)—vg) WQ)—Wéf) ’YQVS(E) (5.12)

i

TiRi TRy —WWW L0y r® ~T,V )

K K3 k3 Se
0 72 R2 V@ W —Véf’

the LBDIEs system (5.5)—(5.9) can be rewritten as
]C(TDl)U(TD) _ Jr:'(TDl)7 (513)

where U(TP) ¢ H(TP) is the unknown vector, while F(TP1) ¢ F(TP1) ig the
known vector generated by the right hand side functions in (5.5)—(5.9) and

F(TPD .= {gYO(0y; Ay) x HY0(Qy; Ag) x HZ(S;) x H™7(S;) x H?(S,).

5.2. LBDIE system (TD2). Alternatively, let us employ the third Green
identities (3.109) in €y and g, difference of their co-normal derivatives
(3.111) on S; and sum of their traces (3.110), and also the co-normal deriv-
ative (3.111) on S.. Then after substituting transmission and boundary con-
ditions (2.10)—(2.12) and notations (5.2) we arrive at the following system
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of direct segregated LBDIEs (TD2) of the second kind for the components
of the vector function UTP) = (uy, ug, s, s, ) € HIP),
TD)

up + R — VO + W, = FTP) in 0y, (5.14)
up + Roup + VO + W; - VOy, = BT in 0y, (5.15)

Vi +T1Rius —ToRoug — (W;(il) +W;£2) )it (E(Sli) —E(sf) Jpi+ TV P, =
=T F™ T F{™ on s, (5.16)

it Rius+72Raus — (VI =V )+ (WD + W) 0 =72V P =
= F" 4o B on s, (5.17)

1
5 Ve + DR+ BV 4+ WD i =Wy, = TR on 8., (5.18)

where Fl(TD)7 FQ(TD) are given by (5.10), (5.11).
If we introduce the notations

TD2 .
KTP2) — [’Cl(cj )]5X5 = diag(r, , 7,7, s, Ts, ) X

[1+R: 0 7vs<il> W;lb_) 0
0 I+Rs st) W;?L_) 7vs<j>
X | iRy —TeR> =W W £0—£®  t1v® | (5.19)
YR1 2R fv;_uv;? I+Wéli)+w<52i) 72V
| 0 TR TQVS) T2W$) 1w |
the LBDIEs system (5.14)—(5.18) can be rewritten as
(TP (TD) _ F(TD2) (5.20)

where U(TP) ¢ H(TP) is the unknown vector, while F(TP2) ¢ F(TD2) ig the
known vector generated by the right hand side functions in (5.14)—(5.18)
and

F(TP2) .= HYO(Qy; Ay) x HYO(Qg; Ag) x H™2(S;) x H2(S;) x H2(S,).

5.3. Main theorems for LBDIE systems (TD1) and (TD2). There
holds the following equivalence theorem.

Theorem 5.1. Let conditions (5.1) hold and x € X3,.

(i) If a pair (u1,uz) € HYO(Qq; Ay) x HY0(Qg; As) solves the Problem
(TD), then the vector UTP) € HTP) given by (5.3), where 1;, ¢;
and . are defined by (5.2), solves both LBDIE systems (TD1) and
(TD2).

(ii) Vice versa, if a vector UTP) ¢ H(TP) solves LBDIE system (TD1)
or LBDIE system (TD2) and condition (4.3) holds, then (u1,uz2) €
HL0(Qq; Ay) x HI0(Qy: Ag) solves Problem (TD) and relations
(5.2) hold.
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Proof. Claim (i) immediately follows from the deduction of (TD1) and
(TD2).

Now, let a vector U(TP) € H(TP) solves LBDIE system (TD1). Sub-
tracting from equation (5.7) the trace y; of equation (5.5) and adding the
trace 2 of equation (5.6), we prove (2.10). Similarly, subtracting from equa-
tion (5.8) the co-normal derivative T7 of equation (5.5) and the co-normal
derivative Ty of equation (5.6), we prove (2.11). At last, subtracting from
equation (5.9) the trace v2 of equation (5.6), we prove (2.12). That is, the
transmission conditions on S; and the Dirichlet boundary condition on S,
are fulfilled.

It remains to show that u, solve differential equations (2.9) and that the
conditions (5.2) hold true. Due to the embedding U(TP) € H(TP) the third
Green identities (3.109) hold. Comparing these identities with the first two
equations of the LBDIE system, (5.5) and (5.6), and taking into account
transmission conditions (2.10)—(2.11) and the Dirichlet boundary condition
(2.12) already proved, we arrive at the relations

Tyup —Tou uy + You
1 1U7 2U2 1 Y1u1 T Y2U2
(BT ) (- 2 )
== Pl(fl — Alul) in Ql,
N w@ (... Y1uitygus
wz) w (s@z —
= P2(Asuz— f2) in Qs
Whence by Corollary 4.6 we conclude that conditions (5.2) are satisfied and
A1u1 - f1 =0 in Ql, A2U2 - f2 =0 in QQ. (521)

This completes the proof of item (ii) for LBDIE system (TD1).

Let now a vector U(TP) € H(TP) solve LBDIE system (TD2). Subtract-
ing from equation (5.2) the co-normal derivative 77 of equation (5.14) and
adding the co-normal derivative T» of equation (5.15), we prove the first
relation in (5.2). Similarly, subtracting from equation (5.2) the trace 1 of
equation (5.14) and the trace 2 of equation (5.15), we prove the second
relation in (5.2). At last, subtracting from equation (5.11) the co-normal
derivative Ty of equation (5.15), we prove the third relation in (5.2).

It remains to show that wu, solve differential equations (2.9) and that the
transmission conditions on S; and the Dirichlet boundary condition on S,
are fulfilled. Due to the embedding U(TP) € H(TP) | the third Green identi-
ties (3.109) hold. Comparing these identities with the first two equations of
the LBDIEs system, (5.5) and (5.6), and taking into account relations (5.2)
already proved, we arrive at the relations

1
2

v (T1U1 —Touy
S

. )V (@ - Tou) =

i

1
Vs(il) (Thuy + Toug — o) + §WS(11) (poi — N1u1 + Y2usg) =
- Pl(fl — Alul) in Ql,

1 1
B} VS(,?) (Thruy + Tous — vo;) — 3 WS(?) (woi — Mu1 + yauz2) +
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+W P (poe = Yauz) = Palfo — Aguz) in Qo.

Whence by Corollary 4.7 we conclude that the transmission conditions on
S; and the Dirichlet boundary condition on S, are satisfied and

A1u1 — f1 =0 in Ql, A2U2 — f2 =0 in QQ. (522)
This completes the proof of item (ii) for LBDIE system (TD2). O
Due to this equivalence theorem we conclude that the LBDIE system
(5.5)—(5.9) with the special right hand side functions which belong to the
space F(TPY) is uniquely solvable in the space H(TP) defined by (5.4). In
particular, the corresponding homogeneous LBDIE system possesses only
the trivial solution. By the way, one can easily observe that the right hand
side in LBDIE system (5.5)—(5.9) vanishes if f; =0in Qg, ¢ =1,2, ¢9; =0
and 1p;=0 on S;, and g, = 0 on Se.
Our next aim is to establish the invertibility of the matrix operator gen-

erated by the left hand side expressions in the LBDIE system (5.5)—(5.9) in
two sets of function spaces

TP J(TD) __, p(TD1) (5.23)

:X(TD) __, y(TP), (5.24)

where we introduced the following notations for the wider function spaces,
X(TP) .= HY(Qy) x HY(Q) x H™7(S;) x H2(S;) x H™2(S,), (5.25)
YTPD .= HY () x H'(Q) x H2(8;) x H-7(S;) x H3(S.).  (5.26)

Evidently H(TP) ¢ X(TP) and F(TPY < Y(T'PD | Due to Theorems 3.6, 3.9
and 3.11 the operators (5.25) and (5.26) are bounded.

Theorem 5.2. Let x € X3, and condition (4.3) hold. Then the operators
(5.23) and (5.24) are invertible.

Proof. We can easily see that the upper triangular matrix operator

7 0 —r, VO ro, W 0
0 I VP ro, W& = VP
kg =10 0~V -y 0 0 (5.27)
00 0 L+ 0
0 0 0 0 -V |

possesses the same mapping properties as the operator Ky 1),
K:éTDl) ZX(TD) . Y(TDl)7 (528)

and by Lemma 3.7 and Theorems 3.9 and 3.11 the operator (5.28) is a
compact perturbation of the operator (5.24).
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On the other hand, for ¢ = 1,2 the operators (3.105) are strongly elliptic
pseudodifferential operators of order —1 with strictly positive principal ho-
mogenous symbol o (y,¢’), while (3.108) are strongly elliptic pseudodif-
ferential operators of order +1 with strictly negative principal homogenous
symbol o (y,&’) for £’ € R?\ {0} and y € 99, (see formulas (B.8) and
(B.9) in Appendix B). Therefore by standard arguments it can be shown
that the operators on the main diagonal in (5.27) are Fredholm of zero index
in the appropriate function spaces (see, e.g. [1]). Thus operator (5.24) is
also Fredholm with zero index.

It remains to show that the null space of operator (5.24) is trivial. We
proceed as follows. Let U(TP) € X(TP) be a solution to the homogeneous
system of equations KTPOUUTP) = 0. Then due Theorems 3.6 and 3.9 we
see from the first two equations of the system that U(TP) € H(TP) and by
the equivalence Theorem 5.1 we conclude U(TP) = 0. Thus the kernel of
the operator (5.24) is trivial and consequently (5.24) is invertible.

To prove invertibility of operator (5.23), we remark that for any F
F(TPY a unique solution UTP) € X(TP) of equation (5.13) is delivered
by the inverse to the operator (5.24). On the other hand, since F(TP) ¢
F(TPY the first two lines of the matrix operator K(TP) imply that in fact
UTD) ¢ H(TP) and the mapping F(TPY — H(TP) delivered by the inverse
to the operator (5.24) is continuous, i.e., this operator is inverse to operator
(5.23). |

(TD) ¢

6. THE TRANSMISSION MIXED PROBLEM (TM)

Let us consider the mixed type transmission problems (2.9), (2.10), (2.11),

(2.14), (2.15), with the right hand sides

poi € H2(S:), toi € H2(S),
(M) 1 (M) -3 0 _ (6.1)
A e 1 (Sep), w0 € HoH(Sun) fu € HOQ,), a=1,2.

Let us denote by ®¢,. € H%(Se) and Wo, € H™ 2 (S.) some fixed extensions

of the boundary functions cpé]ew) and 1/)(()24) from S.p and S.y, respectively,

onto the whole surface Se, preserving the space. Then s, Poe = gpéﬁ/[),
U, — D)

7/.SQN Oe Oe -

Any other extensions ® € H2(S,.) and ¥ € H~2(S,) can be evidently
represented then in the form

(I):(I)Oe"_‘pea ‘peeﬁ%(SeN); \Ij:\IjOe"_d}ev ¢e€ﬁ_%(SeD)'

Similar to (5.2) for the Problem (TD), let us introduce the following
combinations of the unknown boundary functions

1 1
bi=g (Tin—Touz) € H2(S)), pi=3 (yaur +2uz) € HE(S)),

] . (6.2)
Ye=Toug—Wo, € Hﬁ%(SeD)v Ye="2uz — Pge € H%(SeN)-
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Further, let us set
UTM) = (g, ug, 9, i, Ve, ) € HTM), (6.3)
where
HTM) .= HYO(Qy: Ay) x HYO(Qy; Ay) x H2(S;)x
x H(S;) x H ¥(Sep) x H*(Sew) (6.4)

and we assume again that the components of the vector U(T™) are formally
unrelated.

Let us employ the third Green identities (3.109) in £; and Qs, difference
of their traces (3.110) and sum of their co-normal derivatives (3.111) on
S;, and also the trace (3.110) on S.p and the co-normal derivative (3.111)
on Sen. Then after substituting transmission conditions (2.10)—(2.11) and
mixed boundary conditions (2.14)—(2.15) along with notations (6.2), we ar-
rive at the following system of direct segregated LBDIEs for the components
of the vector U(TM),

up +Riug — Vs(jl)%’ + Ws(il)%' = F1(TM) in (6.5)
up + Raus + VO + Wi = VO + WP, = B in Q,, (6.6)
N Riur — 2 Raug — (VS) + Véf))da + (Wél) - Wéf))SDiJF
+72V e — 1. WP, = BT — BT g on S, (6.7)
T1Riut + ToRous — (W;(l) - W;(f))%‘ + (ﬁ(sli) + E(sf))%‘—
DV Py + WP, = T + T Fy™ — g on 85, (6.8)
¥ Rou + VI + 1. W o = VP, + WP, =

= 'YQFQ(TM) — Poe ON SeDa (69)
TyRou+ TV s + ToW P i = WPy, + LG o, =
=TF™) — 4o on Sew, (6.10)
where
1 1
Fl(TM) =Pifi+ 5 V;il)%i 35 Wéil)sﬁon (6.11)

1 1
By = Pafy 5 Vo 4+ 5 WP poi + VW = W0 (6.12)

As in the case of the problem (TD), we have here the following equivalence
theorem.

Theorem 6.1. Let x € X3, and conditions (6.1) hold. Further, let
B, € H2(S,) and Wy, € H=2(S,) be some fived extensions of the boundary
functions cpgjew) and 1/1(()]6\[) from Sep and S.n, respectively, onto the whole
surface Se.
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(i) If a pair (uy,us) € HYO(Qq; Ay) x HYO(Q9; Ay) solves the transmis-
sion mized problem (TM), then the vector UTM) ¢ HTM) given by
(6.3), where 1;, @i, Ye and e are defined by (6.2), solves LBDIE
system (6.5)—(6.12).

(i) Vice versa, if a vector UTM) ¢ H(TM) solyes the LBDIE system
(6.5)-(6.12) and condition (4.3) holds, then the pair (u1,us) solves
the Problem (TM) and relations (6.2) hold.

Proof. The claim (i) immediately follows from the deduction of (6.5)—(6.12).

Now, let a vector UT™) solve the LBDIE system (6.5)—(6.12). Subtract-
ing from equation (6.7) the trace 41 of equation (6.5) and adding the trace
v of equation (6.6), we prove (2.10). Similarly, subtracting from equation
(6.8) the co-normal derivative Ty of equation (6.5) and the co-normal de-
rivative Ty of equation (6.6), we prove (2.11). Subtracting from equation
(6.9) the trace v2 of equation (6.6), we prove (2.14). Similarly, subtracting
from equation (6.10) the co-normal derivative T5 of equation (6.6), we prove
(2.15). That is, the transmission conditions on S; and the mixed boundary
conditions on S, are fulfilled.

It remains to show that equations (2.9) and the relations (6.2) hold true.
Due to the embedding UTM) ¢ H(TM) | the third Green identities (3.109)
hold. Comparing these identities with the first two equations of the LBDIE
system, (6.5) and (6.6), and taking into account transmission conditions
(2.10)—(2.11) and mixed boundary conditions (2.14)—(2.15), already proved,
we arrive at the relations

Tyuy —Tou
Vs(.l)( 1U1 . 2U2

i

- w) + W (% . w) _

== Pl(fl — Al’u,]_) il’l 917
Tiuy —Tou U + Y2u
2 1U1 2U2 2 T1uL T 72U2
VS(@-)( 2 _wi) _Wéi)(%_ 2 )+
VO (~Thuz+ e+ Vo) + W (Yaus — o — Poe) =Pa(Aguz— f2) in Q.
Whence by Corollary 4.8 we conclude that (2.9) and (6.2) are satisfied. O

Denote by K(TM) the localized boundary-domain 6 x 6 matrix integral
operator generated by the left hand side expressions in (6.5)—(6.10),
(TM) _ 13-(TM) NI
K = [Ky; loxe = diag(rg 7o, Ts, 1 Ts, Ts, s Ts,p ) X
[1+R:  © -V w 0 0
+R1 s; s,
2) ©) C) ©)
0 I+R, v we ve wl
s e V-V WOWE D D
" mRe Ty Re W LD V@) T W<2)< (6.13)
LR Sa R2 WV s; s; sy 2Vs. T2,

(2) (2) _y@) (2)
0 Y2R2 Y2 VSi Y2 WSi Vg w

e Se

(2) (2) —_w' ) (2)
0 T>R2 TZVSi T> Wsi WSE ES
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and set
FTM) = HYO(Qy; Ay) x HY0(Qg; As) x H?(S;)x
x H3(S;) x H%(S.p) x H™%(Sen). (6.14)
Then the LBDIEs system (6.5)—(6.10) can be written in matrix form as
Iy TM) — (M) (6.15)

where U(TM) is the unknown vector function (6.3), while F(TM) ¢ F(TM)
is the known vector function compiled by the right hand side functions in
(6.5)—(6.12).

From Theorem 6.1 it follows that LBDIE system (6.5)—(6.10), i.e., equa-
tion (6.15) is uniquely solvable in the space H(T™) for the special right
hand side vector-function (see the right hand side functions in (6.5)—(6.12))
which belong to the space F(TM) defined by (6.14). One can easily observe
that the right hand side expressions in LBDIE system (6.5)—(6.10) vanish
iffq:Oian,QZLQ, f1 :0andwoi=OonSi, <I>Oe=Oand\I/0€=0
on S,.

Now we establish that actually equation (6.15) is uniquely solvable in
two sets of spaces. To this end let us consider the operators

TV g (TM) _, p(TM) (6.16)
cX(ITM) __, y(TM), (6.17)

where
XM= H(Q )xH (Q)xH ™2 (S;)xH? (S;)xH 2 (Sep)xH? (Sen), (6.18)
YT —H Q) )xH (Q)xH % (S;)xH ™2 (S;)xH? (Sep)xH % (Sen). (6.19)

As follows from the mapping properties of the potentials (see Theorem 3.6,
3.9 and 3.11), the operators (6.16) and (6.17) are bounded. Further we show
that the operator (6.17) is Fredholm with zero index and thus (6.17) and
consequently (6.16) are invertible.

Consider the upper triangular operator

’C(()TM) —
1 0 —r,, V@D o, W 0 0
0 I ry,V® ro, W —r, V& o, w2
00 —VH-_p@ 0 0 0
= P . (6.20)
0 0 0 LML 0 0
0 0 0 0 —ry, VI 0
0 0 0 0 0 ro, L]

It is easy to see that, on the one hand, the operator

JCSTM) L (M), (T (6.21)
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is bounded, while due to Lemma 3.7 and Theorems 3.9 and 3.11,
KM M) x (T, y (M) (6.22)

is a compact operator.
On the other hand, as it has been mentioned in the proof of Theorem
5.2, the third and forth operators in the main diagonal

_[Vg) +V§?)] cH™2(S;) — H2(S;), (6.23)
L0 4 £® HE(S;) — HE(S)), (6.24)

are Fredholm with zero index.

Moreover, applying the results of the theory of strongly elliptic pseudo-
differential equations on manifolds with boundary (see, e.g., [3, Theorem
3.5], [6, Lemma 3.4]) we conclude that the operators on the main diagonal

re V@ H 3 (Sep) — H?(S.p), (6.25)
roon £ H?(Sen) — H ™% (Sen), (6.26)

are Fredholm with zero index.

Therefore, (6.21) and consequently (6.17) is a Fredholm operator with
zero index. It remains to show that the null space of operator (6.17) is
trivial. Let U(TM) ¢ X(TM) he a solution to the homogeneous equation
KM (TM) — (. Then due to the first two lines of the matrix equation and
mapping properties (3.68), (3.93) and (3.94) we see that UTM) ¢ H(TM)
and by the equivalence Theorem 6.1 we conclude UT™) = 0 due to the
uniqueness theorem for the problem (TM) in the space HTM) Thus the
operator (6.17) is invertible.

To prove invertibility of operator (6.16), we remark that for any F (TM) ¢
F(TM) 3 unique solution UTM) ¢ X(TM) of equation (6.15) is delivered by
the inverse to the operator (6.17). On the other hand, since F(TM) ¢ F(T'M)
the first two lines of the matrix operator K(T™) imply that in fact U(TM) ¢
HTM) and the mapping FTM) — H(TM) delivered by the inverse to the
operator (6.17) is continuous, i.e., this operator gives inverse to operator
(6.16) as well.

Now we can summarize the results obtained above as the following

Theorem 6.2. Let xy € X3, and condition (4.3) hold. Then the operators
(6.16) and (6.17) are invertible.

7. CRACK TYPE TRANSMISSION DIRICHLET PROBLEM (CTD)

Let a pair (uy,us) € HY0(Qq; A1) x HYY(Q9; As) be a solution to the
problem (CTD) with the interface crack-transmission conditions (2.17)-
(2.20) on S; and the Dirichlet type boundary condition (2.12) on the exterior
boundary S, i.e.,

Ay(z,0ug = fy in Qf, ¢g=1,2, (7.1)
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Yiul — YUz = 908? on Si(t), (7.2)

Tiur + Tous = é? on Si(t), (7.3)

Tiuy = 1; on Si(C)’ (7.4)

Toug = 1)g; on Si(c), (7.5)

You2 = Poe On Se. (7.6)

Let 1o; be defined by (2.22). We assume that the conditions (2.21)—(2.23)

are satisfied along with the conditions (2.16) for the function ¢g. and fj,
q=1,2.

Denote by ¥q,; € H—3 (S;) some fixed extension of the function ¥{; — ¥(;
from Si(c) onto the whole of S; preserving the function space. Analogously,
let ®o; € Hz(S;) be some fixed extension of the function @é? from Si(t)
onto the whole of S; preserving the function space. Then we can write the
following relations on .S;

1 1 1 1 ~
Tiu = 3 [Thuq + Tous) + 3 [Thyur — Toug) = = o + = Vo, + 15,  (7.7)

2 2
1 1 1 1 ~
Toug = 3 [Thuq + Toug) — 3 [Thuy — Toug) = 5 Yoi — 5 Vo — i, (7.8)
1 1 1 .
muL =5 [viu1 + yaus] + 3 [Yiur — Yaus] = 5 Do; + i + 95, (7.9)
1 1 1 .
MU =5 [Y1u1 + y2us] — B [Y1u1 — Y2u2] = —3 Po; + i — @i, (7.10)
where
~ 1 1 =172, o)
%’ = 5 [T1u1 — TQUQ] — 5 \Iloi € H (Sz ), (7.11)
1
;1= 5 [71u1 =+ 'YQUQ] c Hl/Q(Si), (712)
~ 1 1 7 c
Gii= 5 b —yaua) — 5 o € HY(S]Y), (7.13)

are unknown functions. Let us introduce one more unknown function de-
fined on S,

Ve = Touy € H™Y2(S,), (7.14)
and denote
UCTD) = (uy, ug, Pi, iy Biy te) € HTD), (7.15)
HCTP) .= HYO(Qy; Ly) x HYO(Q; Ly) x H2(5") x H2(S;)x
x H3(S\9) x H™3(S,), (7.16)

We choose equations (3.109) in € and €y, difference of equations (3.110)
forg =1 and ¢ =2 on Si(t), sum of equations (3.111) for ¢ = 1 and ¢ = 2
on the whole of S;, difference of equations (3.111) for ¢ = 1 and ¢ = 2 on
SZ(C) and equation (3.111) for ¢ = 2 on S,. Then after substituting there the
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notation (7.7)—(7.10) and (7.14) and taking into consideration the relations
(7.1)—(7.6), we arrive at the following system of direct segregated LBDIEs

for the components of the vector UCTP) = (uy, uz, ¥;, i, Bis te),
ur + Roug = VG + Wl + WG, = FYTP) iy, (7.17)
U+ Roup + VI + WD 0~ WD -V @y = FTP) i 0y, (7.18)
71721%61—72732%2—[1}23)"‘VS)MZFF[WS)_Wg)]%"‘[wg)‘kwg)]@"‘
+72V5(62)7,/16 = ’ylFl(CTD) — ’ygFQ(CTD) — ®p; on Si(t), (7.19)
Ty Ryt + Ty R — WD =W+ (L0 + L+ [£0) — L2, -

7

~V Py, = L) + TR — gy on S, (7.20)
Ty Raur =Ty Roug — WD + WD+ (L0 — LD + L0+ LD+
+ VP9, = TFTP) — LT — Wy on 51, (7.21)
72R2U+V2Vs(f)15i+72ws(f)% - ’Y2WS(?)@—V$)¢€ =
=Py ™ — e on S, (7.22)
where
FC™P= P fi + % Vo + %Vs(jhpm - %W;j)cpm in Qi (7.23)

1 1 1 .
F2(CTD): szz +§ VS(?)'(/JOZ' _5 V;?)\I]Oi +§ Wé?)q)Oi_Wéf)(POe m Qg. (724)
There holds the following equivalence theorem.

Theorem 7.1. Let x € X3, conditions (2.21)—(2.23) be satisfied along
with the conditions (2.16) for the functions poe and fq, ¢ = 1,2, vo; be
defined by (2.22), and Uy, Pg; and Po; be the above introduced extended
functions.

(i) If a pair (u1,ug) € HYO(Qq; Ay) x HYO0(Qq; Ay) solves the interface
crack problem (CTD), then the vector (ul,u2,{/)vi, ©i, PiyWe), where
Ui, i, @i and ¥, are defined by relations (7.11)—(7.14), solves LB-
DIE system (7.17)—(7.22).

(ii) Vice wversa, if a vector (ul,ug,zljvi7goi,6i,we) e HTD) solves LB-
DIE system (7.17)—~(7.22) and condition (4.3) holds, then the pair
(u1,u2) solves the problem (CTD) and relations (7.7)—(7.14) hold

true.

Proof. The proof of the claim (i) immediately follows from the deduction of
system (7.17)—(7.22).

Now, let the vector (7.15) solve LBDIE system (7.17)—(7.22). One can
easily verify that the boundary-transmission and crack conditions (7.2)—
(7.6) are satisfied. To this end one needs, similar to the proof of The-
orem 6.1, to take the traces and co-normal derivatives of the first two
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equations (7.17) and (7.18) and compare them with the last four equations
(7.19)~(7.22).

It remains to show that u; and wug solve the differential equations (7.1)
and that the relations (7.7)—(7.14) hold true. Due to the embedding (7.16),
we can write the third Green identities (3.109). Comparing these equalities
with the first two equations of the LBDIE system, (7.17) and (7.18), and
keeping in mind that for the functions u; and us the boundary-transmission
conditions (7.2)—(7.6) are already proved, we arrive at the relations

Vs(il)(gil) + Wéj)(gm) +P1(G1) =0 in Q, (7.25)
Vs(iz) (9i1) + Wé?)(gu) + Vs(f) (ge) +P2(G2) =0 in o, (7.26)

where
Gi:=A1un — f1 in Q1, Gz:= Asug — fo in Q,

~ 1 1
gi1 = Thuy —; — §¢0i —3 Vo; on S,

~ 1
Gi2 = i + i + 5 dy; — y1u1 on S;,
gi1 = Toug + 1h; — 3 Yo; + 3 Wo; on S,

- 1
gis = Qi =i T 5 Po; — y2uz on S;,

Je ‘= Tous — '(/Je on Se.
Due to the boundary-transmission conditions (7.2)—(7.6) and equalities (2.22)
we obtain,

gin = —gh € H2(S"), g1y — gis € H¥(S')), g. € H™2(S.). (7.28)

7

Therefore by Corollary 4.9 we have ¢;1 = g}y = gi2 = gi3 =0 on Sy, ge =0
on Se and G4 = 01in g, ¢ = 1,2, which completes the proof. O

Due to this equivalence theorem we conclude that the LBDIEs system
(7.17)—(7.22) with the special right hand side functions which belong to the
space

FOTD) .= H1O(Qy; Ay) x HYO(Q2; A2) x H? (S7)x
x H™2(S;) x H™2(S\9) x H3(S,.) (7.29)

is uniquely solvable in the space H(CTP) defined in (7.16). In particular,
the corresponding homogeneous LBDIEs system possesses only the trivial
solution. By the way, one can easily observe that the right hand side ex-
pressions in LBDIEs system (7.17)—(7.22) vanish if and only if f, = 0 in €,
q=1,2, po; = g; =0 on Si(t), Ph; = ¥§; =0 on Sgc) and ¢ge = 0 on Ss.

Our next aim is to establish that the matrix operator K(¢TP) generated
by the left hand side expressions in the LBDIEs system (7.17)—(7.22) is
invertible in two sets spaces. We have
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CTD) _ 4 (CTD) T
i ) — [}ij léxs = dlag(rnl77“92,7"3(0,rSi,rS(C),rSE)x
i i

r _yv® &) &) 7
I+R, 0 V! w! wi 0
@) @) w®  _y®
0 I+R: Ve we w v
_ —vW_p@ @O @ @ pp@ )
MR —pRe =V V@ W WO W@ v
“| nry TR WO W@ W@ O, iy | (7.30)
1 22 S; S; Si S; Si 53 2Vse

_ _w’ (D) _ w1 (2) 1) _p(2) (1) (2) (2)
Ti R ToRo WSi WSi £S.L- LSi LSi +£Si T2VSe

(2) (2) _ (2) _y(©)
0 Y2R2 Y2 VSi VY2 WSi Y2 WSi Vse

Introduce the function spaces

x(CTD) ._ HY(Q) % H1<92) « ﬁ—%(sit)) X H%(&)x

% ﬁ%(5£0)) % H_%(SQ)7 (731)
y(CTD) ._ Hl(Ql) 2 HI(QQ) ~ H%(Sft)) X H‘%(&)x
v H_%(Sfd) « H%(Sg)- (7.32)

By virtue of Theorems 3.9 and 3.11 we see that the operator K(¢7P) has
the following mapping property

K(CTD) . g(CTD) _, j(CTD), (7.33)

. X(ETD) _, y(©TD), (7.34)

Theorem 7.2. Let x € X3, and condition (4.3) hold. Then operators
(7.33) and (7.34) are invertible.

Proof. Due to compactness of the operators from Lemma 3.7 and Theo-
rems 3.9 and 3.11, the upper block-triangular matrix operator

CTD .
’C(() ) = dlag(TQI,TQQ,’I‘Sgt),TSHTSEC),T&)X
[T 0 —Vs(il) WS<3> WS<3> 0 ]
0 I v W -we v
00 —YH4y® 0 0 0
X k2 k2

0 0 0 W+ LB L& o
00 0 S S I ¢ S |

0 0 0 0 0 -V |

is a compact perturbation of the operator (7.34) and possesses the same
mapping property,

IC((JCTD) .x(CTD) _, y(CTD) (7.35)
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Our goal is to show that the operator (7.35) is Fredholm with zero index. To
this end, let us note that the operator (3.105) is a strongly elliptic pseudo-
differential operator of order —1 with strictly positive principal homogenous
symbol, while (3.108) is a strongly elliptic pseudodifferential operator of or-
der +1 with strictly negative principal homogenous symbol. This can be
shown by a standard approach since the principal homogeneous symbols of
the localized operators and the corresponding non-localized ones coincide
(cf. 7], [13)).

Therefore, applying the theory of pseudodifferential equations on mani-
folds with and/or without boundary ([11], [26]) one can show that the third

and sixth operators in the main diagonal of IC(()CTD)

rgo WD+ VD) B3 (S() — H3(S)),
V) i Ho3(S,) — HE(S.)
are Fredholm with zero index.
Now let us consider the following 2 x 2 matrix operator block which stands
in the main diagonal of the upper block-trianguilar matrix operator IC(SCTD)
L)+ L2 £ —

i

reo LD = £O] 1y L0 + LA |- (7.36)

S
Clearly,

L:H(S;) x H3(S\9) — H™3(S;) x H*(S') (7.37)
is continuous. Denote by o(@(y,£'), y € S;, € € R?, the principal homo-
geneous symbol of the operator E(Sq_), q = 1,2 (see formula (B.9)). As it is
shown in Appendix B, o(@ (y, ¢) is a homogeneous function in & of order 1
and 0@ (y,¢") < 0 for all ¢ € R?\ {0} and for all y € S;.

Therefore there is a compact operator C : H2 (S;) — H~2(S;) such that
LY 4 £P 4 H3(S;) — H 3(S)) (7.38)
is invertible. Denote the inverse operator by [£() + £2) 4 ¢]~L.

Further, let us introduce a compact perturbation of the operator L in (7.36)—
(7.37) defined by the relation

LY+ +c £ -
rso L8 = LD 1o (L) + L]

i

L= . (7.39)

It is easy to check that L can be represented as the composition of two
operators

L=L1Ly,
where

~ 0 LY+ +c
£1 = ‘ ‘ (740)

TS@NSi T'g(e) [,C(l) - [:(2 ]

S S;
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Ny, = L0 428 — (20D — £ (e + £+ )M el) - £D] (7.41)

i i i

and
~ 0 I
Lo = , [/3(511_) . /.Z(SQZ_) N C]_l[ﬁg) B ﬁ(sf)] ) (7.42)
Note that the operator
Lot H3(S) x H3(S{9) — H?(S;) x H3(S)), (7.43)

is invertible, while the operator
Ly:H? (S x H3(S;) — H 3(S;) x H 2(S\) (7.44)

is bounded. Due to the triangular structure of the operator £; in (7.40) and
in view of invertibility of the operator (7.38) we see that (7.44) is Fredholm
with zero index if the pseudodifferential operator

rgoNs, 1 H2(8(7) — H™3(S{) (7.45)

is Fredholm with zero index. Taking into consideration that (@ (y, &) < 0

for all ¢ € R2?\ {0} and for all y € S;, we deduce that the principal

homogeneous symbol o,,(y, &) of the operator N, s, is strictly negative,
[0y, &) =P (y. &) _

on(4:8) =00 w.8) + oW )~ T m ey
_ 40W(y, &)o@ (y, &)

oW, ) + 0Py, <

for all ¢ € R?\ {0} and for all y € S;.

Therefore the pseudodifferential operator (7.45) and, consequently, (7.44)
and (7.39) are Fredholm with zero index ([11], [26]). The operator (7.37)
possesses the same property, since £ — L is compact. This implies that the
operator (7.35) is Fredholm with zero index and since

K(CTD) _ IC(()CTD) . X(CTD) _ Y(C’TD)

is compact, the operator (7.34) is Fredholm with zero index as well.

It remains to show that the null space of the operator (7.34) is trivial. Let
Uy € X(CTD) he a solution to the homogeneous equation KDy, = 0.
From equations (7.17) and (7.18) with zero right hand sides due to the
mapping properties (3.68), (3.93) and (3.94) we then see that Uy € H(CTP),
By the equivalence Theorem 7.1 and the uniqueness Theorem 2.1 then it
follows that Uy = 0. Thus the kernel of the operator (7.34) is trivial and
consequently it is invertible.

To prove invertibility of operator (7.33), we remark that for any F (CTD) ¢
F(CTP) 3 unique solution UCTP) e X(CTD) of equation

K(CTD)(CTD) _ F(CTD) (7.46)
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is delivered by the inverse to the operator (7.34). On the other hand, since
F(CTD) ¢ R(CTD) the first two lines of the matrix operator K(¢TP) imply
that in fact UTP) € H(CTP) and the mapping F(€TP) — HETD) deliv-
ered by the inverse to the operator (7.34) is continuous, i.e., this operator
gives inverse to operator (7.33) as well. O

8. APPENDIX A: CLASSES OF LOCALIZING FUNCTIONS
Let us introduce the classes for localizing functions.
Definition A.1.
(i) We say x € X for integer k > 0 if
x(@) = x(|2]), X € W(0,00), oX(0) € L1(0,00). (A1)
(i) We say x € X for k > 1if x € X*, x(0) = 1 and
oy(w) >0 for a.e. weR, (A.2)

where

2w for weR\ {0},

oX(0)do for w=0,

<)
=
£
Il
O\SE‘H
>
e/

and X (w) denotes the sine-transform of the function ¥,

R.(@) = / %(0) sin(aw) do. (A4)

(iil) We say x € XF, for k > 1if x € X¥ and
wX,(w) <1 VweR. (A.5)

Note that if ¥ has a compact support, then the third condition in (A.1)
is evidently satisfied. If ¥ € W*(0,00), k > 1, then ¥ is continuous due
to the Sobolev embedding theorem, and x(0) = x(0) is well defined as the
trace of ¥. Evidently, we have the following embeddings, X** C X*2 and
Xkoc Xk X XF2 for by > k.

The class X is defined in terms of the sine-transform. Since the classes
X fﬁ and XF ', introduced in [7] are subsets of the corresponding classes XF
and X}, the following lemma implied by [7, Lemma 3.2] gives an easily
verifiable sufficient condition for non-negative non-increasing functions to
belong to this class.

Lemma A.2. If y € X*, k> 1, X(0) =1, x(0) > 0 for all o € (0,00),
and X is a non-increasing function on [0,+oc), then x € XF.
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The following examples for y are presented in [7],

|z[1*
- 1] e lel<e (A.6)
0 for |z| > e,
exp [ﬂ] for |x| <€
X, (%) = |22 — 2 ’ (A7)
0 for |z| > e,

One can observe that x, € XF, while x, € X2° due to Lemma A.2 and for
them the inequality (A.2) holds for all w € R. Moreover, x, € X¥, for k = 2
and k = 3. For details and further examples see [7].

9. APPENDIX B: CALCULATION OF SYMBOLS OF BOUNDARY OPERATORS

Here we calculate the principal homogeneous symbols o, (y,¢') and

T, (y,£') of the boundary pseudodifferential operators V(@) and £, ¢ =
1,2, defined by formulas (3.14) and (3.17). Without loss of generality, we
assume that the point y € 9€, is the origin of some local co-ordinate system
with the third co-ordinate axis coinciding with the outward unit normal
vector n{?)(y). Due to the local principal technique (see, e.g. [11]), instead
of Q,, actually, we can consider the half-space R? := {x € R® : 23 < 0}
with the outward unit normal vector n{?(y) = (0,0,1) to the boundary
OR? .

First we rewrite the fundamental solution (Levi function) of the operator
Ay(y,0p) = ag(y)Age(0z) (see (2.1) and (3.1)) in the following form

qu(xv y) = a’;l(y)qu*(xv y) = aqil(y)sg_—lm[Aqi*l(fzg)] =

- 1 - ; . —iTT
= agl(y)sﬁ’l—w’ |: + % /Aq*l(_Z€/7 —ZT)B 3 dT:|, (Bl)
1ES

where Py1,(z,y) is defined by (3.2), the sign “4” corresponds to the case
x3 < 0, while the sign “—” corresponds to the case x5 > 0. Here we use the
notation: x’ = (x1,x2), * = (2/,23), & = (&1,&), € = (£,&), 1T (17) is a
closed contour orientated counterclockwise and enclosing all the roots of the
polynomial A, (—i&’, —iT) with respect to the variable 7 in the half-plane
Im7 >0 (Im7 < 0).

Note that due to formulas (3.1) and (3.26)

2 2
A€, 7) = a2 +27 ) alB e+ > ol ek, (B2)
k=1 k,j=1
2
Tpu(€,7) = alhr + > a8 &, (B.3)
k=1

since n(? = (0,0, 1).
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Denote by T;r and 7, the zeros of the polynomial Ay, (¢, 7) with positive
and negative imaginary parts respectively,

rEE) = 7€) Eimp(€), Ta(€) > 0, (B.4)
where

2

T1(€) = —[af5]) " .k, (B.5)
k=1

2 2 571/2
na€) = W91 ol ¥ aloe - (Xada)] >0 @o
k,j=1 k=1

for all ¢ € R?\ {0}.
The latter inequality follows from the positive definiteness of the matrix

[ay® Jaxs.

Now, in view of the representation (B.1) and formula (3.14), we get the
following expression for the principal homogeneous symbol of the operator
V().

AV 1 —1( st o 1 dT
Jv(q) (y7£ )7 27Taq (y) /Aq* ( 7’6 ’ ZT) d’r* 27Taq (y) /Aq* (é—/7 7_) (B7)
I+ I+

and with the help of the residue theorem finally we deduce
i 1
0 (¥ €) = =
V(@) 2a,(y) 2
O gt + % ol
1

205,04 (y)72(&)
Quite similarly, for the principal homogeneous symbol of the boundary pseu-
dodifferential operator £(?) with the help of (3.17) and (B.1) we get:

1 Tq(ya _7;5/7 _iT)Tq(yvif/aiT)

>0 for all ¢ € R?\ {0}. (B.8)

@, ¢y — n_ L _
o ¢ <y’£ ) - UL(Q) (y’g ) - 27Tl+ Aq(_i£/7 _ZT) dT -
1 ([T 0?1 fagW)Te(y. 8 )P
~ o / A, (€ 7) dr = Zy, g (1) Age(€,7) dr =

I+

. 2
a4y 1
=0 ) r + Y aff6] = —J s ra€) <0 (BI)
k=1

for all ¢ € R?\ {0}.

CONCLUDING REMARKS

Four segregated direct localized boundary-domain integral equation sys-
tems for several transmission problems for a scalar linear divergence PDE
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with matriz variable coefficients of a special form were formulated and an-
alyzed in the paper. They give some representative samples of different
LBDIE systems that can be formulated and analyzed for such problems.
The first two LBDIE systems, (TD1) and (TD2) are associated with the
transmission-Dirichlet problem, where the boundary equations of the sys-
tem (TD1) are of the first kind, while all the equations of the system (TD2)
are of the second kind. The last two LBDIE systems are associated with the
transmission-mixed problem and with the transmission-Dirichlet problem
with the interface crack on a part of the interface. The boundary equations
of the both these LBDIE systems are of the first kind.

Equivalence of the LBDIEs to the original variable-coefficient transmis-
sion-boundary-crack problems was proved in the case when right-hand side
of the PDE is from L2(f,), and the Dirichlet and the Neumann data from
the spaces H z and H _%, respectively, on the corresponding parts of the
boundary. The invertibility of the operators for the LBDIE systems (TD1),
(TM) and (CTD) was proved in the corresponding Sobolev spaces, employ-
ing the technique of pseudodifferential operators on manifolds. The main
theorems for LBDIEs were proved under condition x € X3, on the localiz-
ing function, which is more relaxed then the condition x € X}, from [7].
Condition (4.3) that the ratio of the coefficients on the interface should be
constant appeared to be essential in the proof. A special consideration is
needed to relax the latter condition.

Quite similarly the problems (TN), (CTN) and (CTM) can be reduced to
the corresponding LBDIE systems which can be analyzed by the analogous
arguments. By the same approach, the corresponding LBDIDE systems for
unbounded domains can be analyzed as well. The approach can be extended
also to more general PDEs and to systems of PDEs, while smoothness of the
variable coefficients and the boundary can be essentially relaxed, and the
PDE right hand side can be considered in more general spaces, c.f. [18, 19].

This study can serve as a basis for rigorous analysis of numerical, espe-
cially mesh-less methods for the LBDIEs that after discretization lead to
sparsely populated systems of linear algebraic equations attractive for nu-
merical computations (see e.g. [17, 21] for algorithm and implementation).
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